炎德·英才大联考长沙市一中2019届高三月考试卷(六)数 学(理科)

合集下载

炎德英才大联考长郡中学2019届高三月考试卷六理数试卷与答案全解

炎德英才大联考长郡中学2019届高三月考试卷六理数试卷与答案全解
得分# !!!!!!! 满分! # $分钟% & $分 $ !!本试卷共"页$时量! 一& 选择题 # 本大题共! 每小题&分 % 共' 在每小题给出的四个选 #小题% $分 ! 项中% 只有一项是符合题目要求的!
$ ( % 集合 %(' ( % 则 "(% 等于 设集合 "(' ) * $% $& , $ ! $ ! ! $ % $ ' # + # #( # ! % " ! % ) ! ) ./ $ # 0 / $ # 1/ 23 % # 4/
2 1 2 1 #( #% ,( &! ' ( ' ! " 求 和 的通项公式. ! 1 2 : :(
! 求数列 ' 的前: 项和;:! " 设3 1 2 3 # :( : :% :(
理科数学试题! 长郡版" 第! 共 "页" 7 页!
! 本小题满分! ! " ! #分" 如 图% 四 棱 锥 + 2" 平面 + % ) * 中% " *- 平 面 % 底面 为梯形 % % " % ) * " % ) * " %5) *" %(# * )( 且 *+ #槡 7% " )(% *(-% " * 与 *" % * 均为正三角 形% 为 的重心 . *+ " * ! ! " 求证 # ! . -5 平面 + * ). ! " 求平面 " # . ) 与平面+ " % 所成锐二面角的正切值!
理科数学试题! 长郡版" 第! 共 "页" ' 页!

湖南省长沙市第一中学2019届高三第六次月考数学(理)试题+扫描版含答案(K12教育文档)

湖南省长沙市第一中学2019届高三第六次月考数学(理)试题+扫描版含答案(K12教育文档)

湖南省长沙市第一中学2019届高三第六次月考数学(理)试题+扫描版含答案(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖南省长沙市第一中学2019届高三第六次月考数学(理)试题+扫描版含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖南省长沙市第一中学2019届高三第六次月考数学(理)试题+扫描版含答案(word版可编辑修改)的全部内容。

炎德·英才大联考长沙市一中2019届高三月考试卷(六)数 学(理科)

炎德·英才大联考长沙市一中2019届高三月考试卷(六)数 学(理科)

炎德·英才大联考长沙市一中2019届高三月考试卷(六)数 学(理科)长沙市一中高三理科数学备课组组稿(考试范围:集合与逻辑、算法、函数、导数、三角函数、平面向量、复数、数列、推理与证明、不等式、计数原理、二项式定理、概率与统计、直线、平面、简单几何体、空间向量)本试题卷包括选择题、填空题和解答题三部分,共8页。

