2-6第9课自定义函数教案

合集下载

函数教学教案设计

函数教学教案设计

函数教学教案设计一、教学目标:1. 理解函数的概念,掌握函数的表示方法。

2. 能够运用函数解决实际问题,提高学生的数学应用能力。

3. 培养学生的逻辑思维能力和团队协作能力。

二、教学内容:1. 函数的概念及定义:函数是一种数学关系,将一个集合(称为定义域)中的每个元素对应到另一个集合(称为值域)中的元素。

2. 函数的表示方法:列表法、解析法、图象法。

3. 函数的性质:单调性、奇偶性、周期性。

4. 实际问题中的应用:通过函数解决生活中的问题,如线性方程、成本利润等问题。

三、教学重点与难点:1. 重点:函数的概念、表示方法及性质。

2. 难点:函数的实际应用,尤其是复杂函数的解析和解题策略。

四、教学方法:1. 讲授法:讲解函数的基本概念、性质和表示方法。

2. 案例分析法:分析实际问题,引导学生运用函数解决难题。

3. 小组讨论法:分组讨论,培养学生的团队协作能力和逻辑思维能力。

4. 实践操作法:让学生通过自主探究、动手实践,加深对函数的理解。

五、教学过程:1. 导入:通过生活中的实例,如温度随时间的变化、商品价格等,引导学生思考函数的概念。

2. 新课讲解:讲解函数的定义、表示方法及性质,结合实例进行分析。

3. 案例分析:选取几个实际问题,让学生运用函数知识解决,巩固所学内容。

4. 小组讨论:分组讨论,让学生分享自己的解题思路,互相学习。

5. 课堂小结:总结本节课的主要内容,强调函数在实际生活中的应用。

6. 课后作业:布置适量作业,巩固所学知识,提高学生的自主学习能力。

7. 课程反馈:及时了解学生的学习情况,调整教学方法和策略。

六、教学评估与反馈:1. 课堂问答:通过提问的方式,检查学生对函数概念和表示方法的掌握情况。

2. 作业批改:对学生的课后作业进行批改,了解学生对函数性质和实际应用的掌握程度。

3. 小组讨论观察:观察学生在小组讨论中的表现,评估其团队协作和逻辑思维能力。

4. 课后访谈:与学生进行一对一的访谈,收集他们对函数学习的意见和建议。

函数教学教案设计

函数教学教案设计

函数教学教案设计一、教学目标1. 知识与技能:(1)理解函数的概念,掌握函数的表示方法;(2)了解函数的性质,学会运用函数解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳等方法,探索函数的性质;(2)培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣,提高学习数学的积极性;(2)培养学生运用数学知识解决实际问题的意识。

二、教学内容1. 函数的概念与表示方法:(1)函数的定义;(2)函数的表示方法(列表法、图象法、解析式法)。

2. 函数的性质:(1)单调性;(2)奇偶性;(3)周期性。

三、教学重点与难点1. 重点:(1)函数的概念与表示方法;(2)函数的性质。

2. 难点:(1)函数单调性的判断;(2)函数奇偶性的判断。

四、教学方法1. 情境教学法:通过生活实例引入函数概念,激发学生兴趣;2. 启发式教学法:引导学生观察、分析、归纳函数的性质;3. 案例教学法:分析典型例题,培养学生解决实际问题的能力。

五、教学过程1. 导入新课:(1)利用生活实例引入函数概念;(2)引导学生理解函数的表示方法。

2. 自主学习:(1)学生自主探究函数的性质;3. 课堂讲解:(1)讲解函数的单调性;(2)讲解函数的奇偶性。

4. 练习巩固:(1)学生独立完成课后习题;(2)教师选取典型题目进行讲解。

5. 课堂小结:(2)学生分享学习心得。

6. 课后作业:(1)巩固函数的概念与表示方法;(2)运用函数的性质解决实际问题。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。

