复数单元测试题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、复数选择题

1.复数1

1z i

=-,则z 的共轭复数为( )

A .1i -

B .1i +

C .

1122

i + D .

1122

i - 2.已知复数2z i =-,若i 为虚数单位,则1i

z

+=( ) A .

3155

i + B .

1355i + C .113

i +

D .

13

i + 3.已知复数1=-i

z i

,其中i 为虚数单位,则||z =( )

A .

12

B .

2

C D .2

4.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限

B .第二象限

C .第三象限

D .第四象限

5.已知,a b ∈R ,若2

()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <- B .1a >或2a <-

C .12a -<<

D .21a -<<

6.复数312i

z i

=-的虚部是( ) A .65i -

B .35

i

C .

35

D .65

-

7.满足313i z i ⋅=-的复数z 的共扼复数是( ) A .3i -

B .3i --

C .3i +

D .3i -+

8.在复平面内,复数z 对应的点是()1,1-,则1

z

z =+( ) A .1i -+ B .1i +

C .1i --

D .1i -

9.复数12i

z i

=

+(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限

B .第二象限

C .第三象限

D .第四象限

10.已知复数z 的共轭复数212i

z i

-=+,i 是虚数单位,则复数z 的虚部是( ) A .1

B .-1

C .i

D .i -

11.复数z 满足22z z i +=,则z 在复平面上对应的点位于( ) A .第一象限

B .第二象限

C .第三象限

D .第四象限

12.已知复数z 满足()1+243i z i =+,则z 的虚部是( ) A .-1

B .1

C .i -

D .i

13.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 14.已知i 是虚数单位,2i z i ⋅=+,则复数z 的共轭复数的模是( )

A .5 B

C D .3

15.复数21i

i

+的虚部为( ) A .1-

B .1

C .i

D .i -

二、多选题

16.已知复数2020

11i z i

+=

-(i 为虚数单位),则下列说法错误的是( )

A .z 的实部为2

B .z 的虚部为1

C .z i =

D .||z =17.已知复数z 满足2

20z z +=,则z 可能为( ) A .0

B .2-

C .2i

D .2i -

18.已知复数(),z x yi x y R =+∈,则( )

A .2

0z

B .z 的虚部是yi

C .若12z i =+,则1x =,2y =

D .z =

19.设复数z 满足1

z i z

+=,则下列说法错误的是( ) A .z 为纯虚数

B .z 的虚部为12

i -

C .在复平面内,z 对应的点位于第三象限

D .z =

20.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限

B .第二象限

C .第三象限

D .第四象限

21.已知i 为虚数单位,复数322i

z i

+=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为

75

i C .3z =

D .z 在复平面内对应的点在第一象限

22.下列结论正确的是( )

A .已知相关变量(),x y 满足回归方程ˆ9.49.1y

x =+,则该方程相应于点(2,29)的残差为1.1

B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好

C .若复数1z i =+,则2z =

D .若命题p :0x R ∃∈,2

0010x x -+<,则p ⌝:x R ∀∈,210x x -+≥

23.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的

是( ) A .2ωω=

B .31ω=-

C .210ωω++=

D .ωω>

24.已知i 为虚数单位,以下四个说法中正确的是( ).

A .234i i i i 0+++=

B .3i 1i +>+

C .若()2

z=12i +,则复平面内z 对应的点位于第四象限

D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 25.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:

()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:

()()()n cos sin co i s s n

n n

z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦

+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .2

2

z z = B .当1r =,3

π

θ=时,31z =

C .当1r =,3

π

θ=时,122

z =

- D .当1r =,4

π

θ=

时,若n 为偶数,则复数n z 为纯虚数

26.下列命题中,正确的是( ) A .复数的模总是非负数

B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应

C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限

D .相等的向量对应着相等的复数

27.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )

A .||z =

B .复数z 的共轭复数为z =﹣1﹣i

C .复平面内表示复数z 的点位于第二象限

D .复数z 是方程x 2+2x +2=0的一个根

28.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数 B .若32a bi i -=+,则3,2a b == C .若0b =,则a bi +为实数

D .纯虚数z 的共轭复数是z -

相关文档
最新文档