甘肃省武威市2020届中考数学试卷(扫描版)

合集下载

2020年甘肃省武威市中考数学试卷(解析版)

2020年甘肃省武威市中考数学试卷(解析版)

的乘法、除法的法则.
6.生活中到处可见黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下 a 与全身 b 的高度比值接近 0.618,可以增加视觉美感,若图中 b 为 2 米,则 a 约为( )
2
A. 1.24 米
B. 1.38 米
C. 1.42 米
D. 1.62 米
【答案】A
【解析】
【分析】
【点睛】本题考查了菱形的性质、等边三角形的判定与性质、平行线的性质等知识点,理解题意,熟练掌 握菱形的性质是解题关键.
9.如图, A 是圆 O 上一点, BC 是直径, AC 2 , AB 4 ,点 D 在圆 O 上且平分弧 BC ,则 DC 的长为
()
4
A. 2 2
B. 5
C. 2 5
D. 10
武威市 2020 年初中毕业、高中招生考试
数学试卷
一、选择题:本大题共 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1.下列实数是无理数的是( )
A. -2
解析】
C. 9
D. 11
【分析】
根据无理数的定义(无理数是指无限不循环小数)判断即可.
【答案】200 【解析】 【分析】 设原价为 x 元,根据八折优惠,现价为 160 元,即可得出关于 x 的一元一次方程,解之即可得出原价. 【详解】解:设原价为 x 元. 根据题意,得 0.8x=160. 解得 x=200. ∴原价为 200 元. 故答案为:200. 【点睛】本题考查了一元一次方程的应用,解题的关键是明确“现价=原价×折扣”,本题属于基础题,难度 不大,解决该题型题目时,根据数量关系列出方程是关键.
2

甘肃省武威市2020中考数学统考试题

甘肃省武威市2020中考数学统考试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.2.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或103.下列二次根式,最简二次根式是( )A.8B.12C.5D.274.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④5.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.6.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=k x(k<0)的图象经过点B,则k的值为()A.﹣12 B.﹣32 C.32 D.﹣367.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.1128.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1D.k≥12且k≠19.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°10.若ab<0,则正比例函数y=ax与反比例函数y=bx在同一坐标系中的大致图象可能是()A.B.C.D.二、填空题(本题包括8个小题)11.若分式方程x a2x4x4=+--的解为正数,则a的取值范围是______________.12.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为2s甲________2s乙.(填“>”或“<”)13.已知圆锥的底面半径为40cm,母线长为90cm,则它的侧面展开图的圆心角为_______.14.在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.15.一个扇形的圆心角为120°,弧长为2π米,则此扇形的半径是_____米.16.有公共顶点A ,B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )A .144°B .84°C .74°D .54°17.如图,小明在A 时测得某树的影长为3米,B 时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.18.已知二次函数2y ax bx c =++的图象如图所示,若方程2ax bx c k ++=有两个不相等的实数根,则k的取值范围是_____________.三、解答题(本题包括8个小题)19.(6分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题: 分 组频数 频率 第一组(0≤x <15) 3 0.15 第二组(15≤x <30) 6 a 第三组(30≤x <45) 7 0.35 第四组(45≤x <60)b0.20(1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?20.(6分)解不等式组:2(2)3{3122x xx+>-≥-,并将它的解集在数轴上表示出来.21.(6分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70︒方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37︒方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.22.(8分)先化简,再求值:22m35m23m6m m2-⎛⎫÷+-⎪--⎝⎭,其中m是方程2x3x10++=的根.23.(8分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=2,反比例函数y=kx的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=kx图象上时,求点D经过的路径长.24.(10分)下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:已知:如图,直线l和直线l外一点A求作:直线AP,使得AP∥l作法:如图①在直线l上任取一点B(AB与l不垂直),以点A为圆心,AB为半径作圆,与直线l交于点C.②连接AC,AB,延长BA到点D;③作∠DAC的平分线AP.所以直线AP就是所求作的直线根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)完成下面的证明证明:∵AB=AC,∴∠ABC=∠ACB(填推理的依据)∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依据)∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依据)25.(10分)今年3月12日植树节期间,学校预购进A,B两种树苗.若购进A种树苗3棵,B种树苗5棵,需2100元;若购进A种树苗4棵,B种树苗10棵,需3800元.求购进A,B两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵.26.(12分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.请回答下列问题:甲成绩的中位数是______,乙成绩的众数是______;经计算知83x=乙,2465s=乙.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.2.B【解析】试题分析:∵2是关于x的方程x2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=1.①当1是腰时,2是底边,此时周长=1+1+2=2;②当1是底边时,2是腰,2+2<1,不能构成三角形.所以它的周长是2.考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.3.C【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4.B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b<0<a,故①正确,因为b点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a,所以ab<0,故③错误,由①知a-b>a+b,所以④正确.故选B.5.B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【详解】A.不是轴对称图形,故本选项错误;B.是轴对称图形,故本选项正确;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.故选B.6.B【解析】【详解】解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=k(k<0)的图象经过点B,x∴﹣4=k,得k=﹣32.8故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.7.C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.8.C【解析】【详解】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>12且k≠1.故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.C【解析】分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.详解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选C.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.10.D【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(本题包括8个小题)11.a<8,且a≠1【解析】分式方程去分母得:x=2x-8+a,解得:x=8- a,根据题意得:8- a>2,8- a≠1,解得:a<8,且a≠1.故答案为:a<8,且a≠1.【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a 的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.12.>【解析】【分析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.【详解】解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;则乙地的日平均气温的方差小,故S2甲>S2乙.故答案为:>.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 13.160︒. 【解析】 【分析】圆锥的底面半径为40cm ,则底面圆的周长是80πcm ,圆锥的底面周长等于侧面展开图的扇形弧长,即侧面展开图的扇形弧长是80πcm ,母线长为90cm 即侧面展开图的扇形的半径长是90cm .根据弧长公式即可计算. 【详解】 根据弧长的公式l=180n rπ得到: 80π=•90180n π, 解得n=160度.侧面展开图的圆心角为160度. 故答案为160°. 14.1 【解析】 【详解】 ∵MN ∥BC , ∴△AMN ∽△ABC , ∴,即,∴MN=1. 故答案为1. 15.1 【解析】 【分析】 根据弧长公式l =,可得r =,再将数据代入计算即可.【详解】 解:∵l =,∴r===1.故答案为:1.【点睛】考查了弧长的计算,解答本题的关键是掌握弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为r).16.B【解析】正五边形的内角是∠ABC=()521805-⨯=108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E=()621806-⨯=120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.17.1 【解析】【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得ED DCDC FD=;即DC2=ED?FD,代入数据可得答案.【详解】根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=3,FD=12,易得:Rt△EDC∽Rt△DCF,有ED DCDC FD=,即DC2=ED×FD,代入数据可得DC2=31,DC=1,故答案为1.18.5k<【解析】分析:先移项,整理为一元二次方程,让根的判别式大于0求值即可.详解:由图象可知:二次函数y=ax 2+bx+c 的顶点坐标为(1,1),∴244ac b a=1,即b 2-4ac=-20a , ∵ax 2+bx+c=k 有两个不相等的实数根,∴方程ax 2+bx+c-k=0的判别式△>0,即b 2-4a (c-k )=b 2-4ac+4ak=-20a+4ak=-4a (1-k )>0∵抛物线开口向下∴a <0∴1-k >0∴k <1.故答案为k <1.点睛:本题主要考查了抛物线与x 轴的交点问题,以及数形结合法;二次函数中当b 2-4ac >0时,二次函数y=ax 2+bx+c 的图象与x 轴有两个交点.三、解答题(本题包括8个小题)19.0.3 4【解析】【分析】(1)由统计图易得a 与b 的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.【详解】(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:312=14.【点睛】本题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.20.-1≤x<4,在数轴上表示见解析.【解析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:()223{3x122x x+>-≥-①②,由①得,x<4;由②得,x⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:21.还需要航行的距离BD的长为20.4海里.【解析】分析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.详解:由题知:70ACD∠=︒,37BCD∠=︒,80AC=.在Rt ACD∆中,cosCDACDAC∠=,0.3480CD∴=,27.2CD∴=(海里).在Rt BCD∆中,tanBDBCDCD∠=,0.7527.2BD∴=,20.4BD∴=(海里).答:还需要航行的距离BD的长为20.4海里.点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD的长度是解决问题的关键.22.原式=()()()()()22m3m9m3m2113m m2m23m m2m3m33m m33(m3m)----÷=⋅==---+-++.∵m 是方程2x 3x 10++=的根.∴,即2m 3m 1+=-,∴原式=()11=313-⨯-. 【解析】 试题分析:先通分计算括号里的,再计算括号外的,化为最简,由于m 是方程2x 3x 10++=的根,那么,可得2m 3m +的值,再把2m 3m +的值整体代入化简后的式子,计算即可.试题解析:原式=()()()()()22m 3m 9m 3m 211 3m m 2m 23m m 2m 3m 33m m 33(m 3m)----÷=⋅==---+-++. ∵m 是方程2x 3x 10++=的根.∴,即2m 3m 1+=-,∴原式=()11=313-⨯-. 考点:分式的化简求值;一元二次方程的解.23.(1)k=2;(2)点D 6.【解析】【分析】(1)根据题意求得点B 的坐标,再代入k y x=求得k 值即可; (2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB ,过D′作D′E ⊥x 轴于点E ,交DC 于点F ,设CD 交y 轴于点M (如图),根据已知条件可求得点D 的坐标为(﹣1,1),设D′横坐标为t ,则OE=MF=t ,即可得D′(t ,t+2),由此可得t (t+2)=2,解方程求得t 值,利用勾股定理求得DD′的长,即可得点D 经过的路径长.【详解】(1)∵△AOB 和△COD 为全等三的等腰直角三角形,2,∴2,∴点B 22),代入k y x=得k=2; (2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB ,过D′作D′E ⊥x 轴于点E ,交DC 于点F ,设CD 交y 轴于点M ,如图,∵OC=OD=2,∠AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函数图象上,∴t(t+2)=2,解得t=31-或t=﹣3﹣1(舍去),∴D′(3﹣1,3+1),∴DD′=22-+++-=,(311)(311)6即点D经过的路径长为6.【点睛】本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.24.(1)详见解析;(2)(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【解析】【分析】(1)根据角平分线的尺规作图即可得;(2)分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得.【详解】解:(1)如图所示,直线AP即为所求.(2)证明:∵AB =AC ,∴∠ABC =∠ACB (等边对等角),∵∠DAC 是△ABC 的外角,∴∠DAC =∠ABC+∠ACB (三角形外角性质),∴∠DAC =2∠ABC ,∵AP 平分∠DAC ,∴∠DAC =2∠DAP ,∴∠DAP =∠ABC ,∴AP ∥l (同位角相等,两直线平行),故答案为(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【点睛】本题主要考查作图能力,解题的关键是掌握角平分线的尺规作图、等腰三角形的性质、三角形外角的性质和平行线的判定.25.(1)A 种树苗的单价为200元,B 种树苗的单价为300元;(2)10棵【解析】试题分析:(1)设B 种树苗的单价为x 元,则A 种树苗的单价为y 元.则由等量关系列出方程组解答即可;(2)设购买A 种树苗a 棵,则B 种树苗为(30﹣a )棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.试题解析:(1)设B 种树苗的单价为x 元,则A 种树苗的单价为y 元,可得:352100{4103800y x y x +=+=, 解得:300200x y =⎧⎨=⎩, 答:A 种树苗的单价为200元,B 种树苗的单价为300元.(2)设购买A 种树苗a 棵,则B 种树苗为(30﹣a )棵,可得:200a+300(30﹣a )≤8000,解得:a≥10,答:A 种树苗至少需购进10棵.考点:1.一元一次不等式的应用;2.二元一次方程组的应用26.(1)83,81;(2)26=甲s ,推荐甲去参加比赛.【解析】【分析】(1)根据中位数和众数分别求解可得;(2)先计算出甲的平均数和方差,再根据方差的意义判别即可得.【详解】(1)甲成绩的中位数是83分,乙成绩的众数是81分,故答案为:83分、81分;(2)()17982838586835=⨯++++=甲x , ∴()()22222214312065⎡⎤=⨯-++-++=⎣⎦甲s . ∵x x =甲乙,22s s <甲乙,∴推荐甲去参加比赛.【点睛】此题主要考查了方差、平均数、众数、中位数等统计量,其中方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为( )A.0r5<<B.3r5<<C.4r5<<D.3r4<<2.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312B.36C.3D.33.若关于x的不等式组255332xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a的取值范围( )A.1162a-<-B.116a2-<<-C.1162a-<-D.1162a--4.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=50°,则∠ABC的大小是()A.55°B.60°C.65°D.70°5.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A.3y x=B.3yx=C.1yx=-D.2y x6.二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过()A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限7.用配方法解方程2230x x +-=时,可将方程变形为( )A .2(1)2x +=B .2(1)2x -=C .2(1)4x -=D .2(1)4x +=8.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A .3a+2bB .3a+4bC .6a+2bD .6a+4b9.设x 1,x 2是一元二次方程x 2﹣2x ﹣5=0的两根,则x 12+x 22的值为( )A .6B .8C .14D .1610.若ab <0,则正比例函数y=ax 与反比例函数y=b x在同一坐标系中的大致图象可能是( ) A . B . C . D .二、填空题(本题包括8个小题)11.有公共顶点A ,B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )A .144°B .84°C .74°D .54°12.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=_____.13.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为______.14.已知⊙O半径为1,A、B在⊙O上,且2AB ,则AB所对的圆周角为__o.15.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是_____.16.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_____.17.已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_________. 18.若|a|=20160,则a=___________.三、解答题(本题包括8个小题)19.(6分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.登山多长时间时,甲、乙两人距地面的高度差为50米?20.(6分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛.若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是.若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率.21.(6分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)22.(8分)如图,在平行四边形ABCD中,AB<BC.利用尺规作图,在AD边上确定点E,使点E到边AB,BC的距离相等(不写作法,保留作图痕迹);若BC=8,CD=5,则CE= .23.(8分)如图,在Rt△ABC中,∠C=90°,O为BC边上一点,以OC为半径的圆O,交AB于D点,且AD=AC,延长DO交圆O于E点,连接AE.求证:DE⊥AB;若DB=4,BC=8,求AE的长.24.(10分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).25.(10分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;分别写出B、C两点的对应点B′、C′的坐标;如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.26.(12分)如图所示,在△ABC中,BO、CO是角平分线.∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.若∠A=n°,求∠BOC的度数.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可.【详解】解:∵点M的坐标是(4,3),∴点M到x轴的距离是3,到y轴的距离是4,∵点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,∴r的取值范围是3<r<4,故选:D.【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键.2.B【解析】试题解析:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,33,根据题意得:AD=BC=x ,, 作EM ⊥AD 于M ,则AM=12AD=12x , 在Rt △AEM 中,cos ∠EAD=16xAM AE ==; 故选B .【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM 是解决问题的关键. 3.A 【解析】 【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可. 【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20 解②得x >3-2a ,∵不等式组只有5个整数解, ∴不等式组的解集为3-2a <x <20, ∴14≤3-2a <15,1162a ∴-<-故选:A 【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键. 4.C 【解析】连接OC ,因为点C 为弧BD 的中点,所以∠BOC=∠DAB=50°,因为OC=OB ,所以∠ABC=∠OCB=65°,故选C .5.B 【解析】y=3x 的图象经过一三象限过原点的直线,y 随x 的增大而增大,故选项A 错误;y=3x 的图象在一、三象限,在每个象限内y 随x 的增大而减小,故选项B 正确; y=−1x的图象在二、四象限,故选项C 错误;y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D 错误; 故选B. 6.A 【解析】 【分析】由抛物线的顶点坐标在第四象限可得出m >0,n >0,再利用一次函数图象与系数的关系,即可得出一次函数y =mx+n 的图象经过第一、二、三象限. 【详解】解:观察函数图象,可知:m >0,n >0,∴一次函数y =mx+n 的图象经过第一、二、三象限. 故选A . 【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k >0,b >0⇔y =kx+b 的图象在一、二、三象限”是解题的关键. 7.D 【解析】 【分析】配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可. 【详解】解:2230x x +-=223x x += 2214x x ++=()214x+=故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.8.A【解析】【分析】根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键. 9.C【解析】【分析】根据根与系数的关系得到x1+x2=2,x1•x2=-5,再变形x12+x22得到(x1+x2)2-2x1•x2,然后利用代入计算即可.【详解】∵一元二次方程x2-2x-5=0的两根是x1、x2,∴x1+x2=2,x1•x2=-5,∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.故选C.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-ba,x1•x2=ca.10.D【解析】【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:。

