数字图像处理 第五章 图像的噪声抑制PPT课件

合集下载

第5章图像噪声的抑制

第5章图像噪声的抑制
JJ=medfilt2(J,[3,3]);
subplot(1,2,1),imshow(J); subplot(1,2,2),imshow(JJ);
精品资料
I=imread('lena.bmp'); J=imnoise(I,'gaussian'); JJ=medfilt2(J,[3,3]);
subplot(1,2,1),imshow(J);
精品资料
OVER!
PS演示:
进一步模糊; 中间值;
作业
1.已知5×5的数字图像F1,采用模板为H 2的加权均值
(jūn zhí)滤波器处理,新图像G。
1 2 1
H2
1 16
2
4
2
1 2 1
2 3 1 4 7
4 8 2 3 4
F 5 3 9 8 9 4 7 6 8 7
7 6 7 8 9
2.对数字图像F,采用中值滤波 2 3 1 6 5
方法(fāngfǎ)进行处理,求新 3图.数像字G。图像F与上一题相同,采 F 用K近邻中值滤波方法进行处理,
3
4 4
9 3 8
2 2 2
3 3 9
4
3 4
K=5。求新图像G。
3 4 3 4 2
精品资料
• 加性噪声模型为:
g(x, y) f (x, y) n(x, y)
• 乘性噪声模型为:
• 由于g乘(性x, 噪y)声模f 型(x较, y为) 复f杂(x,, y并)n且(x(b, ìyn)gqiě)有
时可以近似采用加性噪声模型来处理。以下仅讨论 加性噪声的抑制方法。
精品资料
• 图像噪声的类型主要有两类: • (1)噪声的幅值基本相同,但噪声出现的位置是随机的。一般称

数字图像处理图像滤波ppt课件

数字图像处理图像滤波ppt课件
素位置重合; 读取模板下各对应像素的灰度值; 将这些灰度值从小到大排成一列; 找出这些值的中间值; 将这个值赋给对应模板中心位置的像素。
47
噪声图像
中值滤波3x3
48
平均滤波与中值滤波比较
噪声图像
均值滤波
中值滤波
均值滤波和中值滤波都采用的是2x2 的模板
49
均值,中值和最频值
均值是模板内像素点灰度的平均值,中值是数值排列 后处于中间的值,最频值是出现次数最多的灰度值;
8
常用像素距离公式
欧几里德距离
DE
(
p,
q)


x

s 2


y

t
2

范数距离
D( p, q) x s y t
棋盘距离
D( p, q) max x s , y t
9
像素间的基本运算
算术运算:
加法: p + q
减法: p - q
乘法: p * q
这三者都与直方图有着密切的关系; 直方图的一个峰对应一个区域,如果这个峰是对称的,
那么均值等于中值,等于最频值。
50
中值滤波的代码实现 Matlab中函数medfilt1和medfilt2,第一个是一维
的中值滤波,第二个是二维的中值滤波。 使用help查看函数功能
51
示例
52
代码讲解
0.25
0.10 0.05
0.125 01 2
34
56
7
P r 关系目标曲线 r
原始图像中的P-r点位置 对应变换后的P-r点位置
24
算法描述 设像素共分为L级(r = 0,1,2,…L1),变换后对应的

