色谱分析第七章程序升温气相色谱法
程序升温气相色谱法
• 调节pH值
控制pH值,使酸或碱的离解度改变,或使 其中待测物的挥发性变得更大,有利于分 析。
2012-3-19
94
• 固体样品的粉碎: 固体样品的扩散系数小 平衡时间较长 小颗粒利于缩短平衡时间 粉碎方法:冷冻粉碎(因为研磨会发热, 挥发性组分会丢失)。 水或有机溶剂浸润样品 减少吸附
• 水分的影响: 水蒸气影响GC分离结果 除水装置:氯化钙、氯化锂的短预柱
Vl
平衡常数K = Cl / Cg
容器密封,有下式成立:
C0Vl =ClVl +CgVg =KCgVl +CgVg
C0 =Cg(KVl +Vg)/Vl =Cg(K+β)
20平12-3-衡19 状态下,气相组成与样品的组成成正比86
仪器装置
简单进样装置 手动进样 恒温槽,气密注射剂
缺点: (1)压力控制难以实现(锁定压 力注射器) (2)温度控制(恒温炉中加热)
• 结果 全氟丙烷测定的线性范围为0.0168 –4.03 mg·L-1。 主要药代动力学参数平均滞留时间(MRT)为(63±5) s, T1 /2 为 ( 44 ± 4) s, Tmax 为 30 s, Cmax 为 ( 2.20 ± 0.20 ) mg·L - 1 ,AUC0-∞为(96 ±11) mg·s·L-1。
2012-3-19
一种克服温度不恒定的方法
取样
进样
手动进样适合作定性分析
精确定量分析:自动顶空进样装置
87
2012-3-19
88
自动进样装置 压力平衡顶空进样系统:
2012-3-19
• PE公司的HS-100采用上述装置 控制样品瓶中的压力低于GC柱前压, 否则分析结果将不够准确
程序升温在气相色谱中的应用
程序升温在气相色谱中的应用气相色谱(GC)是使用它来分离、检测、定量挥发性或半挥发性化合物的分析技术。
GC在化学、制药、石油和环境科学等领域中得到广泛应用。
在该技术中,样品通过气相色谱柱与移动相分离,检测峰的时间与组分相应,通过检测组分的信号强度可以定量分析样品中的各组分。
程序升温是指在气相色谱分析中,通过加热样品柱来实现样品成份的分离和检测,其具有高效、精确和灵敏等优点。
程序升温在气相色谱中的应用越来越广泛,具有重要的意义。
常见的程序升温方法包括线性升温、恒温保持、阶段性升温等。
其中线性升温是最基本的程序升温方法,即每分钟将恒定速率加热到最高温度。
在GC-MS分析中,程序升温被广泛用于生物质组分的鉴定和分析。
程序升温也被用来分离同分异构体,检测杂质和残留物,并进行药物筛选和新药开发。
程序升温在气相色谱中的应用可以提高分辨率和灵敏度。
相比于静态恒温,程序升温可以创造温度梯度,使样品分子扩散速度产生变化,进而提高它们的挥发性和分离效果。
程序升温还可以消除某些分离难题,如可溶性和分子大小相似的分子间的凝聚作用。
暴露给高温时,分子即使相互吸引也会解离,进而避免对分离效果产生不利影响。
这种方法还可以将化合物中的成分分离进行一定的增强,使得在较短的时间内,液体混合物的分析能够得到有效的解决。
程序升温还可以用来研究化合物的热稳定性和降解产物。
这是非常有用的,尤其是在药物制造、化工和食品科学中。
程序升温提高了样品的温度,促进了可能发生的分解反应并产生了降解产物。
通过这种方法,可以研究添加剂的分解行为,发现反应的过渡状态和机制,并将其应用于规模化生产。
程序升温在气相色谱中的应用有很多优点和意义。
它可以提高分离效率和灵敏度,消除某些分离难题。
程序升温还可以用来研究化合物的降解产物,为药物制造、化工和食品科学等领域提供重要的分析手段和工具。
程序升温在GC分析中的应用可以得到广泛的推广和应用。
程序升温可以在气相色谱分析中获得更高的分辨率和灵敏度。
程序升温气相色谱法_
2014-2-284火焰光度检测器: 利用富氢火焰使含硫、磷杂原子的有机物分解,形成激发态分子,当它们回到基态时,发射出一定波长的光。
此光强度与被测组分量成正比,所以,它是以物质与光的相互关系为机理的检测方法,属光度法。
非常有利于痕量磷、硫的分析,是检测有机磷农药和含硫污染物的主要工具。
对含磷、硫的化合物有高选择性和高灵敏度的一种检测器。
以S为例,然后被氢还原成硫原有机硫化物在氢焰离子室中先被氧化成SO2子,硫原子在高温下被激发。