甘肃省武威市2020年中考数学试卷(II)卷

甘肃省武威市2020年中考数学试卷(II)卷

甘肃省武威市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列四个运算中,结果最小的是()A . -1+(-2)B . 1-(-2)C . 1×(-2)D . 1÷(-2)2. (2分)如表列出了一项实验的统计数据:它表示皮球从一定高度落下时,下落高度y与弹跳高度x的关系,能表示变量y与x之间的关系式为()A . y=2x-10B . y=C . y=x+25D . y=x+53. (2分) (2018八上·青山期中) 已知一个多边形的内角和是900°,则这个多边形是()A . 五边形B . 七边形C . 九边形D . 不能确定4. (2分)如图所示,是一个几何体的三视图,已知正视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为()A . 2πB . 3πC . 2πD . (1+2)π5. (2分)已知抛一枚均匀硬币正面朝上的概率为,下列说法正确的是().A . 连续抛一枚均匀硬币2次必有1次正面朝上B . 连续抛一枚均匀硬币10次,不可能正面都朝上C . 大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D . 通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的6. (2分)方程2x+12=0的解是直线y=2x+12().A . 与y轴交点的横坐标B . 与y轴交点的纵坐标C . 与x轴交点的横坐标D . 与x轴交点的纵坐标7. (2分) (2016七上·仙游期末) 某校七年级学生总人数为500,其男女生所占比例如图所示,则该校七年级男生人数为()A . 48B . 52C . 240D . 2608. (2分) (2019九上·辽阳期末) 下列命题正确的是()A . 一组对边相等,另一组对边平行的四边形是平行四边形B . 对角线相互垂直的四边形是菱形C . 对角线相等的四边形是矩形D . 对角线相互垂直平分且相等的四边形是正方形9. (2分) (2016七上·蓟县期中) 下列计算正确的是()A . (﹣1)3=1B . ﹣(﹣2)2=4C . (﹣3)2=6D . ﹣22=﹣410. (2分)如图,直线l是经过点(1,0)且与y轴平行的直线.Rt△ABC中直角边AC=4,BC=3.将BC边在直线l上滑动,使A,B在函数y=的图象上.那么k的值是()A . 3B . 6C . 12D .二、填空题 (共6题;共6分)11. (1分)(2017·杭州模拟) 分解因式:ma2﹣4ma+4m=________.12. (1分)(2017·兴化模拟) 如图所示,以锐角△ABC的边AB为直径作⊙O,交AC,BC于E、D两点,若AC=14,CD=4,7sinC=3tanB,则BD=________.13. (1分)某商品的进价是200元,标价300元出售,商店要求利润不低于5%,售货员最低可以打________折出售此商品.14. (1分)在四张背面完全相同的卡片正面分别画有正三角形,正六边形、平行四边形和圆,将这四张卡片背面朝上放在桌面上.现从中随机抽取一张,抽出的图形是中心对称图形的概率是________15. (1分)请你写出一个符合下列三个条件的不等式组:(1)它的解集为非负数,(2)有一个不等式的解集是x≤2,(3)有一个不等式在求解时要改变不等号方向.你写的不等式组是________ .16. (1分) (2019八上·江汉期中) 如图,AB丄CD于点E,且AB = CD = AC,若点I是三角形ACE的角平分线的交点,点F是BD的中点.下列结论:①∠AIC= 135°;②BD = BI,③S△AIC = S△BID ;④IF⊥AC.其中正确的是________(填序号).三、解答题 (共9题;共74分)17. (10分) (2019九上·宁波月考)(1)计算:sin60°﹣cos45°+tan230°;(2)若==≠0,求的值.18. (10分)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.19. (7分)(2018·临河模拟) 某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为________,图①中m的值为________;(2)求统计的这组销售额数据的平均数、众数和中位数.20. (12分)(2018·珠海模拟) 如图,在平面直角坐标系中,O为坐标原点,已知直线y=﹣ x+8与x轴、y轴分别交于A、B两点.直线OD⊥直线AB于点D.现有一点P从点D出发,沿线段DO向点O运动,另一点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到O时,两点都停止.设运动时间为t秒.(1)点A的坐标为________;线段OD的长为________.(2)设△OPQ的面积为S,求S与t之间的函数关系(不要求写出取值范围),并确定t为何值时S的值最大?(3)是否存在某一时刻t,使得△OPQ为等腰三角形?若存在,写出所有满足条件的t的值;若不存在,则说明理由.21. (5分)(2017·河西模拟) 如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)22. (5分) (2018七下·深圳期中) 旅客乘车按规定可以随身携带一定重量的行李,如果超过规定,则需要购买行李票,设行李费y(元)与行李重量x(千克)的关系如图,根据图象回答下列问题:(1)行李重量在________千克以内,不必交费;(2)当行李重量60千克时,交费________元;(3)当行李重量________千克时,交费10元;(4)行李重量每增加1千克,多交________元;(5) y= ________ (y与x之间的关系式)23. (5分)已知y1=x2﹣2x+3,y2=3x﹣k.(1)当x=1时,求出使等式y1=y2成立的实数k;(2)若关于x的方程y1+k=y2有实数根,求k的取值范围.24. (10分) (2017九下·泰兴开学考) 如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF= DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.25. (10分) (2019九上·镇江期末) 已知京润生物制品厂生产某种产品的年产量不超过800吨,生产该产品每吨所需相关费为10万元,且生产出的产品都能在当年销售完.产品每吨售价y(万元)与年产量x(吨)之间的函数关系如图所示(1)当该产品年产量为多少吨时,当年可获得7500万元毛利润?(毛利润=销售额﹣相关费用)(2)当该产品年产量为多少吨时,该厂能获得当年销售的是大毛利润?最大毛利润多少万元.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共74分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、22-1、22-2、22-3、22-4、22-5、23-1、24-1、24-2、25-1、25-2、。

