【精品】刘占国《利息理论》习题答案与提示
(完整版)利息理论第二章年金部分习题参考答案
第二章 年金 部分习题参考答案证明:(1)(1)(1)(1)(1)(1)[]()m nn m m n m n m n v v v v v v i iv v i i a a i i⌝⌝----=---=⨯--=⨯-=⨯-证明:n n n-t t n t t n tttt nnnnn nn t t tt t t t t t t t n na S a a v a a v a =a S v a v a v a v a i v a ia 1111v =====1v v a viv a v v v--+=+----(1-)(1-)(1-)(1-)6. 解:由公式得:mn m+n mva =a a-71118777v a =a a 7.036=9.180 5.153i i=1=0.08299---也即:(1+)解得:7. 设X 可取得的存款额为S,根据题意:5712120.08 0.0818187121000(10.08)1000(10.08)100037.45024 1.0839169.84S S S -=+=+=⨯⨯=12. 解:根据题意,有1010301030101000a 1000a v =a a v K K +-又由于,则上式经整理得:10v =1/21030101030101030101030101111(1)a -a v 10001-v -v (1v )5822111a +a v 1-v +v (1v )91(1)8221800K K ----====--+-=解得:14. 设该永续年金每年支付R ,结合公式: nn a =a v a ∞∞+根据题意该永续年金为三人年金现值之和,即:n n n a a Ra =Rv a 22RR ∞∞++又由于三人所领取的年金现值相等,有:nnn n n 1v a v 2=v a R =R 2i i v =1/3R R ∞- 即,所以,19. 根据题意:22i i 2222222i i 222105105i i 22105i 2i 21051051000=1700011==171=t t t 17t 15=0f()t t 17t 15escart t=f =-0.00117fS S S S t D ⨯++++++-++-+()()()()()()()()()()-1+()-1则:令,上式经过整理为:令=根据规则,上式最多有两个正根,而1显然不符合实际,故排除。
《利息理论》考试试题(A卷)参考答案
《利息理论》考试试题(A 卷)参考答案一、填空题(每题3分,共30分)1、英国经济学家亚当斯密认为利息的来源至少有两个方面:一是将把借贷的资金作为资本来使用会带来利润,所以利息来自于利润;二是将借贷的资金用于消费,利息就来自于其他收入,有可能是地租。
2、凯恩斯在他的著作中提出人们持有货币的动机主要有三种交易、预防与投机动机。
3、贴现是指已知0时刻的初始投资本金,求其在t 时刻的积累值的过程。
4、我们一般用一个计息期内支付m 次贴现量(利息)的贴现率记为 来表示名义贴现率。
5、已知年实际利率为8%,那么按季度转换的名义利率为 7.77% 。
6、常规单利法假定一个日历月有__30____天,一个日历年有___360 ______天。
7、欧洲货币市场的放款利率一般是以 伦敦商业银行同业拆借利率 为基础,再加上一个附加利息来计算。
8、年金支付时,相邻的两个计息日期之间的时间间隔称为__计息周期___。
9、利率求解时介绍的迭代法,是指通过多次线性插值求得数值结果的方法。
10、偿还贷款的两种基本方法分别为 分期偿还法和偿债基金法 。
二、选择题(每题3分,共30分)1、与名义年利率为15%的连续复利相当的半年复利的名义年利率是(C )。
A .13.577%B .14.577%C .15.577%D .16.577%2、小宋的年收入为10万元,已有储蓄5万元,打算5年后创业,需要创业资金30万元。
假设年收益率为8%,收入固定不变。
如果要实现这个目标,年储蓄率应等于(A )。
A .38.6%B .40%C .41.4 %D .42.8%3、现有一笔贷款,期限为以3.5年,要求每半年末支付等额数量来偿还债务,每年计息两次的名义利率为6%。
在第4次付款后,未偿还贷款余额为5000元,那么初始贷款金额为(C)A .10813元B .10913元C .11013元D .11113元4、假设你现在打算做一项为期10年的投资:每一年初投资1000元,此项投资的实质利率)(m d为8%,而其利息可按6%实质利率进行再投资,那么第十年末的基金金额可达到(A )。
刘占国《利息理论》第二章习题详解及提示
∫ 39.解: n (1− kt ) vtdt = f − g − h 0
1− vn 1
f = lim a = lim =
δ n→∞ n n→∞
δ
g = (1− kn) 1 ⋅ vn δ
