北师大版七年级上册数学_第五单元_一元一次方程的认识概要
北师大版七年级数学第五章-----一元一次方程
第五章 一元一次方程
思维导图
程
方次一元
一⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎪
⎪⎩
⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪
⎪⎪
⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪
⎪⎪⎨⎧⎪⎩⎪
⎨⎧⎪⎩⎪
⎨⎧写出答案检验解一元一次方程列一元一次方程设出适当的未知数找出等量审清题意题的一般步骤列一元一次方程解应用未知数的系数化为
合并同类项移项去括号去分母
解一元一次方程的步骤
结果仍是等式,所得的数或除以同一个不为个数:等式两边同时乘同一
性质结果仍是等式同一个代数式,所得的或减:等式两边同时加性质等式的基本性质数的值右两边的值相等的未知方程的解:使方程左、
数的等式方程的概念:含有未知未知数的指数都是式方程中的代数式都是整只含有一个未知数一元一次方程的概念
1)0(2)(11
考点精讲。
北师大版七年级数学上册第5章第1节认识一元一次方程课件
问题2:列方程式 (1)y与它的 1 的和是19_________
7
(2)a的2倍与b的和为7__2_a_+_b_=_7____ (3)x的平方与3的差等于-2_x_2_-_3_=_-_2_.
学习新知
五个情境中的三个方程为:
⑴ 40+15χ=100 ⑵ 2[χ+(χ+25)]=310 ⑶ χ(1+147.30%)=8930
上面情境中的三个方程 , 有什么共同点?
在一个方程中,只含有一个未知数χ(元), 并且未知数的指数是1(次),这样的方程叫做一 元一次方程。
你来试试
判断下列各式是不是一元一次方程,是的打 “√”,不是的打“x”。
• 解:设张叔叔原计划每时行走 x km,可 以得到方程:
情境 4 第六次全国人口普查统计数据,截至 2010年11月1日0时,全国每10万人中具有 大学文化程度的人数为8930人,比2000年 第五次全国人口普查时增长了147.30%.
如果设2000年6月每10万人
中约有x人具有大学文化程度, 2000年6月底
拓展提升
1、根据题意先设未知数,再列出方程 ①一个数的 1 与3的差等于最大的一位数, 求这
6
个数. ②购买一本书, 打八折比打九折少花2元钱, 求原 价. ③甲、乙两队开展足球对抗赛, 规定每队胜一 场得3分, 平一场得1分, 负一场得0分.甲队与乙 队一共比赛了10场, 甲队保持了不败记录, 一共 得了22 分, 甲队胜了多少场? 平了多少场?
北师大版七年级数学上册《第五章一元一次方程5.1认识一元一次方程(第2课时)》说课稿
北师大版七年级数学上册《第五章一元一次方程5.1认识一元一次方程(第2课时)》说课稿一. 教材分析北师大版七年级数学上册《第五章一元一次方程5.1认识一元一次方程(第2课时)》这一节的内容,是在学生已经掌握了代数基础知识的基础上,进一步引导学生认识一元一次方程,并学会解一元一次方程。
本节课的内容对于学生来说,既有挑战性,又具有实用性。
二. 学情分析对于七年级的学生来说,他们已经具备了一定的代数基础,对于方程也有了一定的认识。
但是,对于一元一次方程的概念、性质和解法,他们还不是很清楚。
因此,在教学过程中,我需要从学生的实际出发,循序渐进地引导他们理解和掌握一元一次方程的相关知识。
三. 说教学目标1.知识与技能目标:使学生理解一元一次方程的概念,掌握一元一次方程的解法,能够运用一元一次方程解决实际问题。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生发现问题、分析问题、解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的重要性。
四. 说教学重难点1.教学重点:一元一次方程的概念、性质和解法。
2.教学难点:一元一次方程的解法,特别是解方程的步骤和注意事项。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合学习pad等现代教育技术,提高教学效果。
六. 说教学过程1.导入新课:通过复习旧知识,引导学生进入新课,激发学生的学习兴趣。
2.自主学习:让学生自主探究一元一次方程的概念和性质,培养学生独立思考的能力。
3.合作交流:让学生分组讨论一元一次方程的解法,互相学习,共同进步。
4.教师讲解:针对学生在自主学习和合作交流中遇到的问题,进行讲解和解答。
5.巩固练习:布置一些练习题,让学生运用所学知识解决问题,巩固所学内容。
6.课堂小结:让学生总结一元一次方程的概念、性质和解法,加深对知识的理解。
北师大版七年级上册数学 一元一次方程概念和解法
一元一次方程概念和解法【知识要点】1、一元一次方程的定义:在一个等式中,只含有一个未知数,并且未知数的次数(指数)是1,形如+=0(0)kx b k ≠这样的方程叫做一元一次方程。
注意三点:①方程是等式,要有“=”连接 ②只含有一个未知数 ③未知数的指数是12、一元一次方程的解法:去分母:等号两边同时乘以分母的最小公倍数,将未知数的系数变为整数。
去括号:①扩号前面有数字的先将数字按乘法分配律逐一与括号内数字相乘,符号不变。
②去括号时遵循减变加不变的原则。
(括号前是减号,括号内所有符号全部改变) 移项:把含有未知数的项移到一边,不含未知数的项移到另外一边。
合并同类项:同字母,同次数,字母次数不变,系数相加。
系数化为1:等号两边同时除以未知数的系数。
检验:将解得的根代入原式,看等号两边是否成立,若等式不成立说明你一定计算错了。
【知识应用】1、下列哪些是方程: ①523-x =1 ②316131-+=y y ③1+x ④22=+x x ⑤21+2=+22y y2、若方程|21|50m mx--=是一元一次方程,则=m3、若方程x y n xm 是关于5)2(22=++-的一元一次方程,求n m +的值。
4、接下列方程:(1)224)2(4+=+-x x (2)316131-+=y y(3)1%20)215()21(3%354-⨯-=-+⨯x x(4)1}8]6)4233(43[32{21=--+-x5、当=x _____时,代数式523-x 的值为 -1.6、x 取什么值时,式子93)25()1(3倍少的比式子x x +-?7、 已知x y y x 的代数式表示用含01232=+-_________________。
8、解关于)3(153≠+=+-b bx a x x 的方程9、若方程412-=-=+x x m x 的解是,那么m 的值为_____。
10、已知2是关于x 的方程0223=-a x 的一个根,求12-a 的值。
初中数学北师大版七年级上册《第五章第二课时1认识一元一次方程》课件
解:(1)两边加 2,得 x-2+2=3+2.化简,得 x=5. (2)两边减 1,得-12x+1-1=-1-1.化简,得-12x= -2.两边同除以-12,得-12x÷(-12)=-2÷(-12).化简, 得 x=4.
5.1
认识一元一 次方程
第一课时
数学北师大版 七年级上
自 主预 习
掌握等式的两个基本性质,能够运用等式的基本性 质解简单的一元一次方程.(重、难点)
1.等式两边同时加上(或减去)同一个_代_数__式__,所
得的结果仍是等式.用字母表示为:如果a=b,那 么a+c=_b_+__c_,a-c=b_-__c__.
(3)等式的对称性和传递性 ①对称性:如果a=b,那么b=a.即等式的左右两边 交换位置,所得的结果仍然是等式. ②传递性:如果a=b,且b=c,那么a=c.这一性质 也叫做等量代换. 导学2 利用等式的性质解一元一次方程
利用等式的性质解一元一次方程. (1)x-2=3; (2)-12x+1=-1.
用适当的数或整式填空,并说明是根据等式的 哪一条基本性质得到的.
(1)如果y+4=8,那么y=________; (2)如果2x-y=3y+9,那么2x-4y=________; (3)如果-5x=25,那么x=________;
(4)如果a4=8,那么 a=________.
分析:先视察第二个等式的左边,并与第一个等式 的左边比较,判断出是需要加减还是乘除同一个数或式 子(除数不为0).
利用等式的性质解下列方程: (1)x-3=-6; (2)0.6-0.2x=45.