第五章 图像噪声的抑制

第五章 图像噪声的抑制

➢ 加性噪声:如果混合叠加波形是S(t)+n(t)形式
,则称其为加性噪声;
➢ 乘性噪声:如果叠加波形为S(t)[1+n(t)]形式
, 则称其为乘性噪声。
为了分析处理方便,往往将乘性噪声近似认为加性噪 声,而且总是假定信号和噪声是互相独立的。
2. 图像系统噪声特点
➢ ➢ 噪声与图像之间具有相关性 ➢ 噪声具有叠加性
76667 788
898
简单邻域平均法
将以上的均值滤波器加以修正,可以 得到加权平均滤波器。
简单邻域平均法的主要缺陷为存在着边缘模糊效应 。在降低噪声的同时把本来不是噪声的边缘处(如边 缘和细节)应当保留其原有灰度值却变得模糊。
四、阈值邻域平均法
假设一个阈值T,则有:
T为一个规定非负阈值。
当图像f(x,y)某像素点灰度值与邻域平均灰度值的 差值的绝对值超过阈值T,则该点可能是噪声点, 取邻域平均灰度值作为该点灰度值。否则,则保留 该点像素灰度值。
经阈值邻域平均法处理后图像相对地模糊度减少。
注意:图像经过平均处理后,都会变得相对模糊, 这是因为平均处理本来就是以图像模糊为代价来换 取噪声的减少。
邻域平均法-效果分析
若邻域内有噪声存在,经过平均,噪声的 幅度会大为降低。
点与点之间的灰度差值会变小,边缘变得 模糊起来。邻域越大,模糊越厉害。
P5
图4-17 卷积运算示意图
卷积运算的步骤:
卷积核中的元素称作加权系数(亦称为卷积系数), 卷积就是作加权求和的过程。
图像所取邻域中的每个像素(假定邻域为3×3大小, 卷积核大小与邻域相同),分别与卷积核中的每一个 元素相乘,乘积求和所得结果即为图像所取邻域中心 像素的新值。

数字图像处理ppt课件

数字图像处理ppt课件

between 64 to 128 (using function
imagesc).
>>clims=[64,128]
>>imagesc(a,clims)
f. Make a movie from a 4-D image (load mri, make the movie by immovie, then show movie by function movie).
二、实验内容:
使用Photoshop观察数字图像增强的效果; 练习和掌握图像增强的Matlab编程。。 熟悉下列模块函数
Image enhancement. histeq - Read image file. imadust - Adust imae intensity values or colormap.
imshow - Display image.
subimage - Display multiple images in single figure.
truesize - Adjust display size of image.
warp - Display image as texture-mapped surface.
processing.
f. Compare the qualities of two images and
makes a discussion about them.
g. Add noises, such as gaussian, salt&pepper,
speckle noise into the image respectively.
10)选图像Blood、噪声类型Salt & Pepper、滤波器类型Median、邻域3x3,比较原始图像、

数字图像处理第5章噪声抑制.ppt

数字图像处理第5章噪声抑制.ppt

1 2
5.3.3 K近邻(KNN)平滑滤波器算法
1) 以待处理像素为中心,作一个m*m的作用模 板。
2)在模板中,选择K个与待处理像素的灰度差 为最小的像素。
3)将这K个像素的灰度均值(中值)替换掉原 来的像素值。
• 由此,获得KNN均值滤波的结果和KNN中值 滤波的结果。
5.3.4 KNN平滑滤波例题
m+2
m
m+1
m-2
m+2
m-1
5.2 中值滤波器
例: 原图像为: 2 2 6 2 1 2 4 4 4 2 4
处理后为: 2 2 2 2 2 2 4 4 4 4 4
(1,2,2,2,6) (1,2,2,2,6) (1,2,2,4,6)
(2,4,4)
5.2 中值滤波器
3. 二维中值滤波模板:
与均值滤波类似,做3*3的模板,对9个数排 序,取第5个数替代原来的像素值。
1. 问题的提出:
前面的处理结果可知,经过平滑(特别 是均值)滤波处理之后,图像就会变得模 糊。分析原因,在图像上的景物之所以可 以辨认清楚是因为目标物之间存在边界。
5.3.1 边界保持平滑滤波器设计思想
• 在进行平滑处理时,首先判别当前像素是 否为边界上的点,如果是,则不进行处理, 如果不是,则进行平滑处理。
► 对于高斯噪声,均值滤波效果比均值滤波 效果好。
原因: 高斯噪声是幅值近似正态分布,但分布在每点像 素上。 因为图像中的每点都是污染点,所中值滤波选不到 合适的干净点。
因为正态分布的均值为0,所以根据统计数学,均 值可以消除噪声。 (注意:实际上只能减弱,不能消除。思考为什么?)
5.3 边界保持平滑滤波器
5.3.2 K近邻(KNN)平滑滤波器