当其由激发态跃迁至基态时,便发射出2014-2-2882014-2-282014-2-282014-2-28概•通常的气相色谱分析,采用恒温()At higher temperatures, these components spend more time in the mobile (gas) phase, helping them elute faster and minimizing band-broadening; the faster peaks also elute faster however, pressing2014-2-2819不同碳原子的同系物在色谱图上的分布呈现等距离分布。
T R =T 0+r t R ,p柱温与溶质移动速度的关系exp(/g H RT =Δ2014-2-2827R ,p 观察峰间距随r 的变化?高沸点溶质在起始温度下处于初期冻结阶段,对选择适当,就能得到满意结果。
2014-2-2828恒温—线性升温—恒温当样品兼具有前两种情况若在某一区间内的色谱峰间距离太小,甚至不能完38器:2014-2-282014-2-28402014-2-28412014-2-2842色谱条件:色谱柱: OV -101 石英毛细管柱, L = 25m , Φ= 0. 2 mm; 温度: 进样室250℃, 检测器280℃; 柱温: 程序升温,100℃保留2min,100~107℃(5℃/min) , 107℃保留3min,107~210℃(30℃/min) , 210℃保留10min; 载气: N 2,100 kPa; H 2,50 kPa; 空结果表明: 1、2、3 分别在0. 1~1. 0 mg/ml、0. 4~2. 0mg/ml、0. 8~4. 0 mg/ml 浓度范围内线性关系良好。
气相色谱仪程序升温条件 速率
气相色谱仪是一种用于分离和分析化合物的仪器,其操作程序中的升温条件和速率对于分析结果至关重要。
下面将对气相色谱仪程序中的升温条件和速率进行详细讨论。
一、气相色谱仪的升温条件1. 程序升温范围气相色谱仪的程序升温范围是指在分析过程中,热离子化器温度的升温范围。
常见的升温范围通常为室温至300°C,但具体的范围可以根据分析物的性质和分析要求进行调整。
2. 初温和终温在气相色谱仪的程序中,初温和终温是两个重要的参数。
初温是指在进样后立即开始的初始温度,而终温则是整个程序的最高温度。
这两个参数的设定需要根据样品的性质、分析的要求和色谱柱的温度范围来确定。
3. 升温速率升温速率是指气相色谱仪在程序运行中温度的变化速率。
通常会以°/min表示。
升温速率的合理设置对于分析结果的准确性和分离效果有着重要的影响。
二、气相色谱仪的速率1. 样品进样速率气相色谱仪的样品进样速率是指样品通过自动进样器进入色谱柱的速率。
对于不同类型的进样器和分析物,进样速率需要进行合理的设置,以确保样品能够完全进入色谱柱并获得准确的分析结果。
2. 色谱柱流速色谱柱流速是指在气相色谱仪中气相流经色谱柱的速率。
这个速率通常以cm/s计算,对于不同类型和尺寸的色谱柱,需要根据分析的要求进行合理的设置。
3. 检测器响应速率在气相色谱仪中使用的检测器,其响应速率是指检测器对样品信号的响应速率。
合理的响应速率能够准确地检测到样品的组分,并将信号传递给数据采集系统,影响分析结果的准确性。
三、升温条件和速率的影响1. 分离效果气相色谱仪的升温条件和速率对于分离效果有着重要的影响。
合理的升温条件和速率能够有效地提高色谱分离的效果,获得清晰的峰形和准确的分析结果。
2. 分析时间升温条件和速率的设定也会直接影响分析的时间。
通常情况下,较高的升温速率和温度范围会缩短分析时间,提高分析效率。
3. 分析结果最终的分析结果受升温条件和速率的影响。
程序升温色谱
一、程序升温与恒温操作的比较
项目 恒温色谱 程序升 温色谱 80~400℃ 很小偏差 很小偏差 不需快速 选择范围窄
样品沸点范围 限于 100℃
峰测量精密度 检测极限 样品注射 固定相
2001.6.
随峰形而变 随峰形而变 必须很快 选择范围广
程序升温色谱
5
项目 载气纯度
柱温、检测室炉
恒温色谱 不苛刻 一般要求 恒压足够 厚壁大热容
程序升温色谱
程序升 温色谱 高纯度
单独控制加热 要求用稳流阀
流速控制 柱室
薄壁小热容
2001.6.
6
程序增压
(程序升流速)
与程序升温类似,程序增压法是在恒温条件下, 载气入口压力随时间增加,出口保持在大气压, 这样对于一个多组份宽沸程混合物,柱温一定, 载气流速由慢向快程序增加,结果低沸点组份 也能在低流速下分开,而高沸点组份在高流速 下也能很快冲洗出来。对于同系物也能获得按 碳数等距离分布的峰宽相同的尖峰,因此就可 用稳定的恒温操作,得到程序升温同样的效果。 用程序升温、程序升流速联合法,分离复杂的 汽油组成,效果很好。
程序升温气相色谱分析
2001.6.