答案:(1)x=-3 (2)x=-1
1.已知x=y,下列结论错误的是( )
北师大版七年级上册第五章一元一次方程知识点总结
一兀一次方程知识点(一)、方程的有关概念1. 方程:含有未知数的等式就叫做方程•2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如:1700+50x=1800 , 2(x+1.5x)=5 等都是一元一次方程 .(例 1)3•方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.(例2)注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.(二)、等式的性质等式的性质⑴:等式两边都加上(或减去)同个数(或式子),结果仍相等.等式的性质(1)用式子形式表示为:如果 a=b,那么a ±=b 乂等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,a b等式的性质⑵用式子形式表示为:如果 a=b,那么ac=bc;如果a=b(c工0)那么c=Cc c (三)、移项法则:把等式一边的某项变号后移到另一边,叫做移项. (例3)(四)、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.(五)、解方程的一般步骤(例4)1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a 形式)5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=;).a一•列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系. (3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,?然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值. (5)检验,写答案:检验所求出的未知数的值是否是方程的解,?是否符合实际,检验后写出答案.二、一元一次方程的实际应用1. 和、差、倍、分问题:增长量=原有量X增长率现在量=原有量+增长量(1)倍数关系:通过关键词语"是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2 )多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现例1 :兄弟二人今年分别为 15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?解:设x年后,兄的年龄是弟的年龄的2倍,则x年后兄的年龄是15+x,弟的年龄是9+x.(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3?年后具有相反意义的量)1. 一个数的3倍比它的2倍多10,若设这个数为x,可得到方程_____________ .2. 用一根长80厘米的绳子围成一个长方形,且这个长方形的长比宽多10厘米,则这个长方形的长和宽各是_______ 、_________ .面积是 _______ .2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变为前提•常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.(2)常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V= 底面积乂高=S • h= -:r2h②长方体的体积V =长乂宽乂高=abc例2将一个装满水的内部长、宽、高分别为300毫米,300毫米和80?毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,二疋3.14 ).解:设圆柱形水桶的高为 x毫米,依题意,得1. 一根内径为3cm的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8c m、高为1.8 cm的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了 _____cm.3. 工程问题:工程问题:工作量=工作效率x工作时间完成某项任务的各工作量的和=总工作量= 1例3. 一件工程,甲独做需 15天完成,乙独做需12天完成,现先由甲、乙合作 3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?1 1 x解:设乙还需x天完成全部工程,设工作总量为单位1,由题意得,(亦+石)x 3+石=1 1.甲、乙工程队从相距100m的马路两端开始挖沟,甲工程队每天挖沟的进度是乙工程队的2倍少1m,若5天完工,两队每天各挖几米?4. 行程问题:时间=路程*速度 速度=路程*时间快行距+慢行距=原距 快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度路程=速度x 时间 (1) 相遇问题 (2) 追及问题。
北师大版数学七年级上册5.1《认识一元一次方程》教案1
北师大版数学七年级上册5.1《认识一元一次方程》教案1一. 教材分析《认识一元一次方程》是北师大版数学七年级上册第五章第一节的内容。
本节课的内容是让学生初步了解一元一次方程的概念,学会解一元一次方程,培养学生解决实际问题的能力。
通过本节课的学习,学生能够理解一元一次方程的定义,掌握一元一次方程的解法,并能够应用一元一次方程解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了有理数、整式等基础知识,对数学符号和运算有一定的了解。
但是,对于一元一次方程这一概念,学生可能比较陌生。
因此,在教学过程中,需要通过具体的例子和实际问题,引导学生理解和掌握一元一次方程的概念和解法。
三. 教学目标1.知识与技能:让学生了解一元一次方程的概念,学会解一元一次方程。
2.过程与方法:通过实际问题,让学生感受数学与生活的联系,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:一元一次方程的概念和解法。
2.难点:理解一元一次方程的实际意义和解法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实际问题引导学生思考,用案例教学法讲解一元一次方程的解法,小组合作法让学生在讨论中巩固知识。
六. 教学准备1.准备一些实际问题,用于引导学生思考和练习。
2.准备PPT,用于展示和讲解一元一次方程的解法。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用数学方法解决问题。
例如,假设小明有3个苹果,每天吃掉1个,问5天后他还剩下几个苹果?这个问题可以引导学生思考如何用数学方法表示这个问题,从而引入一元一次方程的概念。
2.呈现(10分钟)通过PPT展示一元一次方程的定义和解法。
一元一次方程的一般形式为ax+b=0,其中a和b是常数,x是未知数。
解一元一次方程的步骤为:移项、合并同类项、化简、求解。
3.操练(10分钟)让学生练习解一元一次方程。
北师大数学七年级上册第五章解一元一次方程总结
第02讲_解一元一次方程知识图谱解一元一次方程知识精讲步骤 具体做法依据注意事项去分母 在方程两边同乘以各分母的最小公倍数等式性质2①不含分母的项不要漏乘 ②注意分数线有括号作用,去掉分母后,如果分子是多项式,要加括号去括号由内向外去括号,即先去小括号,再去中括号,最后去大括号 分配律,去括号法则①运用分配律去括号时,不要漏乘括号内的项②如果括号前是“-”号,去括号时,括号内各项要变号 移项 把含未知数的项都移到方程的一边(通常是左边),不含未知数的项都移到方程的另一边 等式性质1①移项必须变号②一般把含未知数的项移到左边,其他项移到右边 合并同类项把方程两边同类项分别合并,把方程化为()0ax b a =≠的形式合并同类项法则合并同类项是同类项的系数相加,字母及其指数不变未知数系数化1在方程两边同除以未知数系数a ,得到方程的解b x a =看不清楚解,不会调整等式性质2 应注意系数a 不能等于0注意:这五个步骤在解一元一次方程中,有时可能用不到,有时可能需重复用,使用时不一定严格按从(1)到(5)的顺序进行,要根据方程的特点灵活运用.例:解方程121123x x +--= 去分母:3(1)2(21)6x x +--=去括号:33426x x +-+= 移项:34632x x -=-- 合并同类项:1x -= 未知数系数化1:1x =-三点剖析一.考点:解一元一次方程.二.重难点:解一元一次方程三.易错点:1.在解方程的过程中,移项不变号;2.去括号时容易漏乘括号内的项或弄错符号.一元一次方程的解法例题1、 在解方程123123x x -+-=时,去分母正确的是( ) A.134)1(3=+--x x B.63413=+--x xC.13413=+--x xD.6)32(2)1(3=+--x x 【答案】 D【解析】 暂无解析 例题2、 解下列方程:(1)76163x x +=-; (2)1111122x ⎛⎫--= ⎪⎝⎭(3)()()5310679x x x x --=-- (4)x 1x 3100.20.1++-=-【答案】 (1)1x =;(2)10x =;(3)335x =;(4)-3x =【解析】 去括号时,要注意考虑两个因素:一是系数,二是符号. 例题3、 解下列方程: (1)4﹣3(2﹣x )=5x ;(2)2x 0.250.1x=0.10.030.02-+ . 【答案】 (1)﹣1 (2)﹣186925【解析】 (1)去括号得:4﹣6+3x=5x , 移项合并得:2x=﹣2, 解得:x=﹣1; (2)方程变形得:200x 3+2510x2-=0.1, 去分母得:400x+75﹣30x=0.6,移项合并得:370x=﹣74.4, 解得:x=﹣186925. 例题4、 仔细观察下面的解法,请回答为问题.解方程:52x 421x 3+=-﹣1 解:15x ﹣5=8x+4﹣1,15x ﹣8x=4﹣1+5, 7x=8, x=87. (1)上面的解法错误有_______处.(2)若关于x 的方程52x 421x 3+=-+a ,按上面的解法和正确的解法的得到的解分别为x 1,x 2,且x 21x 1-为非零整数,求|a|的最小值. 【答案】 (1)2(2)97【解析】 (1)上面的解法错误有2处; (2)52x 421x 3+=-+a , 错误解法为:15x ﹣5=8x+4+a ,移项合并得:7x=9+a , 解得:x=a 97+,即x 1=a97+; 正确解法为:去分母得:15x ﹣5=8x+4+10a , 移项合并得:7x=9+10a ,解得:x=7a 109+,即x 2=7a109+, 根据题意得:x 2﹣1x 1=7a 109+﹣7a 9+=7a9,由7a 9为非零整数,得到|a|最小值为97.随练1、 将方程212134x x -+=-去分母,得( ) A.4(2x ﹣1)=1﹣3(x+2) B.4(2x ﹣1)=12﹣(x+2) C.(2x ﹣1)=6﹣3(x+2) D.4(2x ﹣1)=12﹣3(x+2) 【答案】 D【解析】 去分母得:4(2x ﹣1)=12﹣3(x+2)随练2、 已知x=3是关于x 的方程x+m=2x ﹣1的解,求(m+1)2的值为__________. 【答案】 9【解析】 将x=3代入方程求出m 的值,即可求出所求式子的值. 解:将x=3代入方程得:3+m=6﹣1, 解得:m=2, 则(m+1)2=32=9 随练3、 解方程(1)4﹣x=2﹣3(2﹣x )(2)2x 13-﹣10x 16+=2x 14+﹣1. 【答案】 (1)x=2 (2)x=16【解析】 (1)4﹣x=2﹣3(2﹣x ) 4﹣x=2﹣6+3x ,﹣x ﹣3x=2﹣6﹣4, ﹣4x=﹣8, x=2;(2)去分母得:4(2x ﹣1)﹣2(10x+1)=3(2x+1)﹣12, 8x ﹣4﹣20x ﹣2=6x+3﹣12, 8x ﹣20x ﹣6x=3﹣12+4+2, ﹣18x=﹣3, x=16. 随练4、 解方程:(1)31223x x --=+;(2)321123x x x --+=-.【答案】 (1)1118-(2)5【解析】 (1)去分母,得-12x -9=6x +2 移项,得-12x -6x =2+9 合并同类项,得-18x =11系数化为1,得1118x =-;(2)去分母,得3(x -3)+2(2x -1)=6(x -1), 去括号,得3x -9+4x -2=6x -6, 移项,得3x +4x -6x =-6+2+9 合并同类项,得x =5.拓展1、 解方程(1)()9316x x --=(2)131125x x +--=. 【答案】 (1)12;(2)3-. 【解析】 (1)()9316x x --= 9336x x -+= 63x = 12x =. (2)131125x x +--=,()()5110231x x +-=-,551062x x +-=-,3x =-. 2、 ()212511254326x x x +-⎛⎫--=- ⎪⎝⎭.【答案】 23x =-【解析】 ()212511254326x x x +-⎛⎫--=- ⎪⎝⎭去分母(两边同乘以12):()()2532412252x x x -⎛⎫+--=- ⎪⎝⎭,去括号:364410410x x x +-+-=-,移项:344461010x x x +-=-+-,合并同类项:32x =-,系数化为1:23x =-,∴23x =-是原方程的解.3、 解下列方程:(1)0.040.090.30.250.050.32x x x ++--=; (2)0.210.010.0310.30.04x x ---=;(3)21101211364x x x -++-=-.【答案】 (1)10921x =;(2)435x =;(3)16x =【解析】 (1)原方程等价于49325532x x x ++--=; ()()()6491032155x x x +-+=-;245430201575x x x +--=-;243015755420x x x --=--+;21109x -=-,10921x =. (2)原方程等价于2103134x x ---=.去分母,得()()42103312x x ---= 去括号,得8403912x x --+=,移项,得8312409x x -=+-,合并同类项,得543x =系数化为1,得435x =.(3)21101211364x x x -++-=-,()842026312x x x --+=+-82066312x x x --=+-,183x -=-,16x =.4、 解下列方程:(1)111246819753x ⎧⎫⎡+⎤⎛⎫+++=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭(2)111233234324x x x x ⎧⎫⎡⎤⎛⎫----=+⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭【答案】 (1)1x =,(2)229x =-【解析】 根据一元一次方程的解题步骤即可解得.。
2024年秋新北师大版数学7年级上册课件 第5章 1元1次方程 5.1 认识方程 5.1 认识方程
1
利用一元一次方程的定义求字母的值
注:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
1.方程3x5-2k -8=0是关于x的一元一次方程,则k=_____.
2
2.方程x|m| +4=0是关于x的一元一次方程,则m=_____.
3.方程(m-1)x -2=0是关于x的一元一次方程,则m_____.
解:设卖出铅笔x支,则卖出圆珠笔(60-x)支. 等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87,
例1 哪些是一元一次方程?(1) ; (2) ; (3) ; (4) ;(5) ;(6) ;(7) .
一元一次方程的识别
不是整式方程
不是等式
是不等式,不是方程
是一元一次方程.
是一元一次方程.
未知数的次数是2
含有两个未知数.
3am+15=3
3x-5=5x+4
x2+2x-6=0
-3x+1.8=3y
√
√
7a+8=10
例2 (1)若关于x的方程2 x |n|-1 – 9 = 0是一元一次方程,则 n 的值为 .
(2)方程(m+1) x |m| + 1 = 0是关于x的一元一次方程,则m= .
某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
列方程:0.52x-(1-0.52)x=80.
等量关系:女生人数-男生人数=80,
例 某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.求卖出铅笔的支数.