图像噪声的抑制

图像噪声的抑制

图像噪声的抑制概述噪声对图像处理的影响很大,它影响图像处理的输入、采集和处理等各个环节以及输出结果。

因此,在进行其它的图像处理前,需要对图像进行去噪处理。

从统计学的观点来看,凡是统计特征不随时间变化的噪声称为平稳噪声,而统计特征随时间变化的噪声称为非平稳噪声。

幅值基本相同,但是噪声出现的位置是随机的,称为椒盐噪声;如果噪声的幅值是随机的,根据幅值大小的分布,有高斯型和瑞利型两种,分别称为高斯噪声和瑞利噪声。

由于去除噪声处理的原理和方法很多,这里只给出了简单的描述和我自己已实现的几种方法的java源代码。

常见的去噪处理有均值滤波,中值滤波,灰度最小方差均值滤波,K近邻平滑滤波,对称近邻均值滤波,西戈玛平滑滤波等。

均值滤波定义均值滤波方法是,对待处理的当前像素,选择一个模板,该模板为其邻近的若干个像素组成,用模板的均值来替代原像素的值的方法。

如下图,1~8为(x,y)的邻近像素。

权系数矩阵模板g = (f(x-1,y-1) + f(x,y-1)+ f(x+1,y-1) + f(x-1,y) + f(x,y) + f(x+1,y) + f(x-1,y+1) + f(x,y+1) + f(x+1,y+1))/9方法优缺点优点:算法简单,计算速度快;缺点:降低噪声的同时使图像产生模糊,特别是景物的边缘和细节部分。

源代码[java] view plain copyprint?1./**2.* 均值滤波3.* @param srcPath 图片的存储位置4.* @param destPath 图像要保存的存储位置5.* @param format 图像要保存的存储位置6.*/7.public static void avrFiltering(String srcPath,String destPat h, String format) {8.BufferedImage img = readImg(srcPath);9.int w = img.getWidth();10.int h = img.getHeight();11.int[] pix = new int[w*h];12.img.getRGB(0, 0, w, h, pix, 0, w);13.int newpix[] = avrFiltering(pix, w, h);14.img.setRGB(0, 0, w, h, newpix, 0, w);15.writeImg(img, format, destPath);16.}17./**18.* 均值滤波19.* @param pix 像素矩阵数组20.* @param w 矩阵的宽21.* @param h 矩阵的高22.* @return 处理后的数组23.*/24.public static int[] avrFiltering(int pix[], int w, int h) {25.int newpix[] = new int[w*h];26.ColorModel cm = ColorModel.getRGBdefault();27.int r=0;28.for(int y=0; y<h; y++) {29.for(int x=0; x<w; x++) {30.if(x!=0 && x!=w-1 && y!=0 && y!=h-1) {31.//g = (f(x-1,y-1) + f(x,y-1)+ f(x+1,y-1)32.// + f(x-1,y) + f(x,y) + f(x+1,y)33.// + f(x-1,y+1) + f(x,y+1) + f(x+1,y+1))/934.r = (cm.getRed(pix[x-1+(y-1)*w]) + cm.getRed(pix[x+(y-1)*w])+ cm.getRed(pix[x+1+(y-1)*w])35.+ cm.getRed(pix[x-1+(y)*w]) + cm.getRed(pix[x+(y)*w]) + cm.getRed(pix[x+1+(y)* w])36.+ cm.getRed(pix[x-1+(y+1)*w]) + cm.getRed(pix[x+(y+1)*w]) + cm.getRed(pix[x+1 +(y+1)*w]))/9;37.newpix[y*w+x] = 255<<24 | r<<16 | r<<8 |r;38.39.} else {40.newpix[y*w+x] = pix[y*w+x];41.}42.}43.}44.return newpix;45.}中值滤波定义中值滤波方法是,对待处理的当前像素,选择一个模板,该模板为其邻近的若干个像素组成,对模板的像素由小到大进行排序,再用模板的中值来替代原像素的值的方法。