2. 课后作业评价:检查学生作业完成情况,评估学生对课堂所学知识的掌握程度。

3. 单元测试评价:通过单元测试,了解学生对函数知识的综合运用能力。

七、教学策略1. 针对不同学生,因材施教,提供个性化指导;2. 创设生动活泼的课堂氛围,鼓励学生积极参与;3. 注重培养学生的逻辑思维能力和解决问题的能力。

函数课程教案设计方案模板

函数课程教案设计方案模板

一、教学目标1. 知识与技能目标:理解并掌握函数的概念、定义域、值域、单调性、奇偶性等基本性质;能够灵活运用函数的性质解决实际问题。

2. 过程与方法目标:通过小组合作、探究学习等方式,培养学生自主学习和解决问题的能力;引导学生运用数学思维分析问题,提高逻辑思维能力。

3. 情感态度与价值观目标:激发学生学习函数的兴趣,培养良好的数学学习习惯;培养学生的合作意识和团队精神。

二、教学重难点1. 教学重点:函数的概念、定义域、值域、单调性、奇偶性等基本性质。

2. 教学难点:函数性质的灵活运用,解决实际问题。

三、教学过程1. 导入新课(1)回顾已学知识:引导学生回顾平面直角坐标系、直线方程等相关知识。

(2)提出问题:什么是函数?函数有哪些性质?2. 探究新知(1)概念引入:通过实例引入函数的概念,引导学生理解函数的定义。

(2)性质探究:① 定义域和值域:引导学生分析函数的定义域和值域,并举例说明。

② 单调性:通过实例分析函数的单调性,引导学生理解单调递增和单调递减的概念。

③ 奇偶性:通过实例分析函数的奇偶性,引导学生理解奇函数和偶函数的概念。

3. 小组合作(1)分组讨论:将学生分成若干小组,每组讨论函数性质在实际问题中的应用。

(2)小组展示:每组选取代表进行展示,分享讨论成果。

4. 巩固练习(1)课堂练习:布置相关练习题,巩固学生对函数性质的理解。

(2)课堂点评:教师针对学生的练习情况进行点评,纠正错误,强化重点。

5. 总结反思(1)回顾本节课所学内容,总结函数的基本性质。

(2)引导学生反思:如何运用函数性质解决实际问题?四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、合作意识、解决问题的能力。

2. 作业完成情况:检查学生作业的完成质量,了解学生对函数性质的理解程度。

3. 实践应用:通过课后作业、实践活动等方式,检验学生对函数性质的实际运用能力。

五、教学资源1. 教学课件:制作函数性质的课件,便于学生直观理解。

八年级上册信息技术 -第9课 python 自定义函数 【教案】

八年级上册信息技术 -第9课 python 自定义函数 【教案】

第二单元 Python程序设计第9课自定义函数【教案】一、【教材分析】二、【教学流程】(课件出示猜成语游戏)【游戏导入】我们一起来玩一个看图猜成语的游戏吧,看哪个小组猜的最多。

【启发思考】每个成语背后说明了什么道理?【教师总结】成语展现了汉语表达巨大而丰富内涵的能力和语义融合能力。

短短几个汉字,往往包涵了一段历史、一个故事、一个典故、一个道理、一个哲理。

生活中,我们经常引用成语。

【函数引入】我们这节课要学习的函数就和成语一样,是一段语句的集合。

在python程序中,我们可以像引用成语一样,使用函数,完成复杂的问题。

出示课件,停留在活字印刷图片【类比启发】活字印刷是我国古代伟大的四大发明,印章一次制作,可以多次使用。

函数就像这些活字印章一样,一次定义多次使用。

【提出问题】什么是函数?函数是一种可以重复使用的程序功能模块。

④试一试:给sjx()函数设定参数,使其根据参数打印不同行数的三角形图案。

使用for 语句。

def sjx(n):for i in range(1,n):print("*"*i)例如:sjx(10)⑤议一议:在程序设计中,把一些功能设计成函数有什么作用。

【活动引入】数学课我们学过解方程,那我们能不能自定义函数来解决解方程的问题呢?做一做:在方程ax=b(a不等于0)中,请设计一个自定义函数,给定a 和b的值,即可算出x的值。

课件出示程序:【讲授】在函数内部的变量为“局部变量”,在函数外部的变量为“全局变量”。

例如上面代码中的x在函数外部,为全局变量,程序要修改全局变量,应在变量前添加global保留字。

【讲授】使用全局变量保存方程的计算结果时,虽实现了计算的效果,但对程序的模块化和重复使用上有所影响。

所以在函数内部一般不使用全局变量,可以定义局部变量x,获取得到的结果,最后使用“return x”语句作为函数的结果。

课件出示程序:【活动引入】在python中,列表等数据结构能够支持基本的数据统计应用,请利用自定义函数,设计一个程序,用函数功能实现以下功能。

函数定义及其功能教案

函数定义及其功能教案

函数定义及其功能教案教案标题:函数定义及其功能教案教案目标:1. 了解函数的定义及其在编程中的作用;2. 掌握函数的基本语法和使用方法;3. 能够编写简单的函数并应用于实际问题。

教学重点:1. 函数的定义和调用;2. 函数的参数和返回值;3. 函数的作用和功能。

教学难点:1. 如何正确定义和调用函数;2. 如何合理设计函数的参数和返回值;3. 如何灵活应用函数解决实际问题。

教学准备:1. 计算机或编程软件;2. 示例代码和练习题;3. 教学投影仪或黑板。

教学过程:一、导入新知识(5分钟)1. 引入函数的概念,解释函数在编程中的作用和意义;2. 提问:你在日常生活中遇到过什么需要重复执行的任务?如何解决这个问题?二、讲解函数的定义和调用(15分钟)1. 介绍函数的定义和调用的基本语法;2. 解释函数名、参数和返回值的含义;3. 演示如何定义和调用一个简单的函数;4. 提供示例代码,让学生模仿练习定义和调用函数。