北师大版初中数学七年级上册 认识一元一次方程
侵权必究
STRUGGLE
讨论
(1)在上面得到的方程中有没有你熟悉的方程?它们是哪几 个? (2)方程2x-5=21,40+5x=100,有什么共同特点? (3)满足什么条件的方程是一元一次方程? (4)想一想:方程 22 22 1 和 x(x+25)=5850是一元一次
7
(2)设胜了x场,则平了(10-x)场. 3x+(10-x)=22.
侵权必究
STRUGGLE
随堂练习
1.下列各式是一元一次方程的有( B )
①
3 x= 1 ;②3x-2;③ 42
1 y- 1 75
=
2x 3
-1;
④1-7y2=2y;⑤3(x-1)-3=).
数学 七年级 上册
第五章 一元一次方程
1 认识一元一次方程
第1课时 一元一次方程
侵权必究
STRUGGLE
学习目标
1.理解一元一次方程的概念. 2.会根据具体问题中的等量关系列出一元一次方 程.(重点、难点)
侵权必究
STRUGGLE
新课导入 游戏导入
小游戏:猜老师的年龄 老师的年龄乘以3再减去17刚好为73,那现
变式: x|k| 21 0 是一元一次方程,则 k=_1_或__-_1_.
侵权必究
STRUGGLE
变式:已知方程(a+3)x a-2 +2=a-3是关于x的一元 一次方程,求a的值.
导引:根据一元一次方程的定义,可知|a|-2=1,且a +3≠0.
解:由题意可知:|a|-2=1, 所以|a|=3,则a=±3. 又因为a+3≠0,所以a≠-3,所以a=3.
北师大数学七年级上册第五章_含参数的一次方程总结
第03讲_含参数的一次方程知识图谱含参数的一次方程知识精讲一.参数有的方程中除了未知数外,还会含有一些其他的字母,它们代表已经确定的数字,只是我们不知道它们具体是多少,这种字母称为“参数”,即“参与运算的数”.虽然都是字母,但未知数与参数各自的地位和含义是不相同的.比如方程ax b =,理论上来讲,如果题目没有说明,里面的每一个字母都可以当做未知数.但是一般情况下,当a b c 、、与x y z 、、同时出现在一个方程时,我们会约定俗成地认为,x y z 、、是未知数,a b c 、、是(已知数)参数.因此,我们通常会说关于x 的方程ax b =,这样比较严谨,就不会出现纠结谁是未知数的问题.对未知数系数不含参数,常数项含参数的方程,在运算中就把参数当成普通的数字来对待,带着参数完成解方程的过程.如解关于x 的一元一次方程()12x a b c -+=,则()2x c b a =-+. 小明在家做作业时,不小心吧墨水滴到了练习册一道解方程题上,题目上一个数字被墨水污染了.这个方程是: 2(115 23)x x +--⎝=⎛⎫⎪⎭- ▇ ,“▇”是被污染的数字,“▇”是哪个数呢?他很着急,想了一想,便翻看了书后答案,得知此方程的解是x=2.你能帮他补上被污染处“▇”的内容吗? 把解代回方程:11252 232()⎛⎫ ⎪+-⨯-=⎝-⎭▇,此时被污染的数字就是这个新的方程的未知数,解方程即可解系数含参问题对于未知数系数含参数的方程,其方程的解与参数的取值有很大关系,需要对参数进行分类讨论.讨论.①当0x ≥时,x x =,原方程化为25x x =+,解得5x =-.但是由于5x =-不满足0x ≥的前提要求,所以舍去;②当0x <时,x x =-,原方程化为25x x -=+,解得53x =-.检验53x =-满足0x <的前提要求,所以53x =-是原方程的解.三点剖析一.考点:解含参数的一元一次方程及绝对值方程.二.重难点:解含参数的一元一次方程及绝对值方程.三.易错点:1.在解系数含参数的一次方程的过程中,忘记对参数进行讨论; 2.解ax b cx d +=+这类绝对值方程时,直接去绝对值.参数的概念例题1、 已知关于x 的方程45365ax b x c ++-=,其中参数是__________,未知量是__________,常数项是__________.【答案】 a 、b 、c ;x ;5b 、5c 、6-. 【解析】 根据参数的概念即可判断常数项含参的一次方程例题1、 小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y+12=12y ﹣.小明翻看了书后的答案,此方程的解是y=﹣53,则这个常数是( )A.1B.2C.3D.4 【答案】 B【解析】 设常数为a ,则2y+12=12y ﹣a ,把y=﹣53代入得:2y+12=﹣176,12×(﹣53)﹣a=﹣176,解得:a=2,例题2、 已知a 为正整数,关于x 的方程5814225x a x -=+的解为整数,求a 的最小值.【答案】 2a =【解析】 原方程的解为()101429a x +=,由题意知,()101429a +为整数,因此142a +为9的倍数,即a 的最小值为2例题3、 解下列关于x 的方程:(1)12x a -=(2)()362x x a +=- (3)()()12112x x a -=--+ 【答案】 (1)2x a =-;(2)26x a =--;(3)1655x a =+【解析】 直接把a 当成已知数计算即可.系数含参的一次方程例题1、 解关于x 的方程:(1)2421m x mx -=+ (2)x a x b bb a a---=,其中0a b -≠ (3)()()1234m x n x m -=+. 【答案】 (1)当12m ≠-时,方程的解为21x m =-;当12m =-时,方程的解为任意数.(2)2a x a b =-;(3)①当34m ≠时,方程的解为()22343m n x m +=-;②当34m =,32n =-时,方程的解为任意实数;③当34m =,32n ≠-时,方程无解;【解析】 (1)原方程整理为()22141m x m +=-;当12m ≠-时,方程的解为21x m =-;当12m =-时,方程的解为任意数.(2)去分母,得()()2a x a b x b b ---=,去括号,得222ax a bx b b --+=,移项,得222ax bx b a b -=+-,合并同类项,得()2a b x b -=,∵0a b -≠,系数化为1,得2b x a b=-.(3)原方程可整理为()()43223m x m n -=+,①当34m ≠时,方程的解为()22343m n x m +=-;②当34m =,32n =-时,方程的解为任意实数;③当34m =,32n ≠-时,方程无解.例题2、 已知方程2ax x b -=+,问a 、b 分别满足什么条件时: (1)方程有唯一解? (2)方程无解?(3)方程有无穷多个解? 【答案】 (1)1a ≠;(2)1a =且2b ≠-;(3)1a =,2b =-. 【解析】 方程整理为()12a x b -=+.当10a -≠时,方程有唯一解;当10a -=,20b +≠时,方程无解;当10a -=,20b +=时,方程有无穷多个解.例题3、 若k 为自然数,关于x 的方程kx -4=x +3的解是整数,则k =________. 【答案】 0;2;8 【解析】 暂无解析随练1、 若关于x 的一元一次方程x ﹣m+2=0的解是负数,则m 的取值范围是( )A.m≥2B.m >2C.m <2D.m≤2【答案】 C【解析】 ∵程x ﹣m+2=0的解是负数, ∴x=m ﹣2<0, 解得:m <2.随练2、 关于x 的方程3x -2=kx +5的解是正整数,则整数k 的值为________. 【答案】 2或-4 【解析】 暂无解析随练3、 已知关于x 的方程()210a b x +-=无解,则ab 的值是( )A.负数B.正数C.非负数D.非正数【答案】 D【解析】 因为()210a b x +-=无解,所以20a b +=,于是0a b ==或2a b =-,即0ab ≤,故答案为D . 随练4、 若关于x 的方程917x kx -=的解为正整数,则整数k 的值为__________ 【答案】 8k =±【解析】 方程整理为()917k x -=,因为方程的解为正整数,所以90k -≠,所以179x k =-.要使得179k-为正整数,由于k 为整数,因此9k -只能取1或17.随练5、 解下列关于x 的方程:()112323x x a x b -+=+⎡⎤⎢⎥⎣⎦【答案】 123x a b =--【解析】 去小括号,得11232312x x x b a --=+⎡⎤⎢⎥⎣⎦,去中括号,得23111366x b x x a =+--,移项,得23111366x b x x a =+--,合并同类项,得1126x a b -=+,系数化为1,得123x a b =--随练6、 解关于x 的方程:()2a x b a x ab +-=+.【答案】 当2b ≠时,2ax b =-;当2b =,0a ≠时,方程无解;当2b =,0a =时,x 为任意数. 【解析】 原方程可整理为()2b x a -=,当2b ≠时,2ax b =-;当2b =,0a ≠时,方程无解;当2b =,0a =时,x 为任意数.随练7、 解关于x 的方程1mx nx -=. 【答案】 移项、整理,得()1m n x -=.①当0m n -≠,即m n ≠时,方程有唯一解1x m n=-; ②当0m n -=,即m n =时,由于10≠,因此方程无解 【解析】 移项、整理,得()1m n x -=.①当0m n -≠,即m n ≠时,方程有唯一解1x m n=-; ②当0m n -=,即m n =时,由于10≠,因此方程无解随练8、 已知关于x 的方程()16326a x a x x +=--,问当a 取何值时:(1)方程无解?(2)方程有无穷多解? 【答案】 (1)1a =-;(2)1a =【解析】 原方程可整理为()()121a x a -=-.当10a -=,()210a -≠时,方程无解;当10a -=,()210a -=时,方程有无穷多解.一元一次方程的同解问题例题1、 若方程2x+1=﹣1的解也是关于x 的方程1﹣2(x ﹣a )=2的解,则a 的值为__.【答案】 ﹣12【解析】 方程2x+1=﹣1, 解得:x=﹣1,代入方程得:1+2+2a=2,解得:a=﹣12,例题2、 已知关于x 的方程3242a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和方程3151128x a x +--=有相同的解,求a 的值.【答案】 2711a =【解析】 关于x 的方程3242a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦的解为37x a =,3151128x a x +--=的解为27221a x -=.由题意得,3272721a a -=,解得2711a =. 例题3、 如果方程42832x x -+-=-的解与关于x 的方程()431621x a x a -+=+-的解相同,求1a a-的值. 【答案】 1154a a -=-【解析】 方程42832x x -+-=-的解为10x =,关于x 的方程()431621x a x a -+=+-的解为52x a =-,因此5102a -=,所以4a =-,1154a a -=-. 随练1、 若关于x 的()40k m x ++=和()210k m x --=是关于x 的同解方程,则2km-的值是________【答案】 53-【解析】 由题意知,0k m +≠,20k m -≠.