40.解: a(t)
=
t 1 dr
e∫0 1+r
=1+t
∫ ∫ a = n a−1(t)dt = n 1 dt = ln(1+ n)
i 4i 6i 8
iii
i − vd
45.解:
K&s& 25
1.022
−1
=
5
+
Ka&& 30
0.015
1 46.解: a
1 a+ a 120 i月
a
1.03−10 + x a
1.03−10 = 1
180 i月新
100000 180i月新
300 i月
300 i月
47.解: a(t)
=
t 1 dr
e∫0 1+r
1 Ra
2n
=
R
⎛ ⎜ ⎝
1 i
−
a n
⎞ ⎟ ⎠
17.解:1500a = 100000 解得 m ≈ 95.6 即正常还款次数为 95 次 m 0.008
1500a + f (1+ 0.008)−95 = 100000 95 0.008
19.解:
解得 f = 965.74
⎛
⎞
1000
⎜⎜⎝
s
10
i( 2 2
20
i
37.解:
1 1 1… 0 1 2 3…
刘占国《利息理论》习题解答[1]
《利息理论》习题详解 第一章 利息的基本概念1、解:、解: (1))()0()(t a A t A =又()25A t t t =++(0)5()2()1(0)55A A t t a t t A \===++ (2)3(3)(2)113(92)232 2.318I A A =-=+-+=+-=(3)4(4)(3)15(113)0.178(3)113A A i A --+===+ 2、证明:、证明: (1)123(1)()(2)(1)(3)(2)()(1)m m m m k I A m A m I A m A m I A m A m I A m k A m k ++++=+-=+-+=+-+=+-+-123123()()()()()m m m m k m m m n I I I I A m k A m n m k A n A m I I I I m n +++++++\++++=+-=+-=++++< 令有(2)()(1)()1(1)(1)n A n A n A n i A n A n --==---()1(1)()(1)(1)n n A n i A n A n i A n \+=-\=+-3、证明:、证明: (1) (1)112123123(1)(0)(0)(2)(0)(0)(0)(3)(0)(0)(0)(0)()(0)(0)(0)(0)(0)k nk i a a a i a a a i a i a a a i a i a i a n a a i a i a i a i \=+=++=+++=+++++第期的单利利率是又(0)1a =123123()1()(0)()1nna n i i i i a n a a n i i i i \=+++++\-=-=++++(2)由于第2题结论成立,当取0m =时有时有12()(0)n A n A I I I -=+++4、解:、解:(1)以单利积累计算)以单利积累计算1205003i =´ 1200.085003i \==´800(10.085)1120\+´=(2)以复利积累计算)以复利积累计算3120500500(1)i +=+0.074337i \=5800(10.074337)1144.97\+=5、解:设原始金额为(0)A 有(0)(10.1)(10.08)(10.06)1000A +++=解得解得 (0)794.1A =6、证明:设利率是i ,则n 个时期前的1元钱的当前值为(1)ni +,n 个时期后的1元钱的当前值为1(1)ni +又22211[(1)](1)20(1)(1)n nnni i i i +-=++-³++ ,当且仅当221(1)(1)1(1)n n n i i i +=Þ+=+,0i =即或者或者n=0n=0n=0时时等号成立。
《利息理论》第四章 债务偿还 习题详解及提示
第四章债务偿还1.解:5510000 1.1220004917.72s ⨯-=2.解:()10100.081.081468.0510x x x a -=+⋅-3.解:设共需还款n 次415001200n a -=最初贷款额1500n a =4.解: 100.0810000100001.5100002X i P Ps X i P =+⎧⎪=⎨⎪=⨯+⎩5.解:过去法:()()()()7251051510524000300020001400013000a a a a a i s i s ⎡⎤+-+-+-+-⎣⎦ 未来法:33530002000a a v +7.解:()11481211 1.5i i +=+=月 80120100000i i a a 月月8.解:由于不知利率上调后偿还期的变化,因此用过去法比较简便()()121212120.03120.0352311510.0310.0351000 1.0351000s s ++-- 9.