描述性统计分析
描述性统计分析法定义

描述性统计分析法定义所谓描述性统计分析方法是以数学表达式的形式来反映现象之间相关联系的一种统计方法。
它可以将各种原始数据中的变量分别归类,然后根据研究目的进行分组统计,并对整个调查资料进行观察与综合,从而获得对于现象的比较精确的定量估计,为经济管理和科学研究提供数量化的依据。
描述性统计分析的特点是:分组及数据计算均要有详细的资料,数据必须具有可靠性。
描述性统计分析方法按其所使用的数据范围不同,又可分为:(1)单项数据分析;(2)总量数据分析;(3)平均数、中位数、众数、变异数、标准差等数据分析。
应用描述性统计分析方法进行经济数据处理时,必须掌握下列基本概念:但是,在实际工作中,许多应用者只重视“同质性”的分析,却忽略了对于“异质性”的考虑。
异质性也称为“差异性”,是指变量之间不同水平上的差异程度。
这里的差异包括:变量水平上的差异、变量之间的差异以及时间顺序上的差异。
因此,描述性统计分析的基本内容包括: 1、差异性检验; 2、差异性分类; 3、差异性的估计值; 4、描述性统计分析方法在经济研究中的应用。
由此可见,影响因素越多,描述性统计分析的成果就越复杂,因此在实际工作中,要注意处理好同质性和异质性的关系。
描述性统计分析的方法非常广泛,其中最常用的有: (1)列联表; (2)相关分析;(3)回归分析;(4)方差分析;(5)主成分分析;(6)因子分析;(7)对数线性模型。
我们必须明白这样一个事实:假设两种或多种变量之间确实存在某种联系,那么描述性统计分析法只能提供初步的、粗略的、概括性的结论,还需要根据有关因素的情况作进一步的研究和分析,才能给出更加全面和具体的信息。
比如,一个企业通过技术创新降低成本,采取该策略的效果在短期内显而易见,但长期而言,如果成本继续下降,则说明该公司仍然需要通过提高生产率、增强核心竞争力等手段提高自己的竞争地位,从而真正带来成本的下降。
此时,再去寻找造成降低成本的因素,将会收到事半功倍的效果。
描述性统计分析

一、什么是描述统计分析(Descriptive Analysis)概念:使用几个关键数据来描述整体的情况描述性数据分析属于比较初级的数据分析,常见的分析方法包括对比分析法、平均分析法、交叉分析法等。
描述性统计分析要对调查总体所有变量的有关数据做统计性描述,主要包括数据的频数分析、数据的集中趋势分析、数据离散程度分析、数据的分布、以及一些基本的统计图形。
Excel里的分析工具库里的数据分析可以实现描述性统计分析的功能。
描述性统计分析即是对数据源最初的认知,包括数据的集中趋势、分散程度以及频数分布等,了解了这些后才能去做进一步的分析。
二、常用指标均值、中位数、众数体现了数据的集中趋势。
极差、方差、标准差体现了数据的离散程度。
偏度、峰度体现了数据的分布形状。
1、均值。
均值容易受极值的影响,当数据集中出现极值时,所得到的的均值结果将会出现较大的偏差。
2、中位数:数据按照从小到大的顺序排列时,最中间的数据即为中位数。
当数据个数为奇数时,中位数即最中间的数,如果有N个数,则中间数的位置为(N+1)/2;当数据个数为偶数时,中位数为中间两个数的平均值,中间位置的算法是(N+1)/2。
中位数不受极值影响,因此对极值缺乏敏感性。
3、众数:数据中出现次数最多的数字,即频数最大的数值。
众数可能不止一个,众数不能能用于数值型数据,还可用于非数值型数据,不受极值影响。
4、极差:=最大值-最小值,是描述数据分散程度的量,极差描述了数据的范围,但无法描述其分布状态。
且对异常值敏感,异常值的出现使得数据集的极差有很强的误导性。
5、四分位数:数据从小到大排列并分成四等份,处于三个分割点位置的数值,即为四分位数,四分位数分为上四分位数(数据从小到大排列排在第75%的数字,即最大的四分位数)、下四分位数(数据从小到大排列排在第25%位置的数字,即最小的四分位数)、中间的四分位数即为中位数。
四分位数可以很容易地识别异常值。
箱线图就是根据四分位数做的图。
统计学中的描述性统计分析方法

