复数单元测试题doc

合集下载

必修第二册第二单元《复数》测试题(含答案解析)

必修第二册第二单元《复数》测试题(含答案解析)

一、选择题1.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 对应的点在实轴的下方D .z 一定为实数 2.若a b 、为非零实数,则以下四个命题都成立:①10a a+≠;②()2222a b a ab b +=++;③若a b ,=则a b =±;④若2a ab =,则a b ,=则对于任意非零复数a b 、,上述命题中仍为真命题的个数为( )个. A .1 B .2 C .3 D .43.213(1)i i +=+( ) A .3122i - B .3122i + C .3122i -- D .3122i -+ 4.下列各式的运算结果为纯虚数的是A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i) 5.“复数3i ia z -=在复平面内对应的点在第三象限”是“0a ≥”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( ) A .10101010i -- B .10111010i -- C .10111012i -- D .10111010i - 7.已知复数z 满足()()()1212i z i i -=++,则z 的共轭复数为( )A .1i --B .1i +C .55i +D .55i - 8.复数51i i-的虚部是( ) A .12 B .2i C .12- D .2i - 9.已知复数z 满足()2z i i i -=+,则z =( )A B C D 10.若11i ai ++是纯虚数(其中i 为虚数单位),则实数a 等于( ) A .1B .1-C .2D .2- 11.已知复数z 满足|z |=1,则|z +1-2i |的最小值为( )A 1BC .3D .212.设i 为虚数单位,a R ∈,“复数2202021a i z i =--不是纯虚数“是“1a ≠”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.设复数z 满足341z i --=,则z 的最大值是_______.14.设复数z 满足1z =,且使得关于x 的方程2230zx zx ++=有实根,则这样的复数z 的和为______.15.化简:2020201921i z i i ⎛⎫=+= ⎪ ⎪+⎝⎭________.16.在复平面内,复数(3)2a a z i =-+表示的点在直线y x =上,则z =_______. 17.在实数集R 中,我们定义的大小关系“>”为全体实数排了一个“序”.类似地,我们在复数集C 上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数:()111222121212z a bi z a b i a a b b R z z =+=+∈,,,,,>当且仅当“12a a >”或“12a a =”且“12b b >”.按上述定义的关系“>”,给出以下四个命题:①若12z z >,则12z z >;②若1223z z z z >,>,则13z z >;③若12z z >,则对于任意12z C z z z z ∈++,>;④对于复数0z >,若12z z >,则12zz zz >.其中所有真命题的序号为______________.18.设b R ∈,i 是虚数单位,已知集合{}|2A z z i =-≤,{}11|1,B z z z bi z A ==++∈,若A B ⋂≠∅,则b 的取值范围是________. 19.已知复数z =a +3i 在复平面内对应的点位于第二象限,且|z|=2,则复数z 等于________.20.如果复数z 的模不大于1,而z 的虚部的绝对值不小于,则复平面内复数z 的对应点组成图形的面积是___.三、解答题21.已知m R ∈,复数2(1i)(5i 3)(46i)z m m =+-+-+,当m 为何值时,(1)z 为实数?(2)z 为虚数?(3)z 为纯虚数?(4)z 在复平面内对应的点在第四象限?22.已知1z i =+,i 为虚数单位.(1)若234z z ω=+-,求ω;(2)若2211z az b i z z ++=--+,求实数a ,b 的值.23.已知复数z 满足|z |=z 的实部、虚部均为整数,且z 在复平面内对应的点位于第四象限.(1)求复数z ;(2)若()22m m n i z --=,求实数m ,n 的值.24.已知复数z 满足z =,2z 的虚部为2,(1)求复数z ;(2)设22,,z z z z -在复平面上对应点分别为,,A B C ,求ABC ∆的面积. 25.已知复数z 使得2z i R +∈,2z R i∈-,其中i 是虚数单位. (1)求复数z 的共轭复数z ; (2)若复数()2z mi +在复平面上对应的点在第四象限,求实数m 的取值范围. 26.i 是虚数单位,且2(1)2(5)3i i a bi i-+++=+(,a b ∈R ). (1)求,a b 的值;(2)设复数1()z yi y R =-+∈,且满足复数()a bi z +⋅在复平面上对应的点在第一、三象限的角平分线上,求||z .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定.【详解】()2222110t t t ++=++>,z ∴不可能为实数,所以D 错误; z ∴对应的点在实轴的上方,又z 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误; 21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.2.B解析:B【解析】【分析】根据复数的概念和性质,利用复数的代数形式的运算法则,即可得出正确选项.【详解】解:对于①,当a i =时,10a a+=,即①不成立, 对于②,根据复数代数形式的运算法则,满足乘法公式,即②在正确,对于③,在复数C 中,1i =,则1,a b i ==时,a b ≠±,即③错误,对于④,根据复数代数形式的运算法则可得,若2a ab =,则a b ,=即④正确, 综上可得上述命题中仍为真命题的序号为②④,故选B.【点睛】本题考查了复数的概念和性质及复数的代数形式的运算法则,属基础题.3.A解析:A【分析】首先计算2(1)i +,之后应用复数的除法运算法则,求得结果.【详解】 ()21313312221ii i i i ++==-+, 故选A.【点睛】该题考查的是有关复数的运算,属于简单题目.4.A【分析】利用复数的四则运算,再由纯虚数的定义,即可求解.【详解】由题意,对于A 中,复数2(1)2i i +=为纯虚数,所以正确;对于B 中,复数2(1)1i i i ⋅-=-+不是纯虚数,所以不正确;对于C 中,复数2(1)2i i ⋅+=-不是纯虚数,所以不正确;对于D 中,复数(1)1i i i ⋅+=-+不是纯虚数,所以不正确,故选A.【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其四则运算技巧和常规思路. 其次要熟悉复数相关基本概念是解答此类问题的关键,着重考查了推理与计算能力,属于基础题. 5.A解析:A【详解】 因为33ai z a i i-==--,所以由题设可得00a a -<⇒>,因此0a >是0a ≥的充分不必要条件,故应选答案A . 6.B解析:B【分析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【详解】解:设2320192342020S i i i i =+++⋅⋅⋅+,可得:24201920320023420192020iS i i i i i =++++⋅⋅⋅++,则24201923020(1)22020i S i i i i ii -=++++⋅⋅⋅+-, 2019242019202023020(1)(1)202020201i i i S i i i i i i i i i i--=+++++⋅⋅⋅+-+-=-, 可得:2(1)(1)(1)20202020202112i i i i i S i i i i ++-=+-=+-=-+-, 可得:2021(2021)(1)1011101012i i i S i i -+-++===---, 故选:B.【点睛】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题. 7.A解析:A化简得到1z i =-+,再计算共轭复数得到答案.【详解】()()()1212i z i i -=++,故()()()()()()()()()121212131211212125i i i i i i i z i i i i +++++++====-+--+,故1z i =--. 故选:A .【点睛】本题考查了复数的化简,共轭复数,意在考查学生的计算能力.8.A解析:A【解析】【分析】由题意首先化简所给的复数,然后确定其虚部即可.【详解】 由复数的运算法则可知:51i i -()()()1111122i i i i i +==-+-+, 则复数51i i-的虚部是12. 本题选择A 选项.【点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A【分析】首先求得复数z ,然后求解其共轭复数并确定模即可.【详解】 由题意可得:2211i z i i i i i +=+=-++=-,则1,z i z =+=故选A .【点睛】本题主要考查复数的运算法则,复数的模的计算等知识,意在考查学生的转化能力和计算求解能力. 10.B解析:B设11i bi ai+=+,化简后利用复数相等列方程求解即可. 【详解】 设()1,,1i bi a b R ai+=∈+, 所以()11i bi ai ab bi +=⋅+=-+,所以11ab b -=⎧⎨=⎩, 解得11a b =-⎧⎨=⎩, 故选:B .【点睛】本题主要考查复数的乘法运算,考查复数相等的性质,属于基础题.11.A解析:A【分析】 根据1z =分析出z 在复平面内的轨迹方程,再根据12z i +-的几何意义以及圆外一点到圆上点的距离最小值求法求解出结果.【详解】因为|||i |1z x y =+==,所以221x y +=,即z 在复平面内表示圆O :221x y +=上的点;又|12i ||(1)(2)i |z x y +-=++-,所以|12i |z +-表示圆O 上的动点到定点(12)A -,的距离,所以min |12i |z +-为||1OA r -=,故选:A .【点睛】 关键点点睛:解答本题的关键是理解1z =对应的轨迹方程以及掌握12z i +-的几何意义,将复数模的最值问题转化为点到点的距离最值问题. 12.A解析:A【分析】先化简z ,求出a ,再判断即可.【详解】()()2202022211112121211222a i a a i a z i i i i i +=-=-=-=-----+,z 不是纯虚数,则21022a -≠,所以21≠a ,即1a ≠±, 所以1a ≠±是1a ≠的充分而不必要条件.故选:A .【点睛】本题主要考查根据复数的类型求参数,考查充分条件和必要条件的判断,考查逻辑思维能力和计算能力,属于常考题.二、填空题13.6【解析】分析:先找到复数z 对应的点的轨迹再求的最大值详解:设复数则所以复数对应的点的轨迹为(34)为圆心半径为1的圆所以的最大值是故答案为6点睛:(1)本题主要考查复数中的轨迹问题意在考查学生对这 解析:6【解析】分析:先找到复数z 对应的点的轨迹,再求z 的最大值.详解:设复数(,)z x yi x y R =+∈,则22341,(3)(4)1x yi i x y +--=∴-+-=, 所以复数对应的点的轨迹为(3,4)为圆心半径为1的圆,所以z 1516=+=.故答案为6点睛:(1)本题主要考查复数中的轨迹问题,意在考查学生对这些基础知识的掌握水平和数形结合的思想方法.(2)z a bi r ++=表示以点(a,b)为圆心r 为半径的圆,不要死记硬背,直接化成直角坐标,就一目了然. 14.