解:2012011k k v v -+-+=-10.解:()()()6126100011366.87110001i i i ---+++=⇒+= ()31366.871i -∴+= 11.解:2016120171201812019120201vv v v v -+-+-+-+-+++++ 5543211v v v v v v i -=++++=; 2031100Pv P -+=⇒;51v P i- 12.解:20817720(1)k s v a i a -++=+- (k 为剩余还款数)解得:k =12原利息:2020a -; 现利息:207x k a ++-∴节省利息 131********x k v v --=--=-13.解:()()358113522114144113511080.25P P v P v v -+-+=⎧⎧-=⎪⎪⇒⎨⎨-=⎪⎪=⎩⎩ 第29次 ()35291172P v-+-= 14.解:L 每次还款额为030B a , N 每次还款本金为030B ,第t 次还款额为000030(1)3030B B B B t i a ⎡⎤--+<⎢⎥⎣⎦ 15.解:30121121121.0021 1.051250001.0510.002P ⨯⎛⎫ ⎪- ⎪⎝⎭=-- 16.解:3108112i v --+⎛⎫=+ ⎪⎝⎭17.解:()31300012000n vn -+-=⇒613000n v -+ 18.解:418%(1i +=+季)()4050040i a -季19.解:每月还款额360100000i P a =月 120120325.40)(1)100000120i k i Pa P a i k -+++=⇒=月月月(∴利息支出为:120(325.40)12010000066261.2P P ⨯++⨯-=20.解:10444104410410 1.054 1.0520010 1.0520010 1.050.050.05a a B a a --⎛⎫⎛⎫-⨯-⨯=+⨯-+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭第5次还款中的利息为4iB21.解:10101010a v Pa P i P i ⎡⎤-+=⎢⎥⎢⎥⎣⎦22.解:1055510510510510(1)(1)10(1)(1)a v a v a i a i i i i ⎧⎫⎡⎤⎡⎤--⎪⎪+-+-+-+⎢⎥⎢⎥⎨⎬⎢⎥⎢⎥⎪⎪⎣⎦⎣⎦⎩⎭23.解:(1) 331.041 1.12000400 1.11287.760.06⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥-=⎢⎥⎢⎥⎣⎦(2)第二年末贷款余额为: 221.041 1.12000400 1.115640.06⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥-=⎢⎥⎢⎥⎣⎦∴第三次还款中本金为 1564-1287.76=276.2424.此题较麻烦25.解:10102555ln1.05 2.8658t t B dt a dt δ-==⎰⎰ 27.解:10.1t B t =-(1)510.150.5B =-⨯=前5年还款本金为:510.5B -=(2)55000.1(10.1)0.375t B dt t dt δ=-=⎰⎰28.解:120.04250.0410000100005%0.04355.69s s ⨯-= 第9年偿债基金增长额为80.04250.04250.0410000100000.04328.61s s s +=29.解:40.03100.0310******** 1.03100005%s s -+⨯ 30.解:(1)1000010%1000Li =⨯=(2)1500-1000=500(3)5000100050000.08600Li j -=-⨯=(4)5000(1)5005000900j ++-=(5)5000(1)5005900j ++=32.解:100.0710000Xs = 33.解: 100.04100.05220.0510002L Ds L xa L D x ⎧=⎪⎪⎪=⎨⎪⎪++=⎪⎩34.解:10100.04100.0412000(280 1.04400)s s -+ 35.解:310.0340000040000036000i s += 36.解:2020200.03200.0320 1.0350 1.031000000.03a Xa -⎡⎤-⨯+=⎢⎥⎢⎥⎣⎦。
利息理论课后习题答案
