最新三角形五心定律教学内容

合集下载

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形五心定理(三角形的重心,外心,垂心,内心和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

一、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。

二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG∶GH=1∶2。

(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

三角形的、外心、内心、重心、垂心、和旁心(五心定理)

三角形的、外心、内心、重心、垂心、和旁心(五心定理)

三角形的外心、内心、重心、垂心、旁心(五心定理)
4


形的
垂心
三角形的三条高交于一点,这点称
为三角形的垂心 1,三角形任一顶点到垂心的距离,等于外
心到对边的距离的2倍;锐角三角形的垂
心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍;
2,锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的
垂心在三角形外 ;
5
三角形的旁心
三角形的一条内角平分线与另两
个外角平分线交
于一点,称为三角形的旁心(旁切圆圆心)
1, 每个三角形都有三个旁心;
2, 旁心到三边的距离相等
附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

A
B
C
D
E F
I a
A B
C D
E
F O。

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形五心定理(三角形的重心,外心,垂心,内心和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

之二胡藕藤创作一、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。

二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG∶GH=1∶2。

(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形五心定理(三角形的重心,外心,垂心,心坎和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,心坎定理,旁心定理的总称.一、三角形重心定理三角形的三条边的中线交于一点.该点叫做三角形的重心.三中线交于一点可用燕尾定理证实,十分简略.(重心原是一个物理概念,对于等厚度的质量平均的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1.重心到极点的距离与重心到对边中点的距离之比为2∶1.2.重心和三角形3个极点构成的3个三角形面积相等.即重心到三条边的距离与三条边的长成反比.3.重心到三角形3个极点距离的平方和最小.4.在平面直角坐标系中,重心的坐标是极点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3.二.三角形外心定理三角形外接圆的圆心,叫做三角形的外心.外心的性质:1.三角形的三条边的垂直等分线交于一点,该点即为该三角形外心.2.若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角).3.当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合.4.盘算外心的坐标应先盘算下列暂时变量:d1,d2,d3分离是三角形三个极点连向别的两个极点向量的点乘.c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3.重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c ).5.外心到三极点的距离相等三.三角形垂心定理三角形的三条高(地点直线)交于一点,该点叫做三角形的垂心.垂心的性质:1.三角形三个极点,三个垂足,垂心这7个点可以得到6个四点圆.2.三角形外心O.重心G和垂心H三点共线,且OG∶GH=1∶2.(此直线称为三角形的欧拉线(Euler line))3.垂心到三角形一极点距离为此三角形外心到此极点对边距离的2倍.4.垂心分每条高线的两部分乘积相等.定理证实已知:ΔABC中,AD.BE是两条高,AD.BE交于点O,衔接CO并延伸交AB于点F ,求证:CF⊥AB证实:衔接DE ∵∠ADB=∠AEB=90度∴A.B.D.E四点共圆∴∠ADE=∠ABE∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB是以,垂心定理成立!四.三角形心坎定理三角形内切圆的圆心,叫做三角形的心坎.心坎的性质:1.三角形的三条内角等分线交于一点.该点即为三角形的心坎.2.直角三角形的心坎到边的距离等于两直角边的和减去斜边的差的二分之一.3.P为ΔABC地点平面上随意率性一点,点I是ΔABC心坎的充要前提是:向量PI=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c).4.O为三角形的心坎,A.B.C分离为三角形的三个极点,延伸AO 交BC边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC五.三角形旁心定理三角形的旁切圆(与三角形的一边和其他双方的延伸线相切的圆)的圆心,叫做三角形的旁心.旁心的性质:1.三角形一内角等分线和别的两极点处的外角等分线交于一点,该点即为三角形的旁心.2.每个三角形都有三个旁心.3.旁心到三边的距离相等.如图,点M就是△ABC的一个旁心.三角形随意率性两角的外角等分线和第三个角的内角等分线的交点.一个三角形有三个旁心,并且必定在三角形外.附:三角形的中间:只有正三角形才有中间,这时重心,心坎,外心,垂心,四心合一.有关三角形五心的诗歌三角形五心歌(重外垂内旁)三角形有五颗心,重外垂内和旁心, 五心性质很主要,卖力控制莫记混.重心三条中线定订交,交点地位真奇巧, 交点定名为“重心”,重心性质要清楚明了,重心朋分中线段,数段之比听分晓; 长短之比二比一,灵巧应用控制好.外心三角形有六元素,三个内角有三边.作三边的中垂线,三线订交共一点.此点界说为外心,用它可作外接圆.心坎外心莫记混,内切外接是症结.垂心三角形上作三高,三高必于垂心交.高线朋分三角形,消失直角三对整,直角三角形有十二,构成六对类似形, 四点共圆图中有,仔细剖析可找清.内心三角对应三极点,角角都有等分线, 三线订交定共点,叫做“心坎”有根源;点至三边均等距,可作三角形内切圆, 此圆圆心称“心坎”,如斯界说应当然.。

