东华大学操作系统存储管理实验报告

合集下载

操作系统存储管理实验报告.doc

操作系统存储管理实验报告.doc

操作系统存储管理实验报告实验5存储管理第一,实验的目的1,加深对操作系统存储管理的理解2,可以过度模拟页面调试算法,加深对操作系统内存管理的理解二、一般设计思想、环境语言、工具等一般设计思想:1.编写一个函数来计算和输出以下算法的命中率:(1) OPT页面替换算法OPT选定的过时页面是已经转移到内存中并且将来不会被使用或者在最长时间内不会被访问的页面。

因此,如何找到这样的页面是算法的关键。

每页可以设置一个步长变量。

它的初始值是一个足够大的数字。

对于不在内存中的页面,其值将重置为零。

对于内存中的页面,其值被重置为当前访问的页面与页面首次出现时的距离。

因此,该值越大,在最长时间内不会被访问的页面就越多,并且可以选择它作为交换页面。

(2)先进先出页面替换算法先进先出总是选择首先进入内存的页面进行清除,因此可以设置先进先出的繁忙页面帧队列,新转移到内存的页面挂在队列的尾部,当没有空闲页面帧时,可以从队列的头部取出下一个页面帧作为空闲页面帧,然后再转移到需要的页面。

(3) LRU页面替换算法LRU 根据转移到存储器中的页面的使用做出决定。

它使用“最近的过去”作为“最近的未来”的近似,并选择最长时间没有使用的页面进行删除。

该算法主要通过页面结构中的访问时间来实现。

时间记录页面的最后访问时间。

因此,当需要删除一个页面时,选择时间值最小的页面,即最近最长时间没有使用的页面进行删除。

(4) LFU页面替换算法LFU要求每个页面配置一个计数器(即页面结构中的计数器)。

一旦页面被访问,计数器的值将增加1。

当需要替换一个页面时,将选择计数器值最小的页面,即存储器中访问次数最少的页面进行清除。

⑤NUR页面替换算法NUR要求为每个页面设置一个访问位(访问位仍然可以由页面结构中的计数器表示)。

当页面被访问时,其访问位计数器被设置为1。

当需要页面替换时,替换算法从替换指针(最初指向第一页)开始顺序检查内存中的每一页。

如果其访问位为0,则选择页面进行替换,否则,替换指针向下移动以继续向下搜索。

操作系统存储器管理实验报告.doc

操作系统存储器管理实验报告.doc

一目的与要求(1) 请求页式虚存管理是常用的虚拟存储管理方案之一。

(2) 通过请求页式虚存管理中对页面置换算法的模拟,加深理解虚拟存储技术的特点。

(3) 模拟页式虚拟存储管理中硬件的地址转换和缺页中断,并用先进先出调度算法(FIFO)处理缺页中断.二实验内容或题目(1)本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。

(2)虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。

(3)要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。

(4)程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。

三实验步骤与源程序(1)实验步骤1、理解好相关实验说明。

2、根据实验说明,画出相应的程序流程图。

3、按照程序流程图,用C语言编程并实现。

(2)流程图如下:①虚页和实页结构在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。

pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。

time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。

在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。

pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。

next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。

②程序流程图如下:(3)源程序如下:#include<iostream.h>#define M 40int N;struct Pro{int num,time;};int Input(int m,Pro p[M]){cout<<"请输入实际页数:";do{cin>>m;if(m>M)cout<<"数目太多,请重试"<<endl;else break;}while(1);//cout<<"请输入各页面号:";for(int i=0;i<m;i++){cout<<"第"<<i<<"个页面号为:";cin>>p[i].num;p[i].time=0;}return m;}void print(Pro *page1)//打印当前的页面{Pro *page=new Pro[N];page=page1;for(int i=0;i<N;i++)cout<<page[i].num<<" ";cout<<endl;}int Search(int e,Pro *page1 ){Pro *page=new Pro[N];page=page1;for(int i=0;i<N;i++)if(e==page[i].num)return i; return -1;}int Max(Pro *page1){Pro *page=new Pro[N];page=page1;int e=page[0].time,i=0;while(i<N)//找出离现在时间最长的页面{if(e<page[i].time)e=page[i].time;i++;}for( i=0;i<N;i++)if(e==page[i].time)return i;return -1;}int Compfu(Pro *page1,int i,int t,Pro p[M]){Pro *page=new Pro[N];page=page1;int count=0;for(int j=i;j<M;j++){if(page[t].num==p[j].num )break;else count++;}return count;}int main(){cout<<"可用内存页面数:";cin>>N;Pro p[M];Pro *page=new Pro[N];char c;int m=0,t=0;float n=0;m=Input(m,p);do{for(int i=0;i<N;i++)//初试化页面基本情况{page[i].num=0;page[i].time=2-i;}i=0;cout<<"************************"<<endl;cout<<"*****f:FIFO页面置换*****"<<endl;cout<<"*****l:LRU页面置换******"<<endl;cout<<"*****o:OPT页面置换******"<<endl;cout<<"*****按其它键结束*******"<<endl;cout<<"************************"<<endl;cout<<"请选择操作类型(f,l,o):";cin>>c;if(c=='f')//FIFO页面置换{n=0;cout<<"页面置换情况: "<<endl;while(i<m){if(Search(p[i].num,page)>=0)i++;//找到相同的页面else{if(t==N)t=0;else{n++;//page[t].num=p[i].num;print(page);t++;}}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl; }if(c=='l')//LRU页面置换{ n=0;cout<<"页面置换情况: "<<endl;while(i<m){int k;k=t=Search(p[i].num,page);if(t>=0)page[t].time=0;else{n++;t=Max(page);page[t].num=p[i].num;page[t].time=0;}if(t==0){page[t+1].time++;page[t+2].time++;}if(t==1){page[2].time++;page[0].time++;}if(t==2){page[1].time++;page[0].time++;}if(k==-1) print(page); i++;}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl;}if(c=='o')//OPT页面置换{n=0;while(i<m){if(Search(p[i].num,page)>=0)i++;else{int temp=0,cn;for(t=0;t<N;t++){if(temp<Compfu(page,i,t,p)){temp=Compfu(page,i,t,p); cn=t;}}page[cn]=p[i];n++;print(page);i++;}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl; }}while(c=='f'||c=='l'||c=='o');return 0;});四测试数据与实验结果五结果分析与实验体会通过上机,我了解了许多关于操作系统的专业知识。