第一章利息的基本概念1.)()0()(t a A t A =2.,11)0(=∴=b a 180)5(100=a 508)8()5(300=a a 3~5.用公式(1-4b)7~9.用公式(1-5)、(1-6)11.第三个月单利利息1%,复利利息23%)11(%)11(+−+12.1000)1)(1)(1(321=+++i i i k 14.nn nni i i i −−+⋅+>+++)1()1(2)1()1(16.用p.6公式17.用P.7最后两个公式19.用公式(1-26)20.(1)用公式(1-20);(2)用公式(1-23)22.用公式(1-29)23.(1)用公式(1-32);(2)用公式(1-34)及题6(2)结论24.用公式(1-32)25.44216%1(1)(110%)118%45%12i ⎛⎞+=++⎜⎟−⎝⎠⎛⎞−⎜⎟⎝⎠26.对于c)及d),,,c)中,,δn e n a =)(1111)1(−=−=+==∴v di e a δ∴v ln −=δd)中,δ−−=ed 128.∫=tdxx e t a 0)()(δ29.;4411⎟⎠⎞⎜⎝⎛+=+j i h e j =+131.(1)902天39.,两边同时求导,,类似t e tA dr +=∫10δ)1ln(0t dr tA +=∫∴δtt A +=11)(δ)(t B δ46.,10009200.081000d −==9202108.01(288)08.01(=×−+−x 第二章年金4.解:12010.087110.0870.08712160001000110.087121212A −−⎛⎞−+⎜⎟⎛⎞⎛⎞⎝⎠=+⋅++⎜⎟⎜⎟⎝⎠⎝⎠5.解:()()()()22211111111(*)nnn nn i a x i xiii xi a y i i −−−−+==⇒+=−−+−−===将代入(*)1d i d=−7.解:100010001000011718…()51218100010.0839169.84s −+=&&8.解:100.1100.15000s Ra =&&&&9.解:100.1100.155000s Ra =&&&&14.解:永续年金每年支付R112n n Ra R a i ⎛⎞=−⎜⎟⎝⎠17.解:解得即正常还款次数为95次0.0081500100000m a =95.6m ≈解得95950.0081500(10.008)100000a f −++=965.74f =19.解:()()()(2)(2)(2)1055222105100020001700011171150i i i s s s i i i ⎛⎞−+=⎜⎟⎜⎟⎝⎠∴+++−++=令105()1715f t t t t =+−+0(1.03)(1.035)(1.03)1.03 1.035 1.03f f f i −−=−−(1.032)0.003186f =−23.解:,()4660.0411 1.04i a i −−−++40.04114i ⎛⎞+=+⎜⎟⎝⎠24.解:R 1.1025R 1.205R 01423得4321.05 1.1025 1.05 1.1025 1.05 1.205 1.0511000R R R R ×+++=2212.147R =25.解:()()()1211111nn nn n a i n i i i a iii −−−−∂−++−++=∴=∂其中通过公式(2-76)得到0.1020.116.8670.10.002n n n n i a a a i==∂−∴==∂L n29.解:7777111v a v i a iKi−=∴=−=−类似地,111811181111v ia iL v ia iM=−=−=−=−,从而71118(1)(1)1v v v iK iL iM =∴−−=−Q L K M i KL+−=31.解:(2)(12)(2)(12)(12)1112nn nnnv v i i aaa id i−−⎛⎞===+⎜⎟⎝⎠&&,32.解:()500lim 110000tn i n a i −→∞+=&&半半,()()122111111i i i d d−+==+⇒+=−−半半()1211i d −=−−半()1120ti i −+∴=半半36.解:()()()2020201195.36n n anv a i n i Ia ii−−+−+=∴=&&37.解:110123……1该永续年金现值为1i11123……6541该永续年金现值为:()()24111(2)i i i i−−++++=+L ∴所求年金现值为:113(2)(2)i i i i i i++=++39.解:()01ntkt v dt f g h−=−−∫11lim lim n n n n v f a δδ→∞→∞−===1(1)ng kn v δ=−⋅40.解:011()1tdrr a t e t+∫==+1001()ln(1)1nnn a a t dt dt n t−===++∫∫42.解:后五年等比()()()551051111000105011k i s s i i i k+⎛⎞−⎜⎟+⎝⎠−+×++−&&&&43.解:120567……10983…414684468111v v v v a a a i i i i i i i vd−+−+−+=+++=−L L 45.