图像去噪PPT课件

图像去噪PPT课件

.
14
总结与问题
如何学? 学什么?
.
15
(2)乘性噪声
乘性嗓声和图像信号是相关的,往往随图像信号的变化而变化,如飞点扫描图 像中的嗓声、电视扫描光栅、胶片颗粒造成等。这类噪声和图像的关系可表示为
g(x, y) f (x, y) f (x, y)n(x, y)
.
4
(3)量化噪声 量化嗓声是数字图像的主要噪声源,其大小显示出数字图像和原始图像的差异,
中值滤波
一种非线性的平滑技术,它的原理是将任意像素点的灰度值设为这个点某邻域窗口内 的所有像素点灰度值的数字序列中的中值,从而能够有效地去除孤立点。
维纳滤波
维纳滤波器(Wiener filter)是由20世纪著名的数学家诺伯特·维纳(Rorbert Wiener) 提出的一种以最小平方为最优准则的线性滤波器。它适用于需要从噪声中分离出的有用 信号是整个信号(即就是波形),而不仅仅只是为了分离出它的几个参量。
.
5
图像去噪算法分类
(1)空间域滤波 (均值滤波、中值滤波、维纳滤波等) (2)变换域滤波 (傅里叶变换、小波变换、K-L变换等) (3)偏微分方程 (4)变分法 (5)形态学噪声滤波器
.
6
基于空间域的去噪算法
均值滤波
一种典型的线性滤波算法,它是指对目标图像上每一个像素给一个模板进行处理。均 值滤波又被称为线性滤波,这种滤波方式使用的方法主要是邻域平均法。
减少这种嗓声的最好办法就是采用按灰度级概率密度函数选择化级的最优化措施。
(4)脉冲噪声(椒盐噪声) 椒盐噪声是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪
声。椒盐噪声往往由图像切割引起。椒盐噪声是指两种噪声,一种是盐噪声 (salt noise),另一种是胡椒噪声(pepper noise)。盐=白色,椒=黑色。前 者是高灰度噪声,后者属于低灰度噪声。

基于Matlab的数字图像处理降噪方法PPT课件

基于Matlab的数字图像处理降噪方法PPT课件

容请写在这里您的内容请写在这里您的内容请写在这里您的内容您的像处理研究领域中的一个基础而 又重要的问题。在农业信息化、智能化、自动化 分级与检测和机器视觉等领域,涉及到大量的图 像处理问题,图像去噪作为重要的图像预处理步 骤之一。 图像降噪处理的目的是对给定的图像进行有效 的改善,提高图像的质量。因此图像降噪处理是 非常重要的研究方向。
I = rgb2gray(I);subplot(2,3,1); imshow(I); title('原始图像'); J=imnoise(I,'salt & pepper',0.2);%加入椒盐噪声,密度为0.2
subplot(2,3,2); imshow(J); title('加入椒盐噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',9),J)/255; %模板尺寸为9
2021/3/11
.
8
实验结果
.
9
基于离散余弦变换的图像去燥
我们一般认为图像的噪声在离散余弦变换结果中处 在其高频部分,而高频部分的幅值一般很小,利用这一 性质,就可以实现去噪。变换—去除高频噪声—反变换。 然而,这样同时会失去图像的部分细节。只能对图像进 行“粗糙”去噪,保留图像平滑部分与主要信息,对于 细节要求高的不适用。我们来看一下实验结果
基于Matlab的数字图像处理降噪 方法