2024年甘肃省武威市中考数学真题试卷及答案

2024年甘肃省武威市中考数学真题试卷及答案

2024年甘肃省武威市中考数学真题试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项. 1. 下列各数中,比2-小的数是( ) A.1-B. 4-C. 4D. 12. 如图所示,该几何体的主视图是( )A. B. C. D.3. 若55A ∠=︒,则A ∠的补角为( ) A. 35︒ B. 45︒C. 115︒D. 125︒4. 计算:4222a ba b a b-=--( ) A. 2B. 2a b -C.22a b- D.2a ba b-- 5. 如图,在矩形ABCD 中,对角线AC ,BD 相交于点O,60ABD ∠=︒,2AB =,则AC 的长为( )A. 6B. 5C. 4D. 36. 如图,点A,B,C 在O 上,AC OB ⊥,垂足为D,若35A ∠=︒,则C ∠的度数是( )A. 20︒B. 25︒C. 30︒D. 35︒7. 如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x 尺,长桌的长为y 尺,则y 与x 的关系可以表示为( )A. 3y x =B. 4y x =C. 31y xD. 41y x =+8. 近年来,我国重视农村电子商务的发展.下面的统计图反映了2016—2023年中国农村网络零售额情况.根据统计图提供的信息,下列结论错误的是( )A. 2023年中国农村网络零售额最高B. 2016年中国农村网络零售额最低C. 2016—2023年,中国农村网络零售额持续增加D. 从2020年开始,中国农村网络零售额突破20000亿元9. 敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A 区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为()15,16,那么有序数对记为()12,17对应的田地面积为( )A. 一亩八十步B. 一亩二十步C. 半亩七十八步D. 半亩八十四步10. 如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x,PO 的长为y,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为( )A. 2B. 3C.D. 二、填空题:本大题共6小题,每小题4分,共24分. 11. 因式分解:228x -=________.12. 已知一次函数24y x =-+,当自变量2x >时,函数y 的值可以是________(写出一个合理的值即可).13. 定义一种新运算*,规定运算法则为:*n m n m mn =-(m,n 均为整数,且0m ≠).例:32*32232=-⨯=,则(2)*2-=________.14. 围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点________的位置,则所得的对弈图是轴对称图形.(填写A,B,C,D 中的一处即可,A,B,C,D 位于棋盘的格点上)15. 如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =-++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8m DE =的矩形,则可判定货车________完全停到车棚内(填“能”或“不能”).16. 甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形OBC 和扇形OAD 有相同的圆心O,且圆心角100O ∠=︒,若120OA =cm ,60OB =cm ,则阴影部分的面积是______ 2cm .(结果用π表示)三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17. 计算. 18. 解不等式组:()223122x x x x ⎧-<+⎪⎨+<⎪⎩19. 先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b .20. 马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O和圆上一点M.作法如下:①以点M为圆心,OM长为半径,作弧交O于A,B两点;①延长MO交O于点C;即点A,B,C将O的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB,AC,BC,若O的半径为2cm,则ABC的周长为______ cm.21. 在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.(1)请用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲乙双方公平吗?请说明理由.22. 习近平总书记于2021年指出,中国将力争2030年前实现碳达峰,2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH垂直于地面,测角仪CD,EF在AH两侧,1.6mCD EF==,点C与点E相距182m(点C,H,E在同一条直线上),在D处测得简尖顶点A的仰角为45︒,在F处测得筒尖顶点A的仰角为53︒.求风电塔筒AH的高度.(参考数据:sin534 5︒≈,cos533 5︒≈,tan534 3︒≈.)四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23. 在阳光中学运动会跳高比赛中,每位选手要进行五轮比赛,张老师对参加比赛的甲、乙、丙三位选手的得分(单位:分,满分10分)进行了数据的收集、整理和分析,信息如下:信息一:甲、丙两位选手的得分折线图:信息二:选手乙五轮比赛部分成绩:其中三个得分分别是9.0,8.9,8.3;信息三:甲、乙、丙三位选手五轮比赛得分的平均数、中位数数据如下:根据以上信息,回答下列问题:(1)写出表中m,n 的值:m =_______,n =_______;(2)从甲、丙两位选手的得分折线图中可知,选手_______发挥的稳定性更好(填“甲”或“丙”); (3)该校现准备推荐一位选手参加市级比赛,你认为应该推荐哪位选手,请说明理由.24. 如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0ky x x=>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0ky x x=>的图象于C,D 两点.(1)求一次函数y ax b =+和反比例函数ky x=的表达式; (2)连接AD ,求ACD 的面积.25. 如图,AB 是O 的直径,BC BD =,点E 在AD 的延长线上,且ADC AEB ∠=∠.(1)求证:BE 是O 的切线;(2)当O 的半径为2,3BC =时,求tan AEB ∠的值.26. 【模型建立】(1)如图1,已知ABE 和BCD △,AB BC ⊥,AB BC =,CD BD ⊥,AE BD ⊥.用等式写出线段AE ,DE ,CD 的数量关系,并说明理由.【模型应用】(2)如图2,在正方形ABCD 中,点E,F 分别在对角线BD 和边CD 上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由. 【模型迁移】(3)如图3,在正方形ABCD 中,点E 在对角线BD 上,点F 在边CD 的延长线上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.27. 如图1,抛物线()2y a x h k =-+交x 轴于O,()4,0A 两点,顶点为(2,B .点C 为OB 的中点.(1)求抛物线2()y a x h k =-+的表达式;(2)过点C 作CH OA ⊥,垂足为H,交抛物线于点E .求线段CE 的长. (3)点D 为线段OA 上一动点(O 点除外),在OC 右侧作平行四边形OCFD . ①如图2,当点F 落在抛物线上时,求点F 的坐标; ①如图3,连接BD ,BF ,求BD BF +的最小值.2024年甘肃省武威市中考数学真题试卷答案一、选择题.二、填空题.11.【答案】()()222x x +- 12.【答案】2-(答案不唯一) 13.【答案】8 14.【答案】A 或C 15.【答案】能 16.【答案】3000π 三、解答题. 17.【答案】018.【答案】173x <<19.【答案】2a b +,320.【答案】(1)略 (2)21.【答案】(1)23(2)这个游戏规则对甲乙双方不公平,理由见解析 22.【答案】105.6m 四、解答题.23.【答案】(1)9.1;9.1(2)甲 (3)应该推荐甲选手,理由见解析 24.【答案】(1)一次函数y ax b =+的解析式为132y x =+;反比例函数()0ky x x =>的解析式为()80y x x=>; (2)625.【答案】(1)略 (2)tan AEB ∠=26.【答案】(1)DE CD AE+=(2)AD DF=+(3)AD DF=-27.【答案】(1)2y x=+(2(3)①(2F①。

甘肃省武威市(凉州区)2020年中考数学试题(word版,含答案)

甘肃省武威市(凉州区)2020年中考数学试题(word版,含答案)