解:2300.015251.0215KsKa−=+&&&&46.解:1010120180180300300 1.03 1.03i i i iia a a a a −−++=月月新月新月月11x110000047.解:011()1tdrr a t e t+∫==+231414212111(0)(1)()(1)84.51v t a t dt t dt t−=−=−=+∫∫48.解:11tn t n v v a a δδ−−==,()001111144010%t n nnt n v v a dt dt n n a δδδδ⎛⎞−−==−=−=×=⎜⎟⎝⎠∫∫49.解:1)()11t n nt tt t atv Ia i==−=∑∑&&第三章收益率2.解:234000 1.120000.93382×−×=3.解:237000100040005500(0)v v v v v −−++=110.090.11.09 1.1i v i v ====时,;时,令(0)0v v i=⇒及7.解:81.516.510(1)11.995%x x i i ⋅⋅=+⇒=8.解:11100.250.751(1)1(1)1(1)100000150002000011000kkkdtdtdtt k t k t k e ee+−+−+−∫∫∫+−=解得:0.14117k =10.解:1234567810911111i 2i 3i 4i 5i5i5i5i5i5i本金利息560.0450.0461000 1.04550.04s i is −⎛⎞++⎜⎟⎝⎠13.解:50000068000060000500055000A B I ===−=,,29.78%Ii A B I=≈+−14.解:()11144320000112%5000180001112%196104B i −⎛⎞⎡⎤⎛⎞=×++×+−×+−×=⎜⎟⎜⎟⎢⎥⎝⎠⎣⎦⎝⎠15.解:书后答案是,不知我对它对。
刘占国《利息理论》习题答案与提示
第一章 利息的基本概念1.)()0()(t a A t A =2.11)0(=∴=b a 180)5(100=a ,508)8()5(300=a a3~5.用公式(1-4b)7~9.用公式(1-5)、(1-6)11.第三个月单利利息1%,复利利息23%)11(%)11(+-+ 12.1000)1)(1)(1(321=+++i i i k14.n n n n i i i i --+⋅+>+++)1()1(2)1()1( 16.用p.6公式17.用P .7最后两个公式19.用公式(1-26)20.(1)用公式(1-20); (2)用公式(1-23) 22. 用公式(1-29)23.(1) 用公式(1-32);(2) 用公式(1-34)及题6(2)结论 24. 用公式(1-32)25.44216%1(1)(110%)118%45%12i ⎛⎫+=++ ⎪-⎝⎭⎛⎫- ⎪⎝⎭ 26.对于c)及d),δn e n a =)(,1111)1(-=-=+==∴vdi e a δ,∴c)中,v ln -=δ,d)中,δ--=e d 128.⎰=tdxx et a 0)()(δ29.4411⎪⎭⎫ ⎝⎛+=+j i ;he j =+131.(1)902天 39.tetA dr+=⎰10δ )1ln(0t dr tA +=⎰∴δ,两边同时求导,tt A +=11)(δ,)(t B δ类似46.10009200.081000d -==,920)2108.01(288)08.01(=⨯-+-x第二章 年金4.解:12010.087110.0870.08712160001000110.087121212A --⎛⎫-+ ⎪⎛⎫⎛⎫⎝⎭=+⋅++ ⎪ ⎪⎝⎭⎝⎭5.解:()()()()22211111111(*)nnn nn i a x i xiii xi a y ii----+==⇒+=--+--===将1d i d=-代入(*)7.解:()51218100010.0839169.84s -+=8.解:100.1100.15000s Ra = 9.解:100.1100.155000s Ra = 14.解:永续年金每年支付R112n n Ra R a i ⎛⎫=- ⎪⎝⎭17.解:0.0081500100000m a = 解得95.6m ≈ 即正常还款次数为95次 95950.0081500(10.008)100000a f -++= 解得965.74f =19.解:()()()(2)(2)(2)1055222105100020001700011171150i i i s s s i i i ⎛⎫-+= ⎪ ⎪⎝⎭∴+++-++= 令105()1715f t t t t =+-+0(1.03)(1.035)(1.03)1.031.0351.03f ff i --=--(1.032)0.003f =- 1000 1000 1000 011718…23.