关于x 的()40k m x ++=的解为4x k m=-+,()210k m x --=的解为12x k m =-.由题意得,412k m k m -=+-,解得13k m =.含绝对值的一次方程例题1、 已知关于x 的方程()22mx m x +=-的解满足1102x --=,则m 的值是( ) A.10或25B.10或25-C.10-或25D.10-或25-【答案】 A【解析】 本题考查的是含绝对值的方程.先由1102x --=, 得32x =或12x =-;再将32x =和12x =-分别代入()22mx m x +=-,求出10m =或25故选A .例题2、 方程|2x+3|=1的解是_____. 【答案】 x=﹣1或x=﹣2【解析】 根据绝对值的性质,可化简方程,根据解方程,可得答案.解:当x <﹣32时,原方程化简为﹣2x ﹣3=1,解得x=﹣2,当x ≥﹣32时,原方程化简为2x+3=1,解得x=﹣1,综上所述:方程|2x+3|=1的解是x=﹣1或x=﹣2, 故答案为:x=﹣1或x=﹣2. 例题3、 解下列方程: (1)331x -= (2)120x +-= (3)6232x -+= (4)()311x x -=+(5)132132x --= (6)()121133x -+=【答案】 (1)43x =或23x =;(2)1x =或3x =-;(3)1x =-或5x =-;(4)2x =±;(5)2x =;(6)0x =或2x =.【解析】 (1)331x -=±,解得43x =或23x =;(2)12x +=±,解得1x =或3x =-; (3)32x +=±,解得1x =-或5x =-; (4)2x =,解得2x =±;(5)1102x -=,解得2x =;(6)11x -=±,解得0x =或2x =.随练1、 若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则m 、n 、k的大小关系是( ) A.m k n >> B.n k m >> C.k m n >> D.m n k >>【答案】 D【解析】 由题意知,0m >、0n =、0k < 随练2、 解下列方程:(1)214x x -+= (2)()1311232x x x ---=+ (3)421x x +--=【答案】 (1)53x =或3x =-;(2)1613x =或423x =-;(3)12x =- 【解析】 (1)当210x -≥,即12x ≥时,原方程等价于214x x -+=,解得53x =;当210x -<,即12x <时,原方程等价于()214x x --+=,解得3x =-.(2)553163x x -=+,当13x ≥时,553163x x -=+,解得1613x =;当13x <时,551363x x -=+,解得423x =-.(3)利用零点分段法.当4x <-时,方程等价于()()421x x -++-=,无解;当42x -≤≤时,方程等价于()421x x ++-=,解得12x =-;当2x >时,方程等价于()421x x +--=,无解.拓展1、 已知a 是有理数,在下面4个命题: (1)方程0ax =的解是0x =.(2)方程ax a =的解是1x =.(3)方程1ax =的解是1x a=.(4)方程a x a =的解是1x =±. 其中,结论正确的个数是( ) A.0 B.1 C.2D.3【答案】 A【解析】 系数含有参数时,一定要考虑参数是否为0,分类讨论.当0a =时,均不成立,故答案为A .2、 某同学在解关于x 的方程21133x x a-+=-去分母时,方程右边的1-没有乘以3,因而求得方程的解为2x =,试求a 的值,并求出方程的正确解. 【答案】 2a =,方程的正确解为0x =【解析】 先按照错误的方法(方程右边的1-没有乘以3)求出a 的值(2a =),然后再将2a =代入原方程求出方程的解.3、 我们规定:若x 的一元一次方程ax b =的解为b a -,则称该方程为定解方程,例如:932x =的解为93322-=,则该方程932x =就是定解方程.请根据上边规定解答下列问题:(1)若x 的一元一次方程2x m =是定解方程,则m = ;(2)若x 的一元一次方程2x ab a =+是定解方程,它的解为a ,求a ,b 的值; (3)若x 的一元一次方程2x mn m =+和2x mn n -=+都是定解方程,求代数式()(){}()2212114322m n mn m m mn n n ⎡⎤⎡⎤-+---+--+-⎣⎦⎣⎦的值.【答案】 (1)4m =(2)2a =,1b =(3)149-【解析】 (1)由题意可知2x m =-,由一元一次方程可知2mx =,因此22mm -=,解得4m =.(2)由题意可知2x ab a =+-,由一元一次方程可知2ab ax +=,又因为方程的解为a ,因此2ab aa +=,2ab a a +-=解得2a =,1b =.(3)由题意可知4mn m +=,43mn n +=-,两式相减,得163m n -=.代入,求得原式149=-.4、 若方程3x -5=1与方程2102a x--=有相同的解,则a 的值等于________.【答案】 2【解析】 暂无解析5、 已知关于x 的方程()()235231326kx x +++=有无数个解,求k 的值. 【答案】 52k =【解析】 原方程可整理为()4100k x -=,要使原方程有无数个解,则4100k -=,解得52k =.6、 若a 、b 为定值,关于x 的一元一次方程2136kx a x bk+--=,无论k 为何值时,它的解总是1x =,求23a b +的值.【答案】 5-【解析】 将1x =代入原方程,整理可得()472b k a +=-.由题意知,无论k 为何值,上式恒成立,即上述方程的解为任意数.因此40b +=,720a -=,所以72a =,4b =- 7、 当k 取何值时,关于x 的方程()315x kx +=-有不大于1的解.【答案】 1k ≥-或3k <-【解析】 解方程()315x kx +=-得23x k =+,根据题意得213k≤+,当30k +>时,23k ≤+,得1k ≥-;当30k +<时,23k ≥+,解得1k ≤-,所以3k <-.综上可得1k ≥-或3k <-8、 当整数m 取何值时,关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭的解是正整数?【答案】 2,3m =【解析】 原方程可化简为()12m x -=,由于原方程有解,因此解为21x m =-.由题意知,21m -为正整数,且m为整数.因此11,2m -=,所以2,3m =9、 已知关于x 的方程5241x m x +=+和方程5281x m x +=+的解相同, (1)求m 的值; (2)求代数式()201320127225m m ⎛⎫+⋅- ⎪⎝⎭的值.【答案】 (1)12m =;(2)()20132012722255m m ⎛⎫+⋅-=- ⎪⎝⎭【解析】 关于x 的方程5241x m x +=+的解为12x m =-,5281x m x +=+的解为213m x -=.由题意得,21123m m --=,解得12m =. 10、 解下列关于x 的方程:(1)6232x -+= (2)225x x ++= (3)1132x x -=- (4)237x x ++-= 【答案】 (1)1x =-或5x =-;(2)1x =;(3)4x =;(4)4x = 【解析】 (1)32x +=±,解得1x =-或5x =-;(2)当20x +≥,即2x ≥-时,方程等价于225x x ++=,解得1x =.当20x +<,即2x <-时,方程等价于()225x x -++=,解得7x =.因为72>-,舍去. (3)当1102x -≥,即2x ≥时,方程等价于1132x x -=-,解得4x =;当1102x -<,即2x <时,方程等价于1132x x ⎛⎫--=- ⎪⎝⎭,解得83x =,舍去. (4)利用零点分段法.当2x <-时,方程等价于()()237x x -+--=,解得3x =-; 当23x -≤≤时,方程等价于()237x x +--=,无解; 当3x >时,方程等价于237x x ++-=,解得4x =. 11、 解绝对值方程:1238412x x x ++=+- 【答案】 14x ≤-【解析】 原方程整理为4114x x +=--.即41x +的绝度值等于它的相反数,因此410x +≤,因此方程的解为14x ≤-.12、 若关于x 的方程1202x x b --+=有2个不同的解,则b 的取值范围为_____________.【答案】 1b <【解析】 该题考查的是含参绝对值方程. 当2x ≥时,原方程化简为22xb =-,即42x b =-,方程要有解,则必有422b -≥,所以,1b ≤; 当2x <时,原方程化简为322x b =+,即2433x b =+,方程要有解,则必有24233b +<,所以,1b <, 从而b 的取值范围是1b <.。
北师大版数学七年级上册5.1认识一元一次方程第一课时说课稿
学生在学习本节课之前,具备了基本的算术运算能力和简单的代数知识,但可能存在以下学习障碍:
1.对一元一次方程的概念理解不深,容易混淆“一元”和“一次”的概念;
2.在将实际问题抽象为一元一次方程的过程中,可能遇到困难;
3.对一元一次方程的解的概念理解不透,难以将其应用到实际问题中。
(三)学习动机
2.风格:板书将采用简洁明了的线性结构,使用不同颜色的粉笔突出重点,如关键词、公式和步骤等。
板书在教学过程中的作用是帮助学生构建知识结构,突出教学重点,便于学生记录和回顾。为确保板书清晰、简洁且有助于学生把握知识结构,我将:
-在课前精心设计板书内容,确保逻辑性和层次感;
-在课堂上适时更新板书,保持与教学进度同步;
北师大版数学七年级上册5.1认识一元一次方程第一课时说课稿
一、教材分析
(一)内容概述
本节课选自北师大版数学七年级上册第5章第1节,标题为“认识一元一次方程”。这一章节在整个课程体系中具有重要地位,它是一元一次方程的基础知识,为后续学习解一元一次方程、一元一次方程的应用打下基础。本节课的主要知识点包括:理解一元一次方程的概念,掌握一元一次方程的一般形式,了解一元一次方程的解的概念。
3.激发兴趣:通过对比学生解决方法的不同,引导学生思考更简便的解决方法,从而引出一元一次方程,激发学生的学习兴趣。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.概念讲解:通过具体例子,解释一元一次方程的概念,强调“一元”和“一次”的特点,让学生理解方程的含义。
2.形式推导:引导学生观察一元一次方程的一般形式,讲解如何将实际问题转化为方程,并强调方程的解的概念。
(三)互动方式
为促进学生的参与和合作,我计划设计以下师生互动和生生互动环节:
(北师大版2024)七年级数学上册同步5.1 认识方程 教案