统计学中的描述性统计分析方法统计学是一门研究数据收集、整理、分析和解读的学科,它可以帮助我们更好地理解和解释数据。
描述性统计是统计学中的一个重要分支,旨在总结和揭示数据的基本特征。
在本文中,我们将介绍统计学中常用的描述性统计分析方法。
一、数据收集与整理描述性统计分析的第一步是数据收集,通过合适的调查问卷、实验或观察,我们可以获取所需的数据。
在数据收集完成后,我们需要对数据进行整理和准备,以便后续的分析。
二、测量指标在描述性统计中,我们常用各种测量指标来描绘数据的中心趋势、离散程度以及数据之间的关联性。
1. 中心趋势测量中心趋势测量用来反映数据集中的一个“典型值”。
(1)平均数(Mean):平均数是数据集中所有观测值的总和除以观测值的数量。
它可以用来衡量数据的总体情况。
(2)中位数(Median):中位数是将数据集按大小顺序排列后的中间值。
它可以忽略异常值的影响,更好地反映数据的中心位置。
(3)众数(Mode):众数是数据集中出现频率最高的值。
它在描述分类数据时特别有用。
2. 离散程度测量离散程度测量用来反映数据集的分散程度。
(1)标准差(Standard Deviation):标准差是数据集各个观测值与平均数之间的偏离度的平均值。
它反映了数据的总体分散程度。
(2)方差(Variance):方差是各个观测值与平均数之间偏离度的平方的平均值。
它是标准差的平方。
(3)极差(Range):极差是数据集中最大值与最小值之间的差值。
它可以用来衡量数据的全局范围。
三、数据可视化数据可视化是描述性统计分析中非常重要的一部分。
通过图表和图形的方式展示数据,可以使数据的特征更加直观地呈现出来。
1. 条形图(Bar Chart):条形图用于对比不同类别或组之间的数据差异。
2. 折线图(Line Chart):折线图可以展示变量随时间的变化趋势。
3. 饼图(Pie Chart):饼图适用于展示分类数据的比例关系。
4. 散点图(Scatterplot):散点图可以直观地显示两个变量之间的关系。
第三章描述性统计分析

描述性统计分析指标
统计量可分为两类
一类表示数据的中心位置,例如均值、中位数、众 数等 一类表示数据的离散程度,例如方差、标准差、极 差等用来衡量个体偏离中心的程度。
描述单变量分布的三种方式
用数字呈现一个变量的分布 用表格呈现一个变量的分布 用图形呈现一个变量的分布
Frequencies
在交叉列联表中,除了频数外还引进了各种百分 比。例如表中第一行中的33.3%, 33.3%, 33.3 %分别是高级工程师3人中各学历人数所占的比例 ,称为行百分比(Row percentage),一行的百 分比总和为100%;表中第一列的25.0%,25.0% ,50.0%分别是本科学历4人中各职称人数所占的 比例,称为列百分比(Column percentage), 一列的列百分比总和为100%,表中的6.3%,6.3 %,12.5%等分别是总人数16人中各交叉组中人 数所占的百分比,称为总百分比(Total percentage),所有格子中的总百分比之和也为 100%。
例子
假设我们有以下的三组观测值:
观测A:11,12,13,16,16,17,18,21 观测B:14,15,15,15,16,16,16,17 观测C:11,11,11,12,19,20,20,20
这三组观测值的均值都是15.5,那么这三组数 据是否相似呢?
离散趋势
离散趋势的描述
本科 职称 高 级工 程师 Count % within 职 称 % within 文 化 程 度 % of Total Count % within 职 称 % within 文 化 程 度 % of Total Count % within 职 称 % within 文 化 程 度 % of Total Count % within 职 称 % within 文 化 程 度 % of Total Count % within 职 称 % within 文 化 程 度 % of Total 1 33.3% 25.0% 6.3% 1 25.0% 25.0% 6.3% 2 33.3% 50.0% 12.5% 0 .0% .0% .0% 4 25.0% 100.0% 25.0%
SPSS统计分析—描述性统计分析