程序升温色谱
1
柱温固定的色谱过程,称作恒温色谱( IGC) 或定温色谱。使用于沸程差不大的样品。
对宽沸程样品,柱温选在平均沸点左右的折 衷办法对大部分组份不合适: 低沸点组份因柱温太高很快流出,色谱峰尖 而重叠,紧挤在一起,测量、定量误差很大; 高沸点组份则因柱温太低,流出时间长,且 峰宽且矮,有的不能在一次分析中流出,而 在随后的分析中作为基线噪音出现,或作为 无法说明的“鬼峰”出现,增加了测量、鉴 定的困难。
气相色谱法程序升温测定工作场所中的苯系物
气相色谱法程序升温测定工作场所中的苯系物目的建立气相色谱法测定工作场所中苯、甲苯、乙苯、对二甲苯、间二甲苯、邻二甲苯和苯乙烯的检测方法。
方法确立本检测方法的条件试验,如色谱条件等;进行气相色谱法程序升温测定工作场所中苯系物的方法学试验。
结果7种成份在11min内完成测定并具有较好的分离效果;在(0.4~700.0)μg/L浓度范围内可获得较好的直线方程,相关系数(r)为0.9990~0.9999;最低检出限分别为:苯0.2μg/L、甲苯2.5μg/L、乙苯3.6μg/L、对二甲苯3.6μg/L、间二甲苯0.9μg/L、邻二甲苯3.4μg/L、苯乙烯1.3μg/L。
精密度RSD为1.1%~3.7%,回收率为90.0%~108.1%。
结论此方法操作简便、重现性好,提高了灵敏度,适用于检测工作场所中苯系物的含量。
[Abstract] Objective To establish the detection methods of benzene, toluene, ethylbenzene, p-xylene, m-xylene, o-xylene and styrene in workplace by gas chromatography. Methods Established the conditions of this detection method, such as chromatographic conditions, and methodology of programmed temperature gas chromatography for determination of benzene in the workplace. Results 7 ingredients were measured in 11 minutes with nice separation; Good linear equation within(0.4 ~ 700.0)μg/L was obtained and correlation coefficient(r)was 0.9990-0.9999; Minimum detection limits were as follows: benzene 0.2μg/L, toluene 2.5μg/L, ethylbenzene 3.6 μg/L, p-xylene 3.6μg/L, m-xylene 0.9μg/L, o-xylene 3.4μg/L, styrene 1.3μg/L. Precision RSD was 1.1%-3.7% and average recovery was 90.0%-108.1%. Conclusion This method is simple, reproducible and can increase the sensitivity for detection of benzene content in the workplace.[Key words] Workplace;Benzene;Gas chromatography苯系物一般是苯、甲苯、乙苯、对二甲苯、间二甲苯、邻二甲苯、苯乙烯等的统称,它是大气环境和许多污染源气体中最常见的化合物,对人体健康都具有一定的危害作用,是环境的重要污染物[1]。
气相色谱法的两种升温方式
气相色谱法的两种升温方式
气相色谱法是一种常用的分析方法,它通过将样品分离成不同的组分并测量它们的相对含量来确定样品的组成。
在气相色谱法中,升温是一个非常重要的步骤,因为它可以影响样品的分离效果和检测灵敏度。
气相色谱法的升温方式有两种:程序升温和阶跃升温。
程序升温是指将温度按照一定的速率逐渐升高,直到达到预定的最高温度。
这种方式可以使样品在不同的温度下分离,从而提高分离效果和检测灵敏度。
阶跃升温是指将温度突然升高到预定的最高温度,然后保持一段时间,再逐渐降低温度。
这种方式适用于一些特殊的样品,如含有不稳定组分的样品。
气相色谱法中程序升温和进样口温度的关系_概述说明