【分析】首先设(且)代入方程化简为再分和两种情况求验证是否成立【详解】设(且)则原方程变为所以①且②;(1)若则解得当时①无实数解舍去;从而此时或3故满足条件;(2)若由②知或显然不满足故代入①得所 解析:74- 【分析】首先设z a bi =+ (a ,b ∈R 且221a b +=),代入方程,化简为()()222320ax ax bx bx i +++-=,再分0b =和0b ≠两种情况求,a x 验证是否成立.【详解】设z a bi =+,(a ,b ∈R 且221a b +=) 则原方程2230zx zx ++=变为()()222320ax ax bx bx i +++-=.所以2230ax ax ++=,①且220bx bx -=,②;(1)若0b =,则21a =解得1a =±,当1a =时①无实数解,舍去;从而1a =-,2230x x --=此时1x =-或3,故1z =-满足条件;(2)若0b ≠,由②知,0x =或2x =,显然0x =不满足,故2x =,代入①得38a =-,8b =±,所以838z =-±.综上满足条件的所以复数的和为3371884⎛⎫⎛⎫-+-++--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 故答案为:74-【点睛】思路点睛:本题考查复系数二次方程有实数根问题,关键是设复数z a bi =+后代入方程,再进行整理转化复数的代数形式,注意实部和虚部为0,建立方程求复数z . 15.【分析】利用的幂的性质化简即可得答案【详解】所以原式故答案为:【点睛】本题考查复数的计算合理利用常见结论可使计算简便如等等解析:1i --【分析】利用i 的幂的性质化简即可得答案.【详解】2019201633i i i i i =⋅==-,()1010202010102101010082222i 2i i i i 11i 2i 1i ⎡⎤⎛⎫-⎛⎫====⋅==-⎢⎥ ⎪ ⎪ ⎪+⎝⎭+⎢⎥⎝⎭⎣⎦,所以原式=1i --.故答案为:1i --.【点睛】 本题考查复数的计算.合理利用常见结论可使计算简便,如4i 1n =,41i i n +=,42i 1n +=-,43i i n +=-,()21i 2i +=,()21i 2i -=-,1i i=-等等. 16.【分析】根据复数几何意义列方程解方程得再根据共轭复数概念得结果【详解】解:由题意可得解得∴∴故答案为:【点睛】本题考查复数几何意义以及共轭复数概念考查基本分析求解能力属基础题解析:66i -【分析】根据复数几何意义列方程,解方程得9a =,再根据共轭复数概念得结果.【详解】解:由题意可得3a =-,解得9a =,∴66z i =+,∴66z i =-.故答案为:66i -【点睛】本题考查复数几何意义以及共轭复数概念,考查基本分析求解能力,属基础题. 17.②③【分析】根据新定义序的关系对四个命题逐一分析由此判断出真命题的序号【详解】对于①由于所以或且当满足但所以①错误对于②根据序的关系的定义可知复数的序有传递性所以②正确对于③设由所以或且可得或且即成解析:②③【分析】根据新定义“序”的关系,对四个命题逐一分析,由此判断出真命题的序号.【详解】对于①,由于12z z >,所以“12a a >”或“12a a =且12b b >”. 当121,2a a =-=-,满足12a a >但12z z <,所以①错误.对于②,根据“序”的关系的定义可知,复数的“序”有传递性,所以②正确.对于③,设z c di =+,由12z z >,所以“12a a >”或“12a a =且12b b >”,可得“12a c a c +>+”或“12a c a c +=+且12b d b d +>+”,即12z z z z +>+成立,所以③正确.对于④,当123,2,2z i z i z i ===时,126,4zz zz =-=-,12zz zz <,故④错误. 故答案为:②③【点睛】本小题主要考查新定义复数“序”的关系的理解和运用,考查分析、思考与解决问题的能力,属于基础题.18.【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(01)为圆心半径为2的圆及内部;集合B 表示圆的圆心移动到了(11+b );两圆面有交点即可求解b 的取值范围【详解】由题意集解析:b ≤≤【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部;集合B 表示圆的圆心移动到了(1,1+b );两圆面有交点即可求解b 的取值范围.【详解】由题意,集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部; 集合B 表示点的轨迹为以(1,1+b )为圆心,半径为2的圆及内部∵A∩B≠∅,说明,两圆面有交点;∴4≤.可得:b ≤≤,故答案:b ≤≤,【点睛】本题考查复数几何意义,圆与圆的位置关系,体现了数学转化思想方法,明确A.B 集合的意义是关键,是中档题19.【分析】由题意可得a <0由|z|=2可得a 的方程解出即得【详解】∵z=a+i 在复平面内对应的点位于第二象限∴a <0由|z|=2得=2解得a=﹣1或1(舍去)∴z=﹣1+i 故答案为﹣1+i 【点睛】该题解析:【分析】由题意可得a <0,由|z|=2,可得a 的方程,解出即得.【详解】∵i 在复平面内对应的点位于第二象限,∴a <0,由|z|=2,解得a=﹣1或1(舍去),∴z=﹣.故答案为﹣【点睛】该题考查复数的模、复数代数形式的表示及其几何意义,属基础题.20.【解析】分析:先根据复数的模以及复数的虚部列不等式再根据扇形面积减去三角形面积得弓形面积详解:设则如图因此复平面内复数z 的对应点组成图形为两个弓形其面积为扇形面积减去三角形面积是点睛:本题重点考查复解析:2-32π 【解析】分析:先根据复数的模以及复数的虚部列不等式,再根据扇形面积减去三角形面积得弓形面积.详解:设(,)z x yi x y R =+∈11,2y ≤≥ ,如图,2.3AOB π∠=因此复平面内复数z 的对应点组成图形为两个弓形,其面积为扇形面积减去三角形面积是21212232(111sin )232332πππ⨯⋅-⨯⨯⨯=- 点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 22a b +(,)a b 、共轭为.-a bi三、解答题21.(1)6m =或1m =-(2)6m ≠且1m ≠-(3)4m =(4)46m <<【分析】由题意得解得22(34)(56)z m m m m i =--+--,(1)由2560m m --=,求出m 即可;(2)2560m m --≠,即可得出m ; (3)由22340560m m m m ⎧--=⎨--≠⎩,解得m 范围; (4)根据象限特征,由22340560m m m m ⎧-->⎨--<⎩,解得m 范围. 【详解】解:()()()21i 5i 346i z m m =+-+-+=()()223456i m m m m --+--, (1)由2560m m --=得6m =或1m =-,即当6m =或1m =-时,z 为实数;(2)由2560m m --≠得6m ≠且1m ≠-,即当6m ≠且1m ≠-时,z 为虚数;(3)由22340{560m m m m --=--≠,,得4m =, 即当4m =时,z 为纯虚数;(4)由22340{560m m m m -->--<,,解得46m <<, 即当46m <<时,z 在复平面内对应的点在第四象限.【点睛】本题考查复数的有关概念及其运算法则、方程与不等式的解法,考查推理能力与计算能力.22.(1)ω;(2)12a b =-⎧⎨=⎩【分析】(1)求出1z i =+的共轭复数,代入234z z ω=+-化简,再求ω; (2)根据2211z az b i z z ++=--+,得到()()21a b a i i +++=+,列方程组即可求解. 【详解】(1)已知1z i =+,1z i ∴=-,()()213141i i i ω=++--=--∴,ω∴=(2)()()22211a b a z az b i z z i i+++++==--+, ()()21a b a i i ∴+++=+,121a b a +=⎧∴⎨+=⎩,解得12a b =-⎧⎨=⎩. 【点睛】此题考查复数的基本运算,涉及共轭复数,复数的模长,根据两个复数相等列方程组求解. 23.(1) 12z i =-或2i z =-.(2) 3m =±,5n =.【分析】(1)利用已知条件,设出复数z ,通过225(,)a b a b +=∈Z 及所对点所在位置求出即可复数z ;(2)利用(1),结合复数的乘法运算求解m ,n 的值【详解】(1)设(,)z a bi a b =+∈Z ,则225(,)a b a b +=∈Z ,因为z 在复平面内对应的点位于第四象限,所以0a >,0b <,所以12a b =⎧⎨=-⎩或21a b =⎧⎨=-⎩, 所以12z i =-或2i z =-.(2)由(1)知12z i =-或2i z =-,当12z i =-时,234z i =--;当2i z =-时234z i =-.因为()22m m n i z --=,所以234m m n =±⎧⎨-=⎩,解得3m =±,5n =. 【点睛】本题考查复数的模长公式,考查复数的乘法运算,考查计算能力,是基础题24.(1)1i +或1i --;(2)1【分析】(1)设z =a +bi (a ,b ∈R ),由已知列关于a ,b 的方程组,求解可得复数z ; (2)分类求得A 、B 、C 的坐标,再由三角形面积公式求解.【详解】解:(1)设z =a +bi (a ,b ∈R ),由已知可得:22ab ==⎪⎩2221a b ab ⎧+=⎨=⎩, 解得11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩. ∴z =1+i 或z =﹣1﹣i ;(2)当z =1+i 时,z 2=2i ,z ﹣z 2=1﹣i ,∴A (1,1),B (0,2),C (1,﹣1),故△ABC 的面积S 12=⨯2×1=1; 当z =﹣1﹣i 时,z 2=2i ,z ﹣z 2=﹣1﹣3i ,∴A (﹣1,﹣1),B (0,2),C (﹣1,﹣3),故△ABC 的面积S 12=⨯2×1=1. ∴△ABC 的面积为1.【点睛】 本题考查复数的乘方和加减运算,考查复数相等的条件和复数的几何意义,以及三角形的面积的求法,考查运算能力,属于中档题.25.(1)42i +;(2)()2,2-.【分析】(1)根据2z i R +∈、2z R i∈-,结合复数的加法、除法运算即可求出z ,进而由共轭复数的概念求得z ;(2) 复数()2z mi +在复平面上对应的点在第四象限,即对应复数的实部、虚部都小于0,解不等式即可求得m 的范围【详解】(1)设(),z x yi x y R =+∈,则()22z i x y i +=++∵2z i R +∈∴2y =- 又22242255z x i x x i R i i -+-==+∈--, ∴4x = 综上,有42z i =- ∴42z i =+(2)∵m 为实数,且()()()()2224212482z mi m i m m m i +=+-=+-+-⎡⎤⎣⎦ ∴由题意得()21240820m m m ⎧+->⎪⎨-<⎪⎩,解得22m -<< 故,实数m 的取值范围是()2,2-【点睛】本题考查了复数,利用复数的四则运算及共轭复数的概念求复数,另外依据复数所处的象限求参数范围26.(1)3,1a b ==-(2【解析】分析:(1)由复数的四则运算可化简复数,再由复数相等可知实部与虚部都要相等,可求得,a b .(2)由复数的乘法运算可化简复数式为标准式,再由复数在第一、三象限的角平分线上可知复数实部等于虚部,求得参数y,再由复数模公式求得复数模.详解:(1)∵()()21253i i a bi i -+++=+ 1033i i==-+ , 又∵,a b R ∈ ∴3,1a b ==-(2)()()()31a bi z i yi +⋅=--+()()331y y i =-+++由题意可知:331y y -+=+,解得2y =-∴z ==点睛:本题主要考查复数四则运算与乘方综合运算和复数相等,及复数与坐标对应关系,及复数的模.。