录C
o nt en ts
0 1
研究背景与意义
0 3
图像噪声 四种去噪方法 实验结果图对比
0 2
0 4
0 5
结论

图像的噪声抑制PPT课件

图像的噪声抑制PPT课件
噪声。(注意:实际上只能减弱,不能消除。)
18
边界保持类平滑滤波器
—— 问题的提出
经过平滑滤波处理之后,图像就会变得模糊。 分析原因,在图像上的景物之所以可以辨认清
楚是因为目标物之间存在边界。 而边界点与噪声点有一个共同的特点是,都具
有灰度的跃变特性。所以平滑处理会同时将边 界也处理了。
19
25
K近邻(KNN)平滑滤波器
—— 效果分析
首先来看一下KNN平滑滤波的效果。 KNN滤波器因为有了边界保持的作用,所以在去
除椒盐以及高斯噪声时,对图像景物的清晰度保 持方面的效果非常明显。 当然,所付出的代价是:算法的复杂度增加了。
设计噪声抑制滤波器,在尽可能保持原 图信息的基础上,抑制噪声。
均值滤波器 中值滤波器 边界保持类滤波器
4
均值滤波器
—— 原理
在图像上,对待处理的像素给定一个模板, 该模板包括了其周围的邻近像素。将模板中 的全体像素的均值来替代原来的像素值的方 法。
5
均值滤波器
—— 处理方法
1 1 1
以模块运算系数表示即:
为了改善效果,就可采用加权平均的方式来构造 滤波器。
7
均值滤波器的改进
—— 加权均值滤波
如下,是几个典型的加权平均滤波器。
1 1 1
H1
1 10
1
2
1
1 1 1 示例
1 2 1
H2
1 16
2
4
2
1 2 1
示例
1 1 1
H3
1 8
1
1
0 1
1 1
示例
0
1 4
0
H4
1 2
1 4

第五章图像的噪声抑制转黑体PPT课件

第五章图像的噪声抑制转黑体PPT课件
均值滤波器 中值滤波器 边界保持类滤波器
55
均值滤波器
—— 原理
在图像上,对待处理的像素给定一个模板, 该模板包括了其周围的邻近像素。将模板中 的全体像素的均值来替代原来的像素值的方 法。
66
均值滤波器
—— 处理方法
1 1 1
以模块运算系数表示即:
H0Leabharlann 1 911
1
1 1 1
待处理像素
C=6.6316
12143 1 22 23 34 4 5 75 66 86 9 5 76 67 88 8 56789
C=5.5263
示例
17 17
中值滤波器
步骤:
—— 步骤
1)模板mask游走
2)将mask下对应的灰度值(奇数)排序
3)用中间值代替 f(x,y), 消除孤立的噪声点
mask大小不一样,效果不一样,与叠加的噪 声有关系。
第五章 图像的噪声抑制
11
图像噪声的概念
所谓的图像噪声,是图像在摄取时或是 传输时所受到的随机干扰信号。
反映在图像画面上,可分为椒盐噪声和 高斯噪声。
按对信号的影响,可分为加性噪声模型 和乘性噪声模型
22
图像噪声的概念
椒盐噪声的特征:
出现位置是随机的,但噪声的幅值是基本相同 的。
高斯噪声的特征:
h(x,y)矩阵的元素之和乘前面系数为1,h(x,y) 矩阵中心的元素占的比例越小,越平滑,图像 越模糊
4)对图像的四周边缘:
补0 或者不处理边缘
88
均值滤波器的改进
—— 加权均值滤波
均值滤波器的缺点是,会使图像变的模糊,原因 是它对所有的点都是同等对待,在将噪声点分摊 的同时,将景物的边界点也分摊了。