(完整word版)三角形的五心问题

(完整word版)三角形的五心问题

自主招生讲座—平面几何5三角形的五心问题一.重心:中线交点 1。

:2:1AG GD =2。

2222111224AD AB AC BC =+-3.13GBC ABC S S ∆∆=4。

(1)2222222222333()3BC GA CA GB AB GC AB AC BC +=+=+=++(2)2222221()3GA GB GC AB AC BC ++=++(3) 222GA GB GC ++最小.二.外心:三边中垂线交点,外接圆圆心。

如图,OE BC ⊥交BC 于D . 1.OA OB OC R ===2.2BOC A ∠=∠(非钝角三角形) 2(180)BOC A ∠=-∠(钝角三角形) 3。

,BD DC BE EC ==4。

4ABC abcS R∆=三.内心:角平分线交点,内切圆圆心。

内心)的延长线交外接设ABC ∆的内切圆O 切边AB 于点P ,AI (I 为圆于D ,内切圆半径为r ,则1.1902BIC A ∠=+∠2.1cot ()22A AP r b c a ==+-3.DB DC DI ==4。

()2ABC rS a b c ∆=++四.垂心:高线的交点 设,,O G H 分别是ABC ∆的外心、重心和垂心,OD BC ⊥于D ,AH 的延长线交外接圆于1H ,则 1.2AH OD =2。

H 与1H 关于BC 成轴对称。

3。

BCH 与ABC 的半径相同。

4.,,ABH CBO BCO ACH BAH CAO ∠=∠∠=∠∠=∠5。

旁心:三角形任意两角的外角平分线和第三个内角的角平分线相交于一点,这个交点即为三角形的旁心。

设在ABC ∆中,A ∠内的旁切圆1I (半径为1r )与AB 的延长线切于1P ,则1.11902BI C A ∠=-∠2。

111cot ()22A AP r a b c ==++ 3.112AI B C ∠=∠4.11()2ABC S r b c a ∆=+-例1:如图,设I 是ABC ∆的内心,,M N 分别是边,AB AC 上的点,且使得,ABI NIC ACI MIB ∠=∠∠=∠。