SPSS统计分析—描述性统计分析描述性统计分析(Descriptive statistics analysis)简介描述性统计分析是统计学的一个领域,主要目的是通过对样本数据进行总结、整理和分析,揭示数据中的模式、趋势和关联。
它可以通过计算和展示各种统计指标来帮助我们更好地理解和解释数据。
SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,可以用于进行各种描述性统计分析。
本文将介绍一些常用的描述性统计分析方法和在SPSS中的应用。
1.数据摘要数据摘要是描述性统计分析的基础,主要目的是对数据进行概括性的总结。
常用的数据摘要方法包括计数、频数、百分比、均值、中位数、标准差等。
在SPSS中,可以使用“Frequencies”命令对数据进行频数分析。
该命令可以列出每个变量的频数、百分比以及累积百分比。
此外,使用“Descriptives”命令可以计算各个变量的均值、中位数、标准差等统计量。
2.绘制图表图表可以帮助我们更好地理解和展示数据的特征和分布。
常用的图表包括直方图、饼图、箱线图等。
在SPSS中,可以使用“Graphs”菜单下的不同选项来绘制各种图表。
例如,使用“Bar Chart”选项可以绘制柱状图,使用“Pie Chart”选项可以绘制饼图,使用“Boxplot”选项可以绘制箱线图。
3.相关分析相关分析可以帮助我们研究数据之间的关联关系。
它可以通过计算相关系数来评估两个变量之间的线性关系。
在SPSS中,可以使用“Correlations”命令进行相关分析。
该命令可以计算出各个变量之间的相关系数,并提供了相关系数矩阵和散点图来展示结果。
4.因素分析因素分析是一种常用的数据降维方法,可以帮助我们理解并提取潜在的数据结构和变量之间的关系。
在SPSS中,可以使用“Factor Analysis”命令进行因素分析。
该命令可以根据指定的变量,自动提取主成分或因子,并计算出因子载荷矩阵和因子得分。
报告中描述性和推理统计分析的方法

报告中描述性和推理统计分析的方法描述性统计分析和推理统计分析是统计学中使用最广泛且重要的两种方法。
描述性统计分析是通过收集、整理、分析和解释数据的方法,旨在揭示数据的特征和趋势。
推理统计分析则是通过基于样本数据的结论,进一步推断总体的特征和关联性。
本文将详细论述这两种方法的基本概念、应用场景、常见的统计指标和分析方法。
一、描述性统计分析1.1 描述性统计分析的基本概念描述性统计分析是通过对数据进行总结、整理和归纳,呈现数据的特征和总体状况。
在实际应用中,常用的描述性统计分析方法有统计图表、频数分布、集中趋势和离散程度等指标。
1.2 描述性统计分析的应用场景描述性统计分析适用于多个领域,例如社会科学、市场调查、医学研究等。
在社会科学研究中,描述性统计分析可以帮助研究者了解人口统计学数据、调查问卷的回答情况等。
在市场调查中,描述性统计分析能够对产品的销售情况、消费者行为进行总结和分析。
1.3 描述性统计分析的常见统计指标和分析方法常见的描述性统计分析指标包括平均数、中位数、众数、标准差、方差等。
这些指标可以揭示数据的中心位置、分布形态和离散程度。
此外,统计图表如直方图、条形图、饼图等也是描述性统计分析常用的可视化方式。
二、推理统计分析2.1 推理统计分析的基本概念推理统计分析是通过从样本中得出关于总体特征的推断,以此作为决策和预测的依据。
推理统计分析是基于概率的,通过利用样本数据估计总体参数,并进行假设检验和置信区间估计等统计推断。
2.2 推理统计分析的应用场景推理统计分析广泛应用于科学研究、质量控制、市场调查等领域。
在科学研究中,通过推理统计分析可以对实验结果进行合理的解释和推断。
在质量控制中,推理统计分析可以帮助判断产品合格与否。
在市场调查中,推理统计分析可以根据样本数据对总体的情况进行推测。
2.3 推理统计分析的常见方法推理统计分析的常见方法包括参数估计、假设检验、置信区间估计等。
参数估计可以通过样本数据估计总体参数,并对总体进行推测。
描述性统计分析方法

描述性统计分析方法描述性统计分析是指对收集到的样本数据进行整理、分析和总结的过程。
它旨在通过使用统计指标和图表来描述数据的特征和分布,以便更好地理解数据,发现其中的规律和趋势。
在进行描述性统计分析时,常用的方法包括中心趋势测度、离散程度测度、分布形态描述和相关性分析等。
一、中心趋势测度中心趋势测度是用来表示数据集中趋向于某个中心的位置。
常用的中心趋势测度包括均值、中位数和众数等。
1. 均值:均值是以所有数据的数值和除以数据个数的统计量,用来表示平均水平。
均值对异常值敏感,容易受到极端值的影响。
2. 中位数:中位数是将数据按照顺序排列后,位于中间位置的数值。
中位数不会受到极端值的影响,更能反映数据的普遍情况。
3. 众数:众数是一组数据中出现频率最高的数值,可用于描述具有离散分布的数据。
二、离散程度测度离散程度测度是用来表示数据集合中数据分散程度的方法。
常用的离散程度测度有范围、方差和标准差等。
1. 范围:范围是最大值和最小值的差值,可用来衡量数据的整体变化幅度。
范围对异常值敏感,易受到极端值的影响。
2. 方差:方差是各数据与均值差的平方和的平均数,用来描述数据的平均离散程度。
方差较大时,表示数据的离散程度较高。
3. 标准差:标准差是方差的平方根,用于度量数据相对于均值的离散程度。
标准差较大时,表明数据分散程度大。
三、分布形态描述分布形态描述是对数据分布形态特征进行描述的方法。
常用的分布形态描述包括偏度和峰度等。
1. 偏度:偏度描述了数据分布曲线相对于均值偏离的大小和方向。
偏度为正表示数据分布朝右偏,为负表示数据分布朝左偏,为0表示数据均匀分布。
2. 峰度:峰度描述了数据分布曲线的陡峭程度,反映了数据分布的尖峰与平顶程度。
峰度大于0表示数据分布曲线相对于正态分布更陡峭,小于0表示数据分布曲线相对于正态分布更平顶。
四、相关性分析相关性分析用来研究两个变量之间的相关关系。
常用的相关性分析方法有协方差和相关系数。
描述性统计分析