三、讲解函数的参数和返回值(15分钟)1. 解释函数的参数和返回值的概念和作用;2. 演示如何定义带参数和返回值的函数;3. 提供示例代码,让学生模仿练习定义和调用带参数和返回值的函数。

四、讲解函数的作用和功能(15分钟)1. 介绍函数的作用和功能的概念;2. 解释如何通过函数来实现特定的功能;3. 提供示例代码,让学生模仿练习编写函数解决实际问题。

五、巩固练习(15分钟)1. 提供一些练习题,要求学生编写相应的函数来解决问题;2. 引导学生思考如何设计函数的参数和返回值来实现所需的功能;3. 鼓励学生相互交流和分享解题思路。

六、总结与展望(5分钟)1. 总结函数的定义及其功能;2. 强调函数在编程中的重要性和应用价值;3. 展望下一节课的内容。

教学延伸:1. 鼓励学生在课后继续练习和探索更多函数的应用;2. 提供更复杂的编程项目,让学生运用所学的函数知识来解决实际问题;3. 引导学生学习函数库和开源项目,拓宽他们的编程视野。

八年级上册信息技术-第9课 python自定义函数【课件】

八年级上册信息技术-第9课 python自定义函数【课件】
自定义函数,使用def 关键字。dpefrisnjtx((")*: ") print("**") print("***") print("****") print("*****") print("******")
给sjx()函数设定参数,使 其根据参数打印不同行数 的三角形图案。使用for 语句。
谢谢观看
玩一个看图猜成 语的游戏吧,看 哪个小组猜的最 多。
函数就和成语一样,是一段小程序。我们 可以像引用成语一样,使用函数,完成复 杂的问题。
函数就像这些活字印章一样, 一次定义多次使用。
Байду номын сангаас
函数是一种可以重复使 用的程序功能模块。
1.内置函数 2.自定义函数
print()、input()、range()等等都是 python内置的函数。
第9课 自定义函数
学习目标:
知识与技能目标: 1.了解函数的基本含义; 2.掌握自定义函数的语法。 过程与方法: 1.学会定义和使用自定义函数; 2.能够使用函数进行模块化程序设计。 情感态度价值观目标: 初步体验模块化程序设计的理念,能够将复杂的问题进行有条理的 分析,逐步解决问题。
情境导入: 我们一起来
计算列表平均值的参考程序
拓展延伸:
学校要举办一次演讲比赛, 为了确定参赛顺序,需要设 计一个简单的抽签程序,你 能设计一个抽签函数吗? 要求:用列表表示的编号或 人名作为函数的参赛,结果 能返回一个随机抽签的列表。
梳理总结
通过这节课的学习,你 有哪些收获?
函数在运行过程中有错 误,怎么修改、调试。 经验的积累。
自主探究

初中自定义函数教案

初中自定义函数教案

初中自定义函数教案教学目标:1. 理解函数的概念,掌握自定义函数的语法和基本用法。

2. 能够运用自定义函数解决实际问题,提高编程能力。

3. 培养学生的逻辑思维能力和创新意识。

教学内容:1. 函数的概念和作用2. 自定义函数的语法和基本用法3. 运用自定义函数解决实际问题教学过程:一、导入(5分钟)1. 引导学生回顾已学过的函数知识,例如:幂函数、指数函数、对数函数等。

2. 提问:我们已经学过很多函数,那么我们自己能否定义一个函数呢?二、新课讲解(15分钟)1. 讲解函数的概念和作用,强调函数是一种映射关系,将输入值映射到输出值。