气相色谱法中程序升温和进样口温度的关系概述说明1. 引言1.1 概述随着科学技术的不断进步和发展,气相色谱法作为一种重要的分离和鉴定技术,在化学、生物、环境等领域得到了广泛应用。
在气相色谱分析中,程序升温和进样口温度是影响色谱分离效果和样品保护的关键因素之一。
因此,研究程序升温和进样口温度之间的关系对于优化色谱方法、提高分析结果的可靠性具有重要意义。
1.2 文章结构本文主要探讨在气相色谱法中程序升温和进样口温度的关系,并从理论上解释它们对分离效果和保护柱寿命的影响。
文章将从以下几个方面进行阐述:首先,我们将介绍气相色谱法的基本原理,包括样品的挥发性、稳定性与沸点等基本概念;其次,我们将重点讨论程序升温和进样口温度在气相色谱中的重要性以及它们对分离效果和柱寿命的影响;接着,我们将介绍常见的程序升温方法,如温度梯度程序升温和温度线性程序升温,并探讨它们的优缺点;然后,我们将讨论进样口温度与气相色谱分析结果的关系以及进样口温度控制的技巧和注意事项;最后,我们将总结研究结果并展望未来的研究方向。
1.3 目的本文的目的是系统地总结和评述程序升温和进样口温度在气相色谱法中的作用、影响以及优化策略。
通过对相关文献和实验结果的综合分析,本文旨在提供一种全面而详尽地了解此领域内最新研究成果与趋势的背景知识,并为科学家、学者和从业人员提供更好地进行气相色谱分析实验设计及优化的指导与建议。
最终,希望本文能够促进气相色谱法在各个领域中更广泛地应用和发展。
2. 色谱法概述2.1 气相色谱原理气相色谱(Gas Chromatography,GC)是一种常用的分析技术,基于样品在气相流动载气中的分配与迁移行为进行分离和定性定量分析。
该技术主要包括进样、分离、检测三个步骤。
在气相色谱中,样品首先被注射器引入到柱子中,并随着液面进入柱子,然后被载气(通常为惰性气体)带出柱子进入检测器进行信号检测。
不同组分在柱子中的停留时间不同,从而实现了对混合物的有效分离。
第七章 程序升温气相色谱法
所以,必须使用在保留温度TR的恒温条件 下,测定的保留时间tTR。 另外,各组分开始都冻结在柱头上,当柱 温接近每一组分的保留温度时,各组分大约以 相同的速度通过色谱柱,因此,各组分受到谱 带扩张的影响就大致相同,因此,PTGC中, 等峰宽。
二、分离度 定义与恒温色谱中一样 R = 2(tr2 – tr1)/(WP1 – WP2) tr :程序升温中的保留时间 WP2、WP1程序升温中,色谱峰的峰底宽度。 若取平均峰宽
4、加热速率 填充柱 3-----100C/min 毛细管 、 0.5-----40C/min 5、载气流速 在PTGC中,载气流速大小对分析 、 时间和柱效影响较小,不很重要,等于或高于 恒温中最佳流速,流速还要于r适应,尽量使 r/F为一常数。 6、终止温度 由高沸物的沸点和固定液的最高 、 使用温度决定。
tr2 – tr1 R= WP = tTR tr2 – tr1
n
= Ri 4
n
4
Ri叫真正分离度。 程序升温中的保留值之差与恒温(以TR为柱温)保留 值之比,Ri仅与柱子的选择性有关, n /4与柱效有关, 由Ri看固定液,由 n /4评价操作条件。
三、操作条件的选择 1、升温方式 、 选用那种升温方式,由样品的性质和具体条 件所决定,如沸点分布均匀,同系物等,单阶线 性,如沸点间隔大,多阶,非线性。 仪器有单阶、三阶、最近有七阶。也可用中 间手工升温。 2、柱长 一般1------3米。 、 3、起始温度 由样品中最低沸点组分的沸点而定。 、 一般选在沸点左右,太低,时间长。太高,低沸 点组分分离不好。
T’= 0.92TR
也有 T’ = TR – 450C
第三节 操作条件的选择
一、柱效
n = 16(tTR/Wbp)2 tTR在保留温度TR的恒温条件下,测定 的保留时间,Wbp是在程序升温中,色谱峰的峰底宽度。 如果以程序升温中的保留时间tr代替tTR,因tr比tTR大的 多,板数将产生很大的误差,原因是初期冻结。开始大部分组 分停在柱入口不动,这段时间对峰的扩张或柱效影响很小,只 有当柱温接近TR,时,色谱带快速通过柱子的大部分,这时, 各种因素对谱带扩张有明显影响,只有这一段保留时间对柱效 有意义。
程序升温气相色谱法
2.对程序升温的要求
载气的纯化和控制 耐高温固定液的使用
SE - 30 ( 350℃ ) 、 OV - 101 ( 350℃ ) 、 ApiezonL(300℃)、OV-17(300℃)、PEG -20M(250℃)
程序升温气相色谱法
第一节 方法概述