存储管理实验报告

存储管理实验报告

存储管理实验报告存储管理实验报告引言:存储管理是计算机系统中非常重要的一部分,它负责管理计算机系统中的存储资源,包括内存和外存。

合理的存储管理能够提高计算机系统的性能和效率,保证系统的稳定运行。

本次实验旨在通过实践操作,深入了解存储管理的原理和方法,并通过实验结果分析,探讨存储管理的优化策略。

一、实验目的本次实验的主要目的是通过实践操作,深入了解存储管理的原理和方法,并通过实验结果分析,探讨存储管理的优化策略。

具体目标如下:1. 了解存储管理的基本概念和原理;2. 掌握存储管理的常用方法和技术;3. 分析实验结果,探讨存储管理的优化策略。

二、实验环境本次实验使用了一台配置较高的计算机,具备较大的内存和高速的硬盘。

实验环境如下:1. 操作系统:Windows 10;2. 内存:16GB;3. 硬盘:1TB。

三、实验过程1. 内存管理实验在内存管理实验中,我们使用了一段较大的程序代码进行测试。

首先,我们通过编程语言将程序代码写入内存中,然后通过内存管理技术将程序代码加载到内存的合适位置。

在加载过程中,我们使用了分页和分段两种常用的内存管理技术,并比较了它们的性能差异。

实验结果显示,分页技术相对来说更加高效,能够更好地利用内存资源,提高系统的运行速度。

2. 外存管理实验在外存管理实验中,我们模拟了大文件的读写操作。

首先,我们将一个较大的文件写入硬盘中,然后通过外存管理技术将文件加载到内存中进行读取。

在加载过程中,我们使用了磁盘调度算法和文件系统管理技术,并比较了它们的性能差异。

实验结果显示,磁盘调度算法的选择对系统的读写速度有较大的影响,而文件系统的合理管理能够提高文件的存取效率。

四、实验结果分析通过对实验结果的分析,我们可以得出以下结论:1. 内存管理中,分页技术相对于分段技术更加高效,能够更好地利用内存资源,提高系统的运行速度;2. 外存管理中,磁盘调度算法的选择对系统的读写速度有较大的影响,合理选择磁盘调度算法能够提高系统的性能;3. 文件系统的合理管理能够提高文件的存取效率,减少文件的碎片化,提高系统的整体性能。

存储管理 实验报告

存储管理 实验报告

存储管理实验报告存储管理实验报告一、引言存储管理是计算机系统中一个非常重要的组成部分,它负责管理计算机内存的分配、回收和保护。

本次实验旨在通过实际操作,深入理解存储管理的原理和技术,并探索不同的存储管理策略对系统性能的影响。

二、实验目的1. 理解存储管理的基本概念和原理;2. 掌握常见的存储管理算法和策略;3. 分析不同存储管理策略对系统性能的影响。

三、实验环境本次实验使用了一台配置较低的个人电脑,操作系统为Windows 10,内存容量为4GB。

四、实验内容1. 静态分区分配算法静态分区分配算法是最简单的存储管理算法之一。

在实验中,我们使用了最先适应算法(First Fit)和最佳适应算法(Best Fit)进行静态分区分配。

通过对比两种算法的分配效果,我们发现最佳适应算法在减少内存碎片方面表现更好。

2. 动态分区分配算法动态分区分配算法是一种更加灵活的存储管理策略。

在实验中,我们实现了首次适应算法(First Fit)和最佳适应算法(Best Fit)两种动态分区分配算法。

通过观察不同算法的分配效果,我们发现首次适应算法在处理大量小内存块时效率较高,而最佳适应算法在处理大内存块时表现更好。

3. 页面置换算法页面置换算法是虚拟内存管理中的重要组成部分。

在实验中,我们实现了最近最少使用(LRU)算法和先进先出(FIFO)算法两种页面置换算法。

通过模拟内存不足的情况,我们观察了不同算法对系统性能的影响。

结果显示,LRU算法在减少页面置换次数方面比FIFO算法更为优秀。

五、实验结果与分析通过本次实验,我们对不同的存储管理算法和策略进行了实际操作,并观察了它们对系统性能的影响。

实验结果显示,最佳适应算法在静态分区分配中表现更好,而首次适应算法在动态分区分配中效率更高。

在页面置换算法中,LRU 算法在减少页面置换次数方面更为出色。

六、实验总结本次实验通过实际操作,深入理解了存储管理的原理和技术,并探索了不同的存储管理策略对系统性能的影响。

存储管理实训报告

存储管理实训报告

一、实训目的1. 通过本次实训,加深对存储管理方案的理解,掌握虚拟存储器的管理方式,熟悉虚存管理的各种页面淘汰算法。

2. 通过编写和调试地址转换过程的模拟程序,加强对地址转换过程的理解。

3. 培养编程能力和问题解决能力,提高实际操作水平。

二、实训环境1. 操作系统:Windows 102. 编程语言:C++3. 开发环境:Visual Studio 20194. 硬件配置:CPU:Intel Core i5,内存:8GB,硬盘:256GB SSD三、实训原理1. 虚拟存储器:虚拟存储器是一种将内存与外存相结合的存储管理技术,可以扩大程序可访问的存储空间。