2. 引入自定义函数的概念,讲解自定义函数的语法和基本用法。

例如:定义一个函数,输入一个整数,输出该整数的平方。

```def 函数名(参数):# 函数体return 返回值```3. 举例讲解如何运用自定义函数解决实际问题,如:计算两个数的和、求一个数的阶乘等。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固自定义函数的知识。

2. 练习题包括:定义一个函数,输入一个整数,输出该整数的平方;定义一个函数,输入两个整数,输出它们的和;定义一个函数,输入一个整数,输出它的阶乘等。

四、拓展与应用(15分钟)1. 引导学生思考:自定义函数有什么实际应用价值?2. 举例讲解如何运用自定义函数解决实际问题,如:计算员工工资、学生成绩统计等。

3. 让学生分组讨论,每组设计一个自定义函数,解决一个实际问题。

五、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结自定义函数的概念、语法和应用。

2. 强调自定义函数在编程中的重要性,鼓励学生在课后积极练习和探索。

教学评价:1. 课后作业:让学生完成几个自定义函数的练习题,检验他们对自定义函数的掌握程度。

2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评估他们的学习效果。

3. 拓展与应用:评估学生在分组讨论中的表现,检验他们能否将自定义函数应用于实际问题。

自定义函数教学设计

自定义函数教学设计

5.4.4“自定义函数”教学设计一.教学目标:1.知识目标a.自定义函数的定义b. 自定义函数的调用2.能力目标通过对自定义函数的定义和调用,培养学生分析问题和处理问题的能力。

二.教学重点、难点及突破方法:a.重点:自定义函数的定义与调用。

b.难点:自定义函数与子程序、过程的区别及联系。

c.突破方法:本节主要采用讲授法来达到突破重点及难点的教学目标。

三.教学内容及过程:1.提问a.模块化程序设计的三种模式。

b.函数的分类。

2.自定义函数的定义定义格式:FUNCTION <函数名>[PARAMETERS <形参表>]<语名序列>RETURN <返回值>说明:自定义函数的函数名不要同标准函数同名;自定义函数必须有且只有一个返回值。

3.自定义函数的调用调用格式:<函数名>([<实参表>])说明:在调用自定义函数时无论有没有实参,必须在<函数名>的后面加圆括号“()”。

4.举例[上机实训5-71]已知一个五边形由三个已知边长的三角形组成,编写程序求五边形的面积。

[提示:三角形的面积s=sqrt(p*(p-a)*(p-b)*(p-c)),其中a,b,c为三角形的三边之长,p=(qa+b+c)/2] Array [设计思路] 将一个五边形分割成三个三角形,五边形的面积=三个三角形的面积之和。

[程序代码:]******主程序5023.prgClearSum=area(4.4,5.1,7.8)+ area(7.8,6.3,8.6) +area(8.6,3.2,7.8)?”五边形的面积为:”+str(sum,6,2)Cancle********以下是自定义函数:Function areaPara a,b,cP=(a+b+c)/2s=sqrt(p*(p-a)*(p-b)*(p-c))return s5.布置作业a.简述自定义函数与过程、子程序的区别与联系?b.已知球的半径,编写自定义函数area1()计算球的体积?四.教学反思:对自定义函数的函数名不要采用标准函数的函数名要引导学生在自定义函数时多注意,否则会造成计算错误;对于自定义函数必须要有且只有一个返回值要与前面的过程、子程序相区别;在调用自定义函数时无论有没有实参,必须在<函数名>的后面加贺圆括号“()”最后布置作业。

初中函数优秀教案

初中函数优秀教案

初中函数优秀教案一、教学目标1. 让学生理解函数的概念,掌握函数的表示方法。

2. 培养学生运用函数解决实际问题的能力。

3. 引导学生体会数学与生活的联系,提高学生学习数学的兴趣。

二、教学内容1. 函数的概念:函数的定义、函数的性质。

2. 函数的表示方法:解析式、表格、图象。

3. 函数的应用:解决实际问题。

三、教学重点与难点1. 重点:函数的概念、函数的表示方法。

2. 难点:函数的应用。

四、教学过程1. 导入:(1)教师通过生活中的实例,如温度随时间的变化、路程与速度的关系等,引导学生思考数学中的函数概念。

(2)学生分享实例,教师总结函数的概念。

2. 新课讲解:(1)教师讲解函数的定义,引导学生理解函数的概念。

(2)学生通过示例,掌握函数的表示方法:解析式、表格、图象。

(3)教师讲解函数的性质,如单调性、奇偶性等。

3. 课堂练习:(1)学生自主完成练习题,巩固函数概念和表示方法。

(2)教师点评练习题,解答学生疑问。

4. 应用拓展:(1)教师提出实际问题,引导学生运用函数解决。