武威市(凉州区)2018年初中毕业、高中招生考试数学试卷一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.-2018的相反数是( )A .-2018B .2018C .12018-D .120182.下列计算结果等于3x 的是( )A .62x x ÷B .4x x -C .2x x +D .2x x ⋅ 3.若一个角为65,则它的补角的度数为( )A .25B .35C .115D .1254.已知(0,0)23a ba b =≠≠,下列变形错误的是( ) A .23a b = B .23a b = C .32b a = D .32a b =5.若分式24x x-的值为0,则x 的值是( )A .2或-2B .2C .-2D .06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数x 与方差2s 下表:若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择( ) A .甲 B .乙 C .丙 D .丁7.关于x 的一元二次方程240x x k ++=有两个实数根,则k 的取值范围是( ) A .4k ≤- B .4k <- C .4k ≤ D .4k <8.如图,点E 是正方形ABCD 的边DC 上一点,把ADE ∆绕点A 顺时针旋转90到ABF ∆的位置,若四边形AECF 的面积为25,2DE =,则AE 的长为( )A .5B .23C .7D .29 9.如图,A 过点(0,0)O ,(3,0)C ,(0,1)D ,点B 是x 轴下方A 上的一点,连接BO ,BD ,则OBD ∠的度数是( )A .15B .30C .45D .6010.如图是二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是1x =.对于下列说法:①0ab <;②20a b +=;③30a c +>;④()a b m am b +≥+(m 为实数);⑤当13x -<<时,0y >,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤ 二、填空题:本大题共8小题,每小题3分,共24分.11.计算:2018112sin 30(1)()2-+--= .12.使得代数式13x -有意义的x 的取值范围是 . 13.若正多边形的内角和是1080,则该正多边形的边数是 . 14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .15.已知a ,b ,c 是ABC ∆的三边长,a ,b 满足27(1)0a b -+-=,c 为奇数,则c = .16.如图,一次函数2y x =--与2y x m =+的图象相交于点(,4)P n -,则关于x 的不等式组2220x m x x +<--⎧⎨--<⎩的解集为 .17.如图,分别以等边三角形的每个顶点以圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为 .18.如图是一个运算程序的示意图,若开始输入x 的值为625,则第2018次输出的结果为 .[来源:学§科§网Z §X §X §K]三、解答题(一):本大题共5小题,共26分.解答应写出文字说明、证明过程或演算步骤. 19.计算:22(1)b aa b a b÷---. 20.如图,在ABC ∆中,90ABC ∠=.(1)作ACB ∠的平分线交AB 边于点O ,再以点O 为圆心,OB 的长为半径作O ;(要求:不写作法,保留作图痕迹)(2)判断(1)中AC 与O 的位置关系,直接写出结果.21.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A ,B 两地被大山阻隔,由A 地到B 地需要绕行C 地,若打通穿山隧道,建成A ,B 两地的直达高铁,可以缩短从A 地到B 地的路程.已知:30CAB ∠=,45CBA ∠=,640AC =公里,求隧道打通后与打通前相比,从A 地到B 地的路程将约缩短多少公里?(参考数据:3 1.7≈,2 1.4≈)[来源:学科网]23.如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A ,B ,C ,D ,E ,F )中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率. 四、解答题(二):本大题共5小题,共50分.解答应写出文字说明、证明过程或演算步骤.24.“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A ,B ,C ,D 四个等级进行统计,制成了如下不完整的统计图.(说明:A 级:8分—10分,B 级:7分—7.9分,C 级:6分—6.9分,D 级:1分—5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是_______度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在_______等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?25.如图,一次函数4y x=+的图象与反比例函数kyx=(k为常数且0k≠)的图象交于(1,)A a-,B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且32ACP BOCS S∆∆=,求点P的坐标.26.已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:BGF FHC∆≅∆;(2)设AD a=,当四边形EGFH是正方形时,求矩形ABCD的面积.27.如图,点O是ABC∆的边AB上一点,O与边AC相切于点E,与边BC,AB 分别相交于点D,F,且DE EF=.(1)求证:90C ∠=; (2)当3BC =,3sin 5A =时,求AF 的长. 28.如图,已知二次函数22y ax x c =++的图象经过点(0,3)C ,与x 轴分别交于点A ,点(3,0)B .点P 是直线BC 上方的抛物线上一动点.(1)求二次函数22y ax x c =++的表达式;(2)连接PO ,PC ,并把POC ∆沿y 轴翻折,得到四边形'POP C .若四边形'POP C 为菱形,请求出此时点P 的坐标;(3)当点P 运动到什么位置时,四边形ACPB 的面积最大?求出此时P 点的坐标和四边形ACPB 的最大面积.武威市2018年初中毕业、高中招生考试 数学试题参考答案 一、选择题1-5: BDCBA 6-10: ACDBA[来源:] 二、填空题11. 0 12. 3x > 13. 8 14. 108 15. 7 16. 22x -<< 17. a π 18. 1 三、解答题 19.解:原式=()()b a a ba b a b a b-+÷+-- =()()b a b a b +-﹒a b b-1a b=+. 20.解:(1)如图,作出角平分线CO; 作出⊙O.(2)AC 与⊙O 相切.21.解:设合伙买鸡者有x 人,鸡价为y 文钱. 根据题意可得方程组911616y x y x =-⎧⎨=+⎩, 解得 970x y =⎧⎨=⎩.答:合伙买鸡者有9人,鸡价为70文钱. 22.解:如图,过点C 作CD ⊥AB, 垂足为D . 在Rt △ADC 和Rt △BCD 中,∵ ∠CAB=30°,∠CBA=45°,AC=640.∴ CD=320,AD=3203, ∴ BD =CD=320,BC=3202, ∴ AC+BC=64032021088+≈, ∴ AB=AD+BD=3203320864+≈, ∴ 1088-864=224(公里).答:隧道打通后与打通前相比,从A 地到B 地的路程将约缩短224公里.23.解:(1)米粒落在阴影部分的概率为3193=; (2)列表: 共有30种等可能的情况,其中图案是轴对称图形的有10种, 故图案是轴对称图形的概率为101303=; (注:画树状图或列表法正确均可得分)第二次第一次 ABCDEFA(A ,B)(A ,C) (A ,D) (A ,E) (A ,F) B (B , A ) (B ,C) (B ,D) (B ,E) (B ,F) C (C , A) (C ,B) (C ,D) (C ,E) (C ,F) D (D , A ) (D ,B) (D ,C) (D ,E) (D ,F) E (E , A) (E ,B)(E ,C)(E ,D)(E ,F) F(F , A) (F , B) (F , C) (F , D) (F ,E)BAC四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理,答案正确均可得分) 24.(1)117; (2)如图(3)B ; (4)430030().40⨯=人 25.解:(1)把点A (-1,a )代入4y x =+,得3a =, ∴ A (-1,3)把A (-1,3)代入反比例函数k y x=,得3k =-,∴ 反比例函数的表达式为3y x=-.(2)联立两个函数表达式得 43y x y x =+⎧⎪⎨=-⎪⎩,解得 13x y =-⎧⎨=⎩,31x y =-⎧⎨=⎩. ∴ 点B 的坐标为B (-3,1). 当40y x =+=时,得4x =-. ∴ 点C (-4,0). 设点P 的坐标为(x ,0). ∵ 32ACPBOCSS =,∴ 1313(4)41222x ⨯⨯--=⨯⨯⨯ . 即 42x +=,解得 16x =-,22x =-. ∴ 点P (-6,0)或(-2,0).26.解:(1)∵点F,H 分别是BC,CE 的中点, ∴FH ∥BE ,12FH BE =. ∴CFH CBG ∠=∠. 又∵点G 是BE 的中点, ∴FH BG =. 又∵BF CF =, ∴△BGF ≌ △FHC .(2)当四边形EGFH 是正方形时,可知EF ⊥GH 且EF=GH , ∵在△BEC 中,点G ,H 分别是BE,EC 的中点, ∴111222GH BC AD a === 且GH ∥BC, ∴EF ⊥BC.又∵AD ∥BC, AB ⊥BC, ∴12AB EF GH a ===,∴21122ABCD S AB AD a a a ===矩形⋅⋅.27.(1)证明:连接OE,BE . ∵ DE=EF ,∴ DE ︵=EF ︵,∴ ∠OBE=∠DBE. ∵ OE=OB,∴∠OEB=∠OBE, ∴∠OEB =∠DBE,∴OE ∥BC.∵⊙O 与边AC 相切于点E ,∴ OE ⊥AC . ∴BC ⊥AC,∴∠C=90°.(2)解:在△ABC 中,∠C=90°,BC=3,3sin 5A =, ∴AB=5.设⊙O 的半径为r ,则AO=5-r , 在Rt △AOE 中,3sin 55OE r A OA r ===-, ∴ 158r =. ∴1555284AF =-⨯=.28.解:(1)将点B 和点C 的坐标代入22=++y ax x c , 得 3960=⎧⎨++=⎩c a c ,解得1=-a ,3=c .∴ 该二次函数的表达式为223=-++y x x .(2)若四边形POP ′C 是菱形,则点P 在线段CO 的垂直平分线上; 如图,连接PP ′,则PE ⊥CO ,垂足为E , ∵ C (0,3), ∴ E (0,32),∴ 点P 的纵坐标等于32. ∴ 23232x x -++=, 解得12102x +=,2210x -=(不合题意,舍去),∴ 点P 210+32).(3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F , 设P (m ,223-++m m ),设直线BC 的表达式为3=+y kx , 则 330k +=, 解得 1=-k . ∴直线BC 的表达式为 3=-+y x . ∴Q 点的坐标为(m ,3-+m ), ∴23QP m m =-+. 当2230x x -++=, 解得1213x ,x =-=, ∴ AO=1,AB=4,∴ S 四边形ABPC =S △ABC+S △CPQ+S △BPQ=111222AB OC QP OF QP FB ⋅++⋅⋅=21143(3)322m m ⨯⨯+-+⨯ =23375()228m --+. 当32m =时,四边形ABPC 的面积最大.此时P 点的坐标为315(,)24,四边形ABPC 的面积的最大值为758.武威市2018年初中毕业、高中招生考试 数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.题号 12345678910 答案 BDCBAACDBA[来源:学科网]二、填空题:本大题共8小题,每小题3分,共24分.11. 0 12.3x > 13.8 14.108 15. 7 16.22x -<< 17.a π 18.1 三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理,答案正确均可得分) 19.(4分) 解:原式=()()b a a ba b a b a b-+÷+--2分 = ()()b a b a b +-﹒a bb-3分1a b=+. 4分20.(4分)解:(1)如图,作出角平分线CO ; 1分作出⊙O . 3分 AOBC(2)AC 与⊙O 相切. 4分21. (6分)解:设合伙买鸡者有x 人,鸡价为y 文钱. 1分根据题意可得方程组911616y x y x =-⎧⎨=+⎩, 3分解得970x y =⎧⎨=⎩. 5分 答:合伙买鸡者有9人,鸡价为70文钱. 6分 22. (6分)解:如图,过点C 作CD ⊥AB , 垂足为D . 1分在Rt △ADC 和Rt △BCD 中,∵ ∠CAB =30°,∠CBA =45°,AC =640.∴ CD =320,AD =3203,∴ BD =CD =320,BC =3202, 2分∴ AC +BC =64032021088+≈, 3分∴ AB =AD +BD =3203320864+≈, 4分∴ 1088-864=224(公里). 5分BAC答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里. 6分23.(6分)解:(1)米粒落在阴影部分的概率为31 93 =;2分(2)列表:4分共有30种等可能的情况,其中图案是轴对称图形的有10种,故图案是轴对称图形的概率为101 303=;6分(注:画树状图或列表法正确均可得分)四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理,答案正确均可得分)24.(7分)(1)117;2分(2)如图4分(3)B ; 5分(4)430030().40⨯=人 7分 25.(7分)解:(1)把点A (-1,a )代入4y x =+,得3a =,∴ A (-1,3)把A (-1,3)代入反比例函数k y x=,得3k =-,∴ 反比例函数的表达式为3y x=-. 3分(2)联立两个函数表达式得 43y x y x =+⎧⎪⎨=-⎪⎩, 解得 13x y =-⎧⎨=⎩,31x y =-⎧⎨=⎩. ∴ 点B 的坐标为B (-3,1). 当40y x =+=时,得4x =-.∴ 点C (-4,0). 4分设点P 的坐标为(x ,0).5184频数/人18 16 14 12 10 8 6 4 2 0等级13∵ 32ACPBOCSS =,∴ 1313(4)41222x ⨯⨯--=⨯⨯⨯ . 即 42x +=,解得 16x =-,22x =-.6分∴ 点P (-6,0)或(-2,0). 7分 26.(8分)解:(1)∵ 点F ,H 分别是BC ,CE 的中点,∴ FH ∥BE ,12FH BE =. 1分∴CFH CBG ∠=∠. 2分又 ∵ 点G 是BE 的中点,∴ FH BG =. 3分 又 ∵BF CF =,∴ △BGF ≌ △FHC . 4分(2)当四边形EGFH 是正方形时,可知EF ⊥GH 5分∵ 在△BEC 中,点G ,H 分别是BE,EC 的中点, ∴ 111222GH BC AD a === 且GH ∥BC ,∴ EF ⊥BC. 6分又∵AD ∥BC, AB ⊥BC , ∴ 12AB EF GH a ===, ∴21122ABCD S AB AD a a a ===矩形⋅⋅. 8分ECD27.(8分)(1)证明:连接OE ,BE .∵ DE =EF , ∴ DE ︵=EF ︵, ∴ ∠OBE =∠DBE . ∵ OE =OB , ∴∠OEB=∠OBE ,∴ ∠OEB =∠DBE , ∴ OE ∥BC . 3分 ∵ ⊙O 与边AC 相切于点E , ∴ OE ⊥AC . ∴ BC ⊥AC , ∴ ∠C =90°. 4分 (2)解:在△ABC 中,∠C =90°,BC =3 ,3sin 5A =,∴AB =5. 5分设⊙O 的半径为r ,则AO =5-r , 在Rt △AOE 中,3sin 55OE r A OA r ===-, ∴158r =. 7分 ∴1555284AF =-⨯=. 8分 28.(10分)解:(1)将点B 和点C 的坐标代入22=++y ax x c ,得 3960=⎧⎨++=⎩c a c , 解得 1=-a ,3=c .∴ 该二次函数的表达式为223=-++y x x . 3分(2)若四边形POP ′C 是菱形,则点P 在线段CO 的垂直平分线上; 4分如图,连接PP ′,则PE ⊥CO ,垂足为E , ∵ C (0,3), ∴ E (0,32),yxC OABP′PE A BDEOF∴ 点P 的纵坐标等于32. ∴ 23232x x -++=, 解得12102x +=,22102x -=(不合题意,舍去), 6分∴ 点P 的坐标为(2102+,32). 7分(3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F , 设P (m ,223-++m m ),设直线BC 的表达式为3=+y kx , 则 330k +=, 解得 1=-k . ∴ 直线BC 的表达式为 3=-+y x . ∴ Q 点的坐标为(m ,3-+m ), ∴ 23QP m m =-+.当 2230x x -++=, 解得 1213x ,x =-=, ∴ AO =1,AB =4,∴ S 四边形ABPC =S △ABC +S △CPQ +S △BPQ=111222AB OC QP OF QP FB ⋅++⋅⋅=21143(3)322m m ⨯⨯+-+⨯=23375()228m --+. 9分 当 32m =时,四边形ABPC 的面积最大.此时P 点的坐标为315(,)24,四边形ABPC 的面积的最大值为758. 10分yxCOABPQF【素材积累】1、2019年,文野31岁那年,买房后第二年,完成了人生中最重要的一次转变。

九年级上册数学2020年中考真题精品解析 数学(甘肃武威卷)精编word版(原卷版)

九年级上册数学2020年中考真题精品解析 数学(甘肃武威卷)精编word版(原卷版)

2020年中考真题精品解析 数学(甘肃武威卷)精编word 版一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列图形中,是中心对称图形的是( )A .B .C .D .2.(3分)在1,﹣2,0,35这四个数中,最大的数是( ) A .﹣2 B .0 C .35D .1 3.(3分)在数轴上表示不等式x ﹣1<0的解集,正确的是( ) A .B .C .D .4.(3分)下列根式中是最简二次根式的是( ) A .32B .2C .9D .12 5.(3分)已知点P (0,m )在y 轴的负半轴上,则点M (﹣m ,﹣m+1)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.(3分)如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .54°C .66°D .56°7.(3分)如果两个相似三角形的面积比是1:4,那么它们的周长比是( ) A .1:16B .1:4C .1:6D .1:28.(3分)某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( ) A .x x 60050800=+ B .x x 60050800=- C .50600800+=x x D .50600800-=x x9.(3分)若x 2+4x ﹣4=0,则3(x ﹣2)2﹣6(x+1)(x ﹣1)的值为( )A .﹣6B .6C .18D .3010.(3分)如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .二、填空题(共8小题,每小题4分,满分32分)11.(4分)因式分解:2a 2﹣8= .12.(4分)计算:(﹣5a 4)•(﹣8ab 2)= .13.(4分)如图,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是 .14.(4分)如果单项式2x m+2n y n﹣2m+2与x 5y 7是同类项,那么n m 的值是 .15.(4分)三角形的两边长分别是3和4,第三边长是方程x 2﹣13x+40=0的根,则该三角形的周长为 .16.(4分)如图,在⊙O 中,弦AC=23,点B 是圆上一点,且∠ABC=45°,则⊙O 的半径R= .17.(4分)将一张矩形纸片折叠成如图所示的图形,若AB=6cm ,则AC= cm .18.(4分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n ,则x n +x n+1= .三、解答题(共5小题,满分38分)19.(6分)计算:()23160sin 23121--+︒++--⎪⎪⎭⎫ ⎝⎛-.20.(6分)如图,在平面直角坐标系中,△ABC 的顶点A (0,1),B (3,2),C (1,4)均在正方形网格的格点上.(1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)将△A 1B 1C 1沿x 轴方向向左平移3个单位后得到△A 2B 2C 2,写出顶点A 2,B 2,C 2的坐标.21.(8分)已知关于x 的方程x 2+mx+m ﹣2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.22.(8分)图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON 位置运动到与地面垂直的OM 位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364) (1)求AB 的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N 点运动到M 点的路径的长度.(结果保留π)23.(10分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣2x的图象上的概率.四、解答题(共5小题,满分50分)24.(8分)2020年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m=,n=;(3)扇形统计图中,热词B所在扇形的圆心角是多少度?25.(10分)如图,函数y1=﹣x+4的图象与函数y2=kx(x>0)的图象交于A(m,1),B(1,n)两点.(1)求k,m,n的值;(2)利用图象写出当x≥1时,y1和y2的大小关系.26.(10分)如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:OA2=OE•OF.27.(10分)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O 经过A,B,D三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.28.(12分)如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F 从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.。