时量120分钟。

满分150分。

得分:一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若M ={x ||x -1|<2},N ={x |x (x -3)<0},则M ∩N = A.{x |0<x <3} B.{x |-1<x <2} C.{x |-1<x <3} D.{x |-1<x <0}2.已知函数f (x )=sin(2x -π4),若存在α∈(0,π),使得f (x +α)=f (x +3α)恒成立,则α的值是A.π6B.π3C.π4D.π23.已知α,β是两个不同的平面,m ,n 是两条不同的直线,又知α∩β=m ,且n ⊄α,n ⊄β,则“n ∥m ”是“n ∥α且n ∥β”的A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件4.6名同学安排到3个宿舍,每个宿舍两人,其中甲必须在一号宿舍,乙和丙均不能到三号宿舍,则不同的安排方法种数为A.6B.9C.12D.185.若f (x )=f 1(x )=x1+x ,f n(x )=f n -1[f (x )](n ≥2,n ∈N *),则f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=A.nB.9n +1C.nn +1D.16.已知m 是一个给定的正整数,如果两个整数a ,b 被m 除得的余数相同,则称a 与b 对模m 同余,记作a ≡b (mod m ),例如:5≡13(mod4).若22019≡r (mod7),则r 可以为A.2019B.2019C.2019D.20197.在△ABC 所在的平面内有一点P ,满足P A +PB +PC =AB ,则△PBC 与△ABC 的面积之比是A.13B.12C.23D.348.若函数y =f (x )(x ∈R )满足f (x +2)=f (x ),且x ∈(-1,1]时,f (x )=1-x 2,函数g (x )={ lg|x |(x ≠0)1(x =0),则函数h (x )=f (x )-g (x )在区间[-5,10]内零点的个数为A.12B.14C.13D.8选择题答题卡二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上.9.已知a 是实数,(a -i)(1-i)i是纯虚数,则a 的值是 .10.若x 1,x 2,x 3,…,x 2019,x 2019的方差是2,则3(x 1-1),3(x 2-1),…,3(x 2019-1),3(x 2019-1)的方差是 .11.已知某一几何体的正视图与侧视图如图所示,则在下列图形中,可以是该几何体的俯视图的图形为 (填你认为正确的图序号)12.已知函数f (x )=-x 2+ax -2b .若a ,b 都是区间[0,4]内的数,则使f (1)>0成立的概率是 .13.某机构对小学生作业负担的情况进行调查,设每个学生平均每天作业的时间为x (单位:分钟),且x ~N (60,100),已知P (x ≤50)=0.159.现有1000名小学生接受了此项调查,下图是此次调查中某一项的流程图,则输出的结果大约是 .14.已知关于x 的方程9x -(4+a )·3x +4=0有两个实数解x 1,x 2,则x 21+x 22x 1x 2的最小值是 .15.对有10个元素的总体{1,2,3,…,10}进行抽样,先将总体分成两个子总体A ={1,2,3,4}和B ={5,6,7,8,9,10},再从A 和B 中分别随机抽取2个元素和3个元素组成样本,用P ij 表示元素i 和j 同时出现在样本中的概率,则P 15= ,所有P ij (1≤i <j ≤10)的和等于 .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知向量m =(3sin x 4,1),n =(cos x 4,cos 2x4),f (x )=m ·n .(1)若f (x )=1,求cos(2π3-x )的值;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c 且满足a cos C +12c =b ,求函数f (B )的取值范围.在高三年级某班组织的欢庆元旦活动中,有一项游戏规则如下:参与者最多有5次抽题并答题的机会.如果累计答对2道题,立即结束游戏,并获得纪念品;如果5次机会用完仍未累计答对2道题,也结束游戏,并不能获得纪念品.已知某参与者答对每道题答对的概率都是23,且每道题答对与否互不影响.(1)求该参与者获得纪念品的概率;(2)记该参与者游戏时答题的个数为ξ,求ξ的分布列及期望.如图,在体积为1的三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB ⊥AC ,AC =AA 1=1,P 为线段AB 上的动点.(1)求证:CA 1⊥C 1P ;(2)当AP 为何值时,二面角C 1-PB 1-A 1的大小为π6已知函数f (x )=-x 2+ax -ln x (a ∈R ).(1)求函数f (x )既有极大值又有极小值的充要条件;(2)当函数f (x )在[12,2]上单调时,求a 的取值范围.某旅游景区的观景台P 位于高(山顶到山脚水平面M 的垂直高度PO )为2km 的山峰上,山脚下有一段位于水平线上笔直的公路AB ,山坡面可近似地看作平面P AB ,且△P AB 为等腰三角形.山坡面与山脚所在水平面M 所成的二面角为α(0°<α<90°),且sin α=25.现从山脚的水平公路AB 某处C 0开始修建一条盘山公路,该公路的第一段、第二段、第三段…,第n -1段依次为C 0C 1,C 1C 2,C 2C 3,…,C n -1C n (如图所示),且C 0C 1,C 1C 2,C 2C 3,…,C n -1C n 与AB 所成的角均为β,其中0<β<90°,sin β=14.试问:(1)每修建盘山公路多少米,垂直高度就能升高100米.若修建盘山公路至半山腰(高度为山高的一半),在半山腰的中心Q 处修建上山缆车索道站,索道PQ 依山而建(与山坡面平行,离坡面高度忽略不计),问盘山公路的长度和索道的长度各是多少?(2)若修建x km 盘山公路,其造价为x 2+100 a 万元.修建索道的造价为22a 万元/km.问修建盘山公路至多高时,再修建上山索道至观景台,总造价最少.已知正项数列{a n}的首项a1=12,函数f(x)=x1+x,g(x)=2x+1x+2.(1)若正项数列{a n}满足a n+1=f(a n)(n∈N*),证明:{1a n}是等差数列,并求数列{a n}的通项公式;(2)若正项数列{a n}满足a n+1≤f(a n)(n∈N*),数列{b n}满足b n=a nn+1,证明:b1+b2+…+b n<1;(3)若正项数列{a n}满足a n+1=g(a n),求证:|a n+1-a n|≤3 10·(37)n-1.炎德·英才大联考长沙市一中2019届高三月考试卷(六)数学(理科)参考答案一、选择题1.A2.D3.C4.B5.A6.C7.C 解:由P A +PB +PC =AB 得P A +PB +BA +PC =0,即PC =2AP ,所以点P 是CA 边上的三等分点,故S △PBC ∶S △ABC =2∶3.8.B 解:如图,当x ∈[0,5]时,结合图象知f (x )与g (x )共有5个交点,故在区间[-5,0]上共有5个交点;当x ∈(0,10]时,结合图象知共有9个交点,故函数h (x )=f (x )-g (x )在区间[-5,10]上共有14个零点.二、填空题9.-1 10.18 11.①② 12.96413.15914.2 解:原方程可化为(3x )2-(4+a )·3x +4=0,∴3x 1·3x 2=4,∴x 1+x 2=2log 32,∴x 1x 2≤(log 32)2.