(2)学生分组讨论,展示解题过程和答案。

5. 总结:(1)教师引导学生总结本节课所学内容。

(2)学生分享学习收获。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 练习题完成情况:检查学生练习题的完成质量,评估学生对函数概念和表示方法的掌握程度。

3. 实际问题解决能力:评价学生在应用拓展环节解决实际问题的能力,考查学生对函数应用的理解和运用。

七、教学反思教师在课后对自己的教学进行反思,分析教学过程中的优点和不足,针对性地调整教学方法,以提高教学效果。

通过以上教案,教师可以有效地进行初中函数教学,帮助学生掌握函数的基本概念和表示方法,提高学生解决实际问题的能力,激发学生学习数学的兴趣。

函数的定义教案

函数的定义教案

函数的定义教案教案标题:函数的定义教案教案目标:1. 了解函数的基本概念和定义;2. 掌握函数的符号表示法和常用术语;3. 能够根据给定的情境,正确地定义函数;4. 能够通过图表、公式或文字描述等方式表示函数。

教学资源:1. 教科书或课件;2. 白板、黑板或投影仪;3. 函数定义的示例题目;4. 学生练习册。

教学步骤:引入活动:1. 引导学生回顾关于数学中的关系和映射的知识,强调关系和映射的特点和作用。

2. 提问:你们对函数有什么了解?请举例说明。

教学内容:1. 讲解函数的定义:函数是一种特殊的关系,它将一个集合的每个元素与另一个集合的唯一元素对应起来。

2. 解释函数的符号表示法:f: X → Y,表示从集合X到集合Y的函数f。

3. 介绍函数的常用术语:- 定义域:函数的输入值的集合,即X;- 值域:函数的输出值的集合,即Y;- 对应关系:函数中每个输入值与输出值的配对关系;- 图像:函数的对应关系在平面直角坐标系中的表示;- 垂直线检验:用于判断一个关系是否是函数的方法。

示例与练习:1. 给出一个函数的定义,让学生判断其定义域、值域和对应关系。

2. 给出一些图表或图像,让学生判断其是否表示了一个函数。

3. 提供一些实际问题的情境,让学生根据情境定义相应的函数。

总结与拓展:1. 总结函数的定义和常用术语。

2. 引导学生思考函数在数学和实际问题中的应用。

3. 提供更多的练习题目,巩固学生对函数定义的理解和运用能力。

评估与反馈:1. 布置一些练习题目,让学生独立完成。

2. 对学生的答案进行评估,并给予及时的反馈和指导。

3. 针对学生的理解情况,进行个别辅导和巩固训练。

教学延伸:1. 引导学生进一步探究函数的性质和特点,如奇偶性、单调性等。

2. 引导学生学习函数的图像、函数的运算和复合函数等内容。

3. 鼓励学生应用函数解决实际问题,培养数学建模能力。

注意事项:1. 教学过程中要注重启发学生思考,引导他们从具体问题中归纳出函数的定义和特点。

八年级上册信息技术 -第9课 python 自定义函数 【教案】

八年级上册信息技术 -第9课 python 自定义函数 【教案】

八年级上册信息技术 -第9课 python 自定义函数【教案】教学环节】教师活动:出示猜成语游戏,启发思考成语背后的道理和内涵。

学生活动:思考生活中常用的成语。

教师总结:成语是汉语表达能力和语义融合能力的体现。

函数引入】教师活动:出示活字印刷图片,类比函数的定义和使用。

学生活动:思考函数的定义和用途。

教师引导:提出问题,解释函数是一种可以重复使用的程序功能模块。

教师讲授:介绍内置函数和自定义函数的区别,以及自定义函数的定义方法。

自定义函数的使用】教师引导:让学生使用print()函数打印三角形图案,引出自定义函数的需求。

学生活动:思考如何定义自己的函数。

教师引导:教授自定义函数的定义方法,以及如何在函数中使用print()函数打印三角形图案。

参考代码:def sjx():print("*")print("**")print("***")试,设计一个函数,实现以下功能:1.输入一个字符串,返回该字符串中出现次数最多的字符及其出现次数。

2.输入一个字符串,返回该字符串中出现次数最少的字符及其出现次数。

3.输入一个字符串和一个字符,返回该字符在字符串中出现的次数。

4.输入一个字符串,返回该字符串中不重复的字符。

5.输入两个字符串,判断第一个字符串是否是第二个字符串的子串。

调用函数的方法为:1.mon_char()函数,传入字符串参数。

2.mon_char()函数,传入字符串参数。

3.调用count_char()函数,传入字符串和字符参数。

4.调用unique_char()函数,传入字符串参数。

5.调用is_substring()函数,传入两个字符串参数。

在程序设计中,把一些功能设计成函数可以提高程序的模块化和重复使用性。

函数可以将一段代码封装成一个独立的模块,使得代码更加清晰易懂,同时也方便在其他地方重复使用。

对于大型程序而言,函数的使用可以使得程序更加易于维护和调试。

