全等三角形常用辅助线做法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五种辅助线助你证全等

姚全刚

在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点.下面介绍证明全等时常见的五种辅助线,供同学们学习时参考.

一、截长补短

一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.

例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.

分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD.

证明:在AC上截取AF=AE,连接OF.

∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60°

∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°.

显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60°

在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC

∴△DOC≌△FOC,CF=CD

∴AC=AF+CF=AE+CD.

截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。求证:CD=AD+BC。

思路分析:

1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。

2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

解答过程:

证明:在CD上截取CF=BC,如图乙

∴△FCE≌△BCE(SAS),

∴∠2=∠1。

又∵AD∥BC,

∴∠ADC+∠BCD=180°,

∴∠DCE+∠CDE=90°,

∴∠2+∠3=90°,∠1+∠4=90°,

∴∠3=∠4。

在△FDE与△ADE中,

∴△FDE≌△ADE(ASA),

∴DF=DA,

∵CD=DF+CF,

∴CD=AD+BC。

解题后的思考:遇到求证一条线段等于另两条线段之和时,一般方法是截长法或补短法:

截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;

补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。

1)对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法将其放在一个三角形中证明。

2)在利用三角形三边关系证明线段不等关系时,如直接证明不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明。

二、中线倍长

三角形问题中涉及中线(中点)时,将三角形中线延长一倍,构造全等三角形是常用的解题思路.

例3.已知三角形的两边长分别为7和5,那么第三边上中线长x的取值范围是().分析:要求第三边上中线的取值范围,只有将将中线与两个已知边转移到同一个三角形中,然后利用三角形的三边关系才能进行分析和判断.

解:如图2所示,设AB=7,AC=5,BC上中线AD=x.

延长AD至E,使DE = AD=x.

∵AD是BC边上的中线,∴BD=CD

∠ADC=∠EDB(对顶角)∴△ADC≌△EDB

∴BE=AC=5

∵在△ABE中AB-BE<AE<AB+BE

即7-5<2x<7+5 ∴1<x<6

例4:已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF

F

E

D

B

提示:倍长AD 至G ,连接BG ,证明ΔBDG ≌ΔCDA

三角形BEG 是等腰三角形

例5:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC.

求证:AE 平分BAC ∠

提示: 方法1:倍长AE 至G ,连结DG

方法2:倍长FE 至H ,连结CH

例6:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE

提示:倍长AE 至F ,连结DF

证明ΔABE ≌ΔFDE (SAS )

进而证明ΔADF ≌ΔADC (SAS )

第 1 题图 A B F D E C

5、分析:要证AB+AC>2AD,由图想到:AB+BD>AD,AC+CD>AD,所以有

AB+AC+BD+CD>AD+AD=2AD,左边比要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去

∴△ACD≌△EBD(SAS)

∴BE=CA(全等三角形对应边相等)

∵在△ABE中有:AB+BE>AE(三角形两边之和大于第三边)

∴AB+AC>2AD。

6、分析:欲证AC=BF,只需证AC、BF所在两个三角形全等,显然图中没有含有AC、BF的两个全等三角形,而根据题目条件去构造两个含有AC、BF的全等三角形也并不容易。这时我们想到在同一个三角形中等角对等边,能够把这两条线段转移到同一个三角形中,只要说明转移到同一个三角形以后的这两条线段,所对的角相等即可。

思路一、以三角形ADC为基础三角形,转移线段AC,使AC、BF在三角形BFH中

方法一:延长AD到H,使得DH=AD,连结BH,证明△ADC和△HDB全等,得AC=BH。

通过证明∠H=∠BFH,得到BF=BH。

相关文档
最新文档