图像的加噪和去噪教学文稿24页PPT

图像的加噪和去噪教学文稿24页PPT


27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,
24
图像的加噪和去噪教学文稿

46、寓形宇内复几时,曷不委心任去 留。

47、采菊东篱下,悠然见南山。

48、啸傲东轩下,聊复得此生。

49、勤学如春起之苗,不见其增,日 有所长 。

50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

形态学的图像噪声处理PPT课件

形态学的图像噪声处理PPT课件
第9页/共10页
感谢您的观看!
第10页/共10页
种因素的影响,如图像获取中的环境条件和传感
1元.一器些件重自要身噪的声质的量。概率密度函数
(1)高斯噪声
2
P(Z) 1
(z ) 22
2
z表示灰度值,μ表示z的平均值或期望值,σ表 示z的标准差。
(2)瑞利噪声
P(Z
)
2 b
(
z
a)e
(
z
a
)2
b
za
0
za
第4页/共10页
(3)伽马(爱尔兰)噪声
数学形态学的基本运算
• 数学形态学可以看作是一种特殊的数字图 像处理方法和理论,以图像的形态特征为 研究对像。 形态学处理算法,这些算法主要包括膨胀、 腐蚀、开、闭等运算
第1页/共10页
基本概念
• 二值腐蚀和膨胀 (1)腐蚀是表示用某种“探针”(即某种形状的基元或结 构元素)对一个图像进行探测,以便找出图像内部可以 放下该基元的区域。它是一种消除边界点,使边界向内 部收缩的过程。可以用来消除小且无意义的物体。
P(Z
)
ab zb1 (b 1)!
e
az
z0
0
z0
(4)指数分布噪声
aeaz P(Z)
0
z0 z0
(5)均匀噪声分布
P(Z
)
b
1
a
0
a z b 其他
(6)脉冲噪声(椒盐噪声)
P(Z )
Pa/共10页
用于说明示于图3-1的噪声 PDF特性的测试图
(2)膨胀是腐蚀运算的对偶运算,可以通过对补集的腐 蚀来定义。膨胀是利用结构元素对图像补集进行填充, 因而它表示对图像外部滤波处理。