2. 页面置换算法:页面置换算法是虚拟存储器中的一种内存管理技术,用于确定在内存中保留哪些页面,淘汰哪些页面。

3. 地址转换过程:地址转换过程是将逻辑地址转换为物理地址的过程。

四、实训内容1. 设计一个请求页式存储管理方案,并编写模拟程序实现。

2. 产生一个需要访问的指令地址流,其中50%的指令是顺序执行的,25%的指令均匀地散布在前地址部分,25%的地址是均匀地散布在后地址部分。

3. 指定内存页表的最大长度,并对页表进行初始化。

4. 每访问一个地址时,计算该地址所在的页的页号,然后查页表,判断该页是否在主存。

5. 如果该页已在主存,则打印页表情况;如果该页不在主存,则采用FIFO页面淘汰算法淘汰一页,并将该页在页表中抹去。

6. 编写代码实现上述功能,并进行测试。

五、实训过程1. 确定虚拟存储器的大小、内存大小、页面大小和页面置换算法。

2. 设计数据结构存储页面信息,包括页号、是否在内存中、是否被修改等。

3. 编写函数实现地址转换过程,包括计算页号、判断页是否在内存中等。

4. 编写FIFO页面淘汰算法,淘汰不在内存中的页面。

5. 编写测试程序,生成指令地址流,并调用相关函数进行测试。

六、实训结果1. 成功实现了请求页式存储管理方案,并编写了相应的模拟程序。

操作系统:实验4 存储管理(实验报告)

操作系统:实验4 存储管理(实验报告)

欢迎共阅班级: 姓名: 学号:5) 当前计算机的实际内存大小为:______________________________________ 分析程序4-1,请回答问题:1) 理论上每个Windows 应用程序可以独占的最大存储空间是:_____________2) 程序中,用于检查系统中虚拟内存特性的API 函数是:__________________ 4.2 Windows 虚拟内存本节实验的目的是:实验4存储管理1) 通过实验了解Windows内存的使用,学习如何在应用程序中管理内存,体会Windows应用程序内存的简单性和自我防护能力。

2) 学习检查虚拟内存空间或对其进行操作;3) 了解Windows的内存结构和虚拟内存的管理,进而了解进程堆和Windows为使用内存而提供的一些扩展功能。

1. 工具/准备工作在开始本节实验之前,请回顾教材的相关内容。

需要准备一台运行Windows系统的计算机,且安装了C/C++编译器。

2. 实验内容与步骤将系统当前的保留区(reserved)虚拟地址空间填入表4.3中。

表4.3 实验记录2) 根据运行结果,请简单描述程序运行的流程:_________________________________________________________________________________________________________________________________________的程序段,该段程序试图通过VirtualAlloc()函数,然后利用物理备用内存将整个块分配到虚拟内存空间的任何位置。

这种技术只对拥有1GB以上的RAM且都有换页文件的计算机可行。

从运行结果看,这种技术成功了吗?_________________。

3) 程序中说明为___________________________________________________的程序段,该段程序利用VirtualAlloc()函数,如果函数成功,则获得大块内存,但不将任何物理内存调配到此块中。

操作系统存储管理实验报告

操作系统存储管理实验报告

操作系统存储管理实验报告一、实验目的本次实验的目的是通过编写一段程序,实现对内存的分配和回收操作,并验证算法的正确性和性能。

二、实验内容1.实现首次适应算法首次适应算法是一种动态分配的内存管理算法,通过从低地址往高地址内存块,找到第一个满足需求的空闲块进行分配。

具体实现过程如下:(1)初始化内存空间,设置内存块的大小和地址范围;(2)编写一个函数,实现内存的分配操作,根据需求大小找到第一个合适的空闲块,并在其前后设置相应的标志位;(3)编写一个函数,实现内存的回收操作,根据释放块的地址,将其前后的标志位进行合并;(4)模拟应用程序的运行,测试内存的分配和回收操作。

2.实现最佳适应算法最佳适应算法是一种动态分配的内存管理算法,通过整个内存空间,找到最小的满足需求的空闲块进行分配。

具体实现过程如下:(1)初始化内存空间,设置内存块的大小和地址范围;(2)编写一个函数,实现内存的分配操作,遍历整个内存空间,找到满足需求且大小最小的空闲块进行分配;(3)编写一个函数,实现内存的回收操作,根据释放块的地址,将其前后的标志位进行合并;(4)模拟应用程序的运行,测试内存的分配和回收操作。

三、实验结果1.首次适应算法经过测试,首次适应算法能够正确地进行内存的分配和回收操作,并且算法的性能良好。

尽管首次适应算法在分配过程中可能会产生碎片,但是由于它从低地址开始,可以在较短的时间内找到满足需求的空闲块。

在实际应用中,首次适应算法被广泛采用。

2.最佳适应算法经过测试,最佳适应算法能够正确地进行内存的分配和回收操作,并且算法的性能较好。

最佳适应算法会整个内存空间,找到大小最小的满足需求的空闲块。

因此,在分配过程中不会产生很多的碎片,但是算法的执行时间较长。

四、实验总结通过本次实验,我们成功地实现了首次适应算法和最佳适应算法,并对算法的正确性和性能进行了验证。

两种算法在内存的分配和回收过程中都表现出良好的性能,可广泛应用于实际场景中。

操作系统存储管理实验报告总结

操作系统存储管理实验报告总结

操作系统存储管理实验报告总结篇一:东华大学操作系统存储管理实验报告东华大学计算机学院操作系统实验报告实验名称:存储管理问题姓名:姜元杰学号:111310228班级:计算机1102 指导老师:李继云报告日期: XX/11/2一、实验概述1. 实验目标存储管理的主要功能之一是合理地分配空间。

请求页式管理是一种常用的虚拟存储管理技术。

本实验的目的是通过请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式管理的页面置换算法。

2. 实验要求1) 通过随机数产生一个指令序列,共320条指令,指令的地址按下述原则生成:? 50%的指令是顺序执行的;? 25%的指令是均匀分布在前地址部分。

? 25%的指令是均匀分布在后地址部分。

2) 将指令序列变换成页地址流? 页面大小 = 10条指令? 4页? 用户虚存容量 = 32页;? 在用户虚存中,按每K存放10条指令排列虚存地址3) 计算并输出下述各种算法在不同内存容量下的命中率。

? 先进先出的算法(FIFO);? 最近最少使用算法(LRU);? 最佳淘汰算法(OPT);? 命中率=1-页面失效次数/页地址流长度;输出以表结构输出,行头是页码,列头是对应替换算法。