[合集3份试卷]2020甘肃省武威市中考数学统考试题

[合集3份试卷]2020甘肃省武威市中考数学统考试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,将木条a ,b 与c 钉在一起,∠1=70°,∠2=50°,要使木条a 与b 平行,木条a 旋转的度数至少是( )A .10°B .20°C .50°D .70°2.在下列二次函数中,其图象的对称轴为2x =-的是 A .()22y x =+B .222y x =-C .222y x =--D .()222y x =-3.如图,AB 是半圆圆O 的直径,ABC ∆的两边,AC BC 分别交半圆于,D E ,则E 为BC 的中点,已知50BAC ∠=,则C ∠=( )A .55B .60C .65D .704.已知⊙O 的半径为5,若OP=6,则点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内B .点P 在⊙O 外C .点P 在⊙O 上D .无法判断5.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元B .赔了10元C .赚了50元D .不赔不赚6.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE =AF ,AC 与EF 相交于点G ,下列结论:①AC 垂直平分EF ;②BE+DF =EF ;③当∠DAF =15°时,△AEF 为等边三角形;④当∠EAF =60°时,S △ABE =12S △CEF ,其中正确的是( )A .①③B .②④C .①③④D .②③④7.下列各运算中,计算正确的是( )A.a12÷a3=a4B.(3a2)3=9a6 C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a28.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥39.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )A.1000(1+x)2=1000+500B.1000(1+x)2=500C.500(1+x)2=1000D.1000(1+2x)=1000+50010.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是()A.B.C.D.二、填空题(本题包括8个小题)11.如图,在每个小正方形边长为1的网格中,ABC△的顶点A,B,C均在格点上,D为AC边上的一点.线段AC的值为______________;在如图所示的网格中,AM是ABC△的角平分线,在AM上求一点P,使CP DP+的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置是如何找到的(不要求证明)___________.12.将一个含45°角的三角板ABC,如图摆放在平面直角坐标系中,将其绕点C顺时针旋转75°,点B的对应点'B恰好落在轴上,若点C的坐标为(1,0),则点'B的坐标为____________.13.使得分式值242x x -+为零的x 的值是_________;14.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .15.在ABC 中,A ∠:B ∠:C ∠=1:2:3,CD AB ⊥于点D ,若AB 10=,则BD =______ 16.如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点D .若∠A=32°,则∠D=_____度.17.如图,四边形ABCD 中,E ,F ,G ,H 分别是边AB 、BC 、CD 、DA 的中点.若四边形EFGH 为菱形,则对角线AC 、BD 应满足条件_____.18.如图,在△ABC 中,AB=AC ,BE 、AD 分别是边AC 、BC 上的高,CD=2,AC=6,那么CE=________.三、解答题(本题包括8个小题)19.(6分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC (顶点是网格线交点的三角形)的顶点A 、C 的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC 关于x 轴对称的△A 1B 1C 1;请在y 轴上求作一点P ,使△PB 1C 的周长最小,并直接写出点P 的坐标.20.(6分)如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号).21.(6分)计算:|3-2|+2﹣1﹣cos61°﹣(1﹣2)1.22.(8分)如图,点B 在线段AD 上,BC DE ,AB ED =,BC DB =.求证:A E ∠=∠.23.(8分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人? 24.(10分)某种型号油电混合动力汽车,从A 地到B 地燃油行驶需纯燃油费用76元,从A 地到B 地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A 地到B 地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?25.(10分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下: 命中环数678910甲命中相应环数的次数0 1 3 1 0乙命中相应环数的次数 2 0 0 2 1 (1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)26.(12分)如图,已知▱ABCD.作∠B的平分线交AD于E点。

【最新人教版初中数学精选】2020年甘肃省武威市中考数学试卷.doc

【最新人教版初中数学精选】2020年甘肃省武威市中考数学试卷.doc

2020年甘肃省武威市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.(3分)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×1063.(3分)4的平方根是()A.16 B.2 C.±2 D.4.(3分)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.5.(3分)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=06.(3分)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135° D.145°7.(3分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<08.(3分)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.09.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=57010.(3分)如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)分解因式:x2﹣2x+1=.12.(3分)估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)13.(3分)如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2020的值为.14.(3分)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=°.15.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是.16.(3分)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.17.(3分)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC 的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)18.(3分)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2020个图形的周长为.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.20.(4分)解不等式组,并写出该不等式组的最大整数解.21.(6分)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).22.(6分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)23.(6分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表根据所给信息,解答下列问题:(1)m=,n=;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.(7分)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.26.(8分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.27.(8分)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.28.(10分)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.2020年甘肃省武威市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)(2020•白银)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念进行判断即可.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)(2020•白银)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104B.3.93×105C.3.93×106D.0.393×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于393000有6位,所以可以确定n=6﹣1=5.【解答】解:393000=3.93×105.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2020•白银)4的平方根是()A.16 B.2 C.±2 D.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.(3分)(2020•白银)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:空心圆柱由上向下看,看到的是一个圆环,并且大小圆都是实心的.故选D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.5.(3分)(2020•白银)下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=0【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x2,故A不正确;(B)原式=x6,故B不正确;(C)原式=x5,故C不正确;(D)原式=x2﹣x2=0,故D正确;故选(D)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.(3分)(2020•白银)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135° D.145°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+45°=135°,∵直尺的两边互相平行,∴∠2=∠3=135°.故选C.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.(3分)(2020•白银)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、三象限,∴k>0,又该直线与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时图象在一、二、三象限.8.(3分)(2020•白银)已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c ﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.0【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=a+b﹣c+c﹣a﹣b=0.故选D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.9.(3分)(2020•白银)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程.10.(3分)(2020•白银)如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.B.C.D.【分析】根据运动速度乘以时间,可得PQ的长,根据线段的和差,可得CP的长,根据勾股定理,可得答案.【解答】解:点P运动2.5秒时P点运动了5cm,CP=8﹣5=3cm,由勾股定理,得PQ==3cm,故选:B.【点评】本题考查了动点函数图象,利用勾股定理是解题关键.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2020•白银)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.12.(3分)(2020•白银)估计与0.5的大小关系是:>0.5.(填“>”、“=”、“<”)【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【解答】解:∵﹣0.5=﹣=,∵﹣2>0,∴>0.答:>0.5.【点评】此题主要考查了两个实数的大小,其中比较两个实数的大小,可以采用作差法、取近似值法等.13.(3分)(2020•白银)如果m是最大的负整数,n是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式m2015+2016n+c2020的值为0.【分析】根据题意求出m、n、c的值,然后代入原式即可求出答案.【解答】解:由题意可知:m=﹣1,n=0,c=1∴原式=(﹣1)2015+2016×0+12020=0,故答案为:0【点评】本题考查代数式求值,解题的关键根据题意求出m、n、c的值,本题属于基础题型.14.(3分)(2020•白银)如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=58°.【分析】由题意可知△OAB是等腰三角形,利用等腰三角形的性质求出∠AOB,再利用圆周角定理确定∠C.【解答】解:如图,连接OB,∵OA=OB,∴△AOB是等腰三角形,∴∠OAB=∠OBA,∵∠OAB=32°,∴∠OAB=∠OAB=32°,∴∠AOB=116°,∴∠C=58°.故答案为58.【点评】本题是利用圆周角定理解题的典型题目,题目难度不大,正确添加辅助线是解题关键,在解决和圆有关的题目时往往要添加圆的半径.15.(3分)(2020•白银)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是k≤5且k≠1.【分析】根据一元二次方程有实数根可得k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解之即可.【解答】解:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1,故答案为:k≤5且k≠1.【点评】本题主要考查一元二次方程根的判别式和定义,熟练掌握根的判别式与方程的根之间的关系是解题的关键.16.(3分)(2020•白银)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于cm.【分析】根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即折痕的长.【解答】解:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴=,∴=,∴GH=cm.故答案为:.【点评】本题考查了折叠的性质和相似三角形的性质和判定,折叠是一种对称变换,它属于轴对称,本题的关键是明确折痕是所折线段的垂直平分线,利用三角形相似来解决.17.(3分)(2020•白银)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)【分析】先根据ACB=90°,AC=1,AB=2,得到∠ABC=30°,进而得出∠A=60°,再根据AC=1,即可得到弧CD的长.【解答】解:∵∠ACB=90°,AC=1,AB=2,∴∠ABC=30°,∴∠A=60°,又∵AC=1,∴弧CD的长为=,故答案为:.【点评】本题主要考查了弧长公式的运用,解题时注意弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为R).18.(3分)(2020•白银)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为8,第2020个图形的周长为6053.【分析】根据已知图形得出每增加一个小梯形其周长就增加3,据此可得答案.【解答】解:∵第1个图形的周长为2+3=5,第2个图形的周长为2+3×2=8,第3个图形的周长为2+3×3=11,…∴第2020个图形的周长为2+3×2020=6053,故答案为:8,6053.【点评】本题主要考查图形的变化类,根据已知图形得出每增加一个小梯形其周长就增加3是解题的关键.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.19.(4分)(2020•白银)计算:﹣3tan30°+(π﹣4)0﹣()﹣1.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.【解答】解:﹣3tan30°+(π﹣4)0==.【点评】解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.20.(4分)(2020•白银)解不等式组,并写出该不等式组的最大整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解≤1得:x≤3,解1﹣x<2得:x>﹣1,则不等式组的解集是:﹣1<x≤3.∴该不等式组的最大整数解为x=3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)(2020•白银)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【点评】本题考查复杂作图、三角形的中位线的定义、线段的垂直平分线的性质等知识,解题的关键是掌握基本作图,属于中考常考题型.22.(6分)(2020•白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【分析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【解答】解:过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(6分)(2020•白银)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.【分析】(1)根据题意列出表格,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案.【解答】解:(1)根据题意列表如下:可见,两数和共有12种等可能结果;(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为=;刘凯获胜的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)(2020•白银)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表根据所给信息,解答下列问题:(1)m=70,n=0.2;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在80≤x<90分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.【解答】解:(1)本次调查的总人数为10÷0.05=200,则m=200×0.35=70,n=40÷200=0.2,故答案为:70,0.2;(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x<90,∴这200名学生成绩的中位数会落在80≤x<90分数段,故答案为:80≤x<90;(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人).【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.25.(7分)(2020•白银)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.【分析】(1)根据P(,8),可得反比例函数解析式,根据P(,8),Q(4,1)两点可得一次函数解析式;(2)根据中心对称的性质,可得点P关于原点的对称点P'的坐标;(3)过点P′作P′D⊥x轴,垂足为D,构造直角三角形,依据P'D以及AP'的长,即可得到∠P'AO的正弦值.【解答】解:(1)∵点P在反比例函数的图象上,∴把点P(,8)代入可得:k2=4,∴反比例函数的表达式为,∴Q (4,1).把P(,8),Q (4,1)分别代入y=k1x+b中,得,解得,∴一次函数的表达式为y=﹣2x+9;(2)点P关于原点的对称点P'的坐标为(,﹣8);(3)过点P′作P′D⊥x轴,垂足为D.∵P′(,﹣8),∴OD=,P′D=8,∵点A在y=﹣2x+9的图象上,∴点A(,0),即OA=,∴DA=5,∴P′A=,∴sin∠P′AD=,∴sin∠P′AO=.【点评】本题主要考查了反比例函数与一次函数的交点问题,中心对称以及解直角三角形,解决问题的关键是掌握待定系数法求函数解析式.26.(8分)(2020•白银)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.【点评】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.27.(8分)(2020•白银)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.【分析】(1)在Rt△ABN中,求出AN、AB即可解决问题;(2)连接MC,NC.只要证明∠MCD=90°即可;【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】本题考查圆的切线的判定、坐标与图形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10分)(2020•白银)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;(2)可设N(n,0),则可用n表示出△ABN的面积,由NM∥AC,可求得,则可用n表示出△AMN的面积,再利用二次函数的性质可求得其面积最大时n 的值,即可求得N点的坐标;(3)由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在Rt△AOB和Rt△AOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC的数量关系.【解答】解:(1)将点B,点C的坐标分别代入y=ax2+bx+4可得,解得,∴二次函数的表达式为y=﹣x2+x+4;(2)设点N的坐标为(n,0)(﹣2<n<8),则BN=n+2,CN=8﹣n.∵B(﹣2,0),C(8,0),∴BC=10,在y=﹣x2+x+4中令x=0,可解得y=4,∴点A(0,4),OA=4,=BN•OA=(n+2)×4=2(n+2),∴S△ABN∵MN∥AC,∴,∴==,∴,∵﹣<0,∴当n=3时,即N(3,0)时,△AMN的面积最大;(3)当N(3,0)时,N为BC边中点,∵MN∥AC,∴M为AB边中点,∴OM=AB,∵AB===2,AC===4,∴AB=AC,∴OM=AC.【点评】本题为二次函数的综合应用,涉及待定系数法、平行线分线段成比例、三角形的面积、二次函数的性质、直角三角形的性质、勾股定理等知识.在(1)中注意待定系数法的应用,在(2)中找到△AMN和△ABN的面积之间的关系是解题的关键,在(3)中确定出AB为OM和AC的中间“桥梁”是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