复数单元测验试卷

复数单元测验试卷

1word 格式支持编辑,如有帮助欢迎下载支持。

复数单元测验试卷班级 姓名 座号 成绩 一、选择题:(每小题4分,共48分) 1.设z∈C ,则方程|z-i|-|z+i|=2所表示的图形是 ( ) A 双曲线 B 线段 C 一条射线 D 两条射线2.设z1、z2∈C ,则02221=+z z 是“z1、z2对应向量互相垂直”的( )A 充分条件B 必要条件C 充要条件D 既不充分也不必要条件3.若argz=θ,则arg(-3z 2)的值是 ( ) A 2θ B 2π-θ C 2θ或2θ-2π D 2π-2θ4.使ni )3(-的值为实数的n的最小正整数的值是 ( )A 0B 2C 3D 6 5.复数4)3(i +的辐角主值是 ( )A 60°B 120°C 240°D 300° 6.复数z满足方程1=+-z z z ,则z对应的点的轨迹是 ( )A 直线B 圆C 两点D 不存在 7.复数72sin72cos ππi z +=,则621z z z +⋅⋅⋅+++的值是 ( ) A 0 B 1 C -1 D 以上都不对 8.若全集为复数集C ,A 、B 分别是实数集、纯虚数集,则以下为空集是( ) A B A B B A C B A D B A 9.若复数z的实部是-23,且其辐角主值是65π,则z= ( ) A.-23-2i B.-23+2i C.-23+43i D.-23-43i10.已知1=z ,则i z 31+-的最大值和最小值分别是 ( ) A 3,1 B 2,1 C 3,2 D 4,211.已知复数z的模为2,则arg (z -4i)的取值范围是 ( )A ⎥⎦⎤⎢⎣⎡65,6ππ B ⎥⎦⎤⎢⎣⎡611,67ππ C ⎥⎦⎤⎢⎣⎡32,3ππ D ⎥⎦⎤⎢⎣⎡35,34ππ 12.复数z1、z2在复平面内对应的点分别是A 、B ,已知2121z z z z -=+,线段AB 的中点对应的复数是4-3i,则2221z z += ( )A 10B 25C 100D 200 二、填空题:(每小题4分,共24分)1.复数z=(2+i)m2-3(1+i)m-2(1-i)(m为实数),则当时,是实数;当 时,是纯虚数;当 时,z对应的点在第四象限。

复数的单元测试

复数的单元测试

数系的扩充和复数的概念单元测试姓名 座号 班级一、 选择题1. 下列说法正确的个数是( )①实数是复数; ②虚数是复数; ③实数集和虚数集的交集不是空集; ④实数集和虚数集的并集等于复数集; ⑤虚轴上的点表示的数都是虚数; ⑥实轴上的点表示的数都是实数;A 、3B 、4C 、5D 、62. 复数z满足方程1=+-z z z ,则z对应的点的轨迹是 ( )A 、直线B 、圆C 、两点D 、以上都不对3. 对于复数bi a +,下列结论正确的是( )A 、⇔=0a bi a +为纯虚数;B 、⇔=0b bi a +为实数;C 、i b a )1(-+=3+2i ⇔3=a ,3-=bD 、-1的平方等于i4. 下列说法正确的是( )A 、如果两个复数的实部的差和虚部的差都于0,那么这两个复数相等;B 、在复平面内复数bi a +对应的点为),(a bC 、如果复数yi x +是实数,则0=x ,0=y ;D 、复数i +3大于i +25. 2i i +在复平面内表示的点在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限6. 设全集I={复数},R={实数},M={纯虚数},则( )A 、I R M =B 、I R MC I = C 、R R M C I =D 、Φ=R C M I7. 以23-i 的虚部为实部,以i i 232+的实部为虚部的复数是( )A 、i 33-B 、i +3C 、i 22+-D 、i 22+8. 若(m 2-3m-4)+(m 2-5m-6)i 是纯虚数,则实数m 的值为 ( )A 、-1B 、4C 、-1或4D 、不存在9. 在复平面内,与复数z=-1-i 的共轭复数对应的点位于 ( )A 、第一象限B 、第二角限C 、第三象限D 、第四象限10. i 21i 2)i 1()i 31(63++-+++-的值是( ) i D i C B A 201、 、、 、 11. 若i 23+是关于x 的方程)R q ,p (0q px x 22∈=++的一个根,则q 的值为( )A 、26B 、13C 、 6 D、512. 221(1)(4),.z m m m m i m R =++++-∈23 2.z i =-则1m =是12z z =的( )条件A 、充分不必要B 、 必要不充分C 、 充要D 、既不充分又不必要二、填空题13. 若x 是实数,y 是纯虚数且满足y i x =+-212,则=x ,=y 。

(人教版)重庆市必修第二册第二单元《复数》测试题(答案解析)

(人教版)重庆市必修第二册第二单元《复数》测试题(答案解析)