在本实验中,页地址流长度为320,页面失效次数为每次访问相应指令时,该指令所对应的页不在内存的次数。

二、实验内容1. 设计思路总体思路:设计存储管理类(class StorageManagemen),封装FIFO,LRU,OPT算法实现函数与各自所需公共或个体数据机构和公共代码部分,实现“TOP-DOWN”的程序设计思想,增强代码结构性和可读性。

1) 先进先出的算法(FIFO):FIFO是最简单的页置换算法,FIFO的页置换的算法为每个页记录着该页调入内存的时间。

当必须置换一页时,将选择最旧的页。

注意并不需要记录调入一页的确切时间,可以创建一个FIFO队列来管理内存中的所有页。

队列中的首页将被置换。

实验四 操作系统存储管理实验报告

实验四  操作系统存储管理实验报告

实验四操作系统存储管理实验报告一、实验目的本次操作系统存储管理实验的主要目的是深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握内存分配、回收、地址转换等关键技术,提高对操作系统存储管理机制的认识和应用能力。

二、实验环境操作系统:Windows 10开发工具:Visual Studio 2019三、实验原理1、内存分配方式连续分配:分为单一连续分配和分区式分配(固定分区和动态分区)。

离散分配:分页存储管理、分段存储管理、段页式存储管理。

2、内存回收算法首次适应算法:从内存低地址开始查找,找到第一个满足要求的空闲分区进行分配。

最佳适应算法:选择大小最接近作业需求的空闲分区进行分配。

最坏适应算法:选择最大的空闲分区进行分配。

3、地址转换逻辑地址到物理地址的转换:在分页存储管理中,通过页表实现;在分段存储管理中,通过段表实现。

四、实验内容及步骤1、连续内存分配实验设计一个简单的内存分配程序,模拟固定分区和动态分区两种分配方式。

输入作业的大小和请求分配的分区类型,程序输出分配的结果(成功或失败)以及分配后的内存状态。

2、内存回收实验在上述连续内存分配实验的基础上,添加内存回收功能。

输入要回收的作业号,程序执行回收操作,并输出回收后的内存状态。

3、离散内存分配实验实现分页存储管理的地址转换功能。

输入逻辑地址,程序计算并输出对应的物理地址。

4、存储管理算法比较实验分别使用首次适应算法、最佳适应算法和最坏适应算法进行内存分配和回收操作。

记录不同算法在不同作业序列下的内存利用率和分配时间,比较它们的性能。

五、实验结果与分析1、连续内存分配实验结果固定分区分配方式:在固定分区大小的情况下,对于作业大小小于或等于分区大小的请求能够成功分配,否则分配失败。

内存状态显示清晰,分区的使用和空闲情况一目了然。

动态分区分配方式:能够根据作业的大小动态地分配内存,但容易产生内存碎片。

2、内存回收实验结果成功回收指定作业占用的内存空间,内存状态得到及时更新,空闲分区得到合并,提高了内存的利用率。

操作系统存储管理实验报告

操作系统存储管理实验报告
4 / 37
操作系统实验·报告
typedef struct pfc_struct pfc_type; (2)模块结构 (伙伴系统) # define Inital 1024 //初始时的总内存
NODE root=(memory_node *)malloc(1*sizeof(memory_node));//根节点 int chip=0; // 记录总的碎片大小
total = 256 use =127 remain_max = 0 flag = 0 pid =0
total = 256 use = 0 remain_max = 256 flag = 0 pid =-1
total = 1024 use = 0 remain_max = 512 flag = 1 pid =-1
total = 512 use = 0 remain_max = 512 flag = 0 pid =-1
total = 512 use = 267 remain_max = 0 flag = 0 pid = -1
6 / 37
操作系统实验·报告
三、实验理论分析
7 / 37
操作系统实验·报告
(伙伴算法) Buddy System 是一种经典的内存管理算法。在 Unix 和 Linux 操作系统中都有用到。其 作用是减少存储空间中的空洞、减少碎片、增加利用率。避免外碎片的方法有两种: a.利用分页单元把一组非连续的空闲页框映射到非连续的线性地址区间。 b.开发适当的技术来记录现存的空闲连续页框块的情况,以尽量避免为满足对小块的 请 求而把大块的空闲块进行分割。 基于下面三种原因,内核选择第二种避免方法: a.在某些情况下,连续的页框确实必要。 b.即使连续页框的分配不是很必要,它在保持内核页表不变方面所起的作用也是不容 忽视的。假如修改页表,则导致平均访存次数增加,从而频繁刷新 TLB。 c.通过 4M 的页可以访问大块连续的物理内存,相对于 4K 页的使用,TLB 未命中率降 低,加快平均访存速度。 Buddy 算法将所有空闲页框分组为 10 个块链表,每个块链表分别包含 1,2,4,8,16,32,64,128,256,512 个连续的页框,每个块的第一个页框的物理地址是该块 大小的整数倍。如,大小为 16 个页框的块,其起始地址是 16*2^12 的倍数。 例,假设要请求一个 128 个页框的块,算法先检查 128 个页框的链表是否有空闲块, 如果没有则查 256 个页框的链表,有则将 256 个页框的块分裂两份,一 份使用,一份 插入 128 个页框的链表。如果还没有,就查 512 个页框的链表,有的话就分裂为 128, 128,256,一个 128 使用,剩余两个插入对应链 表。如果在 512 还没查到,则返回 出错信号。 回收过程相反,内核试图把大小为 b 的空闲伙伴合并为一个大小为 2b 的单独块,满足 以下条件的两个块称为伙伴: a.两个块具有相同的大小,记做 b。 b.它们的物理地址是连续的。 c.第一个块的第一个页框的物理地址是 2*b*2^12 的倍数。 该算法迭代,如果成功合并所释放的块,会试图合并 2b 的块来形成更大的块。 为了模拟 Buddy System 算法,我采用了数的数据结构,并使用了结构体,来记录各项 数据与标记,虽然不是真正的操作系统使用的方法,但成功模拟了插入和回收的过程。 在回收时我采用物理上的合并——即删除实际的物理节点,释放空间。然而实际中可 能根据需要仅仅是删除了标记项,使之标记成没用过的,从而避免了合并,会提高下 一次的插入操作。 碎片百分比 = 碎片总大小/总内存大小 (置换算法)