甘肃省武威市2020年中考数学试卷

甘肃省武威市2020年中考数学试卷

武威市2020年初中毕业、高中招生考试数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数是无理数的是( )A .-2B .16C D 2.若70α︒=,则α的补角的度数是( )A .130B .110C .30D .20 3.若一个正方形的面积是12,则它的边长是( )A .B .3C .D .4 4.下列几何体中,其俯视图与主视图完全相同的是( )A .B .C .D .5.下列各式中计算结果为6x 的是( )A .24x x + B .82x x - C .24x x ⋅ D .122x x ÷6.生活中到处可见黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感,若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米7.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( )A .-1或2B .-1C .2D .08. 如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE 间的距离,若AE 间的距离调节到60cm ,菱形的边长20AB cm =,则DAB ∠的度数是( )A .90B .100C .120D .1509. 如图,A 是圆O 上一点,BC 是直径,2AC =,4AB =,点D 在圆O 上且平分弧BC ,则DC 的长为( )A .BC .D 10.如图①,正方形ABCD 中,AC ,BD 相交于点O ,E 是OD 的中点,动点P 从点E 出发,沿着E O B A →→→的路径以每秒1个单位长度的速度运动到点A ,在此过程中线段AP 的长度y 随着运动时间x 的函数关系如图②所示,则AB 的长为( )A .B .4C .D .二、填空题(本大题共8个小题,每小题3分,共24分)11如果盈利100元记作+100元,那么亏损50元记作 元. 12.分解因式:2a a += .13.暑假期间,亮视眼镜店开展学生配镜优惠活动,某款式眼镜的广告如图,请你为广告牌填上原价.14.要使分式21x x +-有意义,x 需满足的条件是 . 15.在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有 个.16.如图,在平面直角坐标系中,OAB ∆的顶点A ,B 的坐标分别为,(4,0),把OAB ∆沿x 轴向右平移得到CDE ∆,如果点D 的坐标为,则点E 的坐标为 .17.若一个扇形的圆心角为60,面积为2cm 6π,则这个扇形的弧长为 cm (结果保留π)18.已知5y x =+,当分别取1,2,3,……,2020时,所对应y 值的总和是 .三、解答题(一):本大题共5个小题,共26分.19. 计算:0(2tan 60(π︒+-- 20. 解不等式组:3512(21)34x x x x -<+⎧⎨--⎩,并把它的解集在数轴上表示出来.21. 如图,在ABC ∆中,D 是BC 边上一点,且BD BA =.(1)尺规作图(保留作图痕迹,不写作法) ①作ABC ∠的角平分线交AD 于点E ; ②作线段DC 的垂直平分线交DC 于点F .(2)连接EF ,直接写出线段EF 和AC 的数量关系及位置关系.22. 图①是甘肃省博物馆的镇馆之宝——铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志,在很多旅游城市的广场上都有“马踏飞燕”雕塑,某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:3142请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin 310.52≈,cos310.86≈,tan 310.60≈,sin 420.67≈,cos 420.74≈,tan 420.90≈)23. 2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一,截至2020年1月,甘肃省已有五家国家5A级旅游景区,分别为A:嘉峪关文物景区;B:平凉崆峒山风景名胜区;C:天水麦积山景区;D:敦煌鸣沙月牙泉景区:E:张掖七彩舟霞景区,张帆同学与父母计划在暑假期间从中选择部分景区游玩. (1)张帆一家选择E:张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E:张掖七彩丹霞景区,他们再从A,B,C,D四个景区中任选两个景区去旅游,求选A,D两个景区的概率(要求画树状图或列表求概率).四、解答题(二):本大题共5个小题,共40分.24.习近平总书记于2019年8月在兰州考察时说“黄河之滨也很美”,兰州是古丝绸之路商贸重镇,也是黄河唯一穿城而过的省会城市,被称为“黄河之都”,近年来,在市政府的积极治理下,兰州的空气质量得到极大改善,“兰州蓝”成为兰州市民引以为豪的城市名片,下图是根据兰州市环境保护局公布的2013-2019年各年的全年空气质量优良天数绘制的折线统计图.请结合统计图解答下列问题:(1)2019年比2013年的全年空气质量优良天数增加了 天; (2)这七年的全年空气质量优良天数的中位数是 天; (3)求这七年的全年空气质量优良天数的平均天数;(4)《兰州市“十三五”质量发展规划》中指出:2020年,确保兰州市全年空气质量优良天数比率达80%以上,试计算2020年(共366天)兰州市空气质量优良天数至少需要多少天才能达标.25.通过课本上对函数的学习,我们积累了一定的经验,下表是一个函数的自变量x 与函数值y 的部分对应值,请你借鉴以往学习函数的经验,探究下列问题:(1)当x = 时, 1.5y =;(2)根据表中数值描点(,)x y ,并画出函数图象;(3)观察画出的图象,写出这个函数的一条性质: .26.如图,圆O 是ABC ∆的外接圆,其切线AE 与直径BD 的延长线相交于点E ,且AE AB =. (1)求ACB ∠的度数; (2)若2DE =,求圆O 的半径.27.如图,点M ,N 分别在正方形ABCD 的边BC ,CD 上,且45MAN ∠=,把ADN ∆绕点A 顺时针旋转90得到ABE ∆.(1)求证:AEM ∆≌ANM ∆.(2)若3BM =,2DN =,求正方形ABCD 的边长.28.如图,在平面直角坐标系中,抛物线22y ax bx =+-交x 轴于A ,B 两点,交y 轴于点C ,且28OA OC OB ==,点P 是第三象限内抛物线上的一动点.(1)求此抛物线的表达式; (2)若//PC AB ,求点P 的坐标;(3)连接AC ,求PAC ∆面积的最大值及此时点P 的坐标.。

甘肃省武威市2020年中考数学试卷B卷

甘肃省武威市2020年中考数学试卷B卷

甘肃省武威市2020年中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)改革开放让芜湖经济有了快速的发展,2007年我市的GDP达到了581亿元,用科学记数法可记作()A . 581×108元B . 5.81×109元C . 5.81×1010元D . 58.1×109元2. (2分)当a>4时,的结果为()A . a﹣4B . 4﹣aC . ﹣4﹣aD . 4+a3. (2分)如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()A .B .C .D .4. (2分)(2018·柳北模拟) 一组数据:2,3,7,0,2的中位数和众数分别是A . 3,2B . 2,2C . 2,3D . 7,25. (2分) (2019七下·靖远期中) 如图,已知直线,,,则∠A的度数为()A . 45°B . 50°C . 60°D . 70°6. (2分)如图,小明在作线段AB的垂直平分线时,是这样操作的:分别以点A、B为圆心,大于线段AB 长度一半的长为半径画弧,相交于C、D,则直线CD即为所求,连接AC、BC、BD,根据他的作图方法可知,四边形ADBC一定是()A . 矩形B . 菱形C . 正方形D . 梯形7. (2分)(2017·胶州模拟) 一次函数y=ax+b(a≠0)与二次函数ax2+2x+b(a≠0)在同一直角坐标系中的图象可能是()A .B .C .D .8. (2分) (2018九上·福州期中) 如图,以BC为直径的⊙O与△ABC的另两边分别相交于D.E. 若∠A=60°,BC=6,则图中阴影部分的面积为()A . πB . 3πC . 2πD . π二、填空题 (共8题;共8分)9. (1分)(2019·萧山模拟) 分解因式:m4n﹣4m2n=________.10. (1分)(2019·河南模拟) 计算:()0+(﹣2)2=________.11. (1分)(2018·西湖模拟) 标号分别为1,2,3,4,……,n的n张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n可以是________.12. (1分) (2016九上·台州期末) 已知关于x的一元二次方程x2+ x﹣1=0有两个不相等的实数根,则k的取值范围是________.13. (1分)(2018·马边模拟) 某学生7门学科考试成绩的平均分是80分,其中门学科都考了78分,则另外4门学科成绩的平均分是________.14. (1分)(2019·扬州) 将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=________.15. (1分)(2018·成都) 如图,在矩形中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交于点 .若,,则矩形的对角线的长为________.16. (1分)某农户的粮食产量,平均每年的增长率为x ,第一年的产量为6万千克,第二年的产量为________万千克,第三年产量为________万千克.三、解答题 (共10题;共100分)17. (5分)(2019·涡阳模拟) 如图所示,在边长为1的正方形网格中,建立如下平面直角坐标系中其中△ABO 的顶点A(3,4)、B(8,1)、O(0,0)(1)以O为位似中心,在第一象限内作出△ABO的位似图形△A1B1O,其相似比为.(2)将△ABO绕点O逆时针旋转90°得到△A2B2O18. (5分)(2017·抚州模拟) 计算与解分式方程(1) |1﹣2sin45°|﹣ +()﹣1(2) + =3.19. (5分)解不等式组把它的解集在数轴上表示出来,并求该不等式组所有整数解的和.20. (10分) (2019八上·道里期末) 某书店在图书批发中心选购两种科普书,种科普书每本进价比种科普书每本进价多元.若用元购进种科普书的数量是用元购进种科普书数量的倍.(1)求两种科普书每本进价各是多少元;(2)该书店计划种科普书每本售价为元,种科普书每本售价为元,购进种科普书的数量比购进种科普书的数量的还少本,若两种科普书全部售出,使总获利超过元,则至少购进种科普书多少本?21. (10分) (2016八上·河西期末) 已知△ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE,(1)求证:△ABE≌△BCD;(2)求出∠AFB的度数.22. (10分)(2012·温州) 一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.23. (10分) (2017八上·揭西期末) 如图,△ABC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠ACE 的平分线CF于点F.(1)求证:CF∥AB;(2)若∠CAD=20°,求∠CFD的度数.24. (15分)(2017·平谷模拟) 直线y=﹣3x+3与x轴、y轴分别父于A、B两点,点A关于直线x=﹣1的对称点为点C.(1)求点C的坐标;(2)若抛物线y=mx2+nx﹣3m(m≠0)经过A、B、C三点,求抛物线的表达式;(3)若抛物线y=ax2+bx+3(a≠0)经过A,B两点,且顶点在第二象限.抛物线与线段AC有两个公共点,求a的取值范围.25. (15分) (2017八下·官渡期末) 在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.26. (15分) (2017九上·温江期末) 如图1,在平面直角坐标系中,抛物线y=﹣ x2+bx+c与x轴交与点A(﹣3,0),点B(9,0),与y轴交与点C,顶点为D,连接AD、DB,点P为线段AD上一动点.(1)求抛物线的解析式;(2)过点P作BD的平行线,交AB于点Q,连接DQ,设AQ=m,△PDQ的面积为S,求S关于m的函数解析式,以及S的最大值;(3)如图2,抛物线对称轴与x轴交与点G,E为OG的中点,F为点C关于DG对称的对称点,过点P分别作直线EF、DG的垂线,垂足为M、N,连接MN,当△PMN为等腰三角形时,求此时EM的长.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共100分)17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、。

武威市2020年中考数学试卷D卷

武威市2020年中考数学试卷D卷

武威市2020年中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018七上·港南期中) 据统计,2016年中国粮食总产量达到546400000吨,用科学记数法表示为()A .B .C .D .2. (2分)(2019·定远模拟) 已知某微生物的形状如球形,直径大约为0.00000109m ,将0.000000109m 用科学记数法表示为()A . 1.09×10﹣6mB . 1.09×10﹣7mC . 10.9×10﹣7mD . 1.09×10﹣8m3. (2分)一个长方形的长与宽分别是10cm、5cm,它的对角线的长可能是()A . 整数B . 分数C . 有理数D . 无理数4. (2分)(2019·益阳) 解分式方程时,去分母化为一元一次方程,正确的是()A . x+2=3B . x﹣2=3C . x﹣2=3(2x﹣1)D . x+2=3(2x﹣1)5. (2分)(2019·益阳) 下列函数中,y总随x的增大而减小的是()A . y=4xB . y=﹣4xC . y=x﹣4D . y=x26. (2分)(2019·益阳) 已知一组数据5,8,8,9,10,以下说法错误的是()A . 平均数是8B . 众数是8C . 中位数是8D . 方差是87. (2分)(2019·益阳) 已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等腰三角形8. (2分)(2019·益阳) 南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为()A . asinα+asinβB . acosα+acosβC . atanα+atanβD .9. (2分)(2019·益阳) 如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是()A . PA=PBB . ∠BPD=∠APDC . AB⊥PDD . AB平分PD10. (2分)(2019·益阳) 已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0,②b﹣2a<0,③b2﹣4ac<0,④a﹣b+c<0,正确的是()A . ①②B . ①④C . ②③D . ②④二、填空题 (共8题;共8分)11. (1分)最简二次根式与是同类二次根式,则a的取值为________。