自定义函数教学设计

自定义函数教学设计

自定义函数教学设计引言:自定义函数是编程中一个非常重要的概念,它允许开发者重复使用代码片段,提高代码的可读性和可维护性。

本篇教学设计将介绍自定义函数的概念、语法和用法,并提供一些实际的例子和练习,帮助学生真正掌握自定义函数的应用。

一、自定义函数概述(200字)1.1自定义函数的定义:自定义函数是一段可重复调用的代码块,可以接受参数并返回值。

1.2自定义函数的优势:提高代码的可读性、可维护性和复用性。

1.3自定义函数的语法:函数名、参数、返回值、函数体和调用。

二、自定义函数的语法和用法(400字)2.1 函数的定义:使用def关键字定义函数,例如:def greet(:。

2.2函数的参数:函数可以接受零个或多个参数,通过参数传递数据。

2.3 函数的返回值:函数可以返回一个值,使用return关键字。

2.4 函数的调用:使用函数名和参数的组合来调用函数,例如:greet(。

三、自定义函数示例和练习(400字)3.1示例:编写一个函数,实现两个数相加的功能,然后调用该函数完成两个数的相加。

3.2示例:编写一个函数,接受一个列表作为参数,返回该列表中的最大值。

3.3练习:编写一个函数,实现斐波那契数列的生成功能,接受一个整数作为参数,返回斐波那契数列中的第n个数。

四、自定义函数的注意事项和扩展应用(400字)4.1注意事项:函数定义前后要有合适的空白行,函数命名要符合命名规范,函数的参数和返回值类型要明确。

4.2扩展应用:递归函数、嵌套函数、高阶函数等。

五、教学方法和评估方式(200字)5.1教学方法:讲授理论知识,结合示例和练习进行实践,鼓励学生自主探索和讨论。

5.2评估方式:设计小组项目,要求学生运用自定义函数解决实际问题,进行作品展示和评估。

六、课堂实施计划(200字)6.1第一课时:介绍自定义函数的概念和优势,讲解自定义函数的语法和用法,通过示例演示函数的定义和调用。

6.2第二课时:继续讲解自定义函数的示例和练习,引导学生运用自定义函数解决实际问题。

初中函数定义的教案

初中函数定义的教案

初中函数定义的教案教学目标:1. 了解函数的概念,理解自变量与函数的关系。

2. 能够识别和区分常量与变量。

3. 能够运用函数的概念解决实际问题。

教学重点与难点:1. 重点:函数概念的形成过程。

2. 难点:正确理解函数的概念。

教学准备:1. 教学课件或黑板。

2. 实例素材。

教学过程:一、导入(5分钟)1. 引导学生回顾之前学习的内容,如变量、常量等。

2. 提问:同学们,你们认为什么是函数呢?二、新课讲解(20分钟)1. 讲解函数的定义:函数是一个数学概念,用来描述两个变量之间的依赖关系。

在一个函数中,有一个变量叫做自变量,它的取值决定了另一个变量,称为函数值。

2. 通过实例讲解函数的概念,如抛物线、温度与高度的关系等。

3. 强调函数的三个要素:自变量、函数值、关系。

三、课堂练习(15分钟)1. 让学生分组讨论,找出生活中的函数实例,并描述自变量与函数值的关系。

2. 每组选取一个实例,上台展示并解释。

四、巩固知识(10分钟)1. 发放练习题,让学生独立完成,检验对函数概念的理解。

2. 讲解练习题,纠正错误,解答疑惑。

五、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结函数的定义和特点。

2. 强调函数在实际生活中的应用价值。

六、作业布置(5分钟)1. 让学生课后查找有关函数的应用实例,加深对函数概念的理解。

2. 完成课后练习,巩固所学知识。

教学反思:本节课通过讲解、实例、练习等方式,让学生了解了函数的定义和特点,能够识别自变量与函数值的关系。

在课堂中,学生积极参与,表现出对函数概念的兴趣。

但在讲解练习题时,发现部分学生对函数概念的理解仍有所欠缺,需要在今后的教学中加强巩固。

函数课程教案设计模板

函数课程教案设计模板

一、课程名称高中数学《函数》二、教学目标1. 知识与技能:(1)理解函数的基本概念,掌握函数的定义域、值域、单调性、奇偶性等基本性质。

(2)学会运用函数的性质解决实际问题。

(3)掌握函数图象的绘制方法,能根据函数的性质判断图象特征。

2. 过程与方法:(1)通过观察、分析、归纳等方法,引导学生主动探索函数的性质。

(2)通过小组合作、讨论交流等方式,培养学生的合作意识和团队精神。

(3)通过实际问题,提高学生的应用能力和创新能力。

3. 情感态度与价值观:(1)激发学生学习数学的兴趣,培养学生严谨、求实的科学态度。

(2)培养学生对数学知识的热爱,提高学生的数学素养。

(3)培养学生的审美观念,提高学生的审美能力。

三、教学重难点1. 教学重点:函数的基本概念、性质及图象绘制。

2. 教学难点:函数性质的综合运用及函数图象的判断。