三角形的五心定理

三角形的五心定理

三角形的五心定理三角形是几何学中最基本的图形之一,具有丰富的性质和定理。

其中,五心定理是一条十分重要的定理,它揭示了三角形内包含的五个特殊点,这些点被称为三角形的五心。

本文将从五心定理的定义和推导开始,详细介绍五心的概念、性质以及应用。

一、五心定理的定义和推导五心定理是指在任意三角形ABC中,存在五个特殊点O、I、H、G、N,它们分别为外心、内心、垂心、重心和费马点。

这些特殊点具有一些特殊性质,对于研究三角形的性质和问题具有重要作用。

首先,我们来推导五心定理。

假设三角形ABC的外接圆圆心为O,内切圆圆心为I,垂心为H,重心为G,费马点为N。

根据几何学的基本定理和性质,可以得到以下关系:1. 外心定理:三角形的三条边的中垂线交于一点,该点即为三角形的外心O。

2. 内心定理:三角形的三条角平分线交于一点,该点即为三角形的内心I。

3. 垂心定理:三角形的三条高交于一点,该点即为三角形的垂心H。

4. 重心定理:三角形的三条中线交于一点,该点即为三角形的重心G。

5. 费马点定理:三角形内所有角的顶点到三个顶点的距离之和最短,该点即为三角形的费马点N。

综上所述,我们可以得出三角形ABC内含有五个特殊点O、I、H、G、N,它们分别为三角形的外心、内心、垂心、重心和费马点。

接下来,我们将详细介绍这五个特殊点的性质和应用。

二、五心的性质和应用1. 外心O:外心O是三角形的外接圆圆心,该圆将三角形的三个顶点都包含在内。

外接圆的半径等于三角形的外心到任意顶点的距离,外心到三个顶点的连线都互相垂直。

2. 内心I:内心I是三角形的内切圆圆心,该圆与三条边都相切。

内切圆的半径等于三角形的内心到任意边的距离,内心到三条边的连线都互相垂直。

3. 垂心H:垂心H是三角形的三条高交于的点,该点到三个顶点的连线都互相垂直。

垂心是一个重要的概念,在三角形的高问题以及垂心距离等方面有广泛的应用。

4. 重心G:重心G是三角形的三条中线交于的点,该点将三角形分成六个三角形的面积之比为2:1。

三角形的重心、外心、垂心、内心和旁心(五心定理).doc

三角形的重心、外心、垂心、内心和旁心(五心定理).doc

三角形五心定理(三角形的重心,外心,垂心,内心和旁心称Z为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理, 旁心定理的总称。

、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点, 重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离Z比为2 : 1o2、重心和三角形3个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1 +X2+X3)/3, (Y1 +Y2+Y3)/3o二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:仁三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若0是ZXABC的外心,则ZB0C=2ZA ( ZA为锐角或宜角)或Z BOC=360°-2ZA (ZA 为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时, 外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1, d2, d3分别是三角形三个顶点连向另外两个顶点向量的点乘od=d2d3, c2=d1d3, c3=d1d2; c=c1+c2+c3o 重心坐标:((c2+c3)/2c, (c1+c3)/2c, (c1+c2)/2c )o5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1>三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且0G : GH=1 : 2。

三角形五心讲课教学内容

三角形五心讲课教学内容
“四心”在同一三角形中的位置关系是:等 腰三角形中“四心”共线,在对称轴上。等边 三角形中“四心”共点,称为“中心”。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
相等

锐角△在 锐角△在____,
_内__部__,钝角 △在__外__部__ 直角△在
内钝部角△在 ____外_,部直角
△在___斜__边_。中点
直__角__顶__点
必在△的 _内__部___
重心:
证明三条中线交于同一点重心分中 线的比为2:1
证法1图
证法2图
外心: 证明三条垂直平分线交于同一点
三角形的主要线段——中线、高、内角平分 线及各边的垂直平分线各交于一点
“四心”不要混淆,中线是“重心”(“中” 与“重”谐音),高线是垂心(高与垂直有 关),外接圆圆心是外心,因它到三角形三顶 点距离相等,故必是三边垂直平分线的交点。 内切圆圆心是内心,因它到三角形三边距离相 等,所以它必在三内角的平分线上。
三角形四心的复习
重心
垂心
外心
内心
定义
△三条中___线_的
交点(即内切圆圆心).
△三条_高__线__ 的交点
△三条中__垂__的线
交点(即外接圆圆心).
△的三交条点_角分__平线_
图形
性质 位置
重心分中线 比为_2_:_1___
必在△的 _内__部___
△外心到 △内心到
_顶__点__距离 _三__边__距离相
例2 证明三角形的任一顶点到 垂心的距离,等于外心到对边 的距离的二倍.
练一练:
已知三角形三边长分别为5、12、13心的距离是 ,
垂心到最大边的距离是 ,