一、选择题1.已知复数z 满足:21z -=,则1i z -+的最大值为( )A .2B 1C 1D .32.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=( )A .-16B .0C .16D .32 3.若复数()234sin12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( ) A .6π B .3π C .23π D .3π或23π 4.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z =( ) A .i B .i - C .2i D .2i -5.若11z z -=+,则复数z 对应的点在( )A .实轴上B .虚轴上C .第一象限D .第二象限 6.已知复数1z ﹑2z 满足()120z z r r -=>,复数,*(1)i i n n N ω≤≤∈满足1i z r ω-=或者2i z r ω-=,且i j r ωω-≥对任意1i j n ≤<≤成立,则正整数n 的最大值为( )A .6B .8C .10D .12 7.复数252i +i z =的共轭复数z 在复平面上对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.已知复数1223,z i z a bi =+=+(,R,0a b b 且∈≠),其中i 为虚数单位,若12z z 为实数,则a b 的值为( ) A .32- B .23- C .23 D .329.已知复数z 满足()15i z i -+=,则z =( )A .23i +B .23i -C .32i +D .32i - 10.已知复数z 满足()12i z i -=+,则z 的共轭复数在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 11.已知复数z 在复平面内对应的点的坐标为(1,2)-,则复数(1)z i -的虚部为( ) A .3-B .3C .3i -D .3i 12.若(),a bi a b i+∈R 与()21i +互为共轭复数,则+a b 的值为( ) A .2 B .2- C .3- D .3二、填空题13.已知复数1510z i =+ ,234z i =-,复数z 满足12111z z z =+,则z =_____________.14.复数31+i i 1i +-的值是______. 15.复数2018|(3)|z i i i =-+(i 为虚数单位),则||z =________.16.已知复数2i -(i 为虚数单位)是实系数一元二次方程20x bx c ++=的一个根,则b c +=_____.17.已知复数342i z i-=-(i 是虚数单位),则复数z 在复平面内对应的点位于第_____象限.18.在实数集R 中,我们定义的大小关系“>”为全体实数排了一个“序”.类似地,我们在复数集C 上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数:()111222121212z a bi z a b i a a b b R z z =+=+∈,,,,,>当且仅当“12a a >”或“12a a =”且“12b b >”.按上述定义的关系“>”,给出以下四个命题:①若12z z >,则12z z >;②若1223z z z z >,>,则13z z >;③若12z z >,则对于任意12z C z z z z ∈++,>;④对于复数0z >,若12z z >,则12zz zz >.其中所有真命题的序号为______________.19.设b R ∈,i 是虚数单位,已知集合{}|2A z z i =-≤,{}11|1,B z z z bi z A ==++∈,若A B ⋂≠∅,则b 的取值范围是________. 20.已知,则 =____.三、解答题21.已知i 是虚数单位,设复数z 满足22z -=.(1)求14z i +-的最小值与最大值;(2)若4z z+为实数,求z 的值. 22.已知复数z 满足2z =,2z 的虚部为2,(1)求复数z ; (2)设22,,z z z z -在复平面上对应点分别为,,A B C ,求ABC ∆的面积.23.已知复数z 1=2+a i (其中a ∈R 且a >0,i 为虚数单位),且21z 为纯虚数.(1)求实数a 的值;(2)若11iz z =-,求复数z 的模||z . 24.已知复数z =22761a a a -+-2(56)i a a +--,a R ∈. (1)若复数z 为实数,求实数a 的值;(2)若复数z 为虚数,求实数a 的取值范围;(3)是否存在实数a ,使得复数z 为纯虚数?25.已知复数()()21,,z a i bi a b R =+-∈,其中i 是虚数单位.(1)若5z i =-,求a ,b 的值;(2)若z 的实部为2,且0a >,0b >,求证:214a b +≥.26.已知复数z 满足||z =2z 的虚部为2-,且z 在复平面内对应的点在第二象限. (1)求复数z ;(2)若复数ω满足1z z iω-≤+,求ω在复平面内对应的点的集合构成图形的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】复数方程|2|1z -=转化成实数方程()2221x y -+=,再由复数模定义|1|z i -+表示(1,1)-与圆上任一点(,)x y 间距离.【详解】解:设z x yi =+,由|2|1z -=得圆的方程()2221x y -+=,又|1|z i -+(1,1)-与圆上任一点(,)x y 间距离.则由几何意义得x ma |1|11z i -+==, 故选:B .【点睛】本题主要考查复数模的计算和几何意义,属于中档题. 2.B解析:B【分析】先求出(4,4)OA =,(4,4)OB =-,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =,(4,4)OB =-,∴444(4)0OA OB ⋅=⨯+⨯-=.故选B【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.B解析:B【解析】分析:由题意得到关于sin ,cos θθ的方程组,求解方程组结合题意即可求得三角函数值,由三角函数值即可确定角的大小.详解:若复数()23412z sin cos i θθ=-++为纯虚数,则: 234sin 012cos 0θθ⎧-=⎨+≠⎩,即:23sin 41cos 2θθ⎧=⎪⎪⎨⎪≠-⎪⎩, 结合()0,θπ∈,可知:sin 1cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,故3πθ=. 本题选择B 选项.点睛:本题主要考查纯虚数的概率,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.4.A解析:A【解析】因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i==-. 5.B解析:B【分析】首先分析题目,设z x yi =+,将其代入11z z -=+进行化简可得0x =,从而可得结论.【详解】设z x yi =+,则11x yi x yi +-=++,即()()222211x y x y -+=++,解得0x =,所以z yi =,它对应的点在虚轴上.故选B.【点睛】本题主要考查复数的模以及复数的几何意义,属于中档题. 6.C解析:C【分析】用向量,OA OB 表示12,z z ,根据题意,可得OA OB BA r -==,因为1i z r ω-=或者2i z r ω-=,根据其几何意义可得i ω的终点的轨迹,且满足条件的终点个数即为n ,数形结合,即可得答案.【详解】用向量,OA OB 表示12,z z ,因为()120z z r r -=>,所以OA OB BA r -==,又,*(1)i i n n N ω≤≤∈满足1i z r ω-=或者2i z r ω-=,则i ω可表示以O 为起点,终点在以A 为圆心,半径为r 的圆上的向量,或终点在以B 为圆心,半径为r 的圆上的向量,则终点可能的个数即为n ,因为i j r ωω-≥,所以在同一个圆上的两个点,形成的最小圆心角为60︒,如图所示,则最多有10个可能的终点,即n =10.故选:C【点睛】解题的关键是根据所给条件的几何意义,得到i ω的终点轨迹,根据条件,数形结合,即可得答案,考查分析理解,数形结合的能力,属中档题.7.C解析:C【解析】【分析】根据复数的运算求得2i z =-+,得到z 2i =--,再根据复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算可得复数252i +i 2i z ==-+, 则z 2i =--,所以z 对应点(2,1)--在第三象限,故选C .【点睛】本题主要考查了复数的运算,以及复数的表示,其中解答中熟记复数的运算法则,以及复数的表示是解答的关键,着重考查了推理与运算能力,属于基础题.8.B解析:B【分析】先根据复数乘法计算,再根据复数概念求a,b 比值.【详解】因为()1223(z z i a bi =++)()23(32a b a b =-++) i , 所以320a b +=,因为0b ≠,所以23a b =-,选B. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为(,)a b 、共轭为.-a bi9.B解析:B【解析】【分析】根据复数的运算法则计算即可.【详解】()15i z i -+=,()()()()51523111i i i z i i i i +-+∴===+++-, 2 3.z i ∴=-故选B.【点睛】本题考查了复数的运算法则和共轭复数的概念,属于基础题 10.D解析:D【解析】()12i z i -=+,()()()()1i 1i 2+i 1i z ∴-+=+,13213i,i,22z z =+=+13i,22z z =-的共轭复数在复平面内对应点坐标为13,22⎛⎫-⎪⎝⎭,z 的共轭复数在复平面内对应的点在第四象限,故选D. 11.B解析:B【分析】由复数的几何意义,得到12z i =-+,再根据复数的运算法则,化简复数为(1)13z i i -=+,结合复数的概念,即可求解.【详解】由题意,复数z 在复平面内对应的点的坐标为(1,2)-, 可得12z i =-+,又由(1)(12)(1)13z i i i i -=-+-=+,所以复数(1)z i -的虚部为3.故选:B.12.A解析:A【分析】把两个复数都化为(,)a bi a b R +∈形式,然后由共轭复数定义求得,a b ,从而得结论.【详解】 因为()2i a bi a bi b ai i i++==-,()212i i +=,又1a bi +与()21i -互为共轭复数,所以0b =,2a =.则2a b +=.故选:A .二、填空题13.【分析】根据复数的四则运算公式求得再结合复数的模的计算公式即可求解【详解】由题意复数则所以所以故答案为:【点睛】本题主要考查了复数的四则运算以及复数模的计算其中解答中熟记复数的四则运算公式以及复数模【分析】 根据复数的四则运算公式,求得552z i =-,再结合复数的模的计算公式,即可求解. 【详解】由题意,复数1510z i =+ ,234z i =-, 则()()()()1211111510344251034510510343425i i i z z z i i i i i i -++=+=+=+=+-+--+, 所以()()()254225554242422i z i i i i ⨯-===-++-,所以z ==.故答案为:2. 【点睛】本题主要考查了复数的四则运算,以及复数模的计算,其中解答中熟记复数的四则运算公式,以及复数模的计算公式,准确运算是解答的关键,着重考查推理与运算能力. 14.0【分析】先利用复数的除法运算计算再计算相加即得解【详解】【点睛】本题考查了复数的四则运算考查了学生数学运算能力属于基础题解析:0【分析】 先利用复数的除法运算计算1+i 1i-,再计算3 i ,相加即得解. 【详解】 ()()()231i 1i 2i i i i 01i 1i 1i 2+++=-=-=--+.【点睛】本题考查了复数的四则运算,考查了学生数学运算能力,属于基础题.15.1【分析】由复数模的求法及虚数单位的性质化简求值【详解】解:由题得故答案为:1【点睛】本题考查复数模的求法考查虚数单位的性质是基础题 解析:1【分析】由复数模的求法及虚数单位i 的性质化简求值.【详解】解:由题得2|1|1211z i =+==-=,||1z ∴=.故答案为:1.【点睛】本题考查复数模的求法考查虚数单位i 的性质,是基础题.16.1【分析】的共轭复数是实系数一元二次方程的一个根利用一元二次方程的根与系数的关系求【详解】解:因为是实系数一元二次方程的一个根所以是实系数一元二次方程的一个根所以因此故答案为:1【点睛】本题考查了一 解析:1【分析】2i -的共轭复数2i +是实系数一元二次方程20x bx c ++=的一个根,利用一元二次方程的根与系数的关系求b 、c .【详解】解:因为2i -是实系数一元二次方程20x bx c ++=的一个根,所以2i +是实系数一元二次方程20x bx c ++=的一个根,所以[(2)(2)]4b i i =--++=-,(2)(2)5c i i =-⋅+=,因此451b c +=-+=.故答案为:1.【点睛】本题考查了一元二次方程的根与系数的关系,属于基础题.17.一【分析】化简得到得到复数对应象限【详解】复数在复平面内对应的点的坐标为(21)故复数在复平面内对应的点位于第一象限故答案为:一【点睛】本题考查了复数的模复数除法复数对应象限意在考查学生对于复数知识 解析:一【分析】化简得到2z i =+,得到复数对应象限.【详解】()()()3452522222i i z i i i i i -+====+---+,复数z 在复平面内对应的点的坐标为(2,1), 故复数z 在复平面内对应的点位于第一象限.故答案为:一.【点睛】本题考查了复数的模,复数除法,复数对应象限,意在考查学生对于复数知识的综合应用. 18.②③【分析】根据新定义序的关系对四个命题逐一分析由此判断出真命题的序号【详解】对于①由于所以或且当满足但所以①错误对于②根据序的关系的定义可知复数的序有传递性所以②正确对于③设由所以或且可得或且即成解析:②③【分析】根据新定义“序”的关系,对四个命题逐一分析,由此判断出真命题的序号.【详解】对于①,由于12z z >,所以“12a a >”或“12a a =且12b b >”. 当121,2a a =-=-,满足12a a >但12z z <,所以①错误.对于②,根据“序”的关系的定义可知,复数的“序”有传递性,所以②正确.对于③,设z c di =+,由12z z >,所以“12a a >”或“12a a =且12b b >”,可得“12a c a c +>+”或“12a c a c +=+且12b d b d +>+”,即12z z z z +>+成立,所以③正确.对于④,当123,2,2z i z i z i ===时,126,4zz zz =-=-,12zz zz <,故④错误. 故答案为:②③【点睛】本小题主要考查新定义复数“序”的关系的理解和运用,考查分析、思考与解决问题的能力,属于基础题.19.【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(01)为圆心半径为2的圆及内部;集合B 表示圆的圆心移动到了(11+b );两圆面有交点即可求解b 的取值范围【详解】由题意集解析:b ≤≤【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部;集合B 表示圆的圆心移动到了(1,1+b );两圆面有交点即可求解b 的取值范围.【详解】由题意,集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部;集合B 表示点的轨迹为以(1,1+b )为圆心,半径为2的圆及内部∵A∩B≠∅,说明,两圆面有交点; ∴221(1b 1)4++-≤.可得:15b 15-≤≤, 故答案:15b 15-≤≤,【点睛】本题考查复数几何意义,圆与圆的位置关系,体现了数学转化思想方法,明确A.B 集合的意义是关键,是中档题20.-2-3i 【解析】分析:化简已知的等式即得a 的值详解:由题得(1-i)31+i-3i=a ∴a=(1-i)4(1+i)(1-i)-3i=-2i·-2i2-3i=-2-3i 故答案为-2-3i 点睛:(1)解析:-2-3i【解析】分析:化简已知的等式,即得 a 的值.详解:由题得,故答案为-2-3i 点睛:(1)本题主要考查复数的综合运算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)本题是一个易错题,已知没有说“a”是一个实数,所以它是一个复数,如果看成一个实数,解答就错了. 三、解答题21.(1)最大值为7,最小值为3.(2)见解析【分析】(1)根据题意22z -=,可知z 的轨迹为以(2,0)为圆心,以2为半径的圆,14z i +-表示点(,)x y 到(1,4)-的距离,结合几何意义求得结果;(2)根据4z z+为实数,列出等量关系式,求得结果. 【详解】(1)设z x yi =+,根据22z -=,所以有22(2)4x y -+=,所以z 的轨迹为以(2,0)为圆心,以2为半径的圆,所以2214(1)(4)(1)(4)z i x y i x y +-=++-=++-其表示点(,)x y 到(1,4)-的距离,所以其最大值为圆心(2,0)到(1,4)-的距离加半径,最小值为圆心(2,0)到(1,4)-的距离减半径,27=23=;(2)222222444()44()()x yi x y z x yi x yi x y i z x yi x y x y x y-+=++=++=++-++++, 因为4z z+为实数,所以2240y y x y -=+, 即224(1)0y x y-=+,所以0y =或224x y +=, 又因为22(2)4x y -+=,所以00x y =⎧⎨=⎩(舍去),40x y =⎧⎨=⎩,1x y =⎧⎪⎨=⎪⎩1x y =⎧⎪⎨=⎪⎩, 所以4z =或1z =+或1z =-.【点睛】该题考查的是有关复数的问题,涉及到的知识点有根据几何意义有模的最值,根据复数为实数求复数的值,属于简单题目.22.(1)1i +或1i --;(2)1【分析】(1)设z =a +bi (a ,b ∈R ),由已知列关于a ,b 的方程组,求解可得复数z ; (2)分类求得A 、B 、C 的坐标,再由三角形面积公式求解.【详解】解:(1)设z =a +bi (a ,b ∈R ),由已知可得:22ab ==⎪⎩2221a b ab ⎧+=⎨=⎩, 解得11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩. ∴z =1+i 或z =﹣1﹣i ;(2)当z =1+i 时,z 2=2i ,z ﹣z 2=1﹣i ,∴A (1,1),B (0,2),C (1,﹣1),故△ABC 的面积S 12=⨯2×1=1; 当z =﹣1﹣i 时,z 2=2i ,z ﹣z 2=﹣1﹣3i ,∴A (﹣1,﹣1),B (0,2),C (﹣1,﹣3),故△ABC 的面积S 12=⨯2×1=1. ∴△ABC 的面积为1.【点睛】 本题考查复数的乘方和加减运算,考查复数相等的条件和复数的几何意义,以及三角形的面积的求法,考查运算能力,属于中档题.23.(1)a =2.(2)|z |=2.【分析】(1)根据复数的运算,求得21z 244a ai =-+,由21z 为实数,列出方程组,即可求解; (2)化简复数得2z i =,利用复数的模的计算公式,即可求解.【详解】(1)z = (2 + a i)2 = 4-a 2 + 4a i ,因为z 为纯虚数, 所以解得a =2.(2)z 1=2+2i ,z ====2i , ∴|z |=2.【点睛】本题主要考查了复数的基本概念和复数的分类,其中解答中熟记复数的基本运算公式和复数的基本概念是解答此类问题的关键,着重考查了推理与运算能力,属于基础题. 24.(1)6;(2)(,1)(1,1)(1,6)(6,)-∞--+∞;(3)不存在实数a 使得复数z为纯虚数.【分析】根据z a bi =+为实数、虚数和纯虚数的条件,列方程,解方程求得a 的值.【详解】由于210a -≠,所以1a ≠±.(1)当z 为实数时,2560a a --=,解得6a =.(2)当z 为虚数时2560a a --≠,结合1a ≠±可知,a 的取值范围是()()()(),11,11,66,-∞-⋃-⋃⋃+∞.(3)当z 为纯虚数时,2227601560a a a a a ⎧-+=⎪-⎨⎪--≠⎩,方程227601a a a -+=-解得6a =,2560a a --≠解得1a ≠-且6a ≠,两者没有公共元素,故不存在实数a 使得复数z 为纯虚数.【点睛】本小题主要考查复数z a bi =+是实数、虚数和纯虚数的条件,属于基础题.25.(1)31a b =⎧⎨=⎩或232a b =⎧⎪⎨=⎪⎩;(2)见解析. 【分析】(1)由复数的乘法可得()22z a b ab i =+--,由5z i =-可知2521a b ab +=⎧⎨-=⎩,从而可求出a ,b 的值;(2)由z 的实部为2可得22a b +=,结合“1”的代换可知211442a b a b b a ⎛⎫+=++ ⎪⎝⎭,由基本不等式可证明214a b +≥. 【详解】 (1)解:由()()()21225z a i bi a b ab i i =+-=+--=-,则2521a b ab +=⎧⎨-=⎩, 解得31a b =⎧⎨=⎩或232a b =⎧⎪⎨=⎪⎩(2)证明:由题意知,22a b +=,所以()21121142422a b a b a b a b b a ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭, 因为0a >,0b >,所以4424a b a b b a b a +≥⋅=, 当且仅当4a b b a =,即11,2a b == 时等号成立,则()2114442a b +≥⨯+=. 【点睛】本题考查了复数的乘法运算,考查了基本不等式,考查了复数的定义.运用基本不等式求最值时,注意一正二定三相等.26.(1)1z i =-+;(2)25π 【分析】(1)设出复数z ,利用已知列出方程组,求解可得复数z ; (2)把复数1i z =-+代入iz z +,利用复数代数形式的乘除运算化简,由复数求模公式计算i z z +,由复数ω满足1015ω-≤,由复数的几何意义得出ω在复平面内对应的点的集合构成图形是什么,从而计算出对应面积.【详解】(1)设z=x+yi(x,y ∈R),则z 2=x 2-y 2+2xyi,由|z|=,z 2的虚部为-2,且z 在复平面内对应的点在第二象限, 得解得 ∴z=-1+i.(2)由(1)知,z=-1+i,∴i z z +====-+i,∴i z z +==, ∴复数ω满足|ω-1|≤. 由复数的几何意义,得ω在复平面内对应的点的集合构成的图形是以(1,0)为圆心,为半径的圆面,∴其面积为π·=. 【点睛】 本题主要考查的是复数的乘法、除法运算,属于中档题.复数的模的几何意义是复平面内两点间的距离,所以若z x yi =+,则z a bi -+表示点(),x y 与点(),a b 的距离,z a bi r -+=表示以(),a b 为圆心,以r 为半径的圆.。