四、教学过程(一)导入新课1. 复习旧知:回顾初中阶段学习的函数知识,如正比例函数、反比例函数等。

2. 引入新课:通过实际问题,引导学生思考如何用数学语言描述函数关系,从而引出函数的定义。

(二)新课讲授1. 函数的基本概念:(1)定义域:函数中自变量的取值范围。

(2)值域:函数中因变量的取值范围。

(3)函数的表示方法:列表法、解析法、图象法。

2. 函数的性质:(1)单调性:函数在定义域内,随着自变量的增大(或减小),因变量也增大(或减小)的性质。

(2)奇偶性:函数图象关于原点对称的性质。

(3)周期性:函数图象在一定的区间内重复出现的性质。

3. 函数图象的绘制:(1)列表法:选取定义域内的若干个自变量值,计算对应的函数值,得到一组坐标点,绘制函数图象。

(2)解析法:根据函数的解析式,确定函数图象的特征,绘制函数图象。

(3)图象法:根据函数的性质,如单调性、奇偶性、周期性等,判断函数图象的特征,绘制函数图象。

(三)课堂练习1. 练习函数的基本概念和性质。

2. 练习函数图象的绘制。

(四)课堂小结1. 回顾本节课所学内容,强调重点和难点。

函数课程教案设计模板范文

函数课程教案设计模板范文

一、教学目标1. 知识与技能:掌握函数的定义、性质及图像,能够运用函数知识解决实际问题。

2. 过程与方法:通过小组合作、探究式学习,培养学生的观察、分析、归纳和推理能力。

3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生严谨、求实的科学态度。

二、教学重难点1. 教学重点:函数的定义、性质及图像。

2. 教学难点:函数性质的应用及图像的绘制。

三、教学过程1. 导入新课(1)复习回顾:回顾上节课所学内容,提问学生函数的定义及性质。

(2)提出问题:如何用数学语言描述函数的图像?2. 新课讲授(1)函数的定义教师引导学生通过观察实例,总结出函数的定义:对于定义域内的任意一个数x,都有唯一确定的数y与之对应,那么y是x的函数,记作y=f(x)。

(2)函数的性质教师讲解函数的性质,包括奇偶性、周期性、单调性、有界性等。

(3)函数图像教师讲解函数图像的绘制方法,包括坐标轴的确定、关键点的确定、图像的绘制等。

3. 小组合作探究(1)分组:将学生分成若干小组,每组选取一个代表。

(2)任务:每个小组选择一个函数,分析其性质,绘制图像。

(3)汇报:各小组汇报自己的探究结果,其他小组进行评价和补充。

4. 总结与拓展(1)总结:回顾本节课所学内容,强调函数的定义、性质及图像的重要性。

(2)拓展:引导学生思考如何将函数知识应用于实际问题,如物理学、经济学等领域。

四、课后作业1. 完成课后练习题,巩固所学知识。

2. 查阅相关资料,了解函数在各个领域的应用。

3. 选择一个实际问题,运用函数知识进行解决。

五、教学反思1. 教学过程中,关注学生的参与度,激发学生的学习兴趣。

2. 引导学生通过小组合作、探究式学习,提高学生的分析、归纳和推理能力。

3. 注重教学方法的多样性,结合实际生活,让学生感受到函数的实用性。

4. 及时总结教学效果,调整教学策略,提高教学质量。

中职教育二年级上学期电子与信息《自定义函数》教学设计

中职教育二年级上学期电子与信息《自定义函数》教学设计
Print(“happy birthday to”,person)
这个person究竟是叫什么名字呢?
我们可以任意输入他。请同学们快速完成这个输入语句
Person=input(“请输入人名”)
学生倾听、理解
学生思考,完成练习
让学生明确学生内容和学习要求,树立正确的学习目标
(三)课堂练习
1.下面,请大家完善这个程序
二、学情分析
本班是3+2班,学生基础比较好,理解能力较好,所以可以适当加深一点难度。
三、教学目标:
(一)知识目标:
1.认识自定义函数的概念
2.熟悉自定义函数的应用场景
3. 会编写简单的自定义函数
(二)能力目标:(专业能力、方法能力、社会能力)
1.培养学生仔细观察能力
2.掌握程序设计的学习方法
3.会编写简单的自定义函数
由学生提出问题
让学生由熟悉的学科知识过渡到本课课程,拉近学生对课程的距离,消除学习上的恐惧心理。
(二)新授课
前面我们学习了函数的基本输入输出的方法。现在我们尝试用程序编写生日歌。
我们先一起来唱一唱生日歌吧。
Happy birthday to you!。。。。。
请大家思考完成。
Print(“happy birthday to you”)
(三)职业素养:(情感体验、态度和敬业精神)
1.培养学生自主学习能力
2.培养团队合作精神
3.培养学生程序思维
四、教学重点及难点
重点:自定义函数的概念和应用
难点:编写简单的自定义函数
五、教学过程
教师活动
学生活动
设计意图
(一)导入
我国古代伟大的四大发明之一,印章制作一活字印刷术是次,就可以多次使用。咱们程序中也能像活字印刷术一样,定义编写一次,供多次使用。

9-自定义函数学案