第二讲第三讲第四讲三角形五心定理及证明ppt课件

第二讲第三讲第四讲三角形五心定理及证明ppt课件
相等(分别为点B和点C到AF的距离)。 • ∴S△AFB=S△AFC • 又对于△AFB和△AFC,高相同(为点A到BC
的距离)。 • ∴它们底相等,即:BF=CF • ∴AF为三角形的中线。

重心:三条中线的交点
• 方法二: • 证:连AO交BC于点F,连DE交AF
• 由角平分线定理(角平分线 上一点到两边的距离相等) 得:
• OD=OF,OF=OE • ∴ OD=OE • ∴AO为角BAC的平分线
注:红线为所要证明的线,绿线为辅助线。

外心:三条中垂线的交点
• 证:连结OA、OB、OC,并 过O点作OF⊥BC于点F。
• 由线段中垂线定理(线段中垂 线上一点到
注:红线为所要证明的线,绿线为辅助线。

重心:三条中线的交点
• 同理可得: • S△BOC=S△AOB ······② • 由①②得,S△AOC=S△AOB • 又∵△AOC与△AOB底都为AO • ∴它们高相等,即:点B和点C到AF的距离相
等。 • 对于△AFB和△AFC,底相同(为AF),高
三角形的“五心”定理
1 内心:内切圆的圆心,即三条角平分线的交点。 2 外心:外切圆的圆心,即三条中垂线的交点。 3 旁心:旁切圆的圆心,即三条角平分线的交点。 4 垂心:三条高的交点。 5 重心:三条中线的交点。

内心:三条角平分线的交点
• 证明:过点O作三边的垂 线,垂足分别为D、E、F。
• 距离相等)得: • OD=OF,OD=OE • ∴ OF=OE • ∴BO为角ABC的平分线
注:红线为所要证明的线,绿线为辅助线。

垂心:三条高的交点
• 证:连结DE,连结AO交BC于F点。 • ∵角BDC=角BEC=90° • ∴B、D、E、C四点共圆(以BC为直径的圆)。 • ∴角FBO=角CDE ······① • (同弦(弧)所对圆周角相等) • 又∵角ODA=角AEO=90° • ∴O、D、A、E四点共圆(以AO为直径的圆)。 • ∴角AOE=角ADE (同弦(弧)所对圆周角相等) • 且 角AOE=角BOF • ∴角ADE=角BOF ······② • 由①②可知,角OFB=角ODA=90° • ∴AF为BC边上的高。