1.方法特点: 适用对象:多组分、沸点范围宽的
样品。
溶剂效应:气捕集技术。
ቤተ መጻሕፍቲ ባይዱ
2.程序升温方式:
单阶程序升温 多阶程序升温
3.程序升温与恒温气相色谱法的比较:
参数
样品沸点范围
进样量 进样速度 进样方式
载气纯度 峰容量 固定相选择
IGC与PTGC的比较
LGC
PTGC
<100%
100%-400%
<1-5μl
≤10μl
对第一个色谱峰,进样时间应小于 0.05Wh/2(半峰宽)
直接进样 分流进样 柱上进样 无严格要求
直接进样,分流-不分流进样,柱上
进样,多维柱切换进样,顶空和裂解
器进样 需高纯载气
≤10个组分
>10个组分
可广泛选用固定相
只能选用耐高温、低流失固定相
对色谱峰的检测
对保留时间长的组分检测较不灵敏
载气流速控制方 式
分析速度
恒压 慢
随温度速率增加,可改进对保留时 间长的高沸点组分的检测灵敏度 恒流(使用稳流阀)
快
第二节 基本原理
保留时间 初期冻结 有效柱温 程序升温的操作参数
第三节 操作条件的选择
1.操作条件的选择 升温方式 起始温度 终止温度 升温速率 载气流速 柱长:
气相色谱法分析-程序升温操作技术(二)
气相色谱法分析-程序升温操作技术(二)程序升温条件下,表示柱效的理论塔板数按下式计算:式中,tTR为溶质在保留温度TR的恒温条件下测得的保留时光(它不是在程序升温过程达到保留温度时所需的保留时光tR) ;Wb(p)为溶质在程序升温运行中,在保留温度洗脱精彩谱峰的峰底宽度。
式(8-38)中不能用tR 代替tTR的缘由,是由于在程序升温过程中存在初期冻结。
惟独当柱温升高临近TR时,溶质蒸气才快速通过色谱柱,此时影响色谱峰形加宽的各种因素才发挥作用,因此若用tR来计算,n不能表示真正的柱效。
2.真正分别度在PTGC分析中两个相邻组分的分别度可按下式计算:式中,tR(2)和tR(1)分离为保留温度TR2和TR1对应的两个组分的保留时光;Wbl(p)和Wb2(p)分离为与TR1和TR2对应的两个组分色谱峰的基线宽度。
PTGC分析中的真正分别度Ri的表达式为式中,TR2和TR1为两个相邻组分的保留温度;tTR1和tTR2分离为柱温在TR1和TR2的恒温条件下,测得组分(1)和(2)的保留时光;r为升温速率。
分别度和真正分别度的关系为式中,n为程序升温条件下的理论塔板数。
3.操作条件的挑选 PTGC中的操作条件为升温方式、初始温度、终止温度、升温速率、载气流速、柱长等。
影响分别的主要因素是升温速率和载气流速。
(1)升温方式对沸点范围宽的同系物多采纳单阶线性升温。
如样品中含多种不同类型的化合物,可用法多阶程序升温。
现在性能完备的气相色谱仪可实现3~8阶程序升温。
(2)初始温度通常以样品中最易挥发组分的沸点附近来确定初始温度。
若选得太低会延伸分析时光,若选得太高会降低低沸点组分的分别度。
普通通用仪器,最低的T0就是室温,也可通入液氮降至更低温度的T0。
此外还应按照样品中低沸点组分的含量来打算初始温度保持时光的长短,以保证它们的彻低分别。
(3)终止温度它是由样品中高沸点组分的保留温度和固定液的最高用法温度打算的。
色谱分析法07程序升温气相色谱法
实施要求
实施监督
国家标准化管理委员会对标准的实施 进行监督和检查,对于不符合标准要 求的实验结果将不予承认或进行处罚 。
要求相关企业和实验室按照标准规定 的方法和要求进行实验,并定期进行 技术培训和质量控制。
色谱分析法的应用
• 应用:色谱分析法广泛应用于化学、生物学、医学 、环境科学等领域,用于分离和测定复杂混合物中 的各组分,如有机化合物、天然产物、药物、环境 污染物等。
02
CATALOGUE
程序升温气相色谱法介绍
程序升温气相色谱法的定义
01
程序升温气相色谱法是一种常用 的色谱分析方法,通过在色谱柱 上逐渐升高温度,实现对复杂样 品中不同组分的分离和分析。
改进方向
发展新型色谱柱和固定相
01
研究开发具有更高分离效能和耐受性的新型色谱柱和固定相,
提高方法的分离效果和抗污染能力。
优化升温程序
02
通过优化升温程序,缩短分析时间和降低能耗,提高方法的效
率和实用性。
联用其他技术
03
将程序升温气相色谱法与其他技术如质谱、红外光谱等联用,
提高对复杂样品中组分的定性和定量分析能力。
安全。
发展趋势
1 2
标准化和规范化
随着气相色谱法的广泛应用,未来将制定更加严 格的标准和规范,确保分析结果的准确性和可靠 性。
绿色环保
在可持续发展的大背景下,气相色谱法将更加注 重环保和节能,减少对环境的影响。
3
交叉融合