描述性统计分析描述性统计分析是一种通过对数据进行收集、整理、汇总、展示和解释,来揭示数据特征、分布和趋势的方法。
它是统计学中最基础的分析方法之一,广泛应用于各个领域的数据研究与决策中。
本文将简要介绍描述性统计分析的基本概念、常用方法和应用场景。
一、描述性统计分析的基本概念描述性统计分析是通过对数据的常见统计指标进行计算和分析,来描述数据的集中趋势、离散程度和分布情况。
常见的统计指标包括:均值、中位数、众数、极差、标准差、方差等。
这些指标可以帮助我们更好地理解和概括数据的特征,从而进行合理的数据解读和决策。
二、描述性统计分析的常用方法1. 数据收集:首先需要确定所需数据的来源和采集方法,可以通过问卷调查、实地观察、抽样调查等方式来收集相关数据。
2. 数据整理和清洗:对收集到的数据进行整理和清洗,包括缺失值的处理、异常值的剔除,确保数据的准确和完整。
3. 数据汇总和展示:将数据进行汇总,并通过图表等形式进行可视化展示,以便更直观地观察数据的特征和趋势。
4. 统计指标计算:通过计算均值、中位数、众数、标准差等统计指标,揭示数据的集中趋势和离散程度。
5. 数据解释和分析:根据计算得到的统计指标,对数据的特征和分布进行解释和分析,从中提取有价值的信息。
三、描述性统计分析的应用场景1. 社会科学研究:在社会学、心理学、教育学等领域的研究中,描述性统计分析可以用来描绘人群的特征和行为规律,为研究提供数据支持。
2. 经济与金融分析:在经济学和金融学研究中,通过对经济指标和市场数据进行描述性统计分析,可以了解经济形势和市场趋势,从而指导决策。
3. 市场调研与营销:在市场调研和营销策划中,通过对受众、消费者数据进行描述性统计分析,可以更好地了解目标市场和消费群体的需求和偏好。
4. 医学与健康研究:在医学和健康研究中,通过对患者数据和健康指标进行描述性统计分析,可以了解疾病的发病率、死亡率等情况,为医疗决策提供依据。
报告中的描述性统计分析

报告中的描述性统计分析引言:描述性统计分析是研究统计现象的基本方法之一。
它通过定量描述和总结数据,以揭示数据的特征、规律和变异情况,为进一步的研究和分析提供初步的认识。
在报告中,描述性统计分析常常被用来描述和说明研究的基本信息,同时也是对数据进行初步探索和分析的方法。
本文将从六个方面展开论述描述性统计分析在报告中的应用。
一、总体描述统计指标的计算与解读总体描述统计指标是描述变量分布特征的重要工具。
常见的总体描述统计指标包括平均数、中位数、众数、标准差等。
在报告中,我们需要根据数据的特点选择适当的描述统计指标,并对其进行计算和解读。
例如,在一份消费调查报告中,我们可以计算平均消费金额、中位数消费金额等指标,从而揭示受访者的消费水平和消费倾向。
二、样本描述统计指标的计算与解读样本描述统计指标是对样本数据进行描述的重要依据。
与总体描述统计指标不同,样本描述统计指标通常只反映样本数据的情况,但能够提供样本的基本特征和分布情况。
在报告中,我们可以通过计算和解读样本描述统计指标,了解样本的中心趋势和离散程度。
例如,在一份市场调研报告中,我们可以计算并解读样本的平均年龄、样本的标准差等指标,从而初步了解受访者的年龄结构和年龄差异性。
三、变量之间的关系描述与分析变量之间的关系描述和分析是描述性统计分析的重要方面之一。
通过计算和解读变量之间的相关系数和协方差等指标,我们可以揭示变量之间的关联性和相互影响关系。
在报告中,我们可以用统计方法描述和分析变量之间的关系,并对其进行解读和说明。
例如,在一份教育调查报告中,我们可以计算学生的学习成绩与家庭背景变量的相关系数,从而了解家庭背景对学生成绩的影响程度。
四、不同群体之间的差异描述与比较不同群体之间的差异描述和比较是描述性统计分析的重要应用之一。
通过计算和解读不同群体之间的均值差异、方差差异等指标,我们可以揭示不同群体的特点和差异性。
在报告中,我们可以利用描述性统计分析来描述和比较不同群体之间的差异,并进行进一步推断。
论文中的描述性统计分析方法