第十四讲:三角形的五心

第十四讲:三角形的五心

第十四讲:三角形的五心三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心. 一、外心.三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理. 例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N .作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上. 【解析】:由已知可得MP ′=MP =MB ,NP ′=NP =NC ,故点M 是△P ′BP 的外心,点 N 是△P ′PC 的外心.有∠BP ′P =21∠BMP =21∠BAC , ∠PP ′C =21∠PNC =21∠BAC . ∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC . 从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上.由于P ′P 平分∠BP ′C ,显然还有 P ′B :P ′C =BP :PC .例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS ,△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似. 【解析】:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形O 1PO 2QO 3S 后再由外心性质可知∠PO 1S =2∠A ,∠QO 2P =2∠B ,∠SO 3Q =2∠C .∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360°, 将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3. ∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K =21(∠O 2O 1S +∠SO 1K )=21(∠O 2O 1S +∠PO 1O 2)=21∠PO 1S =∠A ;同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC .二、重心三角形三条中线的交点,叫做三角形的重心.掌握重心将每条中线都分成定比2:1及中线长度公式,便于解题.例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△P AD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和.【解析】:设G 为△ABC 重心,直线PG 与AB ,BC 相交.从A ,C ,D ,E ,F 分别作该直线的垂线,垂足为A ′,C ′,D ′,E ′,F ′. 易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′, ∴EE ′=DD ′+FF ′. 有S △PGE =S △PGD +S △PGF .两边各扩大3倍,有S △PBE =S △P AD +S △PCF . 例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真. 【解析】:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′.G 为重心,连DE 到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF .(1)a 2,b 2,c 2成等差数列⇒△∽△′.若△ABC 为正三角形,易证△∽△′.不妨设a ≥b ≥c ,有CF =2222221c b a -+, BE =2222221b a c -+, AD =2222221a c b -+.将a 2+c 2=2b 2,分别代入以上三式,得 CF =a 23,BE =b 23,AD =c 23. ∴CF :BE :AD =a 23:b 23:c 23=a :b :c .故有△∽A B C PP MN'A B C Q K P O O O ....S123A A 'F F 'G E E 'D 'C 'PC B D△′.(2)△∽△′⇒a 2,b 2,c 2成等差数列.当△中a ≥b ≥c 时,△′中CF ≥BE ≥AD . ∵△∽△′,∴∆∆S S '=(a CF )2.据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有∆∆S S '=43.∴22aCF =43⇒3a 2=4CF 2=2a 2+b 2-c 2a 2+c 2=2b 2.三、垂心三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利. 例5.设A 1A 2A 3A 4为⊙O 内接四边形,H 1,H 2,H 3,H 4依次为△A 2A 3A 4,△A 3A 4A 1,△A 4A 1A 2,△A 1A 2A 3的垂心.求证:H 1,H 2,H 3,H 4四点共圆,并确定出该圆的圆心位置. 【解析】:连接A 2H 1,A 1H 2,H 1H 2,记圆半径为R .由△A 2A 3A 4知 13212sin H A A H A ∠=2R ⇒A 2H 1=2R cos ∠A 3A 2A 4; 由△A 1A 3A 4得A 1H 2=2R cos ∠A 3A 1A 4. 但∠A 3A 2A 4=∠A 3A 1A 4,故A 2H 1=A 1H 2. 易证A 2H 1∥A 1A 2,于是,A 2H 1 A 1H 2,故得H 1H 2A 2A 1.设H 1A 1与H 2A 2的交点为M ,故H 1H 2与A 1A 2关于M 点成中心对称. 同理,H 2H 3与A 2A 3,H 3H 4与A 3A 4,H 4H 1与A 4A 1都关于M 点成中心对称.