解:()4660.0411 1.04i a i---++,40.04114i ⎛⎫+=+ ⎪⎝⎭24.解:4321.05 1.1025 1.05 1.1025 1.05 1.205 1.0511000R R R R ⨯+++= 得2212.147R =25.解:()()()1211111nn nn n a i n i i i a iii----∂-++-++=∴=∂.1020.116.8670.10.002n n nn i a a a i==∂-∴==∂ 其中n 通过公式(2-76)得到29.解: 7777111v a v i a iK i-=∴=-=-类似地,111811181111via iL via iM =-=-=-=-,71118(1)(1)1v v vi K i L i M=∴--=- 从而L K Mi K L+-=31.解:(2)(12)(2)(12)(12)1112nnnnn v v i i a a a idi--⎛⎫===+ ⎪⎝⎭ ,32.解:()500lim 110000tn in a i -→∞+= 半半()()122111111i i id d-+==+⇒+=--半半,()1211i d -=--半()1120ti i -+∴=半半36.解:()()()2020201195.36n na nv a i n i Ia ii--+-+=∴=37.解:该永续年金现值为1i1 1 0123 … …R 1.1025R 1.205R 014231该永续年金现值为:()()24111(2)i i i i--++++=+∴所求年金现值为:113(2)(2)i i i i i i++=++ 39.解:()01nt kt v dt f g h -=--⎰11lim limnn n n vf a δδ→∞→∞-===1(1)ng k n v δ=-⋅40.解:011()1tdrr a t et +⎰==+11()ln(1)1n n n a a t dt dt n t-===++⎰⎰42.解:后五年等比()()()551051111000105011k i s s i i i k+⎛⎫- ⎪+⎝⎭-+⨯++-43.解:4684468111vv vva a a iiiiii i v d-+-+-+=+++=- 45.解:2300.015251.0215K s K a -=+46.解:1010120180180300300 1.031.03i iiiia a a a a --++=月月新月新月月11x 110000047.解:011()1tdrr a t e t +⎰==+1414212111(0)(1)()(1)84.51v t a t dt t dt t-=-=-=+⎰⎰48.解:11tnt n vva a δδ--==,1 2 0 5 67 … …10 9 8 3…4 111 0123... (6)5 41 2 3()01111144010%tnn n t nvv a dt dt n n a δδδδ⎛⎫--==-=-=⨯= ⎪⎝⎭⎰⎰49.解:1)()11t nnttt t a tv Ia i==-=∑∑第三章收益率2.解:234000 1.120000.93382⨯-⨯=3.解:237000100040005500(0)v v v v v --++= 110.090.11.091.1i v i v ====时,;时,令(0)0v v i =⇒及7.解:81.516.510(1)11.995%x x i i ⋅⋅=+⇒= 8.解:11100.250.751(1)1(1)1(1)100000150002000011000kkkdtdtdtt k t k t k eee+-+-+-⎰⎰⎰+-=解得:0.14117k =10.解:560.0450.04610001.04550.04s i i s -⎛⎫++⎪⎝⎭13.解:50000068000060000500055000A B I ===-=,, 29.78%I i A B I=≈+-14.解:()11144320000112%5000180001112%196104B i -⎛⎫⎡⎤⎛⎫=⨯++⨯+-⨯+-⨯= ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭15.解:1212121kt dtt ek ++⎰=⇒= 书后答案是1k =,不知我对它对。
刘占国《利息理论》课后答案