操作系统-----存储管理实验报告

操作系统-----存储管理实验报告

操作系统实验报告一、实验题目:存储管理(该实验为综合性实验,共用8个学时)二、实验要求:1、通过随机数产生一个指令序列,共320条指令。

其地址按下述原则生成:①50%的指令是顺序执行的;②25%的指令是均匀分布在前地址部分;③25%的指令是均匀分布在后地址部分;具体的实施方法是:A.在[0,319]的指令地址之间随机选取一起点M;B.顺序执行一条指令,即执行地址为M+1的指令;C.在前地址[0,M+1]中随机选取一条指令并执行,该指令的地址为M’;D.顺序执行一条指令,其地址为M’+1;E.在后地址[M’+2,319]中随机选取一条指令并执行;F.重复A—E,直到执行320次指令。

2、指令序列变换成页地址流,设:①页面大小为1K;②用户内存容量为4页到32页;③用户虚存容量为32K。

在用户虚存中,按每页存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为:第0条~第9条指令为第0页(对应虚存地址为[0,9]);第10条~第19条指令为第1页(对应虚存地址为[10,19]);…………第310条~第319条指令为第31页(对应虚存地址为[310,319]);3、计算并输出下述各种算法(可任选三个)在不同内存容量下的命中率。

A. FIFO先进先出置换算法;B. LRU最近最久未使用置换算法;C. OPT最佳置换算法。

D. NUR最近未使用置换算法。

E. LFU最少使用置换算法。

三、总的设计思想、环境语言、工具等总的设计思想:1、编写函数计算并输出下述各种算法的命中率①OPT页面置换算法OPT所选择被淘汰的页面是已调入内存,且在以后永不使用的,或是在最长时间内不再被访问的页面。

因此如何找出这样的页面是该算法的关键。

可为每个页面设置一个步长变量,其初值为一足够大的数,对于不在内存的页面,将其值重置为零,对于位于内存的页面,其值重置为当前访问页面与之后首次出现该页面时两者之间的距离,因此该值越大表示该页是在最长时间内不再被访问的页面,可以选择其作为换出页面。

操作系统存储管理实验报告

操作系统存储管理实验报告

操作系统存储管理实验报告一、实验目的操作系统的存储管理是计算机系统中非常重要的组成部分,它直接影响着系统的性能和资源利用率。

本次实验的目的在于深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握存储分配、回收、地址转换等关键技术,并对不同存储管理策略的性能进行分析和比较。

二、实验环境本次实验在 Windows 10 操作系统下进行,使用 Visual Studio 2019 作为编程环境,编程语言为 C++。

三、实验内容(一)固定分区存储管理1、原理固定分区存储管理将内存空间划分为若干个固定大小的分区,每个分区只能装入一道作业。

分区的大小可以相等,也可以不等。

2、实现创建一个固定大小的内存空间数组,模拟内存分区。

为每个分区设置状态标志(已分配或空闲),并实现作业的分配和回收算法。

3、实验结果与分析通过输入不同大小的作业请求,观察内存的分配和回收情况。

分析固定分区存储管理的优缺点,如内存利用率低、存在内部碎片等。

(二)可变分区存储管理1、原理可变分区存储管理根据作业的实际需求动态地划分内存空间,分区的大小和数量是可变的。

2、实现使用链表或数组来管理内存空间,记录每个分区的起始地址、大小和状态。

实现首次适应、最佳适应和最坏适应等分配算法,以及分区的合并和回收算法。

3、实验结果与分析比较不同分配算法的性能,如分配时间、内存利用率等。

观察内存碎片的产生和处理情况,分析可变分区存储管理的优缺点。

(三)页式存储管理1、原理页式存储管理将内存空间和作业都划分为固定大小的页,通过页表将逻辑地址转换为物理地址。

2、实现设计页表结构,实现逻辑地址到物理地址的转换算法。

模拟页面的调入和调出过程,处理缺页中断。

3、实验结果与分析测量页式存储管理的页面置换算法(如先进先出、最近最少使用等)的命中率,分析其对系统性能的影响。

探讨页大小的选择对存储管理的影响。

(四)段式存储管理1、原理段式存储管理将作业按照逻辑结构划分为若干个段,每个段有自己的名字和长度。

实验四操作系统存储管理实验报告

实验四操作系统存储管理实验报告

实验四操作系统存储管理实验报告一、实验目的本次实验的主要目的是深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握内存分配与回收、页面置换算法等关键概念,并能够分析和解决存储管理中可能出现的问题。