与其他分析技术的交叉融合将进一步拓展气相色 谱法的应用领域,如与其他质谱技术、光谱技术 等的联用。
程序升温
程序升温(1)在等温色谱分析(isothermal chromatographic analysis)中,对化学组成相似的化合物来说,保留时间与溶质沸点成指数关系。
即使对沸点范围不宽的样品,保留时间与峰宽也会随着组分沸点的增加而迅速增加。
结果是早流出的峰挤在一起,分离很差;晚流出的峰矮胖,因而可检出度很差。
这个问题可以用程序升温的方法来解决。
即使柱温按一定的规律升高。
在最简单的情况下,程序升温是使温度沿着一根线性的温度一时间曲线上升,即单位时间内使温度上升一定度数。
也可以在程序的开始和结束部分使温度在一定时间中保持一定值。
这种等温阶段也可以是在程序的中间。
当样品的沸点范围较大时,只有程序升温法才能使我们在适当的时间内得到最好的分离。
程序升温法趋向于消除保留时间与组分沸点之间的对数关系,在有些最佳条件下这个关系成了近似线性的。
在温度升高的过程中,各组分的峰宽只是缓慢地增加。
在气相色谱中程序升温是应用最广泛的技术。
在程序升温中温度可用机械的方法或微处理机来控制升高。
在选择一个程序时,各参数要通过反复试验方法(trial and error)确定。
普遍的原则是:在选择起始和终了温度时,应考虑色谱图中最初流出的峰的分离(起始温度不太高),同时避免使分析时间不必要地延长(终了温度不太低)。
升温速率(dT/dt)应兼顾最大分离度(这要求dT/dt小)和最短分离时间(这要求dT/dt大)。
应调节终了温度丁,使最后一个峰恰在柱温在T时流出。
程序升温结束后柱温维持为丁时继续流出的峰宽度迅速增加,但分离度可能比程序升温时好些。
在程序升温中,对温度上升范围的唯一实际的限制是固定相的热稳定性和载气流量的变化。
利用耐高温的或交联键合的固定相,最高使用温度范围可大大改善。
对于恒压控制的仪器,当温度上升时载气流速将下降,这会影响流量敏感性检测器的响应。
为了这个原因对于程序升温操作用恒流量控制的仪器较好。
利用两根一样的柱子同时用不同的方式检测,在对组分敏感的检测器的响应中扣除对组分不敏感的检测器的响应。
程序升温
程序升温(1)在等温色谱分析(isothermal chromatographic analysis)中,对化学组成相似的化合物来说,保留时间与溶质沸点成指数关系。
即使对沸点范围不宽的样品,保留时间与峰宽也会随着组分沸点的增加而迅速增加。
结果是早流出的峰挤在一起,分离很差;晚流出的峰矮胖,因而可检出度很差。
这个问题可以用程序升温的方法来解决。
即使柱温按一定的规律升高。
在最简单的情况下,程序升温是使温度沿着一根线性的温度一时间曲线上升,即单位时间内使温度上升一定度数。
也可以在程序的开始和结束部分使温度在一定时间中保持一定值。
这种等温阶段也可以是在程序的中间。
当样品的沸点范围较大时,只有程序升温法才能使我们在适当的时间内得到最好的分离。
程序升温法趋向于消除保留时间与组分沸点之间的对数关系,在有些最佳条件下这个关系成了近似线性的。
在温度升高的过程中,各组分的峰宽只是缓慢地增加。
在气相色谱中程序升温是应用最广泛的技术。
在程序升温中温度可用机械的方法或微处理机来控制升高。
在选择一个程序时,各参数要通过反复试验方法(trial and error)确定。
普遍的原则是:在选择起始和终了温度时,应考虑色谱图中最初流出的峰的分离(起始温度不太高),同时避免使分析时间不必要地延长(终了温度不太低)。
升温速率(dT/dt)应兼顾最大分离度(这要求dT/dt小)和最短分离时间(这要求dT/dt大)。
应调节终了温度丁,使最后一个峰恰在柱温在T时流出。
程序升温结束后柱温维持为丁时继续流出的峰宽度迅速增加,但分离度可能比程序升温时好些。
在程序升温中,对温度上升范围的唯一实际的限制是固定相的热稳定性和载气流量的变化。
利用耐高温的或交联键合的固定相,最高使用温度范围可大大改善。
对于恒压控制的仪器,当温度上升时载气流速将下降,这会影响流量敏感性检测器的响应。
为了这个原因对于程序升温操作用恒流量控制的仪器较好。
利用两根一样的柱子同时用不同的方式检测,在对组分敏感的检测器的响应中扣除对组分不敏感的检测器的响应。
程序升温 气象色谱