第五章 一元一次方程1 认识方程1.从生活的实际问题出发,通过小组讨论、教师引导发现数学与生活密不可分.2.通过列方程的过程,感受方程作为刻画现实世界的数学模型的意义,体会到由算式到方程式是数学的一大进步,从而体会方程思想.重点:初步认识一元一次方程的特征,形成一元一次方程的概念.难点:理解方程的解的概念.一、情境导入二、合作探究探究点一:方程及一元一次方程的概念【类型一】 方程的识别下列各式是方程的有( )(1)2x -3=7;(2)8+5=13;(3)2m -3n =0;(4)2+5x ;(5)x +2>3.A .0个B .1个C .2个D .3个解析:(1)2x -3=7,(3)2m -3n =0是含有未知数的等式,属于方程;(2)8+5=13中不含有未知数,不是方程;(4)2+5x 不是等式,不是方程;(5)x +2>3不是等式,不是方程.故选C .方法总结:含有未知数的表示量相等的等式称为方程.下列方程中,是一元一次方程的是( )A .2x +3y =5B .x 2-x +2=0C .3x -5=4x +1D .1x-x =1 解析:紧扣一元一次方程的概念,A 中含有两个未知数;B 中未知数的最高次数是2;D 中分母含有未知数.故选C .方法总结:识别一个方程是否为一元一次方程,不能仅以未知数的个数和次数去判断,必须先化简保证未知数的系数不为0.【类型二】 利用一元一次方程的概念求字母的值方程(m +1)x |m|+1=0是关于x 的一元一次方程,则( )A .m =±1B .m =1C .m =-1D .m ≠-1解析:由一元一次方程的概念,一元一次方程必须满足指数为1,系数不等于0,所以⎩⎨⎧|m|=1,m +1≠0,解得m =1.故选B . 方法总结:解决此类问题要明确:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可求方程中字母的值.探究点二:检验方程的解检验下列各数是不是方程5x -2=7+2x 的解,并写出检验过程.(1)x =2; (2)x =3.解析:将未知数的值代入,看左边是否等于右边,即可判断是不是方程5x -2=7+2x 的解.解:(1)将x =2代入方程,左边=8,右边=11,左边≠右边,故x =2不是方程5x -2=7+2x 的解.(2)将x =3代入方程,左边=13,右边=13,左边=右边,故x =3是方程5x -2=7+2x 的解.方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等.探究点三:由实际问题抽象出一元一次方程某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( )A .1.2×0.8x +2×0.9(60+x )=87B .1.2×0.8x +2×0.9(60-x )=87C .2×0.9x +1.2×0.8(60+x )=87D .2×0.9x +1.2×0.8(60-x )=87解析:设铅笔卖出x 支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x 支铅笔的售价+(60-x )支圆珠笔的售价=87,据此列出方程为1.2×0.8x +2×0.9(60-x )=87.故选B .方法总结:解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,最后列方程.三、板书设计认识方程 ⎩⎪⎨⎪⎧方程→含有未知数的表示量相等的等式叫作方程.一元一次方程→只含有一个未知数,且方程中的代数式都是整式,未知数的次数是1的方程叫作一元一次方程.方程的解→使方程左、右两边的值相等的未知数的值,叫作方程的解.教学过程中,通过对多种实际问题情境的分析,感受方程作为刻画现实世界有效模型的意义,通过观察、归纳一元一次方程的概念,使学生在分析实际问题情境的活动中体会数学与现实的密切联系.。
北师大版七年级一元一次方程
北师大版七年级一元一次方程一元一次方程是数学中的基本概念,也是解决各种实际问题的有力工具。
在北师大版的七年级数学教材中,一元一次方程被作为一个重要的主题进行讲解。
本文将探讨一元一次方程的概念、一元一次方程的应用以及如何求解一元一次方程。
一、一元一次方程的概念一元一次方程是一个包含未知数和常数的等式,未知数的次数为1。
例如,x + 5 = 7,这是一个简单的一元一次方程,其中x是未知数,5和7是常数。
二、一元一次方程的应用一元一次方程在日常生活和科学研究中有着广泛的应用。
例如,在购物时,我们可能需要计算找零或支付金额;在行程问题中,我们可能需要计算速度或时间;在科学研究中,我们可能需要测量或计算各种物理量。
这些问题都可以通过建立一元一次方程来解决。
三、如何求解一元一次方程求解一元一次方程通常需要遵循以下步骤:1、识别方程:首先需要识别方程的类型,确定未知数的次数和系数。
2、移项:将方程中的项移到等式的两边,使未知数单独出现在等式的左边。
3、合并同类项:将方程中的同类项合并,使未知数的系数更为明显。
4、化简:通过等式的性质,化简方程的左右两边,使未知数成为一个简单的系数。
5、求解:通过代数运算,求解未知数的值。
例如,对于方程 x + 5 = 7,我们可以先移项得到 x = 7 - 5,然后化简得到 x = 2。
因此,未知数 x的值为2。
四、总结一元一次方程是数学中的基本概念,也是解决各种实际问题的有力工具。
通过学习北师大版的七年级数学教材,我们可以更好地理解一元一次方程的概念和应用,掌握求解一元一次方程的方法。
这将有助于我们在日常生活和科学研究中解决各种问题。
在建筑工程经济学中,下列哪一项不是建筑成本的重要组成部分?在进行建筑工程经济学分析时,下列哪一项因素不应考虑?在进行建筑工程经济学分析时,下列哪一项指标是衡量工程经济性的重要指标?下列哪一项因素最可能影响建筑工程的经济性?在进行建筑工程经济学分析时,下列哪一项因素不应考虑?在进行建筑工程经济学分析时,下列哪一项指标是衡量工程经济效益的重要指标?下列哪一项措施可以有效地提高建筑工程的经济效益?A.提高建筑工人的工资水平以增加他们的积极性D.对建筑工程进行全面的经济学分析以优化资源利用下列哪一项措施可以有效地降低建筑成本?A、通过招标方式选择低价的建筑材料供应商B、加强对建筑工人的技能培训以提高他们的劳动生产率C、优化建筑工程的设计方案以减少不必要的浪费D、提高建筑材料的库存管理效率以减少材料的浪费判断题(每题2分,共20分)在建筑工程经济学中,“机会成本”是一个重要的概念。
北师大版数学七年级上册5.1《认识一元一次方程》教学设计2
北师大版数学七年级上册5.1《认识一元一次方程》教学设计2一. 教材分析《认识一元一次方程》是北师大版数学七年级上册第五章第一节的内容。
本节课的主要任务是让学生了解一元一次方程的概念、性质和解法,培养学生解决实际问题的能力。
教材通过引入生动有趣的问题情境,激发学生的学习兴趣,引导学生逐步认识一元一次方程,并在解决实际问题的过程中体验到方程思想的重要性和应用价值。
二. 学情分析七年级的学生已经掌握了代数的基础知识,具备一定的逻辑思维能力。
但对于一元一次方程这一概念,学生可能较为陌生。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生逐步理解和掌握一元一次方程的相关知识。
同时,学生对于实际问题的解决方法还不够成熟,需要教师在教学中给予引导和培养。
三. 教学目标1.了解一元一次方程的概念、性质和解法。
2.培养学生解决实际问题的能力。
3.培养学生的合作交流能力和创新思维。
四. 教学重难点1.重难点:一元一次方程的概念、性质和解法。
2.难点:如何将实际问题转化为方程,并运用方程思想解决问题。
五. 教学方法1.情境教学法:通过引入生动有趣的问题情境,激发学生的学习兴趣,引导学生主动参与课堂。
2.启发式教学法:教师引导学生从实际问题中发现规律,培养学生独立思考和解决问题的能力。
3.合作学习法:学生分组讨论,共同解决问题,提高学生的合作交流能力。
4.实践操作法:教师引导学生动手操作,加深对一元一次方程的理解。
六. 教学准备1.教学课件:制作课件,展示一元一次方程的相关知识点。
2.教学素材:准备一些实际问题,作为课堂练习和拓展的内容。
3.的黑板:提前准备好黑板,以便于教师在课堂上进行板书。
七. 教学过程1.导入(5分钟)教师通过一个简单的问题情境,引导学生发现实际问题中存在等量关系,从而引出一元一次方程的概念。
2.呈现(15分钟)教师讲解一元一次方程的定义、性质和解法,让学生初步认识一元一次方程。
3.操练(15分钟)教师给出一些实际问题,让学生尝试用一元一次方程解决。
北师大版数学七年级上册5.1.1一元一次方程的认识(教案)
举例:解方程-2x + 5 = 3x - 1,需要理解负号在移项时的变化。
在教学过程中,教师要针对这些重点和难点进行详细的讲解和指导,确保学生能够透彻理解一元一次方程的相关知识。通过典型例题的极参与课堂讨论和练习,以便及时发现并解决他们在学习过程中遇到的问题。
实践活动和小组讨论的环节,让我看到了学生的积极性和合作精神。他们针对一元一次方程在实际生活中的应用展开了热烈的讨论,并提出了许多有趣的例子。在实验操作过程中,同学们动手实践,加深了对一元一次方程的理解。同时,我也在旁边观察,适时给予指导和启发,帮助学生更好地消化和吸收知识。
然而,我也发现了一些需要改进的地方。首先,在新课讲授过程中,可能需要更加注重对重点和难点的强调。对于一些基础薄弱的同学,可能需要反复讲解,让他们有更多的机会去理解和掌握。其次,在实践活动和小组讨论中,时间分配可能需要更加合理,确保每个小组都有足够的时间展示他们的成果。
举例:3x - 7 = 0,其中a=3,b=-7。
(2)方程的解:掌握方程解的含义,即能使得方程左右两边相等的未知数的值。
举例:对于方程3x - 7 = 0,解x=7/3。
(3)求解一元一次方程的步骤:熟练掌握移项、合并同类项、化简等求解方法。
举例:解方程3x - 7 = 0,先将方程两边同时加7,得到3x = 7,然后两边同时除以3,得到x = 7/3。
4.培养学生的数学抽象能力:让学生从具体的实例中抽象出一元一次方程的一般形式,理解数学概念的形成过程,提高数学抽象能力。
5.培养学生的合作交流能力:在小组讨论和练习过程中,鼓励学生互相交流、探讨,共同解决问题,提高合作交流能力。
三、教学难点与重点
北师大版七年级数学上册《第五章一元一次方程5.1认识一元一次方程(第1课时)》说课稿
北师大版七年级数学上册《第五章一元一次方程5.1认识一元一次方程(第1课时)》说课稿一. 教材分析北师大版七年级数学上册《第五章一元一次方程5.1认识一元一次方程(第1课时)》这一节的内容,主要让学生了解一元一次方程的概念,掌握一元一次方程的解法,以及学会运用一元一次方程解决实际问题。
教材通过引入生动的生活实例,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
同时,通过自主探究、合作交流的学习方式,培养学生的动手操作能力、逻辑思维能力和解决问题的能力。
二. 学情分析七年级的学生已经掌握了整数、分数、有理数等基础知识,对数学运算有一定的熟练程度。
但部分学生对抽象的数学概念理解不够深入,尤其是一元一次方程这种新的数学模型,可能一时难以接受。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行辅导。
三. 说教学目标1.知识与技能:让学生了解一元一次方程的概念,掌握一元一次方程的解法,能运用一元一次方程解决实际问题。
2.过程与方法:通过自主探究、合作交流的学习方式,培养学生动手操作、逻辑思维和解决问题的能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的数学兴趣,激发学生学习数学的积极性。