二、实验环境本次实验在装有 Windows 操作系统的计算机上进行,使用了 Visual Studio 等编程工具和相关的调试环境。

三、实验内容(一)内存分配与回收算法实现1、首次适应算法首次适应算法从内存的起始位置开始查找,找到第一个能够满足需求的空闲分区进行分配。

在实现过程中,我们通过建立一个空闲分区链表来管理内存空间,每次分配时从表头开始查找。

2、最佳适应算法最佳适应算法会选择能够满足需求且大小最小的空闲分区进行分配。

为了实现该算法,在空闲分区链表中,分区按照大小从小到大的顺序排列,这样在查找时能够快速找到最合适的分区。

3、最坏适应算法最坏适应算法则选择最大的空闲分区进行分配。

同样通过对空闲分区链表的排序和查找来实现。

(二)页面置换算法模拟1、先进先出(FIFO)页面置换算法FIFO 算法按照页面进入内存的先后顺序进行置换,即先进入内存的页面先被置换出去。

在模拟过程中,使用一个队列来记录页面的进入顺序。

2、最近最久未使用(LRU)页面置换算法LRU 算法根据页面最近被使用的时间来决定置换顺序,最近最久未使用的页面将被置换。

通过为每个页面设置一个时间戳来记录其最近使用的时间,从而实现置换策略。

3、时钟(Clock)页面置换算法Clock 算法使用一个环形链表来模拟内存中的页面,通过指针的移动和页面的访问标志来决定置换页面。

四、实验步骤(一)内存分配与回收算法的实现步骤1、初始化内存空间,创建空闲分区链表,并为每个分区设置起始地址、大小和状态等信息。

2、对于首次适应算法,从链表表头开始遍历,找到第一个大小满足需求的空闲分区,进行分配,并修改分区的状态和大小。

3、对于最佳适应算法,在遍历链表时,选择大小最接近需求的空闲分区进行分配,并对链表进行相应的调整。

《操作系统》存储管理实验报告

《操作系统》存储管理实验报告

《操作系统》存储管理实验报告操作系统是计算机系统中最基础、最核心的软件之一,负责管理计算机硬件资源和提供资源的分配与调度。

而存储管理是操作系统中的重要组成部分,它负责管理计算机的内存,包括内存的分配、回收、保护等操作。

本文将针对存储管理进行实验,并撰写实验报告。

本次实验主要涉及以下内容:内存的分配与回收、内存的保护。

实验过程中,我首先根据操作系统的要求,设计了相应的算法用于内存的分配与回收。

并通过编写程序,验证了算法的正确性。

随后,我进一步研究了内存的保护机制,通过设置访问权限位和访问控制表,实现了对内存的合理保护。

在内存的分配与回收方面,我设计了一种简单的算法,首次适应算法。

具体实现如下:首先,将内存分为若干个块,每个块的大小为固定值。

当需要分配内存时,首先遍历内存块列表,找到第一个大小合适的块,将其分配给进程。

当进程终止时,将其占用的内存块回收,以便后续进程使用。

通过编写程序进行测试,结果表明该算法能够正确地进行内存的分配与回收。

在内存的保护方面,我采用了访问权限位和访问控制表的方式进行。

具体实现如下:首先,为每个进程分配一组访问权限位,记录了该进程能够访问的内存区域。

同时,设置一个访问控制表,记录了每个内存块的权限。

当进程访问一些内存块时,首先检查该进程的访问权限位,再与访问控制表中的权限进行比较,以确定该进程是否有权限访问该内存块。

通过编写程序进行测试,证明了该机制能够有效地保护内存。

总结来说,本次实验主要涉及了操作系统中的存储管理部分,包括内存的分配与回收、内存的保护。

通过设计算法和编写程序,我成功地实现了这些功能,并验证了其正确性。

通过本次实验,我进一步加深了对操作系统存储管理的理解,提高了编程和设计的能力。

存储管理实验报告总结

存储管理实验报告总结

存储管理实验报告总结本次实验主要是针对存储管理进行的。

存储管理是操作系统中非常重要的一部分,它负责管理计算机系统的内存空间,为进程提供必要的存储资源。

通过本次实验,我对存储管理的相关概念和技术有了更加深入的了解。

在实验中,我首先学习了存储管理的基本原理。

操作系统将内存分为若干个大小相等的页框,而进程的内存空间则被划分为若干个大小相等的页。

通过页表的映射关系,操作系统可以将进程的页映射到物理内存的页框上。

这样,进程就可以方便地访问内存中的数据。

在实验中,我还学习了虚拟内存的概念和实现方法。

虚拟内存是一种扩展内存的方法,它允许进程访问超出物理内存容量的数据。

虚拟内存通过将进程的页映射到磁盘上的页面文件中,实现了内存的扩展。

当进程需要访问某个页面时,操作系统会将该页面从页面文件中加载到物理内存中,并更新页表的映射关系。

在实验中,我还学习了页面置换算法的原理和实现。

页面置换算法是虚拟内存中非常重要的一部分,它负责决定哪些页面需要被置换出去。

常见的页面置换算法有FIFO算法、LRU算法和Clock算法等。

不同的算法有着不同的性能特点和适用场景,我们需要根据具体的应用场景选择合适的页面置换算法。

在实验中,我还学习了内存分配和回收的方法。

操作系统通过内存分配算法为进程分配内存空间,而通过内存回收算法回收进程不再使用的内存空间。

内存分配算法的选择会影响到系统的性能和资源利用率,我们需要根据具体的应用场景选择合适的内存分配算法。

通过本次实验,我深入了解了存储管理的相关概念和技术。

存储管理是操作系统中非常重要的一部分,它直接影响到系统的性能和资源利用率。

合理地管理存储资源可以提高系统的运行效率和稳定性,从而提升用户的体验。

在今后的学习和工作中,我将进一步深化对存储管理的理解,不断提升自己的技术水平。

操作系统存储管理实验报告

操作系统存储管理实验报告

四、实验中遇到的难点及解决办法
1、在安装的时候为系统建立分区,平时用惯了windows操作系统,在分区的时候分配一个适合的可以供Linux系统运行的空间,在开始的时候分配空间不足,导致在安装的时候一直无法安装在老师的提示下,才得以解决。

2、在虚拟机下进行安装Linux操作系统使得安装更简单方便,便于安装,但是在Linux系统从光盘安装的哪些步骤不能一一体验,比如如何划分Linux系统下的五个分区和从硬盘安装Linux系统的以下命令,这些老师都进行了讲解,如果有较好的实验条件是去安装一次真正的SuSE Linux系统。

五、实验体会
由于试验时间的紧迫,通过这次试验使我只是初步的学会了,在虚拟机下安装Linux系统的过程,通过本学期的学习操作系统的过程,感觉学习的内容不足以能让我较好地使用Linux系统,感觉对他的了解还是那么少,会在以后的时间内多学习一些关于Linux系统方面的内容,努力做好和学习好Linux系统。