第七章 复数 单元测试卷(原卷版)

第七章 复数 单元测试卷(原卷版)

第七章 复数单元测试卷一、单选题1.(辽宁省葫芦岛市2021-2022学年高三上学期期末数学试题)已知i 为虚数单位,则复数()i 12i z =-的虚部是( )A .iB .1C .2D .2i2.(山东省德州市2021-2022学年高三上学期期末数学试题)已知复数z 满足()121i i z +=-,其中i 为虛数单位,则复数z 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.(山东省淄博市2021-2022学年高三上学期期末数学试题)已知复数z 是纯虚数,11iz +-是实数,则z =( ) A .-i B .i C .-2i D .2i4.(2022·广东茂名·一模)已知,a b 为实数,且2i i 1i b a +=++(i 为虚数单位),则i a b +=( ) A .34i +B .12i +C .32i --D .32i + 5.(2022·江苏无锡·高三期末)已知3i 1i a ++(i 为虚数单位,a ∈R )为纯虚数,则=a ( ) A .1- B .1 C .3- D .36.(2022·内蒙古包头·高二期末(文))对于非零实数a ,b ,以下四个式子均恒成立,对于非零复数a ,b ,下列式子仍然恒成立的是( )A .||||||ab a b =B .10a a +≠C .()20a b +≥D .22a a = 7.(2022·湖北·武钢三中高三阶段练习)已知202120221i i 1i z +⎛⎫=+ ⎪-⎝⎭,则在复平面内,复数z 所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 8.(2022·全国·高一)复数()()cos2isin3cos isin θθθθ+⋅+的模为1,其中i 为虚数单位,[]0,2πθ∈,则这样的θ一共有( )个.A .9B .10C .11D .无数 二、多选题9.(2022·广东东莞·高三期末)已知复数123,,z z z ,1z 是1z 的共轭复数,则下列结论正确的是( ) A .若120z z +=,则12=z z B .若21z z =,则12=z zC .若312z z z =,则312z z z =D .若1211z z +=+,则12=z z10.(2022·江西·高三阶段练习(理))已知复数z 满足()12i 5z -=(其中i 为虚数单位),则下列选项正确的是( )A .5z =B .复数z 的共轭复数为12i z =+C .复数z 在复平面表示的点位于第一象限D .复数z 的虚部为211.(2021·福建福州·高三期中)复数132z =-,其中i 为虚数单位,则下列结论正确的有( ) A .1z z ⋅=B .210z z ++=C .21z z = D .2021132z = 12.(2021·重庆·万州纯阳中学校高二阶段练习)欧拉公式i cos isin x e x x =+是由瑞士著名数学家欧拉创立,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关联,在复变函数论里面占有非常重要的地位,被誉为数学中的天骄,依据欧拉公式,下列选项正确的是( ) A .复数2i e 对应的点位于第二象限B .i 2e π为纯虚数C i3i x +12 D .i 6e π的共轭复数为132- 三、填空题13.(2021·天津市第四中学高三阶段练习)已知方程()20R x x m m ++=∈有两个虚根α,β,若3αβ-=,则m 的值是___________.14.(2021·上海长宁·一模)在复平面xoy 内,复数12z ,z 所对应的点分别为12Z Z 、,对于下列四个式子:(1)2211 z z =;(2)1212z z z z ⋅=⋅;(3)2211OZ OZ =;(4)1212OZ OZ OZ OZ ⋅=⋅,其中恒成立的是____________(写出所有恒成立式子的序号)15.(2021·浙江·模拟预测)已知平面直角坐标系xOy 中向量的旋转和复数有关,对于任意向量x →=(a ,b ),对应复数z =a +ib ,向量x 逆时针旋转一个角度θ,得到复数'(i )(cos isin )cos sin i(sin cos )z a b a b a b θθθθθθ=++=-++,于是对应向量'(cos sin ,sin cos )x a b a b θθθθ→=-+.这就是向量的旋转公式.根据此公式,已知正三角形ABC 的两个顶点坐标是A (1,2),B (3,4),则C 的坐标是___________.(任写一个即可)16.(2021·福建·厦门市湖滨中学高三期中)若复数z 满足32i 1z -+=,则62i z --的最小值为__________.四、解答题17.(2021·贵州遵义·高三阶段练习)已知复数i()z b b =∈R ,31iz +-是实数. (1)求复数z ;(2)若复数2()8m z m --在复平面内所表示的点在第二象限,求实数m 的取值范围.18.(2021·全国·高一课时练习)求复数1i +,1i --2,2i -的辐角主值.19.(2021·西藏·拉萨那曲高级中学高二期中(理))已知复数11i z =+,23i z =-. (1)求21z z ; (2)若4i()z a a R =+∈满足2z z +为纯虚数,求||z .20.(2021·全国·高一课时练习)在复数范围内分解因式:(1)28x +;(2)223x x -+;(3)2321x x -+.21.(2021·湖北·高一期末)已知12i +是关于x 的方程20(,)x px q p q R ++=∈的一个根,其中i 为虚数单位. (1)求,p q 的值;(2)记复数i z p q =+,求复数1iz +的模.22.(2021·全国·高一课时练习)已知复数()31i 1i z =-. (1)求1arg z 及1z ;(2)当复数z 满足1z =,求1z z -的最大值.。

深圳市高级中学必修第二册第二单元《复数》测试题(含答案解析)

深圳市高级中学必修第二册第二单元《复数》测试题(含答案解析)