论文中的描述性统计分析方法在进行科学研究时,描述性统计分析是不可或缺的一部分。
它通过对数据进行整理、总结和解释,帮助研究者更好地理解数据的特征和规律。
本文将介绍几种常见的描述性统计分析方法,包括频数分析、均值分析、标准差分析和相关性分析。
频数分析是一种用于统计数据中各类别出现次数的方法。
通过统计各个类别的频数,我们可以了解到数据中各个类别的分布情况。
例如,在一项调查中,我们想了解参与者的性别分布情况,可以通过频数分析得到男性和女性的人数,进而计算出男女比例。
频数分析可以直观地展示数据的分布情况,为后续的分析提供基础。
均值分析是描述性统计分析中最常用的方法之一。
它通过计算数据的平均值,来反映数据的集中趋势。
均值是将所有数据加起来再除以数据个数得到的。
例如,在一组学生的考试成绩中,我们可以计算出平均分,以了解整体的考试水平。
均值分析可以帮助我们了解数据的中心位置,以及数据整体的水平。
标准差分析是描述性统计分析中用于衡量数据波动程度的方法。
标准差是数据离均值的平均距离,其值越大表示数据的离散程度越大,反之亦然。
例如,在一组销售数据中,我们可以计算出销售额的标准差,以了解销售额的稳定性。
标准差分析可以帮助我们判断数据的分散程度,从而对数据的稳定性和可靠性进行评估。
相关性分析是描述性统计分析中用于衡量两个变量之间关系强度的方法。
通过计算相关系数,我们可以了解两个变量之间的线性相关程度。
例如,在一项调查中,我们想了解学习时间和考试成绩之间的关系,可以通过相关性分析得到两者之间的相关系数。
相关性分析可以帮助我们判断变量之间的相关性,从而为后续的预测和决策提供依据。
除了以上介绍的几种方法,还有其他一些描述性统计分析方法,如百分位数分析、偏度分析和峰度分析等。
这些方法在不同的研究领域和问题中有着广泛的应用。
通过运用这些方法,我们可以更全面地了解数据的特征和规律,为进一步的研究和分析提供基础。
总之,描述性统计分析是科学研究中不可或缺的一环。
描述性统计分析

描述性统计分析统计学是一门关注收集、整理、分析和解释数据的学科。
在进行数据分析时,描述性统计是一个重要的环节。
描述性统计分析旨在通过对数据的整理和总结,揭示数据的基本特征和规律,帮助我们更好地理解和解释数据。
一、数据收集与整理描述性统计分析的第一步是数据的收集与整理。
数据可以从多种渠道获得,比如调查问卷、观测记录、实验数据等。
对于收集到的数据,需要进行数据清洗和整理,确保数据的准确性和可靠性。
清洗和整理数据的过程包括剔除异常值、处理缺失值、标准化数据等。
二、数据集中趋势的测量数据集中趋势是指描述数据集中心位置的统计量,常用的统计量有均值、中位数和众数。
1. 均值(mean)是数据集中所有数值的平均值,用于描述数据的总体水平。
2. 中位数(median)是将数据集按大小排序后处于中间位置的数值,用于描述数据的中间位置。
3. 众数(mode)是数据集中出现频次最高的数值,用于描述数据的集中趋势。
通过计算均值、中位数和众数,我们可以得到数据的集中趋势,进一步了解数据的整体分布情况。
三、数据的变异程度测量数据的变异程度是指数据分布的离散程度。
常用的统计量有范围、方差和标准差。
1. 范围(range)是描述数据集最大值和最小值之间差异的统计量,用于度量数据的极值情况。
2. 方差(variance)是描述数据与均值之间差异的统计量,用于度量数据的分散程度。
3. 标准差(standard deviation)是方差的算术平方根,用于度量数据的离散程度。
通过计算范围、方差和标准差,我们可以了解数据的变异程度,从而判断数据的稳定性和可靠性。
四、数据的分布特征描述数据的分布特征描述主要包括对称性、峰度和偏度等。
1. 对称性是指数据分布在均值两侧是否对称,常用的描述指标是偏离标准差。
2. 峰度是描述数据分布的峰态的指标,代表数据分布的尖锐程度。
3. 偏度是描述数据分布的不对称性的指标,代表数据分布的偏斜程度。
通过分析数据的对称性、峰度和偏度,我们可以了解数据分布的形态特征,进一步推断数据的性质和规律。
描述性统计分析名词解释