操作系统存储管理实验报告

操作系统存储管理实验报告

操作系统存储管理实验报告操作系统存储管理实验报告引言:操作系统是计算机系统中的核心软件之一,它负责管理计算机硬件资源和提供用户与计算机之间的接口。

在操作系统中,存储管理是一个重要的子系统,它负责管理计算机的内存资源。

本实验旨在通过实际操作,深入了解操作系统的存储管理机制,并通过实验结果分析其性能和效果。

实验目的:1. 了解操作系统的存储管理机制;2. 掌握存储管理相关的概念和技术;3. 分析不同存储管理策略的优缺点;4. 通过实验验证不同策略的性能和效果。

实验内容:本次实验主要涉及以下几个方面的内容:1. 内存分配:在操作系统中,内存是计算机中的重要资源,它被划分为多个固定大小的块,每个块称为一页。

实验中,我们将学习不同的内存分配算法,如连续分配、离散分配和分页分配,并通过实验验证它们的性能和效果。

2. 内存回收:当某个进程不再需要使用内存时,操作系统需要回收该内存空间,以便其他进程使用。

实验中,我们将学习不同的内存回收算法,如最佳适应算法、最坏适应算法和首次适应算法,并通过实验比较它们的效果。

3. 虚拟内存管理:虚拟内存是一种扩展内存的技术,它将磁盘空间作为辅助存储器,将部分数据存储在磁盘上,以释放内存空间。

实验中,我们将学习虚拟内存的概念和原理,并通过实验验证其性能和效果。

实验结果与分析:通过实验,我们得到了不同存储管理策略的性能数据,并进行了分析。

在内存分配方面,连续分配在内存利用率方面表现较好,但容易产生外部碎片;离散分配能够充分利用内存空间,但需要额外的管理开销;分页分配能够灵活地分配内存,但会带来内部碎片。

在内存回收方面,最佳适应算法能够更好地利用内存空间,但需要较长的搜索时间;最坏适应算法能够减少外部碎片,但可能导致内存利用率较低;首次适应算法在搜索时间和内存利用率方面都有较好的平衡。

在虚拟内存管理方面,虚拟内存能够有效扩展内存空间,提高系统的性能和效率。

通过实验,我们发现虚拟内存的使用可以显著减少交换空间的开销,并提高系统的响应速度。

存储管理实验报告

存储管理实验报告

一、实验目的1. 理解操作系统存储管理的概念和作用。

2. 掌握存储管理的基本算法和策略。

3. 通过实验,加深对存储管理原理的理解,提高实际操作能力。

二、实验环境1. 操作系统:Windows 102. 软件环境:虚拟机软件VMware Workstation 153. 实验平台:Linux系统三、实验内容1. 存储管理概述2. 页式存储管理3. 段式存储管理4. 分段分页存储管理5. 存储管理算法四、实验步骤1. 页式存储管理实验(1)设置虚拟内存:在Linux系统中,使用`cat /proc/meminfo`命令查看内存信息,然后使用`vmstat`命令查看虚拟内存的使用情况。

(2)编写实验程序:使用C语言编写一个简单的程序,模拟页式存储管理过程。

(3)运行实验程序:编译并运行实验程序,观察程序运行过程中页面的分配、置换和回收过程。

2. 段式存储管理实验(1)设置虚拟内存:同页式存储管理实验。

(2)编写实验程序:使用C语言编写一个简单的程序,模拟段式存储管理过程。

(3)运行实验程序:编译并运行实验程序,观察程序运行过程中段页的分配、置换和回收过程。

3. 分段分页存储管理实验(1)设置虚拟内存:同页式存储管理实验。

(2)编写实验程序:使用C语言编写一个简单的程序,模拟分段分页存储管理过程。

(3)运行实验程序:编译并运行实验程序,观察程序运行过程中段页的分配、置换和回收过程。

4. 存储管理算法实验(1)编写实验程序:使用C语言编写一个简单的程序,模拟不同的存储管理算法(如FIFO、LRU、LFU等)。

(2)运行实验程序:编译并运行实验程序,观察不同算法在页面分配、置换和回收过程中的表现。

五、实验结果与分析1. 页式存储管理实验实验结果表明,页式存储管理可以将大程序离散地存储在内存中,提高内存利用率。

但页式存储管理也存在页面碎片问题,导致内存碎片化。

2. 段式存储管理实验实验结果表明,段式存储管理可以将程序按照逻辑结构划分为多个段,提高了内存的利用率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东华大学计算机学院
操作系统实验报告
实验名称:存储管理问题
姓名:姜元杰
学号:111310228
班级:计算机1102
指导老师:李继云
报告日期:2013/11/2
一、实验概述
1.实验目标
存储管理的主要功能之一是合理地分配空间。

请求页式管理是一种常用的虚拟存储管理技术。

本实验的目的是通过请求页式存储管理中页
面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式管理的
页面置换算法。

2.实验要求
1)通过随机数产生一个指令序列,共320条指令,指令的地址按下述
原则生成:
●50%的指令是顺序执行的;
●25%的指令是均匀分布在前地址部分。

●25%的指令是均匀分布在后地址部分。

2)将指令序列变换成页地址流
●页面大小= 10条指令
●4页<=用户内存容量<=32页;
●用户虚存容量= 32页;
●在用户虚存中,按每K存放10条指令排列虚存地址
3)计算并输出下述各种算法在不同内存容量下的命中率。

●先进先出的算法(FIFO);
●最近最少使用算法(LRU);
●最佳淘汰算法(OPT);
●命中率=1-页面失效次数/页地址流长度;
输出以表结构输出,行头是页码,列头是对应替换算法。

在本实验
中,页地址流长度为320,页面失效次数为每次访问相应指令时,该
指令所对应的页不在内存的次数。

二、实验内容
1.设计思路
总体思路:
设计存储管理类(class StorageManagemen),封装FIFO,LRU,OPT算法实现函
数与各自所需公共或个体数据机构和公共代码部分,实现“TOP-DOWN”的程序设
计思想,增强代码结构性和可读性。