注意事项:有效柱温是获得一定理论板数和分离度的 特征温度,对两个相邻难分离组分,它是实现分离 的最佳恒温温度,在此恒温温度下,两组分的分离 可达到与程序升温同样的柱效和分离度。 主要优点 程序升温具有改进分离、使峰变窄、检测限下 降及省时等优点。 因此,对于沸点范围很宽的混合物,往往采用 程序升温法进行分析。 在气象色谱中多采用程序升温技术解决洗脱色 谱的一般问题,而在液相色谱中多采用梯度程序升温色谱分析中,当一多组分宽沸程混合物 进样后,由于起始温度很低,因此,对少数低沸点 组分为最佳柱温,得到良好的分离。对于大多数组 分,这个起始温度是太低了,蒸气压很低,大都溶 解在固定相里,所以,这些组分的蒸气带(色谱带) 的移动速度非常慢,几乎停在柱入口不动,这种现 象是程序升温色谱中所特有的,叫初期冻结。 随着柱温的升高,某些组分的蒸气带便开始以 可观的速度移动,柱温越接近保留温度,即越接近 出口处,色谱带速度增加的越快。
有效柱温:对二难分离组分, 有效柱温:对二难分离组分,采用的与恒温 操作有关的柱温T 操作有关的柱温T
程序升温方程式 1.线性升温:T=T0+rt r:升温速率 ℃/min 1.线性升温 线性升温:T=T0+rt r:升温速率 2.非线性升温: 2.非线性升温 非线性升温: ①先线性后恒温:适于组分沸点高于固定液的最高使用温度。 先线性后恒温:适于组分沸点高于固定液的最高使用温度。 ②先恒温后线性:适用于混合物中低沸点组分多的情况,常 先恒温后线性:适用于混合物中低沸点组分多的情况, 用于同系物的分析。 用于同系物的分析。 ③先恒温,再线性,再恒温:以上两种情况均可。 先恒温,再线性,再恒温:以上两种情况均可。 以上均为单阶升温。 以上均为单阶升温。 ④多阶升温:在一个分析周期内的不同时刻采用不同的升温 多阶升温: 速率。在每个时刻内呈线性升温, 速率。在每个时刻内呈线性升温,但对整个分析周期成非线 性升温。用于调节峰间距离和R与分析时间。 性升温。用于调节峰间距离和R与分析时间。
【气相色谱特辑6】程序升温
【气相色谱特辑6】程序升温对于沸点分布范围宽的多组分混合物,使用恒柱温气相色谱法分析,其低沸点组分会很快流出,峰形窄且易重叠,而高沸点组分则流出很慢,且峰形扁平且拖尾,因此分析结果既不利于定量测定,又拖延了分析时间。
程序升温若使用程序升温气相色谱法,使色谱柱温度从低温(如50℃)开始,按一定升温速率(如5~10℃/min)升温,柱温呈线性增加,直至终止温度(如200℃),就会使混合物中的每个组分都在最佳柱温(保留温度)下流出。
此时低沸物和高沸物都可在较佳分离度下流出,它们的峰形宽窄相近(即有相接近的柱效),并缩短了总分析时间。
程序升温气相色谱特别适用于气固色谱、痕量组分分析和制备色谱。
图1 表示程序升温常用的两种方式,即单阶或多阶线性程序升温操作。
表1 为恒温和程序升温气相色谱分析方法的比较。
图1 程序升温的方式表1 恒温和程序升温气相色谱方法的比较基本原理主要介绍保留温度、初期冻结、有效柱温及选择操作条件的依据。
保留温度在程序升温气相色谱分析中,每种溶质从色谱柱流出时的柱温,称该组分的保留温度T R,对线性程序升温可按下式计算:T R=T o+rt R式中:T0为初始温度;r为升温速率,℃/min; t R为组分的保留时间。
在PTGC中组分达保留温度时的保留体积V p为式中:F为载气流速,mL/min。
在线性PTGC中,T R和 t R的关系如图2 所示。
在线性程序升温中的Kovats保留指数I PT为式中:n为碳数,T R(x)、T R(n)、T R(n 1)为被测组分x和碳数分别为n 和n 1的正构烷烃的保留温度。
图2 线性程序升温中温度-时间图初期冻结在PTGC分析中,进样后因柱的起始温度很低,仅可对低沸物进行分离,其余大多数组分因在低柱温蒸气压低,大都溶解在固定相中,其蒸气带在柱中移动得非常慢,几乎停留在柱入口处不移动,即凝聚在柱头,此为PTGC所特有的现象,被称作初期冻结。
程序升温开始后,样品中不同沸点的组分随柱温升高而迅速气化,样品的蒸气带在柱中迅速移动,柱温愈接近组分的保留温度,其在柱中移动得愈快,当达到保留温度TR时即从柱中逸出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章程序升温气相色谱法
第一节方法概述
对于沸点范围宽的多组分混合物可以采用程序升温方法。
即在一个分析周期内,柱温随时间不断升高,在程序开始时,柱温较低,低沸点的组分得到分离,中等沸点的组分移动很慢,高沸点的组分还停留在柱口附近;随着柱温的不断升高,组分由低沸点到高沸点依次得到分离。
一、方法特点
恒温时最佳柱温的选择:组分沸点范围不宽时用恒温分析。
填充柱选择组分的平均沸点左右;毛细管柱选择比组分的平均沸点低30℃左右。
如果样品是宽沸程、多组分混合物(例如香料、酒类等),常采用程序升温毛细管柱气相色谱法。