描述性统计分析名词解释描述性统计分析(des}sile analysis)是指用来对事物进行客观描述的统计方法。
包括描述统计学与社会科学中的其他统计分析方法。
描述性统计分析的应用十分广泛,凡有理论研究问题就可能用到它,反之亦然。
例如市场研究、社会调查、各类专项研究、各种质量控制活动等都需要应用描述性统计分析。
描述性统计分析主要研究对象是描述总体单位的一般特征,或总体的一般水平,其目的在于揭示事物内部结构特征和规律性的一种统计方法。
描述性统计分析是用数字表示信息,以满足人们对现实状况的认识,解释数据间的内在联系,描述事物的空间分布,为管理者制定决策提供依据。
它通常只适用于描述总体的特征。
描述性统计分析的应用十分广泛,凡有理论研究问题就可能用到它,反之亦然。
例如市场研究、社会调查、各类专项研究、各种质量控制活动等都需要应用描述性统计分析。
1、随机样本和随机变量的关系:随机样本就是在随机抽样的条件下,从样本中所抽取的样本;而随机变量就是在某一随机样本下所获得的一组样本值,即变量X={a, b, c}。
样本统计量,就是从样本空间出发,推断样本统计量的函数。
所谓样本空间,就是具有与实际问题中所考察的现象相同性质的分布所构成的一个集合。
2、描述性统计分析方法是社会科学中常用的研究方法之一,主要研究对象是描述总体单位的一般特征,或总体的一般水平,其目的在于揭示事物内部结构特征和规律性的一种统计方法。
2、总体的统计特征分析:描述性统计分析的研究对象是总体的特征,这些特征可以称为总体的信息,即总体统计特征。
例如,经济指标,如总产值,增长率,资金利润率,平均劳动生产率,边际利润率,就是描述性统计分析的对象,也是描述性统计分析的研究内容。
描述性统计分析是一种最基本的统计分析,它是根据统计学原理,用数字描述和推断总体的特征或总体的水平。
描述性统计分析的对象是总体的全部,因此又称全面统计分析,它是统计研究中最古老,最简单,但又是最重要的分析方法。
SPSS统计分析—描述性统计分析

Skewness
中位数 Median
方差
Variance
峰度
Kurtosis
众数
Mode
极小值
Minimum
和
Sum
极大值
Maximum
全距
Range
均值的标准 误差
S.E.mean
• 【Descriptive Statistics】子菜单
• ① Frequencies:产生变量值的频数分布表,并可计算常见 描述性统计量和绘制相对应的统计图。
• 执行【Analyze】/【Descriptive Statistics】/ 【Crosstabs】命令,弹出如图所示对话框
• 结果解读
1、列联表 2、卡方检验结果
3、条图
相对比描述——Ratio
• 在实际问题中,研究者有时除了希望了解变量自身的统计特 征,还希望得到两个变量相对比之间的统计描述。
适用范围:更适用于对分类变量以及不服从正态分布的连 续性变量进行描述。
• 学生身高频数表:已知有某地120名12岁男童身高数据,编 制其传统的简易频数表。
执行【Analyze】/【Descriptive Statistics】/ 【Frequencies】命令,弹出如下所示对话框
• 结果解读 1、频数表
每个格子中的理论频数T是在假定两组的发癌率相等(均等于两组 合计的发癌率)的情况下计算出来的,如第一行第一列的理论频数 为71*91/113=57.18,故卡方值越大,说明实际频数与理论频数的 差别越明显,两组发癌率不同的可能性越大。
2、卡方检验方法的适用条件
• 吸烟习惯与患病率的关系
调查339名50岁以上吸烟习惯与患慢性气管炎病的关系,如 上表所示。试问吸烟者与不吸烟者慢性气管炎患病率是否有 所不同。 ◆ 数据的预处理:WEIGHT CASE
第五章 描述性统计分析