∴x 21+x 22x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2=4(log 32)2x 1x 2-2≥2. 15.1410 解:(1)由题意有:P 15=C 13·C 25C 24·C 36=14.(2)当1≤i <j ≤4时,P ij =1C 24=16,这样的P ij 共有C 24个,故所有P ij (1≤i <j ≤4)的和为16·6=1;当5≤i <j ≤10时,P ij =C 14·C 22C 36=15.这样的P ij 共有C 26=15个,故所有P ij (5≤i <j ≤10)的和为15·15=3; 当1≤i ≤4,5≤j ≤10时,P ij =14,这样的P ij 共有4·6=24,所有P ij (1≤i ≤4,5≤j ≤10)的和为24·14=6,综上所述,所有P ij (1≤i <j ≤10)的和等于1+3+6=10. 三、解答题16.解:(1)∵f (x )=m ·n =3sin x 4cos x 4+cos 2x 4=32sin x 2+12cos x 2+12=sin(x 2+π6)+12,而f (x )=1,∴sin(x 2+π6)=12.(4分)又∵2π3-x =π-2(x 2+π6),∴cos(2π3-x )=-cos2(x 2+π6)=-1+2sin 2(x 2+π6)=-12.(6分)(2)∵a cos C +12c =b ,∴a ·a 2+b 2-c 22ab +12c =b ,即b 2+c 2-a 2=bc ,∴cos A =12.又∵A ∈(0,π),∴A =π3.(10分)又∵0<B <2π3,∴π6<B 2+π6<π2,∴f (B )∈(1,32).(12分)17.解:(1)设“参与者获得纪念品”为事件A ,则P (A )=1-P (A )=1-[(13)5+C 15(13)4(23)]=232243.(4分) 故该参与者获得纪念品的概率为232243.(5分)(2)ξ的可能取值为2,3,4,5,P (ξ=2)=(23)2=49;P (ξ=3)=C 1223·13·23=827; P (ξ=4)=C 1323(13)223=427;P (ξ=5)=C 14(23)(13)3+C 04(13)4=19.(8分) 故ξ(10分)Eξ=2×49+3×827+4×427+5×19=7927.(12分)18.解:(1)证明:∵AA 1⊥底面ABC ,∴AA 1⊥AC ,AA 1⊥AB . 又∵AB ⊥AC ,∴以A 为原点,AC ,AB ,AA 1所在的直线分别为x 轴,y 轴,z 轴建立直角坐标系.又∵VABC -A 1B 1C 1=12AB ×AC ×AA 1=1,∴AB =2.(2分)设AP =m ,则P (0,m,0),而C 1(1,0,1),C (1,0,0),A 1(0,0,1), ∴CA 1=(-1,0,1),C 1P =(-1,m ,-1), ∴CA 1·C 1P =(-1)×(-1)+0×m +1×(-1)=0, ∴CA 1⊥C 1P .(6分)(2)设平面C 1PB 1的一个法向量n =(x ,y ,z ),则{n ·B 1C1=0n ·C 1P =0,即{ x -2y =0-x +my -z =0.令y =1,则n =(2,1,m -2),(9分) 而平面A 1B 1P 的一个法向量AC =(1,0,0), 依题意可知cos π6=|n ·AC ||n ||AC |=2(m -2)2+5=32,∴m =2+33(舍去)或m =2-33. ∴当AP =2-33时,二面角C 1-PB 1-A 1的大小为π6.(12分)19.解:(1)∵f ′(x )=-2x +a -1x =-2x 2+ax -1x(x >0),∴f (x )既有极大值又有极小值⇔方程2x 2-ax +1=0有两个不等的正实数根x 1,x 2. (3分)∴⎩⎨⎧Δ=a 2-8>0x 1+x 2=a 2>0x 1·x 2=12>0,∴a >22, ∴函数f (x )既有极大值又有极小值的充要条件是a >2 2.(6分)(2)f ′(x )=-2x +a -1x ,令g (x )=2x +1x ,则g ′(x )=2-1x 2,g (x )在[12,22)上递减,在(22,2]上递增.(8分)又g (12)=3,g (2)=92,g (22)=22,∴g (x )max =92,g (x )min =2 2.(10分)若f (x )在[12,2]单调递增,则f ′(x )≥0即a ≥g (x ),∴a ≥92.若f (x )在[12,2]单调递减,则f ′(x )≤0,即a ≤g (x ),∴a ≤2 2.所以f (x )在[12,2]上单调时,则a ≤22或a ≥92.(13分)20.解:(1)在盘山公路C 0C 1上任选一点D ,作DE ⊥平面M 交平面M 于E ,过E 作EF ⊥AB 交AB 于F ,连结DF ,易知DF ⊥C 0F .sin∠DFE =25,sin ∠DC 0F =14.∵DF =14C 0D ,DE =25DF ,∴DE =110C 0D ,所以盘山公路长度是山高的10倍,索道长是山高的52倍,所以每修建盘山公路1000米,垂直高度升高100米.从山脚至半山腰,盘山公路为10km.从半山腰至山顶,索道长2.5km.(6分)(2)设盘山公路修至山高x (0<x <2)km ,则盘山公路长为10x km ,索道长52(2-x )km.设总造价为y 万元,则y =(10x )2+100a +52(2-x )·22a =(10x 2+1-52x )a +102a .令y ′=10axx 2+1-52a =0,则x =1.当x ∈(0,1)时,y ′<0,函数y 单调递减;当x ∈(1,2)时,y ′>0,函数y 单调递增,∴x =1,y 有最小值,即修建盘山公路至山高1km 时,总造价最小,最小值为152a 万元.(13分)21.证明:(1)∵a n +1=f (a n )=a n 1+a n ,∴1a n +1=1+a n a n =1a n +1,即1a n +1-1a n=1,∴{1a n }是以2为首项,1为公差的等差数列. ∴1a n =2+(n -1),即a n =1n +1.(3分) (2)证明:∵a n +1≤a n 1+a n ,a n >0,∴1a n +1≥1+a n a n ,即1a n +1-1a n≥1.当n ≥2时,1a n -1a 1=(1a 2-1a 1)+(1a 3-1a 2)+…+(1a n -1a n -1)≥n -1,∴1a n ≥n +1,∴a n ≤1n +1. 当n =1时,上式也成立,∴a n ≤1n +1(n ∈N *),∴b n =a n n +1≤1(n +1)2<1n (n +1)=1n -1n +1, ∴b 1+b 2+…+b n <(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1<1.(8分)(3)∵a 1=12,a 2=g (a 1)=45,a 2-a 1=45-12=310>0.又∵a n +1-a n =2a n +12+a n -2a n -1+12+a n -1=3(a n -a n -1)(a n +2)(a n -1+2),由迭代关系可知,a n +1-a n >0,∴a n ≥a 1=12. 又∵(2+a n )(2+a n -1)=(2+2a n -1+12+a n -1)(2+a n -1)=5+4a n -1≥7, ∴3(2+a n )(2+a n -1)≤37, ∴|a n +1-a n |=3(2+a n )(2+a n -1)|a n -a n -1|≤37|a n -a n -1|, ∴|a n +1-a n |≤37|a n -a n -1|≤(37)2|a n -1-a n -2|≤…≤(37)n -1|a 2-a 1|=310(37)n -1.(13分)。