四. 说教学重难点1.重点:一元一次方程的概念,一元一次方程的解法。
2.难点:对一元一次方程的理解,以及运用一元一次方程解决实际问题。
五. 说教学方法与手段本节课采用自主探究、合作交流、讲授法、实践操作等多种教学方法。
利用多媒体课件、实物模型等教学手段,帮助学生直观地理解一元一次方程的概念和解法。
六. 说教学过程1.导入新课:通过生活实例,引导学生感受数学与生活的联系,激发学生的学习兴趣。
2.自主探究:让学生尝试解决实际问题,发现并总结一元一次方程的解法。
3.讲解演示:教师讲解一元一次方程的概念和解法,引导学生理解和掌握。
4.实践操作:让学生动手解一元一次方程,巩固所学知识。
5.合作交流:分组讨论,分享解题心得,互相学习,提高解题能力。
北师大版七年级数学上册第五章《一元一次方程》教案
第五章一元一次方程1 认识一元一次方程第1课时认识一元一次方程1.理解一元一次方程,方程的解等概念.2.会根据具体问题列一元一次方程.3.通过实际问题建立方程模型,归纳一元一次方程的概念,培养学生的认知能力和归纳概括能力.4.结合本课教学特点,向学生进行理想主义教育和热爱学习教育,激发学生学习的兴趣.【教学重点】建立一元一次方程的概念,会根据具体问题列出一元一次方程.【教学难点】根据具体问题中的等量关系,列出一元一次方程.一、情境导入,初步认识教材第130页最上方的彩图如果设小彬的年龄为x岁,那么“乘2再减5”就是_________,因此可以得到方程:__________________.【教学说明】学生根据两人的对话找出相等关系,列出方程,初步体会根据实际问题建立方程模型的思想.二、思考探究,获取新知1.列方程问题1 (1)小颖种了一株树苗,开始时树苗高为40cm,栽种后每周树苗长高约5cm.大约几周后树苗长高到1m?如果设周后树苗长高到1m,那么可以得到方程:__________________.(2)甲、乙两地相距22km,张叔叔从甲地出发到乙地,每小时比原计划多行走1km,因此提前12min到达乙地,张叔叔原计划每小时行走多少千米?设张叔叔原计划每小时行走x km ,可以得到方程:__________________.(3)根据第六次全国人口普查统计表数据,截至2010年11月1日0时,全国每10万人中具有大学文化程度的人数为8930人,与2000年第五次全国人口普查相比增长了147.30%.2000年第五次全国人口普查时每10万人中约有多少人具有大学文化程度?如果设2000年第五次全国人口普查时每10万人中约有x 人具有大学文化程度,那么可以得到方程:__________________.(4)某长方形操场上的面积是5850m 2,长和宽之差为25m,这个操场的长与宽分别是多少米?如果设这个操场的宽为x m ,那么长为(x +25)m ,由此可以得到方程__________________.【教学说明】 学生根据题意,找出相等关系列出方程,进一步体会方程建模思想.【归纳结论】 分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学知识解决实际问题的一种常用方法.2.一元一次方程及方程的解问题2 (1)由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程?(2)方程2x -5=21,40+5x =100,x (1+147.30%)=8930有什么共同点?【教学说明】 学生通过观察,与同伴进行交流,找出这些方程的共同点,归纳一元一次方程的概念.【归纳结论】 在一个方程中,只含有一个未知数,且未知数的指数都是1,这样的方程叫做一元一次方程.使方程左、右两边的值相等的未知数的值,叫做方程的解.三、运用新知,深化理解1.下列各式中,是一元一次方程的有________(填序号) .(1)833x =+;(2)8x -;(3)1=2x +2;(4)5x 2=20;(5)x +y =8. 2.如果3x n –1=2是关于x 的一元一次方程,那么n =________.3.x =2________方程4x –1=3的解.(填“是”或“不是”)4.小刚准备用自己节省零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他有260元.设x 个月后小刚有260元,则可列出计算月数的方程为( )A.30x+50=260B.30x– 50=260C.x – 50=260D.x+50=260【教学说明】学生自主完成,加深对新学知识的理解.检测对一元一次方程和方程的求解的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.(1)(3) 2. 23.不是4.A四、师生互动,课堂小结1.师生共同回顾一元一次方程,方程的解的概念.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教学引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材“习题5.1”中选取.2.完成练习册中本课时的相应作业.本节课学生从实际问题中找出相等关系,列出方程,要了解一元一次的概念,运用等式的性质解一元一次方程培养学生动手、动脑习惯,激发学生学习的兴趣.第2课时等式的基本性质1.掌握等式的基本性质,能利用等式的基本性质解一元一次方程.2.通过实际问题情境培养学生思考的能力,体会数学与现实的密切联系,掌握等式的基本性质.3.通过观察、操作、归纳等数学活动,使学生感受数学思考过程的条理性和数学结论的严密性.【教学重点】理解等式的基本性质,掌握利用等式的性质解方程.【教学难点】利用等式的基本性质对方程进行变形.一、情境导入,初步认识上节课我们将几个实际问题转化成了数学模型即一元一次方程,只列出了方程,并没有求出方程的解.其实,在小学,我们利用逆运算能够求形如ax+b=c的方程,例如:5x=3x+4.对于这样的方程223146x x=+-+,比较复杂,怎样解呢?要想求出这些复杂的一元一次方程的解,我们必须先来研究一下等式的性质.【教学说明】让学生感受到原有知识无法解决问题,激发学生的求知欲,引入等式的基本性质.二、思考探究,获取新知1.等式的基本性质问题1 还记得小华和小彬猜年龄的问题吗? 你能帮小彬解开那个年龄谜吗? 你能解方程5x=3x+4吗?【教学说明】学生通过观察教材132页天平平衡图,感知等式的基本性质.【归纳结论】等式两边同时加上(或减去)同一个代数式,所得结果仍是等式,等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式.2.利用等式的基本性质解一元一次方程问题2 解下列方程:(1)x +2=5(2)3=x – 5(3)– 3x =15(4)2103n =--. 【教学说明】 学生通过计算,掌握运用等式的基本性质解一元一次方程的方法.三、运用新知,深化理解1.根据题意列出方程:(1)在一卷公元前1600年左右遗留下来的古埃及草纸书中,记载着一些数学问题,其中一个问题翻译过来是:“啊哈,它的全部,它的17,其和等于19.” 你能求出问题中的“它”吗?(2)甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了12分.甲队胜了多少场? 平了多少场?2.x =2是下列方程的解吗?(1)3x+(10 – x )=20;(2)2x 2+6=7x .3.解下列方程:(1)x – 9=8;(2)5 – y = – 16;(3)3x+4= – 13;(4)2153x =-. 4.小红编了一道题:我是4月出生的,我的年龄的,2倍加上8,正好是我出生那一月的总天数.你猜我有几岁? 请你求出小红的年龄.【教学说明】 学生自主完成,加深对新学知识的理解.检测对一元一次方程和方程的求解的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.(1)设“它”为x,则1197x+x=,1338x=.(2)设甲队胜x场,则3x+(10 –x)=22. x=6,10 – 6 =4所以甲队胜了6场,平了4场2.(1)将x=2代入方程,左边=3×2+(10-2)=14≠右边,故x=2不是原方程的解.(2)将x=2代入方程,左边=2×22+6=14=右边,故x=2是原方程的解.3.(1)x=17 (2)y=21 (3)173x= (4)x=94. 设小红有x岁,则2x+8=30,解得x=11,故小红有11岁.四、师生互动,课堂小结1.师生共同回顾等式的基本性质.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教学引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材“习题5.2”中选取.2.完成练习册中本课时的相应作业.本节课学生从实际问题中找出相等关系,列出方程,要了解一元一次的概念,运用等式的性质解一元一次方程培养学生动手、动脑习惯,激发学生学习的兴趣.2 求解一元一次方程第1课时利用移项的方法解一元一次方程1.通过具体例子,归纳移项法则.2.利用移项解一元一次方程.3.通过具体例子,归纳移项法则,会解“ax+b=cx+d”类型的一元一次方程,理解解方程的目标,体会解方程过程中蕴涵的化归思想.4.结合本课教学特点,教育学生热爱学习,热爱生活,培养学生观察,发现数学问题的能力,激发学生学习兴趣.【教学重点】会用移项法则解一元一次方程.【教学难点】移项一定要改变符号.一、情境导入,初步认识对于方程5x-2=8,你会解吗?怎样解呢?【教学说明】学生很容易想到利用等式的基本性质求解,进一步巩固所学知识.二、思考探究,获取新知1.移项法则问题1 解方程5x-2=8,除了利用等式的基本性质来解,还有其他的解法吗?【教学说明】通过提出问题,激发学生的探求欲望.解方程:5x-2=8,方程两边都加上2,得5x-2+2=8+2也就是5x=8+2比较这个方程与原方程,可以发现,这个变形相当于【归纳结论】把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫移项.注意:移项一定要改变符号.2.利用移项解一元一次方程问题2 解下列方程:(1)2x+6=1;(2)3x+3=2x+7.【教学说明】学生通过解答,初步掌握利用移项解一元一次方程.【归纳结论】移项是解方程的重要变形,它是根据需要把方程的项由等号的一边移到另一边.一般把含有未知数的项移到等号的左边,而把常数项移到等号的右边,为防止漏项,先写不需要移动的项.问题3 解方程1/4x=-1/2x+3.【教学说明】学生通过解答进一步掌握利用移项解一元一次方程的步骤.【归纳结论】利用移项解一元一次方程的步骤(1)移项;(2)合并同类项;(3)系数化为1.3.一元一次方程的应用问题4 若1/3a2n+1b m+1与-5b-2m+7a3n-2是同类项,求(-n)m的值.【教学说明】学生通过思考、分析,与同伴交流,尝试完成,提高综合运用知识的能力.【归纳结论】根据同类项的概念可知,2n+1=3n-2,m+1=-2m+7,然后解方程求出m、n的值,再计算(-n)m的值.问题5聪聪到希望书店帮同学们买书,销货员主动告诉他,如果用20元钱办会员卡,将来享受八折优惠,请问在这次买书中,聪聪在什么情况下,办会员卡与不办会员卡费用一样?【教学说明】学生设未知数,根据题意找出相等关系,列出方程求解.初步体会一元一次方程的应用.