一、选择题1.213(1)ii +=+( ) A .3122i - B .3122i + C .3122i -- D .3122i -+ 2.若复数()234sin 12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( )A .6π B .3π C .23π D .3π或23π 3.设复数z 满足()13i z i +=+,则z =( )A B .2C .D 4.若复数z 满足(1)|1|z i i i -=-+,则z 的实部为( )A .12B 1C .1D .125.已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z z =.则其中正确命题的个数为( ) A .0个 B .1个 C .2个 D .3个 6.已知i 为虚数单位,(1+i )x =2+yi ,其中x ,y ∈R ,则|x +yi |=A .B .2C .4D7.设复数z 满足()1i i z +=,则z =( )A .2B .12CD .28.在下列命题中,正确命题的个数是( ) ①两个复数不能比较大小;②复数1z i =-对应的点在第四象限;③若22(1)(32)x x x i -+++是纯虚数,则实数1x =±;④若221223()()0z z z z -+-=,则123z z z ==.A .0B .1C .2D .39.已知复数z 满足()211i i z+=-(i 为虚数单位),则复数z =( )A .1i +B .1i -+C .1i -D .1i --10.已知复数z 满足()12i z i -=+,则z 的共轭复数在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限11.已知复数21aiz i+=-是纯虚数,则实数a 等于( ) A .5B .2C .3D .212.对于给定的复数0z ,若满足042z i z z -+-=的复数z 对应的点的轨迹是椭圆,则01z -的取值范围是( )A .()172,172-+ B .()171,171-+ C .()32,32-+D .()31,31-+二、填空题13.已知复数z 满足1z =,则2z i -(其中i 是虚数单位)的最小值为____________.14.如果复数212bii-+的实部和虚部互为相反数,那么实数b 的值为__ 15.若有两个数,它们的和是4,积为5,则这两个数是________.16.已知复数34z i =+所对应的向量为OZ ,把OZ 依逆时针旋转θ得到一个新向量为1OZ .若1OZ 对应一个纯虚数,当θ取最小正角时,这个纯虚数是________.17.已知复数(,是虚数单位)的对应点在第四象限,且,那么点在平面上形成的区域面积等于____18.已知复数z 满足等式1i 1z --=,则3z -的最大值为______ 19.已知复数z 满足(12)43i z i +=+,则z = _________________; 20.已知|z|=3,且z+3i 是纯虚数,则z=________.三、解答题21.已知复数()212(24)z a a i =--+,()221z a a i =-+,12z z z =-(i 为虚数单位,a R ∈).(1)若复数12z z z =-为纯虚数,求12z z ⋅的值; (2)若1z z i +=-,求z i +的值.22.已知复数1z mi =+(i 是虚数单位,m R ∈),且(3)z i ⋅+为纯虚数(z 是z 的共轭复数). (1)设复数121m iz i+=-,求1z ; (2)设复数20172a i z z-=,且复数2z 所对应的点在第一象限,求实数a 的取值范围.23.复数()()()2152615z i m i m i =++-+-.(1)实数m 取什么数时,z 是实数; (2)实数m 取什么数时,z 是纯虚数;(3)实数m 取什么数时,z 对应的点在直线70x y ++=上.24.若z C ∈,i 为虚数单位,且|22|1z i +-=,求|22|z i --的最小值.25.已知z 为虚数,42z z +-为实数. (1)若2z -为纯虚数,求虚数z ;(2)求|4|z -的取值范围.26.已知复数()()21,,z a i bi a b R =+-∈,其中i 是虚数单位. (1)若5z i =-,求a ,b 的值;(2)若z 的实部为2,且0a >,0b >,求证:214a b+≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先计算2(1)i +,之后应用复数的除法运算法则,求得结果. 【详解】()21313312221ii i i i ++==-+, 故选A. 【点睛】该题考查的是有关复数的运算,属于简单题目.2.B解析:B 【解析】分析:由题意得到关于sin ,cos θθ的方程组,求解方程组结合题意即可求得三角函数值,由三角函数值即可确定角的大小.详解:若复数()23412z sin cos i θθ=-++为纯虚数,则:234sin 012cos 0θθ⎧-=⎨+≠⎩,即:23sin 41cos 2θθ⎧=⎪⎪⎨⎪≠-⎪⎩,结合()0,θπ∈,可知:sin 21cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,故3πθ=. 本题选择B 选项.点睛:本题主要考查纯虚数的概率,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.3.D解析:D 【解析】分析:先根据复数除法得z ,再根据复数的模求结果. 详解:因为()13i z i +=+,所以31(3)(1)212i z i i i i +==+-=-+,因此z = 选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭为.-a bi4.A解析:A 【解析】 【详解】∵()11z i i i i -=-+,∴)()()()111i i z i i +===-+,则z的实部为12,故选A. 5.C解析:C 【分析】运用复数的模、共轭复数、虚数等知识对命题进行判断. 【详解】对于①中复数1z 和2z 的模相等,例如1=1+z i,2z ,则1z 和2z 是共轭复数是错误的;对于②1z 和2z 都是复数,若12+z z 是虚数,则其实部互为相反数,则1z 不是2z 的共轭复数,所以②是正确的;对于③复数z 是实数,令z a =,则z a =所以z z =,反之当z z =时,亦有复数z 是实数,故复数z 是实数的充要条件是z z =是正确的.综上正确命题的个数是2个. 故选C 【点睛】本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.6.A解析:A 【解析】 【分析】首先求得x ,y 的值,然后求解复数的模即可. 【详解】由题意可得:2x xi yi +=+,结合复数的充分必要条件可知:2x x y =⎧⎨=⎩,则2x y ==,22x yi i +=+== 本题选择A 选项. 【点睛】本题主要考查复数相等的充分必要条件,复数模的求解等知识,意在考查学生的转化能力和计算求解能力.7.A解析:A 【解析】由()1i z i +=,得()()()i 1i i 11i 1i 1i 1i 22z -=+++-==,2z ∴==故选A . 8.A解析:A 【解析】对于选项①,不能说两个复数不能比较大小,如复数3和4就可比较大小,所以该命题是错误的.对于选项②,复数1z i =-对应的点在第二象限,所以该命题是错误的.对于选项③,若()()22132x x x i -+++是纯虚数,则21x -=0且232x x ++≠0,所以x=1,所以该命题是错误的. 对于选项④,若()()2212230z z z z -+-=,可以123,0,1z i z z ===, 所以该命题是错误的. 故选A.9.B解析:B 【解析】因为()211i i z+=-,所以22(1)112i iz i i i ==+=-- ,选B. 10.D解析:D 【解析】()12i z i -=+,()()()()1i 1i 2+i 1i z ∴-+=+,13213i,i,22z z =+=+13i,22z z=-的共轭复数在复平面内对应点坐标为13,22⎛⎫- ⎪⎝⎭,z 的共轭复数在复平面内对应的点在第四象限,故选D.11.B解析:B 【分析】 化简复数2222a a z i -+=+,根据复数z 是纯虚数,得到202a -=且202a+≠,即可求解. 【详解】由题意,复数()()()()2122211122ai i ai a az i i i i +++-+===+--+, 因为复数z 是纯虚数,可得202a -=且202a+≠,解得2a =, 所以实数a 等于2. 故选:B. 【点睛】本题主要考查了复数的除法运算,以及复数的基本概念的应用,其中解答中熟记复数的运算法则,结合复数的基本概念求解是解答的关键,着重考查推理与运算能力.12.A解析:A 【分析】根据条件可得042z i -<,即复数0z 对应的点在以()0,4为圆心,2为半径的圆内部.01z -表示复数0z 对应的点到()1,0的距离,由圆的性质可得答案.【详解】因为042z i z z -+-=的复数z 对应的点的轨迹是椭圆, 所以042z i -<由复数的几何意义可知042z i -<表示复数0z 对应的点到()0,4的距离小于2. 即复数0z 对应的点在以()0,4为圆心,2为半径的圆内部.01z -表示复数0z 对应的点到()1,0的距离.如图,设()0,4C ,1,0A 221417AC =+=则0212AC z AC -<-<+,即01721172z -<-<+ 故选:A【点睛】本题考查椭圆的定义的应用,考查复数的几何意义的应用和利用圆的性质求范围,属于中档题.二、填空题13.1【分析】复数满足为虚数单位)设利用复数模的计算公式与三角函数求值即可得出【详解】解:复数满足为虚数单位)设则当且仅当时取等号故答案为:1【点睛】本题考查了复数的运算法则模的计算公式及其三角函数求值解析:1 【分析】复数z 满足||1(z i =为虚数单位),设cos sin z i θθ=+,[0θ∈,2)π.利用复数模的计算公式与三角函数求值即可得出. 【详解】 解:复数z 满足||1(z i =为虚数单位), 设cos sin z i θθ=+,[0θ∈,2)π. 则22|2||cos (sin 2)|(sin 2)54sin 1z i i cos θθθθθ-=+-+--,当且仅当sin 1θ=时取等号. 故答案为:1. 【点睛】本题考查了复数的运算法则、模的计算公式及其三角函数求值,考查了推理能力与计算能力,属于中档题.14.【分析】先化简再解方程即得解【详解】由题得因为复数的实部和虚部互为相反数所以故答案为:【点睛】本题主要考查复数的除法运算考查复数实部虚部的概念意在考查学生对这些知识的理解掌握水平解析:23-【分析】先化简222(4)125bi b b i i ---+=+,再解方程224+055b b---=即得解. 【详解】由题得2(2)(12)22(4)12(12)(12)5bi bi i b b ii i i -----+==++-, 因为复数212bii -+的实部和虚部互为相反数, 所以2242+0,553b b b ---=∴=-. 故答案为:23-【点睛】本题主要考查复数的除法运算,考查复数实部虚部的概念,意在考查学生对这些知识的理解掌握水平.15.【分析】设利用列方程组解方程组求得题目所求两个数【详解】设依题意有即所以将代入得;将代入解得;将代入得结合解得或所以对应的数为故答案为:【点睛】本小题主要考查复数运算属于中档题 解析:2i ±【分析】设()12,,,,z a bi z c di a b c d R =+=+∈,利用12124,5z z z z +=⋅=列方程组,解方程组求得题目所求两个数. 【详解】设()12,,,,z a bi z c di a b c d R =+=+∈,依题意有12124,5z z z z +=⋅=,即()()45a c b d i ac bd ad bc i ⎧+++=⎪⎨-++=⎪⎩,所以405a cb d ac bd ad bc +=⎧⎪+=⎪⎨-=⎪⎪+=⎩.将=-b d 代入0ad bc +=,得a c =;将a c =代入4a c +=,解得2a c ==;将2a c ==代入5ac bd -=,得1bd =-,结合=-b d 解得11b d =⎧⎨=-⎩或11b d =-⎧⎨=⎩.所以对应的数为2i +、2i -. 故答案为:2i ± 【点睛】本小题主要考查复数运算,属于中档题.16.【分析】确定复数对应点在第一象限旋转后在轴的正半轴上计算复数模得到答案【详解】对应的点为在第一象限逆时针旋转最小正角时对应的点在轴的正半轴上故纯虚数为故答案为:【点睛】本题考查了复数对应的点复数的旋 解析:5i【分析】确定复数对应点在第一象限,旋转后在y 轴的正半轴上,计算复数模得到答案. 【详解】34z i =+,对应的点为()3,4在第一象限,逆时针旋转最小正角时,对应的点在y 轴的正半轴上,22345z =+=,故纯虚数为5i . 故答案为:5i . 【点睛】本题考查了复数对应的点,复数的旋转,意在考查学生的计算能力和综合应用能力.17.π【分析】先把复数分母有理化再根据z 在第四象限和|z|≤2可得关于xy 的不等式组进而可得点P 在平面上形成的区域面积【详解】由题得z=x+yi1+i=x+y+(y-x)i2z 在第四象限则有x+y2>0 解析:【分析】先把复数分母有理化,再根据z 在第四象限和,可得关于x ,y 的不等式组,进而可得点P 在平面上形成的区域面积. 【详解】由题得,z 在第四象限,则有,整理得,由得,化简得,则点在不等式组所表示的平面区域内,如图阴影部分:则其面积.【点睛】本题考查复数的运算和复数的模,与线性规划相结合,有一定综合性.18.【分析】由题意画出图形数形结合得答案【详解】|z ﹣1﹣i|=1的几何意义为复平面内动点到定点(11)距离为1的点的轨迹如图:|z ﹣3|可以看作圆上的点到点(30)的距离由图可知|z ﹣3|的最大值为故 解析:51+【分析】由题意画出图形,数形结合得答案. 【详解】|z ﹣1﹣i |=1的几何意义为复平面内动点到定点(1,1)距离为1的点的轨迹, 如图:|z ﹣3|可以看作圆上的点到点(3,0)的距离.由图可知,|z ﹣3|22(31)(01)151-+-=. 51. 【点睛】本题考查复数模的求法,考查数形结合的解题思想方法,是基础题.19.【分析】先根据复数除法得再根据共轭复数概念得【详解】因为所以即【点睛】本题重点考查复数的概念与复数相等属于基本题复数的实部为虚部为模为对应点为共轭为 解析:2i +【分析】先根据复数除法得z ,再根据共轭复数概念得z . 【详解】因为()1243i z i +=+,所以43212iz i i+==-+,即2.z i =+ 【点睛】本题重点考查复数的概念与复数相等,属于基本题.复数(,)a bi a b R +∈的实部为a 、虚部为b 22a b +(,)a b 、共轭为.-a bi20.3i 【解析】设z=a+bi(ab ∈R)因为|z|=3所以a2+b2=9又z+3i=a+bi+3i=a+(b+3)i 为纯虚数所以即又a2+b2=9所以a=0b=3所以z=3i解析:3i【解析】设z=a+bi(a,b ∈R),因为|z|=3,所以a 2+b 2=9.又z+3i=a+bi+3i=a+(b+3)i 为纯虚数,所以a 0,b 30,=⎧⎨+≠⎩即a 0,b 3.=⎧⎨≠-⎩ 又a 2+b 2=9,所以a=0,b=3,所以z=3i.三、解答题21.(1)123626z z i ⋅=--;(2)1或4. 【分析】 (1)由复数12z z z =-为纯虚数,可得2220230a a a a ⎧--=⎨--≠⎩,从而可求出a 的值,进而可求出12z z ⋅的值;(2)由1z z i +=-,可得复数z 在直线y x =-上,所以22232a a a a --=-++,从而可求出a 的值,进而可得z i +的值【详解】解:(1)()()22122241()z z a a a a i a R -=--+--++∈为纯虚数, ∴2220230a a a a ⎧--=⎨--≠⎩,解得2a =, ∴128z i =-,225z i =-,∴12(28)(25)3626z z i i i ⋅=-⋅-=--.(2)()()2212223z z z a a a a i =-=--+--, ∵1z z i +=-,∴复数z 对应的点22(2,23)a a a a ----在直线y x =-上,即22232a a a a --=-++,解得1a =-或52a =. 当1a =-时,0z =,1z i +=;当52a =时,7744z i =-,7344z i i +=-=. 【点睛】此题考查复数的有关概念,考查复数的模,考查计算能力,属于中档题22.(1)12z =;(2)13a > 【分析】 (1)先根据条件得到13z i =-,进而得到15122z i =--,由复数的模的求法得到结果;(2)由第一问得到2(3)(31)10a a i z ++-=,根据复数对应的点在第一象限得到不等式30310a a +>⎧⎨->⎩,进而求解. 【详解】∵1z mi =+,∴1z mi =-.∴(3)(1)(3)(3)(13)z i mi i m m i ⋅+=-+=++-.又∵(3)z i ⋅+为纯虚数,∴30130m m +=⎧⎨-≠⎩,解得3m =-.∴13z i =-.(1)13251122i z i i -+==---,∴1z = (2)∵13z i =-,∴2(3)(31)1310a i a a i z i -++-==-, 又∵复数2z 所对应的点在第一象限,∴30310a a +>⎧⎨->⎩,解得:13a >. 【点睛】如果Z 是复平面内表示复数z a bi =+(),a b ∈R 的点,则①当0a >,0b >时,点Z 位于第一象限;当0a <,0b >时,点Z 位于第二象限;当0a <,0b <时,点Z 位于第三象限;当0a >,0b <时,点Z 位于第四象限;②当0b >时,点Z 位于实轴上方的半平面内;当0b <时,点Z 位于实轴下方的半平面内.23.(1)5m =或3-;(2)2m =-;(3)12m =或2- 【分析】复数222(1)(52)(615)(56)(215)z i m i m i m m m m i =++-+-=+++--.(1)由22150m m --=,解得m 即可得出. (2)由225602150m m m m ⎧++=⎨--≠⎩,解得m 即可得出. (3)由22(56)(215)70m m m m +++--+=.解出即可得出.【详解】解:复数222(1)(52)(615)(56)(215)z i m i m i m m m m i =++-+-=+++--.(1)由22150m m --=,解得5m =或3-.5m ∴=或3-时,复数z 为实数.(2)由225602150m m m m ⎧++=⎨--≠⎩,解得2m =-. 2m ∴=-时,复数z 为纯虚数.(3)由22(56)(215)70m m m m +++--+=.化为:22320m m +-=, 解得12m =或2-. 12m ∴=或2-,z 对应点在直线70x y ++=上. 【点睛】本题考查了复数的运算法则及其有关概念,考查了推理能力与计算能力,属于中档题. 24.3【分析】根据|22|1z i +-=,结合复数减法的模的几何意义,判断出z 对应点的轨迹,再根据复数减法的模的几何意义,结合圆的几何性质,求得|22|z i --的最小值.【详解】由|22|1z i +-=得|(22)|1z i --+=,因此复数z 对应的点Z 在以022z i =-+对应的点0Z 为圆心,1为半径的圆上,如图所示.设|22|y z i =--,则y 是Z 点到22i +对应的点A 的距离.又04AZ =,∴由图知min 0||13y AZ =-=.【点睛】 本小题主要考查复数减法的模的几何意义,考查数形结合的数学思想方法,属于基础题. 25.(1)22z i =+或22z i =-;(2)()0,4.【分析】(1)由于z 为虚数,可设(z x yi x =+,y R ∈,0)y ≠,根据2z -为纯虚数,求得x 的值,再由42z z +-为实数求出y 的值,即得虚数z ; (2)由42z z +-为实数且0y ≠,可得22(2)4x y -+=,根据2204(2)y x =-->,求得x 的范围,根据复数的模的定义,化简为4164z x -=-164x -的范围,即可得出|4|z -的取值范围.【详解】解:由于z 为虚数,可设(z x yi x =+,y R ∈,0)y ≠,(1)则22z x yi -=-+,由2z -为纯虚数,得2x =,2z yi ∴=+, 又因为42z z +-为实数, 则(442)242z yi y i R z yi y +=++=+-∈-, 得40y y-=,2y =±, 所以22z i =+或22z i =-. (2)2222(4442)4[]22(2)(2)x y z x yi x y i R z x yi x y x y -+=++=++-∈-+--+-+, 因为42z z +-为实数, ∴2240(2)y y x y -=-+, 0y ≠,22(2)4x y ∴-+=,224(2)0y x =-->∴,则2(2)4x -<,解得:(0,4)x ∈,∴|4||4|z x yi -=+-由于(0,4)x ∈,则016416x <-<,所以04<<,即0|4|4z <-<,所以|4|z -的取值范围为()0,4.【点睛】本题考查复数的基本概念,两个复数代数形式的除法以及复数求模,考查运算求解能力.26.(1)31a b =⎧⎨=⎩或232a b =⎧⎪⎨=⎪⎩;(2)见解析. 【分析】(1)由复数的乘法可得()22z a b ab i =+--,由5z i =-可知2521a b ab +=⎧⎨-=⎩,从而可求出a ,b 的值;(2)由z 的实部为2可得22a b +=,结合“1”的代换可知211442a b a b b a ⎛⎫+=++ ⎪⎝⎭,由基本不等式可证明214a b+≥. 【详解】 (1)解:由()()()21225z a i bi a b ab i i =+-=+--=-,则2521a b ab +=⎧⎨-=⎩ , 解得31a b =⎧⎨=⎩或232a b =⎧⎪⎨=⎪⎩(2)证明:由题意知,22a b +=,所以()21121142422a b a b a b a b b a ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭, 因为0a >,0b >,所以44a b b a +≥=, 当且仅当4a b b a =,即11,2a b == 时等号成立,则()2114442a b +≥⨯+=. 【点睛】本题考查了复数的乘法运算,考查了基本不等式,考查了复数的定义.运用基本不等式求最值时,注意一正二定三相等.。