炎德英才大联考2019届长沙一中高三月考理数(答案)

炎德英才大联考2019届长沙一中高三月考理数(答案)

! . ! . 故不等式#*!/#2*&)的解集为 !3&/2#) &由-!#&#.9 !3&/2 #) &则/2 #)$#&即/$"!
综上可知"&/&)! !"$分"
数学!理科"参考答案!一中版"!!+
注意到*2$时有3!*"2$**%$时有3!*"%$&
根据图象可知&若3!*""/3!*#"&则有$2*"2"2*#*
要证*"4*# %4&即证*#%"!56*"*
又$2*"2"&因此"!56*"%"*
由3!*"在!"&23"上单调递减&从而只需证明3!*""/3!*#"23!"!56*""&
此即*"4!*" 2!"!56*""456*"!"84"!*" 256*"2"&其中$2*"2"*
上单调递增&
! . ! . ! " *' !/" &# &35!*"2$&3!*"在 !/" &# 上单调递减&3!*"789/3 !/" /!4"/! !.分"
!#"证明'由3!*"在*/"处的切线与* 轴平行&故35!""/$7//!"&

炎德英才大联考2019届长沙一中高三月考理综(试题)

炎德英才大联考2019届长沙一中高三月考理综(试题)
+)丁为胰岛 2 细胞8为胰高血糖素8作用的靶细胞主要是肝脏细胞和肌肉细胞 8)机体通过负反馈调节方式维持体内胰岛素和胰高血糖素含量的相对稳定 /)下列有关遗传和变异的叙述正确的是 2)果蝇的核基因 ;! 突变为 ;#正常情况下 ;! 与 ;# 会出现在同一个配子中 7)豌豆的淀粉分支酶基因中插入一段外来的 8,2 序列属于基因突变 +)基因突变不会改变基因的数量而染色体结构变异都会有基因数量的变化 8)若一个基因型为 2<7=的精原细胞产生了四种不同基因型的精子则这两对等位基
2))R$&$#L时发电机内穿过线圈*+,- 的磁通量为$ 7)发电机的输出电压为!$$T +)变压器原副线圈匝数之比为!!U/ 8)交流发电机输出电流的函数表达式.R#LVW /$))2 !4$静电场方向平行于/ 轴其电势 随/ 的分布可简化为如图所示的 折线将一个带负电的粒子在/R0 处由静止释放它只在电场力 作用下沿/ 轴运动规定/ 轴正方向为电场强度1加速度2速 度&的正方向下图分别表示/ 轴上各点的电场强度1粒子的加 速度2速度&和动能1Q 随/ 的变化图象其中正确的是
胞相互分离开来同时也为龙胆紫染色创造酸性环境 +)观察和检测花生子叶中的脂肪实验中在制片环节用苏丹#染色后需用蒸馏水
缓流冲洗以洗去浮色
理科综合试题一中版第!页共!"页
8)绿叶中色素的提取和分离实验中若用体积分数为%/:的酒精作为提取液则需要 加入适量的无水碳酸钠以除去酒精中的水分
2)曲线 E! 表示F.3##*#*+#O-(和F.3#*+#-(F 的关系 7)"<# *#+#-(的数量级为!$F# +),<*+#-( 溶液中#,<O ##*+#-(F ##*#+#-(##+#-#(F 8)向$)!G0.E *#+#-( 溶液中加入少量水##**#++##--(F(减小 二选择题本题共4小题每小题"分在每小题给出的四个选项中第!((!4题只有一 项符合题目要求第!%(#!题有多项符合题目要求全部选对的得"分选对但不全 的得'分有选错的得$分

炎德英才大联考2019届长沙一中高三月考理数(答案)

炎德英才大联考2019届长沙一中高三月考理数(答案)

!#"注意到86-平面&(+&因此,8,6 即为直线8, 与底面&(+ 所成
的角&故?@3,8,60槡#!
设&609&注意到6,0 " #(+0 "#9&则860槡##9&则8&0槡#)9&则圆锥
侧面积为 "#6槡#)96#90#槡)&解得90#&因此6(06+0#&860槡#&8(0槡)! !*分"
""!/!解析易知 *)0#槡#多面体 &(+,!&*-) 的体积."0)将多面体 &(+,!&*-) 补成四棱柱 /0-1!&(+,则#."0'+-0"#故+-0&从而&-0 槡"*故2&*)- 0 槡&'!
"#!.!解析$3#083#"3#0494#令$3#"0"3##05则#"095##0 4"8345 所以#"!##095!
!(分"
理科数学参考答案!一中版"!!&
!#"由!""可知4&"&注意到#"'##&因此##&4&"'由方程可知###!#4##440$&解得40######!"! 则不等式$!##"4###'$即证明(#483##4###!'4##4###'$3#####!##"83##4###!##'##!&#"4###'$! 即####83##4## #!###!""!'#&#4###!###!""'$3#83##!###!###4&'$! !*分"

炎德英才大联考2019届长沙一中高三月考理数(试题)

炎德英才大联考2019届长沙一中高三月考理数(试题)

-&!$$
.&%$
/&2$
0&3$
(!甲乙两人某体育项目近五次训练成绩如图设甲乙两人成绩的平均数分别为 (! (#方差分别为)!)#则下列结论正确的是
-&(!&(#)!&)# /&(!*(#)!()#
.&(!&(#)!()# 0&(!*(#)!&)#
数学 理科试题 一中版 第!页 共"页
!!一必考题共)$分 !3!本小题满分!#分
如图$在五边形 "$231 中$13"1*("<$12*11*#1"3$$
78512*,!'$且 31*'! !!"求"3 的长1 !#"若23*'$$2*!$求0"3$ 的面积!
!2!本小题满分!#分 如图$已知2 为圆锥底面2/ 上一点$"$ 为2/ 的直径$ 12"$*'$<$点3$0 分别为"2$'/ 的中点$若圆锥的侧
求圆2! 和曲线2# 的极坐标方程1
! " !#"设点 9 的极坐标为 #$# $过极点/ 的直线7 分别与圆2! 和曲线2# 交于异于
极点/ 的"$$ 两点$求09"$ 的面积的最大值!
#'!本小题满分!$分选修(,"不等式选讲 已知5&$$6&$$且5+6*#! !!"求5!+6(的最小值1 !#"证明(#槡5+槡6% 槡!$$并说明等号成立的条件!
用随机抽取的"$$件电磁超声检测仪作为样本将频率视为概率估计该企业生产 该仪器的质量情况! !随机抽取(件该款电磁超声检测仪求至少有!件优等品的概率 #现有某市医疗机构计划在#$!%年由政府采购#$件该型号电磁超声检测仪供该

炎德英才大联考2019届长沙一中高三月考理综(答案)

炎德英才大联考2019届长沙一中高三月考理综(答案)

解得-3A%$3 方向竖直向下# "分 由牛顿第三定律得#滑块对轨道的压力大小%$3#方向竖直向上& "分
!'"滑块从/ 到7 的过程中由动能定理得!",!5!#6"A "#"(#7 ! " #"(#$ "分
"正反交!正反交的子代全表现为长刚毛!正反交结果不同短刚毛*B长刚毛 的后代全为短刚毛长刚毛*
B短刚毛 后代雌性全为短刚毛雄性全为长刚毛 #U 染色体片段缺失导致雄配子致死不育 ')P% '#0除标注以外每空#分共%分 "."分 #科学因为鲢鱼的营养级低根据能量流动规律鲢鱼在食物链中获得的能量多因而产量高! 调整生态系统中的能量流动关系
,0根据
.的分析#$8" !1#,#2("A"$!##则
381,#2(
的 水 解 平 衡 常 数 A$8"
$D 1#,#2(
A"$!"#&$8#
!1#,#2("#说明以
电离为主#溶液显酸性#则#!389 "%#!1,#2(! "%#!,#2#(! "%#!1#,#2("#故 ,错误%-0向$0"?@;*> 1#,#2( 溶液中加
前#F内的位移&"A " #)2#A&? "分
之后滑块做匀速运动的位移&#A3!&"A&? "分
所用的时间2#A&($#A"F#故2A2"92#A'F "分
!'"将可控电阻改为定值电阻6$#棒将变减速运动&