9-自定义函数学案

高中信息技术《算法与程序设计》模块学案
自定义函数
1、编写求两个整数m,n最大公约数的函数过程f(m,n);主调程序在两个文本框输入数据,单
击“显示”按钮,调用函数f(m,n),在右边标签框显示结果,程序运行结果如下图所示。

最大公约数:对于a和b,如果a是较大的数,b是较小的数,则把a除以b,如果能整除,则b为这两个数的最小公约数,否则,把a除以b的余数作为除数,b再与之相除,如此循
环,直到整除,该除数即为最大公约数。

例如:100和60,100除以60,余数为40,60除以40,余数为20,40除以20,余数为0,则20为两者的最大公约数。

2、编写求两个整数m,n最小公倍数的函数过程k(m,n);主调程序在两个文本框输入数据,单击“显示”按钮,调用函数k(m,n),在右边标签框显示结果,程序运行结果如下图所示。

最小公倍数:对于a和b,如果a是较大的数,b是较小的数,则判断a是否能被b整除,如果能整除,则a为这两个数的最小公倍数,否则,把a乘以2,再继续判断能否被b整除,如不能,再乘以3,如此循环,直到整除,该结果即为最大公约数。

例如:100和60,100不能被60整除,100乘以2,不能被60整除,继续乘以3,能被60整除,所以300为为两者的最小公倍数。

函数课件教案设计方案模板

函数课件教案设计方案模板

一、教学目标1. 知识与技能:理解函数的概念,掌握函数的表示方法,能够运用函数描述实际问题。

2. 过程与方法:通过实例分析,培养学生观察、分析、归纳和总结的能力。

3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生严谨、求实的科学态度。

二、教学重难点1. 教学重点:函数的概念,函数的表示方法。

2. 教学难点:函数在实际问题中的应用。

三、教学准备1. 教学课件:函数的概念、函数的表示方法、函数在实际问题中的应用等。

2. 实例材料:生活中的函数实例,如温度、时间、距离等。

3. 练习题:相关习题,用于巩固所学知识。

四、教学过程(一)导入1. 提问:同学们,生活中有哪些现象可以用数学语言来描述?2. 引导学生思考,如温度、时间、距离等,引出函数的概念。

(二)新授课1. 函数的概念(1)通过实例分析,引导学生理解函数的定义。

(2)讲解函数的表示方法,如列表法、解析法、图象法。

(3)展示函数实例,如y=2x,y=x^2等,让学生体会函数的表示方法。

2. 函数在实际问题中的应用(1)列举生活中的函数实例,如温度、时间、距离等。

(2)引导学生分析实例中的函数关系,如y=3x表示距离与时间的关系。

(3)讲解函数在实际问题中的应用,如预测、优化等。

(三)巩固练习1. 让学生完成相关习题,巩固所学知识。

2. 教师巡视指导,解答学生疑问。

(四)课堂小结1. 回顾本节课所学内容,强调函数的概念、表示方法及实际应用。

2. 引导学生总结学习心得,提高数学素养。

五、作业布置1. 完成课后习题,巩固所学知识。

2. 选择生活中的实例,尝试用函数描述,并写出解析式。

六、教学反思1. 本节课是否达到了教学目标?2. 学生对函数的概念、表示方法及实际应用是否掌握?3. 教学过程中是否存在不足,如何改进?注:以上为函数课件教案设计方案模板,具体内容可根据实际情况进行调整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9课自定义函数
邹城市鲍店煤矿学校沈玉新
教学目标:
1、了解函数的基本含义,掌握自定义函数的语法。

2、学会定义和使用自定义函数,能够使用函数进行模块化程序设计。

3、初步体验模块化程序设计的理念,能够将复杂的问题进行有条理的分析,逐步解决问题。

教学重点:自定义函数的语法及定义
教学难点:自定义函数的基本含义
教学方法:自主探究、小组互助、任务驱动
教学准备:课件、素材、学案
教学过程:
(一)教学引入
解决复杂问题感觉很困难,可分解成多个简单的小问题,解决起来就容易了。

这是一种解决问题的策略,这也可应用到编程上来。

(二)教学内容
活动一:自定义函数
1、编写输出打印“三角形”图形的程序。

2、如何自定义函数?自定义函数的语法格式。

如何调用?
3、自定义一个输出打印三角形图形的函数sjx(),并调用。

4、设置一个带参数的输出三角形图形的函数sjx2(),并调用输出10行三角形图形。

def sjx(n):
for i in range(1,n):
print(“*”*)
活动二、函数的返回值
1、定义两个参数的函数,解一元一次方程,ax+b=0。

2、全局变量与局部变量的定义与区别。

活动三:基本统计
通过输入数据建立列表,并计算列表的平均数。

1、定义getNum()函数,以输入的方式获得一组数据。

2、定义mean()函数,计算列表的平均值。

.
实践与创新:
设计一个简单的抽签程序。

评价:
谈收获:。

相关文档
最新文档