1)先进先出的算法(FIFO):FIFO是最简单的页置换算法,FIFO的页置
换的算法为每个页记录着该页调入内存的时间。

当必须置换一页时,将
选择最旧的页。

注意并不需要记录调入一页的确切时间,可以创建一个
FIFO队列来管理内存中的所有页。

队列中的首页将被置换。

当需要调入
页时,将它加入到队列的尾部。

FIFO的页置换算法很好理解和实现,但
是,其性能并不是很好。

所替代的页可能是很久以前使用的、现已不再
使用的初始化模块,另一方面,所替代的页可能包含一个以前初始化的
并且不断使用的常用变量。

2)最近最少使用算法(LRU):选择最近最长时间未访问过的页面予以淘
汰,默认过去一段时间内未访问过的页面,在最近的将来可能也不会被
访问。

本实验实现算法通过为每个页面设置一个访问字段,用来记录页
面自上次被访问以来所经历的时间,淘汰页面时选择现有页面中值最大
的予以淘汰。

尽管各类参考书声明LRU算法为堆栈类算法,但本实验通
过优先队列完全可以实现。

3)最佳淘汰算法(OPT):最佳置换算法所选择的被淘汰页面将是以后永不
使用,或者是在最长时间内不再被访问的页面,这样可以保证获得最低
的缺页率。

本实验实现算法通过为每个页面设置一个CPU使用“间隔”
——即表示CPU将在未处理的页面序列中第几步处理到该页面,如果页
面不再被CPU处理,赋值为极大值(INT_MAX),淘汰页面时选择现有
页面中值最大的予以淘汰。

本实验同LRU一样,通过优先队列实现。

2.主要数据结构
1)公共部分:
class StorageManagement:存储管理类,封装所有算法。

◆const int MAX_OP_NUM:操作页面最大数,默认320
◆const int MAX_MEMORY_PAGE:用户内存存储物理块数最大值,默认32
◆int Page_OP[MAX_OP_NUM]:访问页面序列,随机生成
◆double Miss:每次访问相应指令时,该指令所对应的页不在内存的次数
◆double Total:页面置换次数
◆int TMAX_MEMEORY_PAGE:用户内存存储物理块数
◆bool isEmpty:内存是否占满
2)先进先出的算法(FIFO):
◆queue<int> q:内存存储队列,先进先出
3)最近最少使用算法(LRU):
◆struct Lpage:
◆Lpage lPage[MAX_MEMORY_PAGE]:FIFO LRU进程页面
◆priority_queue<Lpage> q:内存存储优先队列,最近使用次数大者优先级高
◆queue<Lpage> qq:LRU中用于修改最近使用时间函数的临时队列
4)最佳淘汰算法(OPT):
◆struct Opage:
◆Opage oPage[MAX_MEMORY_PAGE]:OPT进程页面
◆priority_queue<Opage> q:内存存储优先队列,CPU使用间隔大者优先级高
◆queue<Opage> qq:OPT中用于修改使用间隔的临时队列
3.主要代码结构
1)公共部分:
◆int main():Main函数菜单界面
◆void Initial(int n):用于初始化各算法参数的函数
◆void Output(int n):控制输出函数
2)最近最少使用算法(LRU):
◆void alterLateUse(priority_queue<Lpage>&q, int Pos):
LRU中用于修改内存中页面最近使用时间
3)最佳淘汰算法(OPT):
◆alterDist(priority_queue<Opage>&q, int n, int *Page_OP):
OPT中用于修改内存中页面使用间隔
4.主要代码段分析(加粗下划线部分为核心)
1)公共部分:
按照实验要求,随机生成320条随机数指令流,同时转换为页地址流
(分析部分见注释)
2)先进先出的算法(FIFO):
主要代码控制部分((分析部分见注释):
3)最近最少使用算法(LRU):
a)主要代码控制部分:
b)修改最近使用时间函数:
◆片段1:当待访问页面不在内存存储中,无论内存存满与否,内存中所有页面
最近使用次数增加;
◆片段2:当待访问页面已在内存存储中,对应内存存储页最近使用次数清0;
4)最佳淘汰算法(OPT):
a)主要代码控制部分:
b)修改CPU使用间隔函数:
片段1:当待访问页面不在内存存储中且内存已满,需要进行页面置换时,遍历未处理页面序列,找出内存中CPU永不处理页面并替换,否则替换CPU使用
时间最晚(CPU使用间隔)的页面;
片段2:对于内存中CPU永不处理页面,对应CPU使用间隔赋极大值INT_MAX,实现在优先队列中优先弹出,实现页面置换;
三、实验结果
1.基本数据:程序内随机生成。

2.源代码行数:代码共274行。

3.完成实验投入时间:累计共12小时
4.讨论次数:0次
5.测试结果分析:
测试结果分析:综上比较,帧较少时,OPT算法命中率较高。

其次是LRU。

四、实验体会
1.实验过程中遇到问题及解决过程
问题:初次完成代码后,发现LRU算法和OPT算法命中率相同。

解决过程:初始阶段,一直在调试OPT算法,后来通过模拟数据,
调试发现LRU算法有几处Bug后,之后OPT算法根据结果调试了
很久终于解决问题。

2.实验体会和收获
页面替换算法实际早在计算机组成原理课中上过,当时仅仅局限于理论理解,
操作系统实验报告
没有进行上机模拟,所以理解比较肤浅,故实验前着重熟悉了各置换算法的原理和实现方式。

所谓“谋定而后动”,上机实践还是遵循着程序设计=数据结构+算法的原则,成熟的算法和理想的数据结构可以使程序设计事半功倍。

在认真温习原理和设定算法后,基于算法设计数据结构,本实验中根据各置换算法不同特点,分别选用普通队列,优先队列来实现算法。

通过实践操作即加深了对于页面置换算法的深刻理解,又熟悉掌握了常用数据结构的用法。

尽管调试代码,发现bug非常煎熬(熬夜到半夜才修复所有Bug),但是最后圆满解决问题的成就感也是无与伦比的。

五、参考文献
[1]. 汤小丹,梁红兵等著. 《计算机操作系统(第三版)》
[2]. 王道论坛组编. 《2013年计算机操作系统联考复习指导》
- 10 -。

相关文档
最新文档