2019届湖南师大附中高三月考试卷(六) 数学(理)试卷含解析

2019届湖南师大附中高三月考试卷(六) 数学(理)试卷含解析

2019届炎德·英才大联考湖南师大附中高三第六次月考数学(理)试卷时量:120分钟满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合题目要求的.1.已知集合A ={4,2,a -1},B ={0,-2,a 2+1},若A ∩B ={2},则实数a 满足的集合为(D)A .{1}B .{-1}C .{-1,1}D .2.已知复数z 满足z +||z =3+i ,则z =(D)A .1-iB .1+i C.43-i D.43+i 3.下列说法正确的是(D)A .命题“x 0∈[]0,1,使x 20-1≥0”的否定为“x ∈[]0,1,都有x 2-1≤0”B .命题“若向量a 与b 的夹角为锐角,则a ·b >0”及它的逆命题均为真命题C .命题“在锐角△ABC 中,sin A<cos B ”为真命题D .命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”【解析】命题“x 0∈[]0,1,使x 20-1≥0”的否定应为“x ∈[]0,1,都有x 2-1<0”,所以A 错误;命题“若向量a 与b 的夹角为锐角,则a ·b >0”的逆命题为假命题,故B 错误;锐角△ABC 中,A +B>π2π2>A>π2-B>0,∴sin A>sin ⎝⎛⎭⎫π2-B =cos B ,所以C 错误,故选D.4.我国古代数学名著《九章算术》里有一道关于玉石的问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(176两).问玉、石重各几何?”如图所示的程序框图反映了对此题的一个求解算法,运行该程序框图,则输出的x ,y 分别为(C)A .90,86。

炎德英才大联考2019届长沙一中高三月考理数(试题)

炎德英才大联考2019届长沙一中高三月考理数(试题)

!'!如图$.#%- 中$/#%-('$;$/#-%(5&;$3 为.#%- 内一点$且满足
/3#-(/3%#(1$;$则<=9 /%-3(!!!!!
数学!理科"试题!一中版"!第!1页!共"页"
三&解答题#共6$分%解答应写出文字说明&证明过程或演算步骤%第!6至 #!题为必考题$每个试 题 考 生 都 必 须 作 答% 第 ##&#1 题 为 选 考 题$考 生 根据要求作答%
1
1
/槡$
+
的展开式中所有项系数之和为!$#5$则该展开式中的常
槡$
数项是
*+#6$ -+%$
,+!"$ .+'$
数学!理科"试题!一中版"!第!#页!共"页"
!!!设, 为椭圆-#$.##//)##(!!.%/%$"上的动点$且 0!$0# 为椭圆- 的焦 点$1为.,0!0# 的内心$设点1和点, 的纵坐标分别为)1$),$若),( 5)1$则椭圆- 的离心率为
" &选择题#本大题共!#个小题$每小题&分$共'$分%在每个小题给出的
" "
四个选项中$只有一项是符合题目要求的%
" !!已知全集"($集合#('$#$$#($%('$##$)#%!($则#&!'"%"(
"
*+'$#!$$$#(
" "
-+'$#$$#(
,+'$#!($$#( .+'$#$(!(

2019湖南师大附中届高三上学期月考试卷(六)数学(理)试题 含答案

2019湖南师大附中届高三上学期月考试卷(六)数学(理)试题 含答案

炎德·英才大联考湖南师大附中2019届高三月考试卷(六) 理科数学命题人:高三数学备课组 审稿人:高三数学备课组全卷满分150分,考试时间120分钟。

★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题作答用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试卷和草稿纸上无效。

3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试卷和草稿纸上无效。

考生必须保持答题卡的整洁。

考试结束后,只需上交答题卡 一、选择题:本大题共12题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个是符合题目要求。

1. 已知全集U R =,集合{|11}A x x x =<->或,则UA =A . (,1)(1,)-∞-+∞B . (,1][1,)-∞-+∞C . (1,1)-D . [1,1]-2. 若3sin(),25παα-=-为第二象限角,则tan α=A. 43-B. 43C. 34-D. 343. 在下列给出的四个结论中,正确的结论是A. 已知函数()f x 在区间(,)a b 内有零点,则()()0f a f b <B. 若1a b +=,则3是3a 与3b 的等比中项C. 若12,e e 是不共线的向量,且122,m e e =-1236n e e =-,则m ∥nD. 已知角α终边经过点(3,4)-,则4cos 5α=-4. 已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE =A. 12AB AD -+ B.12AB AD -C. 12AB AD +D. 12AB AD -5. 已知21tan(),tan()544παββ+=-=, 则tan()4πα+的值为A . 16B . 2213C . 322D .13186. 在小正方形边长为1的正方形网格中, 向量,a b 的大小与方向如图所示,则向量,a b 所成角的余弦值是A.B.C. 5D.137. 若公比为2的等比数列{}n a 的前n 项和为n S ,且52,9,a a 成等差数列,则20S =A. 2121-B.2021-C.1921-D. 2221-8. 函数ln ||()x f x=的图象大致是 A.B. C.D.9. 已知数列{}n a 是等差数列,前n 项和为n S ,满足1494S a S +=,给出下列四个结论:①70a =;②140S =;③58S S =;④7S 最小. 其中一定正确的结论是A. ①③B. ①③④C. ②③④D. ①② 10. 若直线y ax =是曲线2ln 1y x =+的一条切线,则实数a =A. 12e- B. 122e-C.12eD.122e11. 将函数2()2cos ()16f x x ππ=+-的图象所有点的横坐标伸长到原来的2倍,纵坐标不变,再把所得函数的图象向右平移(0)ϕϕ>个单位长度,最后得到图象对应的函数为奇函数,则ϕ的最小值为A.13B.23C.76D.5612. 已知等边ABC ∆的边长为2,则|23|AB BC CA ++=A.B.C. D. 12二、填空题:本大题共4小题,每小题5分,共20分。

炎德英才大联考2019届长沙一中高三月考理数(试题)

炎德英才大联考2019届长沙一中高三月考理数(试题)