图7-1是恒温分析(IGC)和程序升温(PTGC)的色谱图比较,(a)(b)是恒温分析,(a)柱温较低,恒温45℃时低沸点的组分得到分离,高沸点组分的峰出不来。
(b)柱温较高,恒温120℃时,低沸点的组分分离不好。
(C)采用了程序升温方法(30-180)℃,所有组分得到很好分离。
图7-1恒温分析和程序升温比较
二、升温方式
升温方式有单阶程序升温(恒温--线性--恒温)和多阶程序升温。
如图7-2所示,单阶程序升温在低温时分离低沸点的组分,再升温,高温时分离高沸点的组分。
图7-2单阶程序升温和多阶程序升温
三、程序升温与恒温气相色谱法的比较:
表7-1和图7-3、图7-4是恒温分析和程序升温的比较。
图7-3正构烷烃的恒温分析和程序升温的比较
图7-4 醇类的恒温分析和程序升温的比较
第二节基本原理
一、保留温度
在程序升温中,组分极大点浓度流出色谱柱时的柱温叫保留温度,其重要性相当于恒温中的t R,V R。
对每一个组分在一定的固定液体系中,T R是一个特征数据,即定性数据,不受加热速度、载气流速、柱长和起始温度影响。
1.保留温度及其它保留值
线性升温时保留温度T R:
T R= T0+ rt R (7-1)
式中,T0为起始柱温;t为升温时间;r为升温速率。
程序升温中某组分的保留时间和保留体积:
t R = ( T R–T0 ) / r (7-2)
V P = t R F (7-3)
程序升温中某组分的保留温度,相当于恒温色谱中保留值的对数,因此,在恒温色谱中保留值的对数遵守的规律,在程序升温中也成立。
2.保留温度与碳数关系
T R = aN + b (7-4)
(7-4)式中,N是碳数
3.保留温度与沸点关系
T R= cT b+ dT b (7-5)
(7-5)式中,N是沸点
例7-1:在程序升温色谱分析中,已知组分A的保留温度为155.20C,正十二烷为1410C,正十六烷为1620C,问组分A是否正构烷烃?保留指数是多少?
解:T R = an + b
141 = 12 a + b
162 = 16 a + b a = 5.25 b = 78
155.2 = 5.25n + 78 n = 14.7
所以,不是正构烷烃。
I A = 100n = 100×14.7 = 1470
二、初期冻结
在程序升温色谱分析中,当一多组分宽沸程混合物进样后,由于起始温度很低,因此,对少数低沸点组分,为最佳柱温,能得到良好的分离。
对于大多数组分,这个起始温度是太低了,因为k值很大,蒸气压很低,大都溶解在固定液里,所以,这些组分的蒸气带(色谱带)的移动速度非常慢,几乎停在柱入口不动,这种现象是程序升温色谱中所特有的,叫初期冻结。
随着柱温的升高,某些组分的蒸气带便开始以可观的速度移动,柱温越接近保留温度,即越接近出口处,色谱带速度增加的越快。
一般来说,从(T R–30o C)到T R色谱带通过柱的后半段,T R-300C时,恰好位于柱子的中央。
T R-300C 时色谱带在1/2 L处;T R-900C时色谱带在1/8 L处。
三、有效柱温
有效柱温是获得一定理论板数和分离度时的特征温度,对两个相邻难分离组分,有效柱温是指实现分离的最佳恒温温度,在此恒温温度下,两组分的分离可达到与程序升温同样的柱效和分离度。
四、程序升温的操作条件的选择
(一)操作条件的选择
1.升温方式:同系物用单阶程升;多种复杂组分用多阶程升。
2.起始温度:视沸点最低组分而定,不知道时就设在室温。
3.终止温度:视沸点最高组分而定,不知道时就设固定液“最高使用温度”。
4.升温速率:起到恒温中T C的同样作用,选择原则是兼顾分离度和分析时间。
对填充柱(φ4×2m)设在3-10℃/分为宜;对毛细柱(φ0.25×30m)0.5-4℃/分为宜。
5.载气流速:>Uopt
6.柱长:填充柱以1-3m为宜,毛细管柱以10-30m为宜。
(二)柱温的选择
程序升温用于气相色谱。
程序升温是改变k的一种方法。
如何选程序升温的柱温Tc?
程序升温在分离过程中,柱温是按预定速率, 随时间呈线性或非线性增加,以使各组分在最佳柱温下流出色谱柱。
选择时首先用Tc低和Tc高分别进行恒温分析,恒温分析时柱温大概是等于样品沸点的平均温度;例如有两个组分的混合样,沸点分别为70℃,90℃,则选Tc=80℃,汽化室温度和检测器温度要高于柱温20~80℃,根据Tc低与Tc高,再确定升温速率与用几阶程序升温。
(三)载气和色谱柱
程序升温要求载气的纯度高;使用耐高温的固定液,例如SE-30(350℃)、OV-101(350℃)、ApiezonL(300℃)、OV-17(300℃)、PEG-20M(250℃)。