甘肃省武威第五中学2020届数学中考模拟试卷

甘肃省武威第五中学2020届数学中考模拟试卷

甘肃省武威第五中学2020届数学中考模拟试卷一、选择题1.如图,在菱形ABCD 中,点E 是BC 的中点,DE 与AC 交于点F ,若AB =6,∠B =60°,则AF 的长为( )A .3B .3.5C .D .42.下列图形都是由同样大小的黑色菱形纸片组成,其中第①个图中有3个黑色菱形纸片,第②个图中有5个黑色菱形纸片,第③个图中有7个黑色菱形纸片,…按此规律排列下去,第20个图中黑色菱形纸片的张数为()A .38B .39C .40D .413.下列标志中,是中心对称图形的是( )A. B. C. D.4.如图,向正六边形的飞镖游戏盘内随机投掷一枚飞镖则该飞镖落在阴影部分的概率( ).A. B. C. D.5.实数a 、b 、c 在数轴上的对应点的位置如图所示,如果a+b=0,那么下列结论错误的是A .|a|=|b|B .a+c >0C .a b =–1D .abc >06.若数k 使关于x 的不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩只有4个整数解,且使关于y 的分式方程1k y -+1=1y k y ++的解为正数,则符合条件的所有整数k 的积为( )A .2B .0C .﹣3D .﹣67.将多边形的边数由n 条增加到()n x +条后,内角和增加了540︒,则x 的值为( )A .1B .2C .3D .4 8.如图,在△ABC 中,BD 平分∠ABC ,DE ∥BC ,且交AB 于点E ,∠A =60°,∠BDC =86°,则∠BDE 的度数为( )A.26°B.30°C.34°D.52°9.下列图像中既不是中心对称图形又不是轴对称图形的是( )A. B.C. D.10.若不等式组无解,则m的取值范围是()A. B. C. D.11.如图,在菱形ABCD中,∠A=60°,AD=4,点F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A'E'F',设点P、P'分别是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.B.C.D. 412.如图,点A是反比例函数y=-kx图象上一点,过点A作AC⊥x轴于点C,交反比例函数2yx=-的图象于点B,连接OA、OB,若△OAB的面积为3,则k的值为( )A.8 B.﹣4 C.5 D.﹣8二、填空题13.圆锥的母线长是6cm,侧面积是30πcm2,该圆锥底面圆的半径长等于_____cm.14.因式分解:x2﹣4=______.15.如图,点A(1,a)是反比例函数y=﹣3x的图象上一点,直线y=﹣12x+12与反比例函数y=﹣3x的图象在第四象限的交点为点B,动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,则点P的坐标是_____.16.数轴上100个点所表示的数分别为1a 、2a 、3a …、100a , 且当 i 为奇数时,12i i a a +-=, 当 i 为偶数时,11i i a a +-=,①51a a -=______;②若1001126a a m -=-,则m =______.17.如图,在直角坐标系中,点A(2,0),点B (0,1),过点A 的直线l 垂直于线段AB ,点P 是直线l 上一动点,过点P 作PC ⊥x 轴,垂足为C ,把△ACP 沿AP 翻折180︒,使点C 落在点D 处,若以A ,D ,P 为顶点的三角形与△ABP 相似,则所有满足此条件的点P 的坐标为___________________________.18.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).三、解答题19.如图,等边△ABC 中,P 是AB 上一点,过点P 作PD ⊥AC 于点D ,作PE ⊥BC 于点E ,M 是AB 的中点,连接ME ,MD .(1)依题意补全图形;(2)用等式表示线段BE ,AD 与AB 的数量关系,并加以证明;(3)求证:MD =ME .20.先化简,再求值:24()224a a a a a a ÷---- ,其中a +2.21.天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?22.如图,为了测量建筑物AC的高度,从距离建筑物底部C处50米的点D(点D与建筑物底部C在同一水平面上)出发,沿坡度i=1:2的斜坡DB前进B,在点B处测得建筑物顶部A的仰角为53°,求建筑物AC的高度.(结果精确到0.1米.参考数据:sin53°≈0.798,cos53°≈0.602,tan53°≈1.327.)23.如图,AB是⊙O的直径,C为⊙O上一点,点D是BC的中点,DE是⊙O的切线,DF⊥AB于F,点G 是AB的中点(1)求证:△ADE≌△ADF;(2)若OF=3,AB=10,求图中阴影部分的面积.24.任大叔决定在承包的荒山上种樱桃树,第一次用1000元购进了一批树苗,第二次又用1000元购进该种树苗,但这次每棵树苗的进价是第一次进价的2倍,购进数量比第次少了100棵;(1)求第一次每棵树苗的进价是多少元?(2)一年后,树苗的成活率为85%,每棵樱桃树平均产樱桃30斤,任大叔将两批樱桃树所产樱桃按同一价格全部销售完毕后,获利不低于89800元,求每斤樱桃的售价至少是多少元?25.先化简,再求代数式22693111x x x xx x x-+-+÷--+的值,其中2sin30tan60x︒︒=-.【参考答案】***一、选择题13.514.(x+2)(x﹣2).15.(4,0)17.53 14,40,4,1 22--(,)或()或()或()18.①②④三、解答题19.(1)见解析;(2)AD+BE=12AB,理由见解析;(3)证明见解析.【解析】【分析】(1)根据题目要求,依据垂线和中点的概念作图即可得;(2)由△ABC是等边三角形知∠A=∠B=60°.结合PD⊥AC,PE⊥BC得∠APD=∠BPE=30°,据此知AD=12AP,AD=12AP,再根据AD+BE=12(AP+BP)可得答案;(3)取BC中点F,连接MF.知MF=12AC,MF∥12AC.据此得∠MFB=∠ACB=∠A=∠MFE=60°.从而知AM=12AB,AB=AC,MF=MA.根据EF+BE=12BC得AD+BE=12AB.据此知EF=AD.即可证△MAD≌△MFE得出答案.【详解】(1)补全图形如图:(2)线段BE,AD 与AB 的数量关系是:AD+BE=12 AB,∵△ABC是等边三角形,∴∠A=∠B=60°.∵PD⊥AC,PE⊥BC,∴∠APD=∠BPE=30°,∴AD=12AP,AD=12AP.∴AD+BE=12(AP+BP)=12AB;(3)取BC中点F,连接MF.∴MF=12AC.MF∥12AC,∴∠MFB=∠ACB=60°,∴∠A=∠MFE=60°,∵AM=12AB,AB=AC,∵EF+BE =12BC , ∴AD+BE =12AB , ∴EF =AD ,∴△MAD ≌△MFE(SAS),∴MD =ME .【点睛】本题是三角形的综合问题,解题的关键是掌握等边三角形和直角三角形的性质、中位线定理及全等三角形的判定与性质等知识点.20.2,12a a ++-【解析】【分析】先把括号内通分,再把除法转化为乘法约分化简,然后把a +2代入计算即可.【详解】 解:24()224a a a a a a ÷---- =(2)42(2)(2)a a a a a a a +-÷-+- =(2)2(2)(2)a a a a a a -÷-+- =22a a a a+⋅- =22a a +-,当a +2时,原式===1+ 【点睛】 本题考查了分式的化简求值,以及二次根式的混合运算,解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分,并熟练掌握二次根式的运算法则.21.(1)购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)购买A 型公交车8辆,则B 型公交车2辆费用最少,最少总费用为1100万元.【解析】【分析】(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,根据“A 型公交车1辆,B 型公交车2辆,共需400万元;A 型公交车2辆,B 型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A 型公交车a 辆,则B 型公交车(10-a )辆,由“购买A 型和B 型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【详解】(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,由题意得24002350x y x y +=⎧⎨+=⎩, 解得100150x y =⎧⎨=⎩, 答:购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)设购买A 型公交车a 辆,则B 型公交车(10﹣a )辆,由题意得100150(10)122060100(10)650a a a a +-⎧⎨+-⎩……, 解得:283554a ≤≤, 因为a 是整数,所以a =6,7,8;则(10﹣a )=4,3,2;三种方案:①购买A 型公交车6辆,则B 型公交车4辆:100×6+150×4=1200万元;②购买A 型公交车7辆,则B 型公交车3辆:100×7+150×3=1150万元;③购买A 型公交车8辆,则B 型公交车2辆:100×8+150×2=1100万元;购买A 型公交车8辆,则B 型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.22.建筑物AC 的高度49.8米【解析】【分析】如图作BN ⊥CD 于N ,BM ⊥AC 于M .解直角三角形分别求出AM ,CM 即可解决问题.【详解】如图作BN ⊥CD 于N ,BM ⊥AC 于M .在Rt △BDN 中,∵tan ∠D =1:2,BD =∴BN =10,DN =20,∵∠C =∠CMB =∠CNB =90°,∴四边形CMBN 是矩形,∴CM =BM =10,BM =CN =30,在Rt △ABM 中,tan ∠ABM =tan53°=AM BM≈1.327, ∴AM≈39.81,∴AC =AM+CM =39.81+10=49.81≈49.8 (米).答:建筑物AC 的高度49.8米.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.(1)详见解析;(2)251742π+.【解析】【分析】(1)连接OD,证明DE∥BC,进而得∠E=∠DFA=∠ACB=90°,由D是BC的中点得∠DAE=∠DAF,再结合公共边,由AAS定理得结论;(2)连接OD,OG,过O作OH⊥AC于H,过C作CK⊥OA于点K,由勾股定理求得 DF,便可得OH,再求AH,AK,再由相似三角形求得OM,最后求出扇形OAG,△OGM和△ACM的面积便可.【详解】(1)证明:连接OD,如图1,∵点D是BC的中点,∴∠DAF=∠DAE,OD⊥BC,∵DE是⊙O的切线,∴OD⊥DE,∴DE∥BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠AED=∠ACB=90°,∵AD=AD,∴:△ADE≌△ADF(AAS);(2)连接OD,OG,过O作OH⊥AC于H,过C作CK⊥OA于点K,如图2,则AH=CH,∠GOA=∠GOB=90°,OA=OB=OD=5,∴OH=DE=DF4==,∴CH=AH3=,∴BC8=,∵1122ABCS AC BC AB CK∆==,∴CK=245AC BCAB=,∴AK 18 5∴OK=OA﹣AK=75,∵OG∥CK,∴△OGM∽△KCM,∴OG OMCK KM=,即524755OMOM=-,∴OM=75,∴AM=5﹣53077 =,∴13024722757ACMS∆=⨯⨯=,152552714OGMS∆=⨯⨯=,∴2525722517 =414742OGM ACMOAGS S S Sππ∆∆-+=-+=+阴影扇形【点睛】本题考查的是切线的性质、扇形面积的计算,矩形的性质与判定,勾股定理的应用,相似三角形的性质与判定,掌握圆的切线垂直于经过切点的半径是解题的关键.求阴影部分的面积常把阴影部分面积转化为易求图形面积的和差进行计算.24.(1)第一次每棵树苗进价为5元;(2)每斤樱桃的售价至少为12元.【解析】【分析】(1)首先设第一次每棵树苗的进价是元,则第二次每棵树苗的进价是2X元,依题意得等量关系:第一购进树苗的棵数-第二次购进树苗的棵树=100,由等量关系列出方程即(2)设每斤苹果的售价是a元,依题意得等量关系两次购进树苗的总棵树x成活率为85%×每棵果树平均产苹果30斤-两次购进树苗的成本289800元,根据不等关系代入相应的数值,列出不等式【详解】(1)解:设第一次每棵树苗进价为x元.根据题意得100010001002 x x-=解得5x=检验:经检验5x=是原方程的解答:第一次每棵树苗进价为5元. (2)解:设每斤樱桃的售价为m元.根据题意得1000100085%301000100089800 510m+⨯⨯--≥()解得12m≥答:每斤樱桃的售价至少为12元.【点睛】此题考查一元一次不等式的应用和分式方程的应用,解题关键在于列出方程25【解析】【分析】先对各分式的分子分母能因式分解的进行因式分解,在将除转换为乘,进行化简运算,最后代入x的值即可.【详解】解:原式2(3)13·1(1)(1)31x x xx x x x x-+=+=-+---.∵2sin30tan601x︒︒=-==【点睛】本题考查了分式的化简求值,其中正确的化简是解答本题的关键.。