$6
为奇数$设数列
(06
)的前6
项和为86$求
8#6!
1/6$6为偶数$
理科数学试题!一中版"!第!# 页!共"页"
!/!本题满分!#分 如图$四棱柱 %'12,%!'!1!2! 的底面 %'12 是菱形$%1 *'2(9$%!9.底面 %'12$%%!(%'(#! !!"求证,平面 %!19.平面 ''!2!2+ !#"若2'%2('$3$求9' 与平面%!'!1 所成角的正弦值!
-./+
0.+#
1.,/+
2.,+#
#!命题"$#$#,#$)"$$的否定为
-."$#$#,#$)"%$
0.&$$#$# $,#$$)"'$
0."$($#,#$)"$$
2.&$$($# $,#$$)"'$
+!已知集合%($&)$&#且$#)&#(!'($&)$&#且&($则%*' 的元素个数为
#$!本题满分!#分 为了整顿食品的安全卫生问题$食品监督部门对某食品厂生产甲#乙两种食品进行了检测调研$ 检测某种有害微量元素的含量$随机在两种食品中各抽取了!$个批次的食品$每个批次各随机 地抽取了!件$如下是测量数据的茎叶图!单位,毫克"!
规定,当食品中的有害微量元 素 的 含 量 在 -$$!$.时 为 一 等 品$在 !!$$#$.时 为 二 等 品$#$ 以 上 为 劣质品! !!"用分层抽样的方法在两组数据中各抽取&个数据$再分别从这&个数据中各选取#个$求甲

炎德英才大联考2019届长沙一中高三月考理数(答案)

炎德英才大联考2019届长沙一中高三月考理数(答案)

&
, - !"!"#$#"6"-$# #
¶%
!"!"#$#""-$# !*$#6""#
(
# !*$#6""#
2
" *
&\:]\$27"槡.*^_<`&
·^¸¹2$&6%(%)
1921cde3
" #
!RRRRRRRRRRRRRRRRRRRRR
!"#Q"
#&#!#"2
" #
6/2/##6"!#2$"&
!#"4T5 <=>13"%)#".$!.$& 1D 5 1 _e3)&*&,& +!52)"2!$!.")6!$!)")2$!).&+!52*"2+#)!$!."#1$!)1$!.6+#)!$!)"#1$!.1$!)2$!)-,*& +!52,"2+#*!$!."#1!$!)"#2$!#-*-& 1D5 1Q¡¢3
!"!#$"%&'(!)*+"!!)
/01,
")!.$
"*!,
",!")-!-.4(&"+2
" #(&",6(&")2
"*(&"%6*(&"&5

湖南师大附中2019届高三月考试卷(6)理数

湖南师大附中2019届高三月考试卷(6)理数

2!8#&9$" $!!' $!!$ $!$' $!$#' $!$!$ $!$$'
9$
#!$6# #!6$( 0!7"! '!$#" (!(0' 6!76%
参考公式#8#)!#++"!,3+!#::"*!#+,+",#"!++:"%其中3)#+++,+:!
#!!!本题满分!#分"
设函数)!&")&##
#$!!本题满分!#分" 中国大学先修课程%是在高中开设的具有大学水平的课程%旨在让学有余力的高中生早接受大学 思维方式$学习方法的训练%为大学学习乃至未来的职业生涯做好准备!某高中开设大学先修课 程已有两年%两年共招收学生#$$$ 人%其 中 有 0$$ 人 参 与 学 习 先 修 课 程%两 年 全 校 共 有 优 等 生 #$$人%学习先修课程的优等生有($人!这两年学习先修课程的学生都参加了考试%并且都参加 了某高校的自主招生考试!满分!$$分"%结果如下表所示#
# 0
&#*&%)!&"%则)4!!")!!!!!
!'!已知三棱锥2*"$' 的四个顶点均在某球面上%2' 为该球的直径%*"$' 是边长为"的等边三
角形%三棱锥2*"$' 的体积为!0(%则此三棱锥的外接球的表面积为!!!!!
!(!已知在平面四边形"$'. 中%"$)槡#%$')#%"'0'.%"')'.%则四边形 "$'. 的面积的最
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

炎德·英才大联考长沙市一中2019届高三月考试卷(六)数 学(理科)长沙市一中高三理科数学备课组组稿(考试范围:集合与逻辑、算法、函数、导数、三角函数、平面向量、复数、数列、推理与证明、不等式、计数原理、二项式定理、概率与统计、直线、平面、简单几何体、空间向量)本试题卷包括选择题、填空题和解答题三部分,共8页。