第一章 利息的基本概念1.)()0()(t a A t A =2.11)0(=∴=b a 180)5(100=a ,508)8()5(300=a a 3~5.用公式(1-4b) 7~9.用公式(1-5)、(1-6)11.第三个月单利利息1%,复利利息23%)11(%)11(+-+ 12.1000)1)(1)(1(321=+++i i i k14.n n n n i i i i --+⋅+>+++)1()1(2)1()1(16.用p.6公式17.用P.7最后两个公式 19.用公式(1-26)20.(1)用公式(1-20); (2)用公式(1-23) 22. 用公式(1-29)23.(1) 用公式(1-32);(2) 用公式(1-34)及题6(2)结论 24. 用公式(1-32)25.44216%1(1)(110%)118%45%12i ⎛⎫+=++ ⎪-⎝⎭⎛⎫- ⎪⎝⎭ 26.对于c)及d),δn e n a =)(,1111)1(-=-=+==∴v di e a δ,∴c)中,v ln -=δ, d)中,δ--=ed 128.⎰=tdxx e t a 0)()(δ29.4411⎪⎭⎫ ⎝⎛+=+j i ;he j =+131.(1)902天39.t etA dr +=⎰10δ )1ln(0t dr tA +=⎰∴δ,两边同时求导,tt A +=11)(δ,)(t B δ类似 46.10009200.081000d -==,920)2108.01(288)08.01(=⨯-+-x第二章 年金4.解:12010.087110.0870.08712160001000110.087121212A --⎛⎫-+ ⎪⎛⎫⎛⎫⎝⎭=+⋅++ ⎪⎪⎝⎭⎝⎭5.解:()()()()22211111111(*)nnn nn i a x i xiii xi a y ii----+==⇒+=--+--===将1di d=-代入(*)7.解:()51218100010.0839169.84s -+=8.解:100.1100.15000s Ra = 9.解:100.1100.155000s Ra = 14.解:永续年金每年支付R112n n Ra R a i ⎛⎫=- ⎪⎝⎭17.解:0.0081500100000m a = 解得95.6m ≈ 即正常还款次数为95次 95950.0081500(10.008)100000a f -++= 解得965.74f =19.解:()()()(2)(2)(2)1055222105100020001700011171150i i i s s s i i i ⎛⎫-+= ⎪ ⎪⎝⎭∴+++-++= 令105()1715f t t t t =+-+0(1.03)(1.035)(1.03)1.03 1.035 1.03f f f i --=-- (1.032)0.003186f =-1000 1000 1000 011718…23.解:()4660.0411 1.04i a i---++,40.04114i ⎛⎫+=+ ⎪⎝⎭24.解:修改于2009/11/4分解成两个数列:第一个数列:时刻0,2,4,…,20共付款11次,各期付款额成等比数列。
利息理论第四章课后答案
1. 某人借款1万元,年利率12%,采用分期还款方式,每年末还款2000元,剩余不足2000元的部分在最后一次2000元还款的下一年偿还。
计算第5次偿还款后的贷款余额。
解:550.125.10000 1.1220004917.7rB S =⨯-=2. 甲借款X ,为期10年,年利率8%,若他在第10年末一次性偿还贷款本利和,其中的利息部分要比分10年期均衡偿还的利息部分多468.05元,计算X 。
解:10100.0810(1.081)()468.05,700.14xx x x a ---== 3.一笔贷款每季末偿还一次,每次偿还1500元,每年计息4次的年名义利率为10%。
若第1年末的贷款余额为12000元,计算最初贷款额。
解:0000040410444104410(1)15001200,16514.374150016514.37rB L S L a=+-==+= 或L=12000v4.某人贷款1万元,为期10年,年利率为i ,按偿债基金方式偿还贷款,每年末支出款为X ,其中包括利息支出和偿债基金存款支出,偿债基金存款利率为2i ,则该借款人每年需支出额为1.5X ,计算i 。
解:100.0810000(10000)x i S =-00100.08 6.9i ⇒=10000=(1.5x-20000i)S5.某贷款期限为15年,每年末偿还一次,前5年还款每次还4000元,中间5次还款每次还3000元,后5次还款每次还2000元,分别按过去法和未来法,给出第二次3000元还款之后的贷款余额表达式。