【归纳结论】列方程解应用题先合理地设出未知数,用含有未知数的式子表示出各未知量,再找出相等关系,列出方程进行解答.三、运用新知,深化理解1.下列变形中,属于移项的是().A.由3x=-2,得x=-2/3B.由x/2=3,得x=6C.由5x-7=0,得5x=7D.由-5x+2=0,得2-5x=02.下列方程中,移项正确的是( ).A.方程3-x=5变形为-x=5+3B.方程2x=3x+1变形为2x-3x=1C.方程3x=4x+5变形为3x-4x=-5D.方程3-2x=-x+7变形为-x+2x=7+33.当x=______时,代数式5x-10与18-3x的值相等.4.解下列方程(1)10x-3=9;(2)5x-2=7x+8;(3)x=3/2x+16;(4)1-3/2x=3x+5/2.5.当m=3时,求方程2x-m=m2-x的解.6.用若干千克化肥给一块麦地追肥,每亩用6千克,还差17千克;如果每亩用5千克,还剩3千克,问这块麦地有多少亩?化肥多少千克?【教学说明】学生自主完成,检测对移项法则及利用移项解一元一次方程等知识的掌握情况,加深对新学知识的理解,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.C 2.B 3.7/24.(1)x=1.2 (2)x=-5 (3)x=-32 (4)x=-1/35.把m=3代入原方程得2x-3=9-x,移项得2x+x=9+3.合并同类项得3x=12,系数化为1得x=4,所以得m=3时,原方程的解为x=4.6.设这块麦地有x亩,由题意得:5x+3=6x-17,解得x=20.所以这块麦地有20亩,化肥103千克.四、师生互动,课堂小结1.师生共同回顾移项法则和利用移项解一元一次方程等知识点.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】老师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材问题“5.3”中选取.2.完成练习册中本课时的相应作业.本节课从学习探索移项法则,到利用移项解一元一次方程,培养学生动手、动脑习惯.加深对所学知识的认识,并运用所学知识解决实际问题,体验应用知识的成就感,激发学生学习的兴趣.第2课时解带括号的一元一次方程1.通过分析具体问题中的数量关系,了解到解方程是运用方程解决实际问题的需要.2.正确理解和运用乘法分配律和去括号法则解方程.3.通过实际问题,体会方程建模思想,掌握运用去括号法则解方程的方法,提高解决问题的能力.4.培养学生热爱数学,独立思考与合作交流的能力,领悟数学来源于实践,服务于实践,激发学生学习兴趣.【教学重点】正确理解和运用乘法分配律和去括号法则解方程.【教学难点】运用乘法分配律和去括号法则解方程.一、情境导入,初步认识教材第137页最上方的彩图及相关问题.【教学说明】学生通过思考、分析,设未知数列出方程,感受数学与生活的紧密联系.二、思考探究,获取新知1.去括号解一元一次方程问题1 如果设1听果奶饮料x元,那么可列出方程4(x+0.5)+x=10-3.(1)上面这个方程列得对吗?为什么?你还能列出不同的方程吗?(2)怎样解所列的方程?【教学说明】学生通过思考、分析,很容易得出这个方程列的是正确的,再列出不同的方程,最后解所得的方程,进一步体会数学与生活的紧密联系.问题2 解方程:4(x+0.5)+x=7.【教学说明】学生通过解答,掌握去括号解方程的一般步骤.【归纳结论】去括号解方程的步骤:①去括号;②移项;③合并同类项;④系数化为1.问题3 解方程:-2(x-1)=4.【教学说明】学生通过观察、分析,尝试不同的解题方法,进一步掌握去括号解方程的步骤和方法.【归纳结论】去括号时,一是要看清括号前面的符号;二是括号前的系数要与括号里的每一项相乘.问题4 观察问题3两种解方程的方法,它们有什么区别?【教学说明】学生通过观察,很容易找出它们的区别.明确去括号解方程的步骤是可以灵活处理的.2.一元一次方程的应用问题5在“五一”期间,小明、小亮等同学随家长共12人一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.【教学说明】学生通过思考、分析,与同伴进行交流,进一步体会一元一次方程的应用.三、运用新知,深化理解1.解方程2-3(x-1)=0,去括号正确的是().A.2-3x-1=0B.2-3x+1=0C.2+3x-3=0D.2-3x+3=02.方程2(x-1)=x+2的解是x=_______.3.解下列方程(1)5(x-1)=1;(2)2-(1-x)=-2;(3)11x+1=5(2x+1);(4)4x-3(20-x)=3;(5)5(x+8)-5=0;(6)2(3-x)=9;(7)-3(x+3)=24;(8)-2(x-2)=12.4.当x为何值时,代数式4x-7与代数式5(x+2/5)的值相等?5.某市按以下规定收取每月的煤气费:用煤气如果不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费,已知某用户10月份的煤气费平均每立方米0.88元,则10月份该用户应交煤气费多少元?【教学说明】学生自主完成,加深对新学知识的理解.检测对去括号解方程的掌握情况,对学生的疑惑教师应及时加以指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.D2.43.(1)x=6/5 (2)x=-3(3)x=4 (4)x=9(5)x=-7 (6)x=-3/2(7)x=-11 (8)x=-44.由题意得4x-7=5(x+2/5).去括号,得4x-7=5x+2.移项,合并得-x=9.系数化为1得x=-9.所以当x=-9时,这两个代数式的值相等.5.设10月份该用户使用煤气xm3,由题意得60×0.8+1.2(x-60)=0.88x,解得x=75,则应交煤气费为:0.88×75=66(元).四、师生互动,课堂小结1.师生共同回顾去括号解一元一次方程的步骤.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与应用.【板书设计】1.布置作业:从教材“习题5.4”中选取.2.完成练习册中本课时的相应作业.本节课从学生探索运用分配和去括号法则解方程,到运用方程解决实际问题.培养学生动手、动脑习惯,提高学生综合运用所用知识的能力.第3课时解含分母的一元一次方程1.理解并掌握去分母解方程的方法,归纳解一元一次方程的一般步骤.2.通过去分母解方程的过程,体会把“复杂”转化为“简单”,把“新知识”转化为“旧知识”的转化思想方法.3.结合本课教学特点,培养学生热爱数学,独立思考与合作交流的能力,激发学生学习兴趣.【教学重点】去分母解一元一次方程.【教学难点】解含有分母的一元一次方程.一、情境导入,初步认识前面我们已学习到了哪些一元一次方程的方法?【教学说明】学生很容易想到移项,去括号等方法,进一步巩固前面所学知识.二、思考探究,获取新知1.去分母解一元一次方程问题1 解方程:1/7(x+14)=1/4(x+20).【教学说明】学生通过思考、分析,确定先做什么,后做什么,尝试不同的解法.解法一:去括号,得1/7x+2=1/4x+5移项,合并同类项,得-3=3/28x.系数化为1,得-28=x.即x=-28.解法二:去分母,得4(x+14)=7(x+20).去括号,得4x+56=7x+140.移项,合并同类项,得-3x=84.系数化为1,得x=-28.问题2 问题1中的两种解法哪一种简便些?从中你能得出解一元一次方程有哪些步骤?【教学说明】学生很容易得出第二种解法简便些,再通过观察、交流,归纳解一元一次方程的步骤.【归纳结论】解一元一次方程,一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.解含有分母的一元一次方程问题3 解方程1/5(x+15)=1/2x-1/3(x-7).【教学说明】学生按解一元一次方程的一般步骤来做,进一步掌握解一元一次方程的一般步骤.【归纳结论】当方程中含有分母时,方程两边同乘以所有分母的最小公倍数,即可去掉分母.注意:去分母时,方程两边的每一项都要乘以这个最小公倍数,不要漏乘分母为1的项;当分子是多项式,去分母时,分子要添加括号.3.一元一次方程的应用问题4 为了参加2013年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.【教学说明】学生通过设未知数,根据题意找出相等关系,列出方程求解.进一步体会一元一次方程的应用,熟练掌握解一元一次方程的步骤和方法. 三、运用新知,深化理解1.解方程2113424x x-+-=,去分母后得到的方程是( ).A.2(2x-1)-(1+3x)=-4B.2(2x-1)-(1+3x)=16C.2(2x-1)-1+3x=-16D.2(2x-1)-[1-(-3x)]=-42.方程311126x x+--=的解是().A.x=-1/8B.x=1/2C.x=1/4D.x=-3/83.当x=_______时,代数式1/3(1-2x)与代数式2/7(3x+1)的值相等.4.解下列方程.5.小华同学在解方程21236x x a-+=-去分母时,方程的右边-2没有乘6,因而求得方程的解为x=2,试求a的值,并正确地解方程.6.某工厂购进了一批煤,原计划每天烧煤5吨,实际每天少烧2吨,这批煤多烧了20天.求这批煤有多少吨?【教学说明】学生自主完成,加深对新学知识的理解,检测对去分母解一元一次方程的掌握情况,对学生的疑惑,教师应及时加以指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.B2.C3.1/324.(1)x=1/5 (2)x=-16 (3)x=8(4)x=7 (5)x=-2/5 (6)x=35.由题意可知:x=2是2(2x-1)=x+a-2的解,解得a=6.则原方程为212 36x x a-+=-,解得x=-4/3.6.设这批煤有x 吨,由题意得:20.552x x +=- 解得:x=150.所以这批煤有150吨.四、师生互动,课堂小结1.师生共同回顾解一元一次方程的一般步骤.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】 教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材问题“5.5”中选取.2.完成练习册中本课时的相应作业.本节课从学生解含有分母的一元一次方程,到归纳解一元一次方程的一般步骤,培养学生动手,动脑习惯,加深对所学知识的认识,熟练运用所学知识解决实际问题,体验应用知识的成就感,激发学生学习的兴趣.3 应用一元一次方程——水箱变高了1.通过分析图形问题中的数量关系,建立方程解决问题.2.经历由实际问题抽象为方程模型的过程,进一步体会用方程解实际问题的一般思路和步骤.3.结合本课教学特点,教育学生热爱学习,热爱生活,激发学生学习的兴趣.【教学重点】分析图形问题中的数量关系,熟练地列方程解应用题.【教学难点】从实际问题中抽象出数学模型教学过程.一、情境导入,初步认识用同一根铁丝围成不同的图形,如三角形长方形、正方形、梯形、平行四边形等在这些图形中,什么发生了变化?什么不发生变化?【教学说明】学生很容易得出这些图形的变化,初步感受图形问题中的数量关系.二、思考探究,获取新知1.运用一元一次方程解决等体积变形问题问题1 教材第141页例题以上的内容.