第七章 复数(单元测试)试卷及答案

第七章 复数(单元测试)试卷及答案

第七章复数单元测试一、单选题(共8小题)1.已知a∈R,若复数z=a2+2a+ai是纯虚数,则a=()A.0B.2C.−1D.−22.已知复数z=1+3i,i为虚数单位,则|z|=()1−iA.√2B.√5C.√10D.2√53.若复数z=(1+ai)⋅(1−i)的模等于2,其中i为虚数单位,则实数a的值为()A.−1B.0C.1D.±14.设复数z=i,则复数z的共轭复数z̅在复平面内对应的点位于()1+iA.第一象限B.第二象限C.第三象限D.第四象限5.已知z=1+i,则z(z+1)=()A.3+i B.3−i C.1+i D.1−i6.已知复数z=(3−4i)(2−i),则z的虚部为()A.2B.11C.−11D.−11i7.若z=2−i,则z2−4z=()A.-5B.-3C.3D.58.在复平面内,复数z1,z2所对应的点关于虚轴对称,若z1=1+2i,则复数z2=()A.−1−2i B.−1+2iC.1−2i D.2+i二、多选题(共4小题)9.已知复数z=1+i(其中i为虚数单位),则以下说法正确的有()A.复数z的虚部为i B.|z|=√2C.复数z的共轭复数z=1−i D.复数z在复平面内对应的点在第一象限10.下列命题中,真命题为()A.复数z=a+bi为纯虚数的充要条件是a=0B.复数z=1−3i的共轭复数为z=1+3iC.复数z=1−3i的虚部为−3D.复数√2z=1+i,则z2=i=i,则下列结论正确的是()11.已知复数z满足z+1zA .复数z 的共轭复数为−12+12iB .z 的虚部为12C .在复平面内z 对应的点在第二象限D .|z |=√2212.下列命题中正确的是( )A .已知平面向量a ⃑满足|a ⃑|=1,则a ⃑⋅a ⃑=1B .已知复数z 满足|z |=1,则z ⋅z =1C .已知平面向量a ⃑,b ⃑⃑满足|a ⃑+b ⃑⃑|=|a ⃑−b ⃑⃑|,则a ⃑⋅b ⃑⃑=0D .已知复数z 1,z 2满足|z 1+z 2|=|z 1−z 2|,则z 1⋅z 2=0三、填空题(共4小题)13.已知复数z 满足z ⋅(1−2i )=|3+4i |,则z =___________. 14.已知i 为虚数单位,则i 2020+i 2021=___________.15.复数4+3i 与-2-5i 分别表示向量OA ⃑⃑⃑⃑⃑ 与OB ⃑⃑⃑⃑⃑ ,则向量AB ⃑⃑⃑⃑⃑ 表示的复数是________. 16.已知1+2i 是方程x 2-mx +2n =0(m ,n ∈R )的一个根,则m +n =____.四、解答题(共5小题) 17.计算:(1)(1−4i )(1+i )+2+4i3+4i;(2)(1+i )51−i+(1−i )51+i;(3)(1+2i)2+3(1−i)2+i.18. 已知复数z =m 2−2m −15+(m 2−9)i ,其中m ∈R ,i 为虚数单位. (1)若z 为实数,求m 的值; (2)若z 为纯虚数,求z1+i 的虚部.19.已知复数z =(m 2−2m −3)+(m 2+m −2)i ,(m ∈R). (1)若z >0,求m 的值; (2)若z 是纯虚数,求z ⋅z̅的值.⃑⃑⃑⃑⃑ 对应的复数为1+2i,20.已知复平面内平行四边形ABCD,A点对应的复数为2+i,向量BA⃑⃑⃑⃑⃑ 对应的复数为3−i,求:向量BC(1)点D对应的复数;(2)平行四边形ABCD的面积.−isinθ,其中i为虚数单位,θ∈R.求|z1⋅z2|的21.已知复数z1=3cosθ+isinθ,z2=√24值域.22.已知复数z=3x−(x2−x)i(x∈R)的实部与虚部的差为f(x).(1)若f(x)=8,且x>0,求复数iz的虚部;(2)当f(x)取得最小值时,求复数z的实部.1+2i第七章 复数单元测试一、单选题(共8小题)1.已知a ∈R ,若复数z =a 2+2a +ai 是纯虚数,则a =( ) A .0 B .2 C .−1 D .−2【答案】D【分析】结合复数的概念得到{a 2+2a =0a ≠0,解之即可求出结果.【详解】∵z =a 2+2a +ai 是纯虚数,∴{a 2+2a =0,a ≠0,解得a =−2. 故选:D.2.已知复数z =1+3i 1−i,i 为虚数单位,则|z |=( ) A .√2 B .√5C .√10D .2√5【答案】B【分析】利用复数除法运算进行化简,再求得|z |. 【详解】z =(1+3i )(1+i )(1−i )(1+i )=−2+4i 2=−1+2i ,∴|z |=√(−1)2+22=√5. 故选:B3.若复数z =(1+ai)⋅(1−i)的模等于2,其中i 为虚数单位,则实数a 的值为( ) A .−1 B .0 C .1 D .±1【答案】D【分析】先根据复数的乘法法则得z =(1+a)+(a −1)i ,再根据模的公式列方程求解即可. 【详解】∵z =(1+ai)⋅(1−i)=1−i +ai −ai 2=(1+a)+(a −1)i 则|z|=√(1+a)2+(a −1)2=√2a 2+2=2,解得:a =±1. 故选:D. 4.设复数z =i1+i ,则复数z 的共轭复数z̅在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D【分析】先求出z ,再求出z ̅,直接得复数z ̅在复平面内对应的点. 【详解】z =i 1+i=i (1-i )(1+i )(1-i )=12+12i ,则z =12−12i ,∴z ̅在复平面内对应的点为(12,−12),位于第四象限;故选:D.5.已知z =1+i ,则z (z +1)=( ) A .3+i B .3−iC .1+iD .1−i【答案】B【分析】根据复数的四则运算法则计算即可.【详解】z ̅(z +1)=(1−i)(1+i +1)=(1−i)(2+i)=3−i ,故选:B. 6.已知复数z =(3−4i)(2−i),则z 的虚部为( )A.2B.11C.−11D.−11i【答案】C【分析】利用复数乘法求出z,即可确定其虚部.【详解】∵z=(3−4i)(2−i)=2−11i,∴z的虚部−11,故选:C7.若z=2−i,则z2−4z=()A.-5B.-3C.3D.5【答案】A【分析】依据复数的运算法则直接求解即可;【详解】z2−4z=z(z−4)=(2−i)⋅(−2−i)=i2−4=−5,故选:A8.在复平面内,复数z1,z2所对应的点关于虚轴对称,若z1=1+2i,则复数z2=()A.−1−2i B.−1+2iC.1−2i D.2+i【答案】B【分析】根据对应的点的特征直接求出即可.【详解】∵z1=1+2i对应的点为(1,2),z1,z2所对应的点关于虚轴对称,∴z2对应的点为(−1,2),∴z2=−1+2i. 故选:B.二、多选题(共4小题)9.已知复数z=1+i(其中i为虚数单位),则以下说法正确的有()A.复数z的虚部为i B.|z|=√2C.复数z的共轭复数z=1−i D.复数z在复平面内对应的点在第一象限【答案】BCD【分析】根据复数的概念判定A错,根据复数模的计算公式判断B正确,根据共轭复数的概念判断C正确,根据复数的几何意义判断D正确.【详解】∵复数z=1+i,∴其虚部为1,即A错误;|z|=√12+12=√2,故B正确;复数z的共轭复数z=1−i,故C正确;复数z在复平面内对应的点为(1,1),显然位于第一象限,故D正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.11.下列命题中,真命题为()A.复数z=a+bi为纯虚数的充要条件是a=0B.复数z=1−3i的共轭复数为z=1+3iC.复数z=1−3i的虚部为−3D .复数√2z =1+i ,则z 2=i 【答案】BCD【分析】对A,根据纯虚数的定义,可知a =0,b ≠0,故A 错.根据共轭复数,虚部的定义,可判断B,C.运用复数的四则运算,可判断D. 【详解】复数z =a +bi 为纯虚数的充要条件是a =0,b ≠0,故A 错. 复数z =1−3i 的共轭复数为z =1+3i ,复数z =1−3i 的虚部为−3,故B,C 对. 复数√2z =1+i ,则z =√2,z 2=(√2)2=2i 2=i ,故D 对.故选:BCD 11.已知复数z 满足z+1z=i ,则下列结论正确的是( )A .复数z 的共轭复数为−12+12i B .z 的虚部为12 C .在复平面内z 对应的点在第二象限 D .|z |=√22【答案】AD【分析】先由已知求出复数z ,然后再逐个分析判断即可 【详解】由z+1z=i ,得z +1=zi ,∴z =−11−i =−(1+i)(1−i)(1+i)=−12−12i , ∴复数z 的共轭复数为−12+12i ,复数z 的虚部为−12,复数z 在复平面内对应的点在第三象限,|z |=√(−12)2+(−12)2=√22,∴AD 正确,BC 错误,故选:AD 12.下列命题中正确的是( )A .已知平面向量a ⃑满足|a ⃑|=1,则a ⃑⋅a ⃑=1B .已知复数z 满足|z |=1,则z ⋅z =1C .已知平面向量a ⃑,b ⃑⃑满足|a ⃑+b ⃑⃑|=|a ⃑−b ⃑⃑|,则a ⃑⋅b ⃑⃑=0D .已知复数z 1,z 2满足|z 1+z 2|=|z 1−z 2|,则z 1⋅z 2=0 【答案】ABC【分析】结合选项逐个验证,向量的模长运算一般利用平方处理,复数问题一般借助复数的运算来进行.【详解】∵a ⃑⃑⋅a ⃑⃑=|a ⃑⃑|2=1,∴A 正确;设z =a +bi ,则z =a −bi ,∵|z |=1,∴a 2+b 2=1, ∴z ⋅z =(a +bi )(a −bi )=a 2+b 2=1,∴B 正确;∵|a ⃑⃑+b ⃑⃑|=|a ⃑⃑−b ⃑⃑|,∴a ⃑⃑2+2a ⃑⃑⋅b ⃑⃑+b ⃑⃑2=a ⃑⃑2−2a ⃑⃑⋅b ⃑⃑+b ⃑⃑2,即a ⃑⃑⋅b ⃑⃑=0,∴C 正确; ∵|1+i |=|1−i |,然而1⋅i =i ≠0,∴D 不正确. 故选:ABC.三、填空题(共4小题)13.已知复数z 满足z ⋅(1−2i )=|3+4i |,则z =___________. 【答案】1+2i【分析】根据复数的四则运算进行整理化简即可. 【详解】解:∵z ⋅(1−2i )=|3+4i |=5 ∴z =51−2i=5(1+2i )(1−2i )⋅(1+2i )=1+2i ,故答案为:1+2i.14.已知i 为虚数单位,则i 2020+i 2021=___________. 【答案】1+i【分析】根据i n 的周期性求得正确结论. 【详解】i 2020+i 2021=i 4×505+i 4×505+1=1+i . 故答案为:1+i15.复数4+3i 与-2-5i 分别表示向量OA ⃑⃑⃑⃑⃑ 与OB ⃑⃑⃑⃑⃑ ,则向量AB ⃑⃑⃑⃑⃑ 表示的复数是________. 【答案】-6-8i【分析】由复数的几何意义得出向量OA ⃑⃑⃑⃑⃑ 与OB ⃑⃑⃑⃑⃑ 的坐标,再由向量的运算得出AB ⃑⃑⃑⃑⃑ 的坐标,进而得出其复数.【详解】∵复数4+3i 与-2-5i 分别表示向量OA⃑⃑⃑⃑⃑ 与OB ⃑⃑⃑⃑⃑ ,∴OA ⃑⃑⃑⃑⃑ =(4,3),OB ⃑⃑⃑⃑⃑ =(−2,−5) 又AB ⃑⃑⃑⃑⃑ =OB ⃑⃑⃑⃑⃑ −OA ⃑⃑⃑⃑⃑ =(−2,−5)−(4,3)=(−6,−8),∴向量AB ⃑⃑⃑⃑⃑ 表示的复数是-6-8i . 故答案为:-6-8i16.已知1+2i 是方程x 2-mx +2n =0(m ,n ∈R )的一个根,则m +n =____. 【答案】92【分析】将x =1+2i 代入方程,根据复数的乘法运算法则,得到(−3−m +2n )+(4−2m )i =0,再由复数相等的充要条件得到方程组,解得即可;【详解】解:将x =1+2i 代入方程x2-mx +2n =0,有(1+2i)2-m(1+2i)+2n =0,即1+4i −4−m −2mi +2n =0,即(−3−m +2n )+(4−2m )i =0, 由复数相等的充要条件,得{−3−m +2n =04−2m =0解得{n =52m =2 ,故m +n =2+52=92. 故答案为:92 四、解答题(共5小题) 17.计算:(1)(1−4i )(1+i )+2+4i3+4i;(2)(1+i )51−i+(1−i )51+i;(3)(1+2i)2+3(1−i)2+i.【答案】(1)1−i ;(2)0;(3)15+25i 【分析】根据复数四则运算法则计算即可. 【详解】(1)原式=5−3i+2+4i 3+4i=7+i3+4i =(7+i )(3−4i )(3+4i )(3−4i )=25−25i 25=1−i .(2)原式=(1+i )6+(1−i )6(1−i )(1+i )=[(1+i )2]3+[(1−i )2]32=(2i )3+(−2i )32=−8i+8i2=0.(3)(1+2i)2+3(1−i)2+i=−3+4i+3−3i2+i=i 2+i=i(2−i)5=15+25i18. 已知复数z =m 2−2m −15+(m 2−9)i ,其中m ∈R ,i 为虚数单位. (1)若z 为实数,求m 的值; (2)若z 为纯虚数,求z1+i 的虚部. 【答案】(1)m =±3;(2)8【分析】(1)由题意得m 2−9=0,求解即可;(2)先由题意求得z =16i ,再根据复数的除法法则化简复数z 1+i,由此可求得答案.(1)解:若z 为实数,则m 2−9=0,解得m =±3. (2)解:由题意得{m 2−2m −15=0,m 2−9≠0,解得m =5,∴z =16i ,故z 1+i=16i 1+i=16i (1−i )(1+i )(1−i )=8+8i ,∴z1+i的虚部为8.19.已知复数z =(m 2−2m −3)+(m 2+m −2)i ,(m ∈R). (1)若z >0,求m 的值; (2)若z 是纯虚数,求z ⋅z̅的值. 【答案】(1)m =−2;(2)4或100【分析】(1)根据复数z >0,可知z 为实数,列出方程,解得答案;(2)根据z 是纯虚数,列出相应的方程或不等式,再结合共轭复数的概念以及复数的乘法运算,求得答案. 【详解】(1)∵z >0,∴z ∈R ,∴m 2+m −2=0,∴m =−2或m =1. ①当m =−2时,z =5>0,符合题意; ②当m =1时,z =−4<0,舍去. 综上可知:m =−2.(2)∵z 是纯虚数,∴{m 2−2m −3=0m 2+m −2≠0,∴m =−1或m =3,∴z =−2i ,或z =10i ,∴z ⋅z ̅=−2i ×2i =4或z ⋅z ̅=10i ×(−10i)=100, ∴z ⋅z ̅=4或100.20.已知复平面内平行四边形ABCD ,A 点对应的复数为2+i ,向量BA ⃑⃑⃑⃑⃑ 对应的复数为1+2i ,向量BC⃑⃑⃑⃑⃑ 对应的复数为3−i ,求: (1)点D 对应的复数; (2)平行四边形ABCD 的面积. 【答案】(1)5;(2)7【分析】(1)根据复数与向量间的关系运算得BD ⃑⃑⃑⃑⃑ =(4,1),OB ⃑⃑⃑⃑⃑ =(1,−1),则OD ⃑⃑⃑⃑⃑ =OB ⃑⃑⃑⃑⃑ +BD ⃑⃑⃑⃑⃑ =(5,0),从而得到其对应的复数; (2)cosB =BA⃑⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ |BA⃑⃑⃑⃑⃑⃑ ||BC ⃑⃑⃑⃑⃑ |=5√2,则sinB =5√2,利用平行四边形面积公式即可得到答案.【详解】(1)∵向量BA ⃑⃑⃑⃑⃑ 对应的复数为1+2i ,∴向量BA ⃑⃑⃑⃑⃑ =(1,2), BC⃑⃑⃑⃑⃑ 对应的复数为3−i ,∴向量BC ⃑⃑⃑⃑⃑ =(3,−1), BD ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +BC ⃑⃑⃑⃑⃑ =(1,2)+(3,−1)=(4,1), OB⃑⃑⃑⃑⃑ =OA ⃑⃑⃑⃑⃑ −BA ⃑⃑⃑⃑⃑ =(2,1)−(1,2)=(1,−1), ∴OD ⃑⃑⃑⃑⃑ =OB ⃑⃑⃑⃑⃑ +BD ⃑⃑⃑⃑⃑ =(1,−1)+(4,1)=(5,0), ∴点D 对应的复数为5 .(2)∵BA ⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ =|BA ⃑⃑⃑⃑⃑ ||BC ⃑⃑⃑⃑⃑ |cosB ,∴cosB =BA⃑⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ |BA⃑⃑⃑⃑⃑⃑ ||BC ⃑⃑⃑⃑⃑ |=√5×√10=5√2, ∵B ∈[0,π],∴sinB =5√2,∴S =|BA⃑⃑⃑⃑⃑ ||BC ⃑⃑⃑⃑⃑ |sinB =√5×√10×5√2=7.故平行四边形ABCD 面积为7.21.已知复数z 1=3cosθ+isinθ,z 2=√24−isinθ,其中i 为虚数单位,θ∈R .求|z 1⋅z 2|的值域. 【答案】[3√24,5√24] 【分析】由复数模的定义,结合三角函数值域的求法即可求解.【详解】|z 1⋅z 2|=|(3cosθ+isinθ)⋅(√24−isinθ)|=|(3cosθ+isinθ)||(√24−isinθ)| =√(1+8cos 2θ)(18+sin 2θ)=√18+sin 2θ+cos 2θ+8sin 2θcos 2θ=√98+2sin 22θ. ∵sin 22θ∈[0,1],∴ √98+2sin 22θ∈[3√24,5√24],即|z 1⋅z 2|∈[3√24,5√24]. 22.已知复数z =3x −(x 2−x )i(x ∈R)的实部与虚部的差为f(x). (1)若f(x)=8,且x >0,求复数iz 的虚部; (2)当f(x)取得最小值时,求复数z 1+2i的实部.【答案】(1)6;(2)−75【分析】(1)由复数的实部、虚部的运算,可得f(x)=x 2+2x ,再结合题意可得x =2,再确定iz 在复平面内对应的点的坐标即可;(2)先求出函数取最小值时x 对应的值,再结合复数的除法运算即可得解.【详解】(1)由题意可得f(x)=3x +(x 2−x )=x 2+2x , ∵f(x)=8,∴x 2+2x =8, 又x >0,∴x =2,即z =6−2i , 则iz =i(6−2i)=2+6i , ∴复数iz 的虚部为6.(2)∵f(x)=x 2+2x =(x +1)2−1,∴当x =−1时,f(x)取得最小值, 此时,z =−3−2i ,则z 1+2i=−3+2i 1+2i=−(3+2i)(1−2i)5=−75+45i ,∴z1+2i 的实部为−75.。

