九年级上册 二次函数单元达标训练题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册

二次函数单元达标训练题(Word版含答案)

一、初三数学二次函数易错题压轴题(难)

1.已知,抛物线y=-

1

2

x2 +bx+c交y轴于点C(0,2),经过点Q(2,2).直线y=x+4分别交x轴、y轴于点B、A.

(1)直接填写抛物线的解析式________;

(2)如图1,点P为抛物线上一动点(不与点C重合),PO交抛物线于M,PC交AB于N,连MN.

求证:MN∥y轴;

(3)如图,2,过点A的直线交抛物线于D、E,QD、QE分别交y轴于G、H.求证:CG •CH 为定值.

【答案】(1)2

1

2

2

y x x

=-++;(2)见详解;(3)见详解.

【解析】

【分析】

(1)把点C、D代入y=-

1

2

x2 +bx+c求解即可;

(2)分别设PM、PC的解析式,由于PM、PC与抛物线的交点分别为:M、N.,分别求出M、N的代数式即可求解;

(3)先设G、H的坐标,列出QG、GH的解析式,得出与抛物线的交点D、E的横坐标,再列出直线AE的解析式,算出它与抛物线横坐标的交点方程.运用韦达定理即可求证.【详解】

详解:(1)∵y=-

1

2

x2 +bx+c过点C(0,2),点Q(2,2),

2

1

222

2

2

b c

c

-⨯++

⎪=

,

解得:1

2b c =⎧⎨=⎩

. ∴y=-

12

x 2

+x+2; (2) 设直线PM 的解析式为:y=mx ,直线PC 的解析式为:y=kx+2

由2

2122y kx y x x =+⎧⎪

⎨=-++⎪⎩

12

x 2

+(k-1)x=0, 解得:120,22x x k ==-, x p =22p x k =-

由2

1=22y mx y x x =⎧⎪⎨-++⎪⎩

12

x 2

+(m-1)x-2=0, ∴124b

x x a

⋅=-

=- 即x p•x m =-4,

∴x m =4p x -=21

k -.

由24y kx y x =+⎧⎨=+⎩

得x N =

2

1

k -=x M , ∴MN ∥y 轴.

(3)设G (0,m ),H (0,n ). 设直线QG 的解析式为y kx m =+, 将点()2,2Q 代入y kx m =+ 得22k m =+

22

m

k -∴=

∴直线QG 的解析式为22

m

y x m -=

+ 同理可求直线QH 的解析式为22

n

y x n -=

+; 由222122m y x m y x x -⎧=+⎪⎪⎨⎪=-++⎪⎩

221

=222

m x m x x -+-++ 解得:122,2x x m ==-

2D x m ∴=-

同理,2E x n =-

设直线AE 的解析式为:y=kx+4,

由2

4122y kx y x x =+⎧⎪⎨=-++⎪⎩

, 得

12

x 2

-(k-1)x+2=0 124b

x x a

∴⋅=-

= 即x D x E =4,

即(m-2)•(n-2)=4 ∴CG•CH=(2-m )•(2-n )=4.

2.图①,二次函数y =ax 2+bx +c (a ≠0)的图象经过点A (﹣1,0),并且与直线y =12

x ﹣2相交于坐标轴上的B 、C 两点,动点P 在直线BC 下方的二次函数的图象上.

(1)求此二次函数的表达式;

(2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值;

(3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ的解析式及Q点坐标;若不存在,请说明理由.

【答案】(1)y=1

2

x2﹣

3

2

x﹣2;(2)﹣1<0,故S有最大值,当x=2时,S的最大值

为4;(3)Q的坐标为(5

3

,﹣

28

9

)或(﹣

11

3

92

9

).

【解析】

【分析】

(1)根据题意先求出点B、C的坐标,进而利用待定系数法即可求解;

(2)由题意过点P作PH//y轴交BC于点H,并设点P(x,1

2

x2﹣

3

2

x﹣2),进而根据S

=S△PHB+S△PHC=1

2

PH•(x B﹣x C),进行计算即可求解;

(3)根据题意分点Q在BC下方、点Q在BC上方两种情况,利用解直角三角形的方法,求出点H的坐标,进而分析求解.

【详解】

解:(1)对于直线y=1

2

x﹣2,

令x=0,则y=﹣2,

令y=0,即1

2

x﹣2=0,解得:x=4,

故点B、C的坐标分别为(4,0)、(0,﹣2),抛物线过点A、B两点,则y=a(x+1)(x﹣4),

将点C的坐标代入上式并解得:a=1

2

故抛物线的表达式为y=1

2

x2﹣

3

2

x﹣2①;

(2)如图2,过点P作PH//y轴交BC于点H,

相关文档
最新文档