甘肃省武威市名校2020届数学中考模拟试卷

甘肃省武威市名校2020届数学中考模拟试卷

甘肃省武威市名校2020届数学中考模拟试卷一、选择题1.若关于x 的方程3x 2﹣2x+m =0的一个根是﹣1,则m 的值为( ) A .﹣5B .﹣1C .1D .52.如图,四边形ABCD 内接于⊙O ,已知∠ADC=140°,则∠AOC 的大小是( )A.100B.80C.60D.403.如图,不等式组315215x x --⎧⎨-<⎩…的解集在数轴上表示为( )A. B.C.D.4.将函数y =x 2﹣2x (x≥0)的图象沿y 轴翻折得到一个新的图象,前后两个图象其实就是函数y =x 2﹣2|x|的图象,关于x 的方程x 2﹣2|x|=a ,在﹣2<x <2的范围内恰有两个实数根时,a 的值为( ) A.1B.0C.D.﹣15.如图,菱形ABCD 的边长为5cm ,AB 边上的高DE =3cm ,垂直于AB 的直线l 从点A 出发,以1cm/s 的速度向右移动到点C 停止若直线l 的移动时间为x (s ),直线l 扫过菱形ABCD 的面积为y (cm 2),则下列能反映y 关于x 函数关系的大致图象是( )A. B.C. D.6.下列计算正确的是( ) A .2a a a += B .()32626a a =C .22(1)1a a -=- D .32a a a ÷=7.如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点,连接BD .若BD 平分∠ABC ,则下列结论错误的是( )A .BC=2BEB .∠A=∠EDAC .BC=2AD D .BD ⊥AC8.周末,小明带200元去图书大厦,下表记录了他全天的所有支出,其中小零食支出的金额不小心被涂黑了,如果每包小零食的售价为15元,那么小明可能剩下多少元?( ) A.5B.10C.15D.309.如图,□DEFG 内接于ABC ∆,已知ADE ∆、EFC ∆、DBG ∆的面积为1、3、1,那么□DEFG 的面积为( )A .4B .C .3D .210.如图,平行四边形纸片ABCD ,CD=5,BC=2,∠A=60°,将纸片折叠,使点A 落在射线AD 上(记为点A′),折痕与AB 交于点P ,设AP 的长为x ,折叠后纸片重叠部分的面积为y ,可以表示y 与x 之间关系的大致图象是( )A .B .C .D .11.一组2、3、4、3、3的众数、中位数、方差分别是( ) A .4,3,0.2B .3,3,0.4C .3,4,0.2D .3,2,0.412.如图,直线a ∥b ,在Rt △ABC 中,点C 在直线a 上,若∠1=54°,∠2=24°,则∠A 的度数为( )A .56°B .36°C .30°D .26°二、填空题13.若反比例函数ky x=的图象经过点()1,2-,则k 的值是__________. 14.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是_____分. 15.已知分式235x x x a--+,当x =2时,分式无意义,则a =____. 16.计算:(12a 3﹣6a 2)÷(﹣2a )=_______.17.如图,在平面直角坐标系中,直线l :交x 轴于点A ,交y 轴于点B ,点A 1、A 2、A 3,…在x 轴的正半轴上,点B 1、B 2、B 3,…在直线l 上.若△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…均为等边三角形,则△A 6B 7A 7的周长是______.18.计算﹣(﹣2)+(﹣2)0的值是_____. 三、解答题19.如图,在Rt △ABC 中,∠C=90°,D 是AC 边上一点,tan ∠DBC=43,且BC=6,AD=4.求cosA 的值.20.已知反比例函数ky x=的图象经过点P (2,3),函数y =ax+b 经过反比例函数图象上一点Q (1,m ),交x 轴于A 交y 轴于B (A ,B 不重合).(1)求出点Q 的坐标.(2)若OA =OB ,直接写出b 的值.21.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识某校数学兴趣小组设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试,根据测试成绩分布情况,将测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表 问卷测试成绩分组表)本次抽样调查的样本总量是;(2)样本中,测试成绩在B组的频数是,D组的频率是;(3)样本中,这次测试成绩的中位数落在组;(4)如果该校共有880名学生,请估计成绩在90<x≤100的学生约有人.22.我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);≈≈)(2)求高度AO 1.723.为了解某小区居民使用共享单车次数的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数统计如下:位居民一周内使用共享单车次数的中位数是次,众数是次,平均数是次.(2)若小明同学把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是.(填“中位数”,“众数”或“平均数”)(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.24.春节期间某商场搞促销活动,方案是:在一个不透明的箱子里放4个完全相同的小球,球上分别标“0元”、“20元”、“30元”、“50元”,顾客每消费满300元,就可从箱子里同时摸出两个球,根据这两个小球所标金额之和可获相应价格的礼品;(1)若某顾客在甲商商场消费320元,至少可得价值______元的礼品,至多可得价值______元的礼品;(2)请用画树状图或列表的方法,求该顾客去商场消费,获得礼品的总价值不低于50元的概率.25.如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E ,过点E 作AB 的平行线交⊙A 于点F ,连接AF ,BF ,DF . (1)求证:△ABC ≌△ABF ; (2)填空:①当∠CAB = °时,四边形ADFE 为菱形;②在①的条件下,BC = cm 时,四边形ADFE 的面积是2.【参考答案】*** 一、选择题13.-2 14.3 15.6 16.﹣6a 2+3a17. 18.3 三、解答题19.5【解析】 【分析】先在Rt △BDC 中,利用锐角三角函数的定义求出CD 的长,由AC=AD+DC 求出AC 的长,然后在Rt △ABC 中,根据勾股定理求出AB 的长,从而求出 cosA 的值. 【详解】解:在Rt △BDC 中, tan ∠DBC=43, 且BC=6 , ∴ tan ∠DBC=DC BC =6DC =43, ∴CD=8, ∴AC=AD+DC=12,在Rt △ABC 中,,∴ cosA =ACAB =.【点睛】本题主要考查解直角三角形.熟练掌握三角函数的定义是解题的关键. 20.(1)Q 点坐标为(1,6);(2)b =5或7. 【解析】 【分析】(1)根据待定系数法可求反比例函数的解析式,由点Q(1,m)在反比例函数kyx=的图象上,代入可求出点Q的坐标;(2)由题意OA=OB,可得直线y=ax+b的比例系数为1或﹣1,再分两种情况:①当a=1时,②当a=﹣1时,进行讨论可求b的值.【详解】如图:(1)将P(2,3)代入kyx=中得32k=,解得:k=6,∴反比例函数的解析式为6yx =,将点Q(1,m)代入6yx =,∴661m==,∴Q点坐标为(1,6);(2)由题意OA=OB,∴直线y=ax+b的比例系数为1或﹣1,①当a=1时,y=x+b,将Q(1,6)代入得,6=1+b,∴b=5,∴解析式为y=x+5;②当a=﹣1时,y=﹣x+b,将Q(1,6)代入得,6=﹣1+b,∴b=7,∴解析式为y=﹣x+7.【点睛】此题考查了反比例函数与一次函数的交点问题,此题要能够根据点在图象上求得待定系数的值,以及分类思想的运用.21.(1)200;(2)72,0.15;(3)B;(4)132.【解析】【分析】(1)根据C组的人数和所占的百分比可以求得本次抽样调查的样本总量;(2)根据(1)中的结果和统计图中的数据可以分别求得测试成绩在B组的频数和D组的频率;(3)根据统计图中的数据可以得到中位数落在那一组;(4)根据统计图中的数据可以计算出成绩在90<x≤100的学生人数.【详解】解:(1)本次抽样调查的样本总量是:60÷30%=200,故答案为:200;(2)样本中,测试成绩在B 组的频数是20×36%=72, 在D 组的频率是:30÷200=0.15, 故答案为:72,0.15;(3)样本中,这次测试成绩的中位数落在B 组, 故答案为:B ; (4)880×30200=132(人), 故答案为:132. 【点睛】本题考查频数分布直方图、用样本估计总体、扇形统计图、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1) 高度AO 约为15m . 【解析】 【分析】(1)延长CE 交AO 于点G ,过点E 作EF ⊥AC 垂足为F .解直角三角形即可得到结论; (2)解直角三角形即可得到结论. 【详解】(1)如图,延长CE 交AO 于点G ,过点E 作EF ⊥AC 垂足为F . 由题意可知:∠ACG =30°,∠AEG =75°,CE =20, ∴∠EAC =∠AEG ﹣∠ACG =45°, ∵EF =CE×Sin∠FCE =10,∴AE =EFsin AEC = ,∴AE 的长度为m ;(2)∵CF =CE×cos∠FCE =,AF =EF =10,∴AC =CF+AF =,∴AG =AC×Sin∠ACG =,∴AO =AG+GO == ∴高度AO 约为15m .【点睛】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键. 23.(1)10、10、11;(2)中位数和众数;(3)2200次 【解析】 【分析】(1)根据众数、中位数和平均数的定义分别求解可得;(2)由中位数和众数不受极端值影响可得答案;(3)用总人数乘以样本中居民的平均使用次数即可得. 【详解】解:(1)这10位居民一周内使用共享单车次数的中位数是10102+=10(次),众数为10次,平均数为015110415320110⨯+⨯+⨯+⨯+⨯=11(次),故答案为:10、10、11;(2)把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是中位数和众数,故答案为:中位数和众数.(3)估计该小区居民一周内使用共享单车的总次数为200×11=2200次.【点睛】本题考查的是平均数、众数、中位数的定义及其求法,牢记定义是关键.24.(1)20,80;(2)2 3【解析】【分析】(1)根据题意即可求得该顾客至少可得的金额,至多可得的礼品的金额;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与该顾客所获礼品的金额不低于50元的情况,再利用概率公式求解即可求得答案.【详解】解:(1)根据题意得:该顾客至少可得0+20=20(元),至多可得30+50=80(元).故答案为:20,80.(2)列表如下:∴P(不低于50元)==123.【点睛】此题考查的是用列表法或树状图法求概率.解题关键在于画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.25.(1)证明见解析;(2)60;(3)6.【解析】【分析】(1)首先利用平行线的性质得到∠FAB=∠CAB,然后利用SAS证得两三角形全等即可;(2)当∠CAB=60°时,四边形ADFE为菱形,根据∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,从而得到EF=AD=AE,利用邻边相等的平行四边形是菱形进行判断四边形ADFE是菱形;(3)设菱形AEFD的边长为a,易知△AEF、△AFD都是等边三角形,列出方程求出a,再在RT△ACB中,利用勾股定理即可解决问题. 【详解】(1)证明:∵EF ∥AB , ∴∠E =∠CAB ,∠EFA =∠FAB , ∵∠E =∠EFA , ∴∠FAB =∠CAB , 在△ABC 和△ABF 中,AF AC FAB CAB AB AB =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ABF ;(2)当∠CAB =60°时,四边形ADFE 为菱形, 证明:∵∠CAB =60°,∴∠FAB =∠CAB =∠CAB =60°, ∴EF =AD =AE , ∴四边形ADFE 是菱形, 故答案为60.(3)∵四边形AEFD 是菱形,设边长为a ,∠AEF =∠CAB =60°, ∴△AEF 、△AFD 都是等边三角形,a 2=∴a 2=12, ∵a >0, ∴a =∴AC =AE =,在RT △ACB 中,∠ACB =90°,AC =CAB =60°, ∴∠ABC =30°, ∴AB =2AC =,BC6.故答案为6. 【点睛】本题考查了菱形的判定、全等三角形的判定与性质及圆周角定理的知识,解题的关键是了解菱形的判定方法及全等三角形的判定方法,难度不大,记住等边三角形面积公式2(a 是边长)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档