2.正态性统计检验 正态性统计检验 这里我们介绍进行偏度—峰度检验(sktest)、 ’ Agostino检验、 )、D’ 检验、 这里我们介绍进行偏度 峰度检验( 峰度检验 )、 检验 Shapiro—Wilk W检验和 检验和Shapiro—Francia W’检验的 命令。 检验和 ’检验的Stata命令。 命令 各种正态性统计检验的命令格式和选项如下: 各种正态性统计检验的命令格式和选项如下: ①偏度—峰度检验 偏度 峰度检验
Page 3
STATA从入门到精通 从入门到精通
的使用。 【例5-1】现在我们利用小时工资数据集举例说明 】现在我们利用小时工资数据集举例说明summarize的使用。 的使用 要求使用summarize命令对 命令对wage.dta执行如下操作: 执行如下操作: 要求使用 命令对 执行如下操作 (1)对wage、educ、exper、tenure、nonwhite、female、married ) 、 、 、 、 、 、 做基本的统计分析, 做基本的统计分析, 命令加上detail选项容许我们对某些重要的变量做更加 (2)Summarize命令加上 ) 命令加上 选项容许我们对某些重要的变量做更加 详尽的分析, 详尽的分析, 后使用in或者 来限制条件, (3)在summarize后使用 或者 来限制条件,可以获得对某个子样本 ) 后使用 或者if来限制条件 的描述性统计。 的描述性统计。 命令导出描述性统计量。 (4)使用 )使用outreg2命令导出描述性统计量。 命令导出描述性统计量
描述性统计分析

描述性统计分析统计学是研究现象的数量关系及其变异程度,以便加以利用,这种方法广泛应用于社会学、心理学、医学、环境科学等诸多领域。
其中,描述性统计分析是一个重要的分析工具,它是指对数据进行整理、概括和分析以便更好地理解数据的分布、形态和特征的方法。
下面,我们将对描述性统计分析做一介绍。
一、描述性统计分析的概念描述性统计分析是指通过图表和数字,对数据进行总结、描述、概括和分析的方法。
在描述性统计分析中,我们对数据进行可视化处理,将数据用图表的形式呈现,可以更直观地理解数据的分布、形态和特征。
同时,在描述性统计分析中,我们还可以计算出各种统计指标,如平均数、中位数、众数、方差、标准差等,以便更深入地分析数据的特征和分布情况。
二、描述性统计分析的过程在进行描述性统计分析时,一般分为以下几个步骤:1、整理数据首先,我们需要整理数据,将数据分类、排序、分组等,以便更好地进行统计和分析。
2、计算频数和频率计算频数和频率可以帮助我们了解数据的分布情况,对数据进行表格或图表化处理也可以更加直观地看出数据的分布情况。
3、计算中心趋势计算中心趋势是指通过数据的平均数、中位数、众数等指标来衡量数据中心的集中程度,这可以帮助我们了解数据的集中趋势和整体情况。
4、计算离散程度计算离散程度是指通过数据的范围、方差、标准差等指标来测量数据的分散程度,这可以帮助我们了解数据的分散程度和变异情况。
5、绘制图表数据可视化处理是描述性统计分析的重要组成部分,通过绘制直方图、折线图、散点图等图表,可以更加直观地了解数据的分布情况。
三、描述性统计分析的应用描述性统计分析在各行各业中都有着广泛的应用。
在企业中,描述性统计分析可以帮助企业了解市场的需求和客户的反馈,从而更好地制定营销策略和产品决策。
在金融领域,描述性统计分析可以帮助银行和保险公司进行风险评估,更好地控制风险。
在医学领域,描述性统计分析可以帮助医生了解疾病的发病情况和流行病学特征,从而更好地制定治疗方案和预防措施。
描述性统计分析报告