【教学说明】学生通过思考、分析,与同伴进行交流,完成表格,列出方程解决问题.体会列表法的重要作用.【归纳结论】列方程解应用题关键是找出问题中的等量关系.2.运用一元一次方程解决等周长变形问题问题2 教材第141页下方的例题.【教学说明】学生通过思考、分析与同伴进行交流,列出方程求解.【归纳结论】在问题2中,长方形的周长始终是不变的,即长与宽的和为:10×1/2=5(m).所以在解决问题的过程中,要紧紧抓住这个等量关系.3.运用一元一次方程解决等面积变形问题.问题3 已知一梯形的高为8cm,上底长为14cm,下底长比上底长的2倍少6cm,若把这个梯形改成与其面积相等的长方形,且长方形的长为24cm,求长方形的宽.【教学说明】学生思考、分析,与同伴交流,设未知数列出方程求解.【归纳结论】运用一元一次方程解决实际问题的一般步骤(1)设未知数,(2)找等量关系式,(3)列方程,(4)解方程,(5)检验,(6)写出答案.三、运用新知,深化理解1.已知内径为120mm的圆柱玻璃杯和内径为300mm,内高为32mm的圆柱形玻璃盆可以盛同样多的水,则玻璃杯的内高为().A.150mmB.200mmC.250mmD.300mm2.一根绳子刚好可以围成一个边长为6cm的正方形,如果用这根绳子围成一个长8cm的长方形,这个长方形的宽为_______cm,面积是_______cm2.3.如图所示,将一个底面直径为10cm,高为36cm的“瘦长”形圆柱锻压成底面直径为20cm的“矮胖”形圆柱.假设在锻压过程中圆柱的体积保持不变,那么高变成了多少?第3题图第4题图4.墙上钉着一根彩绳围成的梯形形状的饰物,如右图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如右图虚线所示,小颖所钉长方形的长、宽各为多少厘米?【教学说明】学生自主完成,加深对新学知识的理解,检测对运用一元一次方程解决等积变形问题的掌握情况?对学生的疑惑教师应及时加以指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.B2.4 323.设高度为xcm,由题意得:π×52×36=π×102x解得x=9所以高变成了9cm.4.设长方形的长为xcm,由题意得:2(x+10)=10×4+6×2解得x=16所以长方形的长为16cm,宽为10cm.四、师生互动,课堂小结1.师生共同回顾运用一元一次方程解决等体积、等周长、等面积问题.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材“习题5.6”中选取.2.完成练习册中本课时的相应作业.本节课从学生运用一元一次方程解决等体积,等周长\等面积问题,到掌握运用一元一次方程解决实际问题的一般步骤,培养学生动手\动脑习惯,提高学生。
北师大版数学七年级上册5.1《认识一元一次方程》(第1课时)教学设计
北师大版数学七年级上册5.1《认识一元一次方程》(第1课时)教学设计一. 教材分析《认识一元一次方程》是北师大版数学七年级上册第五章第一节的内容。
本节内容通过实际问题引入方程的概念,使学生了解一元一次方程的定义、组成及解法。
通过本节课的学习,培养学生解决实际问题的能力,为后续学习一元一次方程的解法及应用打下基础。
二. 学情分析学生在小学阶段已经接触过简易的方程,对用字母表示数有一定的了解。
但他们对一元一次方程的定义、组成及解法还不够明确。
因此,在教学过程中,需要关注学生的认知基础,通过实例让学生感受方程的实际意义,引导学生掌握一元一次方程的知识。
三. 教学目标1.知识与技能:使学生了解一元一次方程的概念,理解一元一次方程的组成及解法。
2.过程与方法:培养学生解决实际问题的能力,提高学生分析问题、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:一元一次方程的概念、组成及解法。
2.难点:一元一次方程的实际应用。
五. 教学方法1.情境教学法:通过实际问题引入方程的概念,让学生感受方程的实际意义。
2.案例教学法:分析具体案例,使学生掌握一元一次方程的解法。
3.小组讨论法:引导学生分组讨论,培养学生的团队合作精神。
4.引导发现法:教师引导学生发现一元一次方程的规律,提高学生的分析问题、解决问题的能力。
六. 教学准备1.课件:制作课件,展示实际问题及解题过程。
2.练习题:准备适量的一元一次方程练习题,巩固所学知识。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用课件展示实际问题,引导学生思考如何用数学方法解决问题。
例如,甲、乙两地相距120千米,一辆汽车从甲地出发,以60千米/小时的速度前往乙地,问多少小时后汽车到达乙地?2.呈现(10分钟)介绍一元一次方程的概念,讲解一元一次方程的组成及解法。
例如,方程60x = 120表示汽车行驶的时间x与速度60的关系,其中x为未知数,解这个方程可得到汽车到达乙地所需的时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2a+b=3;④2-6y=1; ⑤ 2χ2+5=6; ⑥ 1 +2= 6x 属于
一元一次方程有__①__、__④___。
3x
m=? 2、方程3xm-2 + 5=0是一元一次方程,则代数式 4m- 3 5=_-_6_ 3、方程(a+6)x2 +3x-8=7是关于x的一元一次方程,则a =__-_6___ 。
知识运“用”
★1.下列式子中,一元一次方程的是( )
A 、 2x y 1
B 、 3x 5
C 、 3(x y) 3(x y) 8 D 、 3 7 10
★★2、x 2
方程2 3x 8的解(填“是”或“不是”)
★★★3.方程 (a 2)x2 3xb3 6 是关于x的已元一次方程,
像这样含有未知数的等式叫做方程。
①有未知数
判断条件
②是等式
判断下列各式是不是方程, 手势表示。 (1) -2+5=3 ( x ) (2) 3χ-1=7
( √)
(3) m=0
( √ ) (4) χ﹥ 3
( x)
(5) χ+y=8 ( √ ) (6) 2χ2-5χ+1=0 ( )√
(7) 2a +b ( x ) (8) a b b a (x )
小试牛刀
判断下列各式是不是一元一次方程,是的打“√”, 不是的打“×”。
① 253 × ② m81 √
③ x 1 √ ④ x y 1 ×
⑤x30 ×
⑦ 274 × x
⑥ 2x2 2(x2 x) 1 √
⑧ x 12
√
练一练
一填空:
1、在下列方程中:①2χ+1=3; ②y2-2y+1=0; ③
7
(2)甲、乙两队开展足球对抗赛,规 定每队胜一场得3分,平一场得1 分,负一场得0分。甲队与乙队一 共比赛了10场,甲队保持了不败 记录,一共得了22 分,甲队胜了 多少场?平了多少场? 解:设甲队胜了χ场,则甲平了
(10 -χ) 场. 由题意得:
3 χ +(10-χ)=22
中招链接
某商店一套夏装的进价为200元,按 标价的八折销售,可获利72元,则该服装 的标价为多少元?(列方程式)
由上面的问题你得到了那些方程?其中那 些是你熟悉的方程?
2x 5 21
40 15x 100
1+153.94% x 3611
上面情境中的三个方程 有什么 共同点?
一元一次方程:①只含有一个未知数; 一元一次方程:②在并一且个未方知程数中的,指只数含是有1一;
个未知数,且未知数的指数是1 ,这样的 方程叫做一元一次方程。
则 ab =
★★★★4.小明买苹果和梨共5千克,用去17元,其中苹果每千克 4元,梨每千克3元,问苹果核梨各买了多少千克?
例1、已知是 8xa1 5 0 关于x一元一次方程,
则a的值为
2
变式训练1
2x m1 6 0 是关于x一元一次方程,则
m 的值为 0或2
变式训练2:
如果(a 1)x a 8是关于x一元一次方程,
①只含有一个未知数;
②并且未知数的指数是1 。 特别需要注意的地方: 1、分母不能够含未知数 2、化简之后再判断
(1)在一卷公元前 1600年左右遗留下来的 古埃及草卷中,记载着 一些数学问题,其中一 个问题翻译过来是:
问题中的“它”可以怎样表示?
啊哈,
它的全
部,它
的
1 7
,
其和等
于19
解:设“它”为χ,则 χ+1 χ=19
40cm x周
100cm
15厘米,大约几周后
树苗长高到1米?
40
15x
100
树苗开始的高度+长高的高度=树苗将达到的高度
解:如果设x周后树苗长高到1 米, 那么可以得到方程: 40+15X=100
情境2
甲、乙两地相距22km,张叔叔从甲 地出发到乙地,每时比原计划多行 走1km,因此提前12分钟到达乙地, 张叔叔原计划每时行走多少千米?
那么 = a
-1
80%x 200 72
本节课你收获了Leabharlann 么?名题欣赏:《代数之父—丢番图的年龄》
的墓希碑腊上数记学载家着丢:番“图他(生公命元的163~是4世幸纪福) 的童年;再活了他生命的112 ,两颊长起 了细细的胡须;又度过了一生1 的 ,他 结婚了;再过5年,他有了儿7子,感到很 幸福;可是儿子只活了他全部年龄的一 半;儿子死后,他在极度痛苦中度过了4 年,与世长辞了。”
方程的解的含义:使方程左、右两边的值相等 的未知数的值,叫做方程的解。
例题2:
x 5 是下列方程的解吗?
x (1) 3 2 是
(2)2x 6 1 不是
判断是否为方程的解的方法步骤:
1、代值;2、计算;3、判断左边值是 否等于右边的值。
情境一 小颖种了一株树苗,
开始时树苗高为40厘米, 栽种后每周树苗长高约
设张叔叔原计划每时行走xkm,可以得到方 程:
情境3
第六次全国人口普查统计数据, 截至2010年11月1日0时,全国每10万人中具有大
学文化程度的人数为8930人,比2000年第五次全国 人口普查相比增长增长了147.30%.
2000年第五次全国人口普查时每10万人中约 有多少人具有大学文化程度?
知识目标:通过对多种实际问题的分
析,感受方程作为刻画现实世界有效模 型的意义。知道一元一次方程的概念。
能力目标:会根据题意准确列出一
元一次方程。
情感态度价值观:体会方程的模型价
值。
小游戏
为什么猜 的这么准?
把你的年龄乘2减5的得数告 诉我,看我猜的对不对。
如果设学生的年龄为 x岁,那么
2x 5 21
如果设2000年第五次全国人口普查时每10 万人中约有x人具有大学文化程度,那么可
以得到方程:1+147.30% x 8930
(X+25)米
X米
某长方形操场的面积是 5 850,长和宽之差 为 25 m,这个操场的长与宽分别是多米?
如果设这个操场的宽为 x m,那么长为(x+25 )m,
可以得到方程: x2(+x25x2=55)8505850
xk1 21 0 是一元一次方程,则k=__2_____ x|k| 21 0 是一元一次方程,则k=_1_或__-_1_ (k 1)x|k| 21 0 是一元一次方程,k=_-_1___ (k 2)x2 kx 21 0 是一元一次方程,则k =___-2_
方法小结 怎么判断 一个方程是一元一次方程?
什么叫方程的解?
使方程左右两边的值相等的未知数的 值叫做方程的解。
是
2是2x=4的解吗? 3是2x+1=8的解吗?
不是
下列方程中,解为-2的是( C )
A 3x 2 2x B 4x 1 2x 3
C 3x 1 2x 1 D 5x 3 6x 2
x 2是下列方程的解吗? (1)3x (10 x) 20 (2)2x2 6 7x