解:72715105521000(2+)(1)1000[4(1)3]rB a a a i S i S =++-++过去法:71510572=1000(2a +a +a )(1+i)-1000(4S -S )373583300020001000(2)ra a V a a =+=+未来法:B6.一笔贷款按均衡偿还方式分期偿还,若t t+1t+2t+3B B B B ,,,为4个连续期间末的贷款余额,证明:(1)2t t+1t+2t+3t+1t+2B -B B -B =B -B ()()()(2)t t+3t+1t+2B +BB +B解:123123t t t t n t n t n t n t B pa +++-------= B =pa B =pa B =pa (1)2123123()()()()t t t t n t n t n t n t B B B B p a a a a +++---------=--21311n t n t p V a V a ----=或 2221=()n t V a --或p212=t t ++或(B -B )(2)1321231n t n t t t t t B B B B VV V ----+++-<-⇔<⇔< 7.某人购买住房,贷款10万元,分10年偿还,每月末还款一次,年利率满足()41+i =1.5。
(详细)刘占国《利息理论》习题解答
《利息理论》习题详解第一章 利息的基本概念1、解:(1))()0()(t a A t A =又()25A t t =(0)5()2()1(0)55A A t a t t A ∴===++ (2)3(3)(2)11(92 2.318I A A =-===(3)4(4)(3)0.178(3)A A i A -=== 2、解:202()(0)(1)1(1-6)180=100(a 5+1)4a=125a t at ba b i =+∴==+=∴∴用公式(8)300(83)386.4A a ∴=-=12、解:设原始金额为(0)A 有(0)(10.1)(10.08)(10.06)1000A +++=解得(0)794.1A =15、解:3400300(1)i =+ 0.1006i ∴= 又11110.9085911 1.1006i v d i i =-=-===++ 246500()1034.7v v v ∴++=19、解:(1)430.06(3)10000(1)119564A ⨯=+= (2)1()1441(1)4d i -+=-1()14334(3)10000(1)10000(1)122854d A i -⨯∴=+=-=20、解:(1)()1(1)m m i i m +=+, 1()(1)1m m i i m ∴+=+11(6)(5)651(1),1(1)65i i i i ∴+=++=+ (5)11()530(6)161(1)5(1)11(1)6m i i i i i m i ++∴==+=+++所以m=30 (2)1()()1(1),1(1)m m m m d d d d m m-=-∴-=-,所以和(1)有类似的解答m=30。
24、解:0()t t dt a t e δ⎰=,1212000.01(12)100001000020544.332t dt tdt A e e δ⎰⎰∴===25、解:设常数实际利率为i 有41420.060.05(1)(10.1)(10.08)(1)(1)42i --+=+-+-解得 0.0749i = 33、解:27.722e δ= ln 227.72δ∴==0.025 又2(12)7.04n δ+=21.057.0449.5616n ∴== 49.56161.05log 80n ∴== 36、解:设第十年末未付金额为x ,有40.12(1)10.125514i =+-= 11(1) 1.12551v i --∴=+= 又51015101000400800400 1.12551800 1.12551 1.12551v v xv x ---=++=⨯+⨯+⨯解得x=657.8375 42、解:338104001100(3)0.8166865t dt ae e -⎰=== 44、解:0.510.3(10.25)v -=-,解得v=0.87111110.14796i v ∴=-= 51、解:46400(1)6404j ⨯+=,解得j=0.079106第二章 年金 4解:实际月利率为0.087/120.00725i ==,16000010001200.0072580037.04A a =-=7解:X 取得的存款为:11251000180.08(10.08)39169.84s -⨯⨯+= 8解:50001010s Ra =,500015.93742 6.14457R ∴⨯=⨯,解得R=12968.719解:5000100.1100.15s Ra =,解得R=15187.4814解:10.5an an i =-,111.5 1.5n v an i i -∴==,解得13n v = 17解:月利率为0.096/12=0.008,15000.008100000an ∴=,0.00866.66667an ∴=,解得n=95.6取整数n=95,又951500950.008(10.008)100000a f -++=,解得f=965.7528解:设3年的实际利率为j ,有31(1)j i +=+,又112991j =,3912301(1)129129i ∴+=+=,解得i=0.195。