图像的加噪和去噪24页PPT

图像的加噪和去噪24页PPT


26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
•ቤተ መጻሕፍቲ ባይዱ
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
图像的加噪和去噪
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为了改善效果,就可采用加权平均的方式来构造 滤波器。
均值滤波器的改进
—— 加权均值滤波
如下,是几个典型的加权平均滤波器。
1 1 1
H1
1 10
1
2
1
1 1 1 示例
1 2 1
H2
1 16
2
4
2
1 2 1
示例
1 1 1
H3
1 8
1
1
0 1
1 1
示例
0
1 4
0
H4
1 2
1 4
1
1 4
0
1 4
0
示例
中值滤波器
—— 问题的提出
虽然均值滤波器对噪声有抑制作用,但同时会 使图像变得模糊。即使是加权均值滤波,改善 的效果也是有限的。
为了有效地改善这一状况,必须改换滤波器的 设计思路,中值滤波就是一种有效的方法。
中值滤波器
—— 设计思想
因为噪声(如椒盐噪声)的出现,使该点像素比 周围的像素亮(暗)许多。
第五章 图像的噪声抑制
图像噪声的概念
所谓的图像噪声,是图像在摄取时或是 传输时所受到的随机干扰信号。
常见的有椒盐噪声和高斯噪声。
图像噪声的概念
椒盐噪声的特征:
出现位置是随机的,但噪声的幅值是基本相同 的。
高斯噪声的特征:
出现在位置是一定的(每一点上),但噪声的 幅值是随机的。
图像噪声的抑制方法
H0
1 9
1
1
1
1 1 1
待处理像素
12143 12234 57689 57688 56789
C=6.6316
12143 1 23 24 34 4 5 74 65 86 9 5 76 67 88 8 56789
C=5.5263
边框保留不变的效果示例
示例
均值滤波器的改进
—— 加权均值滤波
均值滤波器的缺点是,会使图像变的模糊,原因 是它对所有的点都是同等对待,在将噪声点分摊 的同时,将景物的边界点也分摊了。
中值滤波器
—— 例题
1 21 4 3 1 22 3 4 5 76 8 9 5 76 8 8 5 6734 4 5 75 66 86 9 5 76 67 88 8 56789
C=5.5263
示例
中值滤波器与均值滤波器的比较
对于椒盐噪声,中值滤波效果比均值滤 波效果好。
这样,就达到了边界保持
1
的目的。
2
K近邻(KNN)平滑滤波器
—— 实现算法
1) 以待处理像素为中心,作一个m*m的作用 模板。
2)在模板中,选择K个与待处理像素的灰度差 为最小的像素。
3)将这K个像素的灰度均值替换掉原来的像素 值。
K近邻(KNN)平滑滤波器
—— 例题
例:下图,给定3*3模板,k=5。
中值滤波器与均值滤波器的比较
原因: 椒盐噪声是幅值近似相等但随机分布在不
同位置上,图像中有干净点也有污染点。 中值滤波是选择适当的点来替代污染点的
值,所以处理效果好。 因为噪声的均值不为0,所以均值滤波不能
很好地去除噪声点。
中值滤波器与均值滤波器的比较
对于高斯噪声,均值滤波效果比均值滤 波效果好。
如果在某个模板中,对像素进行由小到大排列的 重新排列,那么最亮的或者是最暗的点一定被排 在两侧。
取模板中排在中间位置上的像素的灰度值替代待 处理像素的值,就可以达到滤除噪声的目的。
中值滤波器
—— 原理示例
m-2
m-1
6
10
m
m+1
62
5
数值排序
m
m+1
m-2
2
5
6
m+2 8
m+2 8
m-1 10
2
6
中值滤波器 —— 处理示例
例:模板是一个1*5大小的一维模板。 原图像为: 2 2 6 2 1 2 4 4 4 2 4
处理后为: 2 2 2 2 2 2 4 4 4 4 4
(1,2,2,2,6) (1,2,2,2,6) (1,2,2,4,6)
(2,4,4)
中值滤波器
—— 滤波处理方法
与均值滤波类似,做3*3的模板,对9个数排 序,取第5个数替代原来的像素值。
12143 12234 57689 57688 56789
12143 12234 5 76 76 8 9 57688 56789
(12567+12368+23678+2478+234789)/5=12367.8624=82367
K近邻(KNN)平滑滤波器
—— 效果分析
首先来看一下KNN平滑滤波的效果。 KNN滤波器因为有了边界保持的作用,所以在去
设计噪声抑制滤波器,在尽可能保持原 图信息的基础上,抑制噪声。
均值滤波器 中值滤波器 边界保持类滤波器
均值滤波器
—— 原理
在图像上,对待处理的像素给定一个模板, 该模板包括了其周围的邻近像素。将模板中 的全体像素的均值来替代原来的像素值的方 法。
均值滤波器
—— 处理方法
1 1 1
以模块运算系数表示即:
K近邻(KNN)平滑滤波器
—— 原理分析
边界保持滤波器的核心是确定边界点与非边界 点。
如图所示,点1是黄色区域的非边界点,点2是 蓝色区域的边界点。
点1模板中的像素全部
1
是同一区域的;
点2模板中的像素则包
2
括了两个区域。
K近邻(KNN)平滑滤波器
—— 原理分析
在模板中,分别选出5个与点1或点2灰度值最 相近的点进行计算,则不会出现两个区域信息 的混叠平均。
中值滤波器与均值滤波器的比较
原因: 高斯噪声是幅值近似正态分布,但分布在每点像
素上。 因为图像中的每点都是污染点,所以中值滤波选
不到合适的干净点。 因为正态分布的均值为0,所以均值滤波可以消除
噪声。(注意:实际上只能减弱,不能消除。思 考为什么?)
边界保持类平滑滤波器
—— 问题的提出
经过平滑滤波处理之后,图像就会变得模糊。 分析原因,在图像上的景物之所以可以辨认清楚
除椒盐以及高斯噪声时,对图像景物的清晰度保 持方面的效果非常明显。 当然,所付出的代价是:算法的复杂度增加了。
K近邻(KNN)平滑滤波器
—— 效果分析
首先来看一下KNN平滑滤波的效果。 KNN滤波器因为有了边界保持的作用,所以在去
除椒盐以及高斯噪声时,对图像景物的清晰度保 持方面的效果非常明显。 当然,所付出的代价是:算法的复杂度增加了。
是因为目标物之间存在边界。 而边界点与噪声点有一个共同的特点是,都具有
灰度的跃变特性。所以平滑处理会同时将边界也 处理了。
边界保持类平滑滤波器
—— 设计思想
为了解决图像模糊问题,一个自然的想 法就是,在进行平滑处理时,首先判别
当前像素是否为边界上的点,如果是,
则不进行平滑处理;如果不是,则进行 平滑处理。
相关文档
最新文档