时量120分钟。

满分150分。

得分:一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若M ={x ||x -1|<2},N ={x |x (x -3)<0},则M ∩N = A.{x |0<x <3} B.{x |-1<x <2} C.{x |-1<x <3} D.{x |-1<x <0}2.已知函数f (x )=sin(2x -π4),若存在α∈(0,π),使得f (x +α)=f (x +3α)恒成立,则α的值是A.π6B.π3C.π4D.π23.已知α,β是两个不同的平面,m ,n 是两条不同的直线,又知α∩β=m ,且n ⊄α,n ⊄β,则“n ∥m ”是“n ∥α且n ∥β”的A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件4.6名同学安排到3个宿舍,每个宿舍两人,其中甲必须在一号宿舍,乙和丙均不能到三号宿舍,则不同的安排方法种数为A.6B.9C.12D.185.若f (x )=f 1(x )=x1+x ,f n(x )=f n -1[f (x )](n ≥2,n ∈N *),则f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=A.nB.9n +1C.nn +1D.16.已知m 是一个给定的正整数,如果两个整数a ,b 被m 除得的余数相同,则称a 与b 对模m 同余,记作a ≡b (mod m ),例如:5≡13(mod4).若22019≡r (mod7),则r 可以为A.2019B.2019C.2019D.20197.在△ABC 所在的平面内有一点P ,满足P A +PB +PC =AB ,则△PBC 与△ABC 的面积之比是A.13B.12C.23D.348.若函数y =f (x )(x ∈R )满足f (x +2)=f (x ),且x ∈(-1,1]时,f (x )=1-x 2,函数g (x )={ lg|x |(x ≠0)1(x =0),则函数h (x )=f (x )-g (x )在区间[-5,10]内零点的个数为A.12B.14C.13D.8选择题答题卡二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上.9.已知a 是实数,(a -i)(1-i)i是纯虚数,则a 的值是 .10.若x 1,x 2,x 3,…,x 2019,x 2019的方差是2,则3(x 1-1),3(x 2-1),…,3(x 2019-1),3(x 2019-1)的方差是 .11.已知某一几何体的正视图与侧视图如图所示,则在下列图形中,可以是该几何体的俯视图的图形为 (填你认为正确的图序号)12.已知函数f (x )=-x 2+ax -2b .若a ,b 都是区间[0,4]内的数,则使f (1)>0成立的概率是 .13.某机构对小学生作业负担的情况进行调查,设每个学生平均每天作业的时间为x (单位:分钟),且x ~N (60,100),已知P (x ≤50)=0.159.现有1000名小学生接受了此项调查,下图是此次调查中某一项的流程图,则输出的结果大约是 .14.已知关于x 的方程9x -(4+a )·3x +4=0有两个实数解x 1,x 2,则x 21+x 22x 1x 2的最小值是 .15.对有10个元素的总体{1,2,3,…,10}进行抽样,先将总体分成两个子总体A ={1,2,3,4}和B ={5,6,7,8,9,10},再从A 和B 中分别随机抽取2个元素和3个元素组成样本,用P ij 表示元素i 和j 同时出现在样本中的概率,则P 15= ,所有P ij (1≤i <j ≤10)的和等于 .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知向量m =(3sin x 4,1),n =(cos x 4,cos 2x4),f (x )=m ·n .(1)若f (x )=1,求cos(2π3-x )的值;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c 且满足a cos C +12c =b ,求函数f (B )的取值范围.在高三年级某班组织的欢庆元旦活动中,有一项游戏规则如下:参与者最多有5次抽题并答题的机会.如果累计答对2道题,立即结束游戏,并获得纪念品;如果5次机会用完仍未累计答对2道题,也结束游戏,并不能获得纪念品.已知某参与者答对每道题答对的概率都是23,且每道题答对与否互不影响.(1)求该参与者获得纪念品的概率;(2)记该参与者游戏时答题的个数为ξ,求ξ的分布列及期望.如图,在体积为1的三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB ⊥AC ,AC =AA 1=1,P 为线段AB 上的动点.(1)求证:CA 1⊥C 1P ;(2)当AP 为何值时,二面角C 1-PB 1-A 1的大小为π6已知函数f (x )=-x 2+ax -ln x (a ∈R ).(1)求函数f (x )既有极大值又有极小值的充要条件;(2)当函数f (x )在[12,2]上单调时,求a 的取值范围.某旅游景区的观景台P 位于高(山顶到山脚水平面M 的垂直高度PO )为2km 的山峰上,山脚下有一段位于水平线上笔直的公路AB ,山坡面可近似地看作平面P AB ,且△P AB 为等腰三角形.山坡面与山脚所在水平面M 所成的二面角为α(0°<α<90°),且sin α=25.现从山脚的水平公路AB 某处C 0开始修建一条盘山公路,该公路的第一段、第二段、第三段…,第n -1段依次为C 0C 1,C 1C 2,C 2C 3,…,C n -1C n (如图所示),且C 0C 1,C 1C 2,C 2C 3,…,C n -1C n 与AB 所成的角均为β,其中0<β<90°,sin β=14.试问:(1)每修建盘山公路多少米,垂直高度就能升高100米.若修建盘山公路至半山腰(高度为山高的一半),在半山腰的中心Q 处修建上山缆车索道站,索道PQ 依山而建(与山坡面平行,离坡面高度忽略不计),问盘山公路的长度和索道的长度各是多少?(2)若修建x km 盘山公路,其造价为x 2+100 a 万元.修建索道的造价为22a 万元/km.问修建盘山公路至多高时,再修建上山索道至观景台,总造价最少.已知正项数列{a n}的首项a1=12,函数f(x)=x1+x,g(x)=2x+1x+2.(1)若正项数列{a n}满足a n+1=f(a n)(n∈N*),证明:{1a n}是等差数列,并求数列{a n}的通项公式;(2)若正项数列{a n}满足a n+1≤f(a n)(n∈N*),数列{b n}满足b n=a nn+1,证明:b1+b2+…+b n<1;(3)若正项数列{a n}满足a n+1=g(a n),求证:|a n+1-a n|≤3 10·(37)n-1.炎德·英才大联考长沙市一中2019届高三月考试卷(六)数学(理科)参考答案一、选择题1.A2.D3.C4.B5.A6.C7.C 解:由P A +PB +PC =AB 得P A +PB +BA +PC =0,即PC =2AP ,所以点P 是CA 边上的三等分点,故S △PBC ∶S △ABC =2∶3.8.B 解:如图,当x ∈[0,5]时,结合图象知f (x )与g (x )共有5个交点,故在区间[-5,0]上共有5个交点;当x ∈(0,10]时,结合图象知共有9个交点,故函数h (x )=f (x )-g (x )在区间[-5,10]上共有14个零点.二、填空题9.-1 10.18 11.①② 12.96413.15914.2 解:原方程可化为(3x )2-(4+a )·3x +4=0,∴3x 1·3x 2=4,∴x 1+x 2=2log 32,∴x 1x 2≤(log 32)2.