描述性统计分析报告
描述性统计分析报告是通过对数据进行统计和分析,对数据的基本特征进行描述和总
结的报告。
它通常包括以下内容:
1. 数据概述:对数据的整体情况进行概述,包括数据的来源、样本数量、期间、覆盖
范围等。
2. 数据质量检查:对数据的质量进行检查,包括检查缺失值、异常值、重复值等问题,并进行相应的处理。
3. 变量描述性统计分析:对各个变量的基本统计量进行描述,包括平均值、中位数、
最大值、最小值、标准差等。
还可以通过绘制频率分布表、直方图、箱线图等图表来
展现变量的分布情况。
4. 变量之间的关系分析:对不同变量之间的相关性进行分析,可以使用相关系数、散
点图、热力图等方法来呈现变量之间的关系。
5. 假设检验:对一些特定的假设进行检验,比如两个样本是否具有显著差异、变量之
间是否存在相关性等。
6. 结论和建议:根据对数据的描述性统计分析结果,进行总结和建议,提出对问题或
现象的解释和改进措施。
描述性统计分析报告旨在提供对数据的基本特征的全面总结和了解,为进一步分析和
决策提供参考依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
描述性统计分析在实证研究中的作用及具体软件实现——以SPSS为例为了提升经管代码库(/forum-2626-1.html)人气,一大早起床,打算就微观实证分析中描述性统计分析作用及SPSS具体软件实现做个详细的说明,理由如下:一是有坛友在论坛上问:看到很多实证研究在建模前有做描述性统计分析,问做这个有何意义(网址链接:/thread-929635-1-1.html),说明有实际需求;二是论坛上也没看见有什么详细阐述这个问题的,说明有实际需求而无有效供给。
故而特开此贴,希望能吸引更多对计量实证感兴趣的朋友关注经管代码库,来多多发此类原创帖。
不多说,图文并茂的开讲啦!
做用SPSS具体做描述性统计分析前,先简要说一下我个人认为的在实证分析中做描述性统计分析的作用——探究数据分布趋势,找出极端异常值。
由于此贴只讲描述性统计分析,故而不对极端异常值对模型的影响,数据分布趋势不是正态进一步详尽处理展开来说,只点到即止,后续帖子陆续补充。
在用SPSS做描述性统计分析前,先截两张实证论文中一般做的描述性统计分析表格。
进而可以直观看到我们一般做描述性统计分析要交待哪些统计量。
以上两个表格是常见的描述性统计分析表述表格,一般实证论文中,做描述性统计分析要报告以下4个统计量:均值、标准差、最小值和最大值(有的文章限于表格篇幅,只报道均值和标准差)。
问题来了,做了描述性统计分析后,结果要怎么看呢?我们要怎么才能确认结果是好或者不好呢(即变量是否符合正态分布呢)?
这个问题一般看均值和标准差。
如果标准差>>均值,那表明数据可能存在极端异常值,这时可能要对数据做进一步的处理。
如做箱形图看是否存在极端异常值(头上标*的就是)。
然而,一般情况下如果均值和标准差相差不大,如上表中“1998—2003年年均调整地块百分比”这类变量,可以就这样,不用做进一步处理。
若存在极端异常值,参见我这篇帖子的处理方法:/thread-3569928-1-1.html。
下面用SPSS截图演示怎么做描述性统计分析吧(案例用的SPSS自带文件accidents.sav)。
软件操作:分析——描述统计——描述
得到如下结果:这时平均值>>标准偏差,说明数据离散程度不高,可以进一步进行后面的建模分析。
为了看看变量的趋势,我们再做一个直方图,附加正态分布曲线看看。
软件操作:图形—图表构建器(弹出对话框,点确认)—选择直方图(直接将下面的图形拖动到图表预览窗口即可),选择“风险人口”变量到X轴,右边勾选“显示正态曲线”。
得到如下结果:基本符合正态。
如果还不放心,做一个箱图看看是否存在极端异常值。
软件操作:图形—图表构建器(弹出对话框,点确认)—选择箱图。
这时,“风险人口”这种连续变量放纵坐标,性别等类别变量放横坐标(前提是你想看不同性别风险人口是否存在极端异常值,若只想看变量总体的分布是否存在极端异常值,则只将关心的连续变量拖到纵坐标框即可,横坐标不用管,然后点确定)。
我们这里只看总体吧。
看结果,上面没有“*”出现,表明不存在极端异常值。
可对数据进一步做建模处理。
分界点:下面我们人为的改变一下原始数据大小,使其出现两个极端异常值(极大值和极小值),看看情况。
我们把原始数据人口第一行从198522改为10000,第6行208239改为1000000。
然后再重复前面的描述性统计分析过程。
软件操作:分析——描述统计——描述
由上表可知,标准偏差>平均值的(但可能是否远远大于不好判断,因为原始数据量就只有6个,比较少)。
这时我们持保留态度。
看箱图。
软件操作:图形—图表构建器(弹出对话框,点确认)—选择箱图。
这时,我们看到这个箱形图的上下方各有一个“*”,表明存在极端异常值。
接下来就是对极端异常值的处理了。
限于篇幅,本篇描述性统计分析介绍就到这里,下一篇是极端异常值的诊断和处理。
请期待经管代码库的下篇解说,谢谢。