高一数学(必修二)第五章 复数 单元测试卷及答案

高一数学(必修二)第五章 复数 单元测试卷及答案

高一数学(必修二)第五章 复数 单元测试卷及答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足i 3i z z -=+,则复数z 的实部为( )A.1B.3C.-1D.-32.在复平面内,复数11i 5z =,24i 25z =-,12z z z =+,则复数z 对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知复数z 满足4i 63i z +=+,则z 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限4.当12m <<时,复数()()2i 4i m +-+在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限5.已知复数z 满足()()()293i z a a a =-++∈R ,若z 为纯虚数,则a =( )A.-3B.3±C.3D.06.若,a b ∈R ,i 是虚数单位,i 20212i a b +=-,则2i a b +等于( )A.20212i +B.20214i +C.22021i +D.42021i -7.已知纯虚数,其中i 为虚数单位,则实数m 的值为( )A.1B.3C.1或3D.08.已知复数z 满足,则z =( )A.3i --B.3i -+C.D.二、多选题(本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,有选错的得0分,部分选对的得2分。

)9.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A.||5z =B.复数z 的实部是2C.复数z 的虚部是1D.复数在复平面内对应的点位于第一象限10.设m ∈R ,复数,则z 在复平面内对应的点可能在( ) ()()21i 4i 3z m m =+-++(3i)10z -=3i -3i +z 2352(1)i z m m m =-++-A.第一象限B.第二象限C.第三象限D.第四象限11.对于复数(,)z a bi a b R =+∈,下列结论错误的是( )A.若,则a bi +为纯虚数B.若32a bi i -=+,则 3,2a b ==C.若0b =,则a bi +为实数D.纯虚数z 的共轭复数是z - 12.复数z 满足23i 3i 232iz -⋅-=+,则下列说法正确的是( ) A.z 的实部为3 B.z 的虚部为2 C.32i z =-+ D.13z =三、填空题:本题共4小题,每小题5分,共20分.13.已知1z 、2z ∈C ,且12i z =+,234i z =-(其中i 为虚数单位),则12z z -=______.14.已知1z 、2z ∈C ,且12i z =+,234i z =-(其中i 为虚数单位),则12z z -=____________.15.复数1i -的虚部的平方是_________________. 16.已知3i 1ia ++(i 为虚数单位,∈R )为纯虚数,则a =____________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. (10分)已知复数(3)(3)i z m m m =-+-,其中i 为虚数单位.若z 满足下列条件,求实数m 的值:(1)z 为实数;(2)z 为纯虚数;(3)z 在复平面内对应的点在直线y x =上.18. (12分)已知复数13i 22z =-+,i 为虚数单位. (1)求3z 的值;(2)类比数列的有关知识,求220191z z z ++++的值. 19. (12分)已知复数()()2223232i z m m m m =--+-+.当实数m 取什么值时,复数z 是:(1)实数;(2)纯虚数;20. (12分)复数名12334i,0,(26)i z z z c c =+==+-在复平面内对应的点分别为A ,B ,C ,若BAC∠是钝角,求实数c 的取值范围.21. (12分)已知(){}221,2,3156i ,{1,3},{3}A a a a a B A B =--+--=-⋂=,求实数a 的值.22. (12分)设实部为正数的复数z ,满足||10z =,且复数(12i)z +在复平面内对应的点在第0a =一、三象限的角平分线上.(1)求复数z ;(2)若i ()1im z m -+∈+R 为纯虚数,求实数m 的值.参考答案及解析1.答案:A解析:解法一 设复数i z x y =+,x ,y ∈R ,因为i 3i z z -=+,所以i (i)i 3i x y x y +-+=+,即()i 3i x y y x ++-=+,根据复数相等的充要条件,可得3,1,x y y x +=⎧⎨-=⎩解得1,2,x y =⎧⎨=⎩故复数z 的实部为1,选A.解法二 因为i 3i z z -=+,所以3i (3i)(1i)12i 1i (1i)(1i)z +++===+--+,复数z 的实部为1,故选A. 2.答案:B 解析:因为1214i i 22i 55z z z =+=+-=-+,所以实部小于0,虚部大于0,故复数z 对应的点位于第二象限,故选:B.3.答案:D解析:依题意得,6i z =-,对应复平面的点是(6,1)-,在第四象限. 故选:D.4.答案:B解析:()()2i 4i (24)(1)i z m m m +--+-=+=,若12m <<,则240m -<,10m ->,所以复数z 在复平面内对应的点位于第二象限.故选:B.解析:因为()()()293i z a a a =-++∈R 为纯虚数,所以290a -=且30a +≠,所以3a =. 故选:C.6.答案:D解析:因为i 20212i a b +=-,所以2a =,2021b -=,即2a =,2021b =-,所以2i 42021i a b +=-.故选:D.7.答案:B解析:因为()()21i 4i 3z m m =+-++为纯虚数,故()224i 3m m m z m -++-=,则224300m m m m ⎧-+=⎨-≠⎩,解得3m =. 故选:B.8.答案:D 解析:1010(3i)3i 3i (3i)(3i)z +===+--+. 故选:D.9.答案:ABD解析:(1i)3i z +=+,3i (3i)(1i)42i 2i 1i (1i)(1i)2z ++--∴====-++-,||5z ∴=A 正确;复数z 的实部是2,故选项B 正确;复数z 的虚部是-1,故选项C 错误;复数2i z =+在复平面内对应的点为(2,1),位于第一象限,故选项D 正确.故选ABD.10.答案:ABD解析:由题意得,复数z 在复平面内对应的点为()2352,1m m m -+-. 当10m ->,即1m <时,二次函数2352(32)(1)y m m m m =-+=--的取值有正有负,故z 在复平面内对应的点可以在第一、二象限.当10m -<,即1m >时,二次函数2352(32)(1)0y m m m m =-+=-->,故z 在复平面内对应的点可以在第四象限.故z 在复平面内对应的点一定不在第三象限.故选ABD.解析:解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确; 当0b =时,复数为实数,故C 正确;对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;故选:AB.12.答案:BD 解析:由23i 3i 232iz -⋅-=+得,(23i)(32i)13i 13i (23i)i(23i)32i 23i 23i (23i)(23i)z ++⋅+====+=-+---+ 所以z 的实部为-3,虚部为2,,13z =,故选BD.13.答案:15i -+解析:122i 34i 15i z z -=+-+=-+.故答案为:15i -+.14.答案:15i -+解析:122i 34i 15i z z -=+-+=-+.故答案为:15i -+.15.答案:1解析:复数1i -的虚部为-1,则其平方为1. 故答案为:1.16.答案:-3 解析:()()()()()()3i 1i 33i 33i 3i 1i 1i 1i 222a a a a a a +⋅-++--++===+++⋅- 因为复数为纯虚数,所以302a +=,3a =-. 故答案为:-3.17.答案:(1)(2)0m =(3)1m =或3m = 32i z =--3m =解析:(1)z 为实数,30m ∴-=,解得:3m =;(2)z 为纯虚数,(3)0030m m m m -=⎧⇒=⎨-≠⎩;(3)z 在复平面内对应的点在直线y x =上, ∴()331m m m m -=-⇒=或3m =.18、(1)答案:31z = 解析:复数13i 22z =-+(i 为虚数单位), 222113313()2()i (i)i 222222z ∴=-+⨯-⨯+=--, 322131313i)(i)i 12222(44z z z ∴=---+==-=⋅, (2)答案:1解析:202022013673911()111z z z z z z z z++++--⋅==-- 111z z-==- 19.答案:(1) 即1m =或2m =时,复数z 为实数(2) 12m =-复数z 为纯虚数解析:(1)当2320m m -+=时,即1m =或2m =时,复数z 为实数;(2)若z 为纯虚数,则222320320m m m m ⎧--=⎨-+≠⎩,解得1 2212m m m m ⎧=-=⎪⎨⎪≠≠⎩或且, 12m ∴=-,即12m =-时,复数z 为纯虚数; 20.答案:49911c c c ⎧⎫>≠⎨⎬⎩⎭∣,且 解析:在复平面内三点坐标为(3,4),(0,0),(,26)A B C c c -, 由BAC ∠为钝角得cos 0BAC ∠<,且A ,B ,C 不共线.(3,4),(3,210),0AB AC c c AB AC =--=--⋅<,且不共线,得c 的取值范围是49911c c c ⎧⎫>≠⎨⎬⎩⎭∣,且. 21.答案:1a =-解析:由题意知,()223156i 3()a a a a a --+--=∈R ,所以22313,560,a a a a ⎧--=⎨--=⎩即 所以1a =-.22.答案:(1)(2)5m =-解析:(1)设,a ,b ∈R ,0a >, 由题意知,2210a b +=.①(12i)(12i)(i)2(2)i z a b a b a b +=++=-++, 得22a b a b -=+.②①②联立,解得3a =,1b =-, 得3i z =-.(2), 所以1302m -+=且, 解得5m =-. 4 1,6 1,a a a a ==-⎧⎨==-⎩或或3i z =-i z a b =+i (i)(1i)113i 31i 1i 222m m m m z ----+⎛⎫+=++=++- ⎪+⎝⎭1102m +-≠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、复数选择题1.若()211z i =-,21z i =+,则12z z 等于( ) A .1i +B .1i -+C .1i -D .1i -- 2.已知复数1=-i z i ,其中i 为虚数单位,则||z =( ) A .12 B.2 CD .23.若复数(1)()(i a i i -+是虚数单位)为纯虚数,则实数a 的值为( )A .2B .1C .0D .1-4.复数3(23)i +(其中i 为虚数单位)的虚部为( ) A .9i B .46i - C .9D .46- 5.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( )A .97- B .7 C .97 D .7-6.已知i 是虚数单位,复数2z i =-,则()12z i ⋅+的模长为( )A .6BC .5 D7.))5511--+=( )A .1B .-1C .2D .-2 8.已知i 为虚数单位,若复数()12i z a R a i +=∈+为纯虚数,则z a +=( ) AB .3C .5 D.9.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④z z ,其结果一定是实数的是( )A .①②B .②④C .②③D .①③ 10.若复数2i 1i a -+(a ∈R )为纯虚数,则1i a -=( ) ABC .3D .511.复数z 满足22z z i +=,则z 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限12.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3π而得到.则21arg()2z z -的值为( )A .6πB .3πC .23πD .43π 13.若()()324z ii =+-,则在复平面内,复数z 所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限14.复数()()212z i i =-+在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 15.若复数11i z i ,i 是虚数单位,则z =( ) A .0 B .12 C .1 D .2二、多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i - 18.下面是关于复数21i z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z =B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1- 19.复数z 满足233232i z i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =20.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限21.下列关于复数的说法,其中正确的是( )A .复数(),z a bi a b R =+∈是实数的充要条件是0b =B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称22.已知1z ,2z 为复数,下列命题不正确的是( )A .若12z z =,则12=z zB .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >23.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z24.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为225.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A.若0m =,则共轭复数1z =- B .若复数2z =,则mC .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++=26.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =27.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '= 28.(多选)()()321i i +-+表示( )A .点()3,2与点()1,1之间的距离B .点()3,2与点()1,1--之间的距离C .点()2,1到原点的距离D .坐标为()2,1--的向量的模29.对任意1z ,2z ,z C ∈,下列结论成立的是( )A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z =C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅D .12z z =的充要条件是12=z z30.已知复数z ,下列结论正确的是( )A .“0z z +=”是“z 为纯虚数”的充分不必要条件B .“0z z +=”是“z 为纯虚数”的必要不充分条件C .“z z =”是“z 为实数”的充要条件D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件【参考答案】***试卷处理标记,请不要删除一、复数选择题1.D【分析】由复数的运算法则计算即可.【详解】解:,.故选:D.解析:D【分析】由复数的运算法则计算即可.【详解】解:()2211122z i i i i =-=-+=-, ()()212222(1)2222111112z i i i i i i i z i i i i --⨯--+--∴=====--++--. 故选:D.2.B【分析】先利用复数的除法运算将化简,再利用模长公式即可求解.【详解】由于,则.故选:B解析:B【分析】先利用复数的除法运算将1=-i z i 化简,再利用模长公式即可求解. 【详解】 由于()(1i)(1i)111(1i)222i i i i z i i ++====-+--+,则||2z ===. 故选:B3.D【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解.【详解】,它为纯虚数,则,解得.故选:D .解析:D【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解.【详解】2(1)()1(1)i a i a i ai i a a i -+=+--=++-,它为纯虚数,则1010a a +=⎧⎨-≠⎩,解得1a =-. 故选:D .4.C【分析】应用复数相乘的运算法则计算即可.【详解】解:所以的虚部为9.故选:C.解析:C【分析】应用复数相乘的运算法则计算即可.【详解】解:()()()32351223469i i i i +=-++=-+所以()323i +的虚部为9.5.B【分析】先求出,再解不等式组即得解.【详解】依题意,,因为复数为纯虚数,故,解得.故选:B【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上.解析:B【分析】 先求出321795858m m z i -+=+,再解不等式组3210790m m -=⎧⎨+≠⎩即得解. 【详解】 依题意,()()()()3373321793737375858m i i m i m m z i i i i +++-+===+--+, 因为复数z 为纯虚数,故3210790m m -=⎧⎨+≠⎩,解得7m =. 故选:B【点睛】易错点睛:复数(,)z a bi a b R =+∈为纯虚数的充要条件是0a =且0b ≠,不要只写0b ≠.本题不能只写出790m +≠,还要写上3210m -=.6.C【分析】利用复数代数形式的乘除运算化简,再由复数模的公式得答案.【详解】,,所以,,故选:C.解析:C【分析】利用复数代数形式的乘除运算化简,再由复数模的公式得答案.2z i =-,(12)(2)(12)43z i i i i ∴⋅+=-+=+,所以,5z =,故选:C.7.D【分析】先求和的平方,再求4次方,最后求5次方,即可得结果.【详解】∵,,∴,,∴,,∴,故选:D.解析:D【分析】先求)1-和)1+的平方,再求4次方,最后求5次方,即可得结果. 【详解】∵)211-=--,)2+1=-,∴)()42117-=--=-+,)()42+17=-=--,∴)()51711-=-+-=--,)()51711+=--+=-,∴))55121-+=--, 故选:D.8.A【分析】根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得【详解】由复数为纯虚数,则,解得则 ,所以,所以解析:A【分析】根据复数运算,化简后由纯虚数的概念可求得a ,.进而求得复数z ,再根据模的定义即可求得z a +【详解】()()()()()()2221222121122111i a i a a i a i i a z a i a i a i a a a +-++--++====+++-+++ 由复数()12i z a R a i +=∈+为纯虚数,则222012101a aa a +⎧=⎪⎪+⎨-⎪≠⎪+⎩,解得2a =- 则z i =- ,所以2z a i +=--,所以z a +=故选:A9.D【分析】设,则,利用复数的运算判断.【详解】设,则,故,,,.故选:D.解析:D【分析】设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断.【详解】设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,22222z a bi a b abi z a bi a b+-+==-+,22z z a b ⋅=+∈R . 故选:D.10.B【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模.【详解】由复数()为纯虚数,则 ,则所以故选:B解析:B【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模.【详解】 由()()()()()()21i 2221112a i a a i a i i i i ----+-==++- 复数2i 1i a -+(a ∈R )为纯虚数,则202202a a -⎧=⎪⎪⎨+⎪≠⎪⎩ ,则2a =所以112ai i -=-=故选:B11.B【分析】先设复数,根据复数模的计算公式,以及复数相等,求出,得出复数,再由复数的几何意义,即可得出结果.【详解】设复数,由得,所以,解得,因为时,不能满足,舍去;故,所以,其对应的解析:B【分析】先设复数(),z x yi x R y R =+∈∈,根据复数模的计算公式,以及复数相等,求出,x y ,得出复数,再由复数的几何意义,即可得出结果.【详解】设复数(),z x yi x R y R =+∈∈, 由22z z i +=得222x yi i +=,所以2022x y ⎧⎪+=⎨=⎪⎩,解得1x y ⎧=⎪⎨⎪=⎩,因为31x y ⎧=⎪⎨⎪=⎩时,不能满足20x =,舍去;故31x y ⎧=-⎪⎨⎪=⎩,所以z i =+,其对应的点⎛⎫ ⎪ ⎪⎝⎭位于第二象限, 故选:B.12.C【分析】写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解.【详解】,,所以复数在第二象限,设幅角为,故选:C【点睛】在复平面内运用复数的三解析:C【分析】写出复数11z =的三角形式1cos 0sin 0z i =+,绕原点O 逆时针方向旋转3π得到复数2z 的三角形式,从而求得212z z -的三角形式得解. 【详解】 11z =,1cos 0sin 0z i ∴=+,121(cossin )3322Z i O OZ ππ=+=+2111()222z z --∴=+ 所以复数在第二象限,设幅角为θ,tan θ=23πθ∴= 故选:C【点睛】在复平面内运用复数的三角形式是求得幅角的关键.13.D【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果.【详解】,则复数对应的点的坐标为,位于第四象限.故选:D .解析:D【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果.【详解】()()324(2)(4)76z i i i i i =+-=--=-,则复数z 对应的点的坐标为()7,6-,位于第四象限.故选:D . 14.A【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论.【详解】,因此,复数在复平面内对应的点位于第一象限.故选:A.解析:A【分析】利用复数的乘法化简复数z ,利用复数的乘法可得出结论.【详解】()()221223243z i i i i i =-+=+-=+,因此,复数z 在复平面内对应的点位于第一象限.故选:A.15.C【分析】由复数除法求出,再由模计算.【详解】由已知,所以.故选:C .解析:C【分析】由复数除法求出z ,再由模计算.【详解】 由已知21(1)21(1)(1)2i i i z i i i i ---====-++-, 所以1z i =-=.故选:C .二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+,所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.18.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD【分析】 把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.19.AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.20.ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.【详解】,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】(1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==,故选项A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.21.AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.22.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确;当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.23.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 24.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围25.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.26.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.27.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥,此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 28.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模29.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.30.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.。

相关文档
最新文档