∴x 21+x 22x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2=4(log 32)2x 1x 2-2≥2. 15.1410 解:(1)由题意有:P 15=C 13·C 25C 24·C 36=14.(2)当1≤i <j ≤4时,P ij =1C 24=16,这样的P ij 共有C 24个,故所有P ij (1≤i <j ≤4)的和为16·6=1;当5≤i <j ≤10时,P ij =C 14·C 22C 36=15.这样的P ij 共有C 26=15个,故所有P ij (5≤i <j ≤10)的和为15·15=3; 当1≤i ≤4,5≤j ≤10时,P ij =14,这样的P ij 共有4·6=24,所有P ij (1≤i ≤4,5≤j ≤10)的和为24·14=6,综上所述,所有P ij (1≤i <j ≤10)的和等于1+3+6=10. 三、解答题16.解:(1)∵f (x )=m ·n =3sin x 4cos x 4+cos 2x 4=32sin x 2+12cos x 2+12=sin(x 2+π6)+12,而f (x )=1,∴sin(x 2+π6)=12.(4分)又∵2π3-x =π-2(x 2+π6),∴cos(2π3-x )=-cos2(x 2+π6)=-1+2sin 2(x 2+π6)=-12.(6分)(2)∵a cos C +12c =b ,∴a ·a 2+b 2-c 22ab +12c =b ,即b 2+c 2-a 2=bc ,∴cos A =12.又∵A ∈(0,π),∴A =π3.(10分)又∵0<B <2π3,∴π6<B 2+π6<π2,∴f (B )∈(1,32).(12分)17.解:(1)设“参与者获得纪念品”为事件A ,则P (A )=1-P (A )=1-[(13)5+C 15(13)4(23)]=232243.(4分) 故该参与者获得纪念品的概率为232243.(5分)(2)ξ的可能取值为2,3,4,5,P (ξ=2)=(23)2=49;P (ξ=3)=C 1223·13·23=827; P (ξ=4)=C 1323(13)223=427;P (ξ=5)=C 14(23)(13)3+C 04(13)4=19.(8分) 故ξ(10分)Eξ=2×49+3×827+4×427+5×19=7927.(12分)18.解:(1)证明:∵AA 1⊥底面ABC ,∴AA 1⊥AC ,AA 1⊥AB . 又∵AB ⊥AC ,∴以A 为原点,AC ,AB ,AA 1所在的直线分别为x 轴,y 轴,z 轴建立直角坐标系.又∵VABC -A 1B 1C 1=12AB ×AC ×AA 1=1,∴AB =2.(2分)设AP =m ,则P (0,m,0),而C 1(1,0,1),C (1,0,0),A 1(0,0,1), ∴CA 1=(-1,0,1),C 1P =(-1,m ,-1), ∴CA 1·C 1P =(-1)×(-1)+0×m +1×(-1)=0, ∴CA 1⊥C 1P .(6分)(2)设平面C 1PB 1的一个法向量n =(x ,y ,z ),则{n ·B 1C1=0n ·C 1P =0,即{ x -2y =0-x +my -z =0.令y =1,则n =(2,1,m -2),(9分) 而平面A 1B 1P 的一个法向量AC =(1,0,0), 依题意可知cos π6=|n ·AC ||n ||AC |=2(m -2)2+5=32,∴m =2+33(舍去)或m =2-33. ∴当AP =2-33时,二面角C 1-PB 1-A 1的大小为π6.(12分)19.解:(1)∵f ′(x )=-2x +a -1x =-2x 2+ax -1x(x >0),∴f (x )既有极大值又有极小值⇔方程2x 2-ax +1=0有两个不等的正实数根x 1,x 2. (3分)∴⎩⎨⎧Δ=a 2-8>0x 1+x 2=a 2>0x 1·x 2=12>0,∴a >22, ∴函数f (x )既有极大值又有极小值的充要条件是a >2 2.(6分)(2)f ′(x )=-2x +a -1x ,令g (x )=2x +1x ,则g ′(x )=2-1x 2,g (x )在[12,22)上递减,在(22,2]上递增.(8分)又g (12)=3,g (2)=92,g (22)=22,∴g (x )max =92,g (x )min =2 2.(10分)若f (x )在[12,2]单调递增,则f ′(x )≥0即a ≥g (x ),∴a ≥92.若f (x )在[12,2]单调递减,则f ′(x )≤0,即a ≤g (x ),∴a ≤2 2.所以f (x )在[12,2]上单调时,则a ≤22或a ≥92.(13分)20.解:(1)在盘山公路C 0C 1上任选一点D ,作DE ⊥平面M 交平面M 于E ,过E 作EF ⊥AB 交AB 于F ,连结DF ,易知DF ⊥C 0F .sin∠DFE =25,sin ∠DC 0F =14.∵DF =14C 0D ,DE =25DF ,∴DE =110C 0D ,所以盘山公路长度是山高的10倍,索道长是山高的52倍,所以每修建盘山公路1000米,垂直高度升高100米.从山脚至半山腰,盘山公路为10km.从半山腰至山顶,索道长2.5km.(6分)(2)设盘山公路修至山高x (0<x <2)km ,则盘山公路长为10x km ,索道长52(2-x )km.设总造价为y 万元,则y =(10x )2+100a +52(2-x )·22a =(10x 2+1-52x )a +102a .令y ′=10axx 2+1-52a =0,则x =1.当x ∈(0,1)时,y ′<0,函数y 单调递减;当x ∈(1,2)时,y ′>0,函数y 单调递增,∴x =1,y 有最小值,即修建盘山公路至山高1km 时,总造价最小,最小值为152a 万元.(13分)21.证明:(1)∵a n +1=f (a n )=a n 1+a n ,∴1a n +1=1+a n a n =1a n +1,即1a n +1-1a n=1,∴{1a n }是以2为首项,1为公差的等差数列. ∴1a n =2+(n -1),即a n =1n +1.(3分) (2)证明:∵a n +1≤a n 1+a n ,a n >0,∴1a n +1≥1+a n a n ,即1a n +1-1a n≥1.当n ≥2时,1a n -1a 1=(1a 2-1a 1)+(1a 3-1a 2)+…+(1a n -1a n -1)≥n -1,∴1a n ≥n +1,∴a n ≤1n +1. 当n =1时,上式也成立,∴a n ≤1n +1(n ∈N *),∴b n =a n n +1≤1(n +1)2<1n (n +1)=1n -1n +1, ∴b 1+b 2+…+b n <(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1<1.(8分)(3)∵a 1=12,a 2=g (a 1)=45,a 2-a 1=45-12=310>0.又∵a n +1-a n =2a n +12+a n -2a n -1+12+a n -1=3(a n -a n -1)(a n +2)(a n -1+2),由迭代关系可知,a n +1-a n >0,∴a n ≥a 1=12. 又∵(2+a n )(2+a n -1)=(2+2a n -1+12+a n -1)(2+a n -1)=5+4a n -1≥7, ∴3(2+a n )(2+a n -1)≤37, ∴|a n +1-a n |=3(2+a n )(2+a n -1)|a n -a n -1|≤37|a n -a n -1|, ∴|a n +1-a n |≤37|a n -a n -1|≤(37)2|a n -1-a n -2|≤…≤(37)n -1|a 2-a 1|=310(37)n -1.(13分)。

相关文档
最新文档