故四边形H 1H 2H 3H 4与四边形A 1A 2A 3A 4关于M 点成中心对称,两者是全等四边形,H 1,H 2,H 3,H 4在同一个圆上.后者的圆心设为Q ,Q 与O 也关于M 成中心对称.由O ,M 两点,Q 点就不难确定了.例6.H 为△ABC 的垂心,D ,E ,F 分别是BC ,CA ,AB 的中心.一个以H 为圆心的⊙H 交直线EF ,FD ,DE 于A 1,A 2,B 1,B 2,C 1,C 2.求证:AA 1=AA 2=BB 1=BB 2=CC 1=CC 2. 【解析】:只须证明AA 1=BB 1=CC 1即可.设BC =a , CA =b ,AB =c ,△ABC 外接圆半径为R ,⊙H 的半径为r . HA 1,AH 交EF 于M .A 21A =AM 2+A 1M 2=AM 2+r 2-MH 2=r 2+(AM 2-MH 2), ① 又AM 2-HM 2=(21AH 1)2-(AH -21AH 1)2 =AH ·AH 1-AH 2=AH 2·AB -AH 2 =cos A ·bc -AH 2, ②, 而ABHAH∠sin =2R ⇒AH 2=4R 2cos 2A ,A a sin =2R ⇒a 2=4R 2sin 2A .∴AH 2+a 2=4R 2,AH 2=4R 2-a 2.③,由①、②、③有A 21A=r 2+bca cb 2222-+·bc -(4R 2-a 2)=21(a 2+b 2+c 2)-4R 2+r 2.同理,21BB =21(a 2+b 2+c 2)-4R 2+r 2,21CC =21(a 2+b 2+c 2)-4R 2+r 2.故有AA 1=BB 1=CC 1.四、内心三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:设I 为△ABC 的内心,射线AI 交△ABC 外接圆于A ′,则有A ′I =A ′B =A ′C .换言之,点A ′必是△IBC 之外心(内心的等量关系之逆同样有用)..OA A A A 1234H H 12H H HM A B BA ABC C C F12111222DE例7.已知⊙O 内接△ABC ,⊙Q 切AB ,AC 于E ,F 且与⊙O 内切.试证:EF 中点P 是△ABC 之内心. 【解析】:在第20届IMO 中,美国提供的一道题实际上是例8的一种特例,但它增加了条件AB =AC .当AB ≠AC ,怎样证明呢? 如图,显然EF 中点P 、圆心Q ,中点K 都在∠BAC 平分线上.易知AQ =αsin r. ∵QK ·AQ =MQ ·QN , ∴QK =AQQN MQ ⋅ =αsin /)2(r rr R ⋅-=)2(sin r R -⋅α. 由Rt △EPQ 知PQ =r ⋅αsin .∴PK =PQ +QK =r ⋅αsin +)2(sin r R -⋅α=R 2sin ⋅α. ∴PK =BK .利用内心等量关系之逆定理,即知P 是△ABC 这内心.五、旁心三角形的一条内角平分线与另两个内角的外角平分线相交于一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起,旁心还与三角形的半周长关系密切.例8.在直角三角形中,求证:r +r a +r b +r c =2p .式中r ,r a ,r b ,r c 分别表示内切圆半径及与a ,b ,c 相切的旁切圆半径,p 表示半周. 【解析】:设Rt △ABC 中,c 为斜边,先来证明一个特性:p (p -c )=(p -a )(p -b ).∵p (p -c )=21(a +b +c )·21(a +b -c )=41[(a +b )2-c 2] =21ab ; (p -a )(p -b )=21(-a +b +c )·21(a -b +c )=41[c 2-(a -b )2]=21ab .∴p (p -c )=(p -a )(p -b ). ①,观察图形,可得r a =AF -AC =p -b ,r b =BG -BC =p -a ,r c =CK =p .而r =21(a +b -c )=p -c .∴r +r a +r b +r c=(p -c )+(p -b )+(p -a )+p =4p -(a +b +c )=2p .由①及图形易证.例9.M 是△ABC 边AB 上的任意一点.r 1,r 2,r 分别是△AMC ,△BMC ,△ABC 内切圆的半径,q 1,q 2,q 分别是上述三角形在∠ACB 内部的旁切圆半径.证明:11q r·22q r =qr.(IMO -12) 【解析】:对任意△A ′B ′C ′,由正弦定理可知OD =OA ′·2'sinA =A ′B ′·'''sin 2'sinB O A B ∠·2'sin A =A ′B ′·2''sin 2'sin2'sin B A B A +⋅, O ′E = A ′B ′·2''sin2'cos2'cos B A B A +.∴2'2''B tg A tg E O OD =.亦即有11q r ·22q r =2222B tg CNB tg CMA tgA tg ∠∠=22B tg A tg =q r. A ααM BCNE R OQF rP Kr r r r O O O 213AOECBa bcA ...'B 'C 'OO 'ED六、众心共圆这有两种情况:(1)同一点却是不同三角形的不同的心;(2)同一图形出现了同一三角形的几个心.例10.设在圆内接凸六边形ABCDFE 中,AB =BC ,CD =DE ,EF =F A .试证:(1)AD ,BE ,CF 三条对角线交于一点;(2)AB +BC +CD +DE +EF +F A ≥AK +BE +CF . 【解析】:连接AC ,CE ,EA ,由已知可证AD ,CF ,EB 是△ACE 的三条内角平分线,I 为△ACE 的内心.从而有ID =CD =DE , IF =EF =F A ,IB =AB =BC .再由△BDF ,易证BP ,DQ ,FS 是它的三条高,I 是它的垂心,利用不等式有:BI +DI +FI ≥2·(IP +IQ +IS ).不难证明IE =2IP ,IA =2IQ ,IC =2IS . ∴BI +DI +FI ≥IA +IE +IC . ∴AB +BC +CD +DE +EF +F A =2(BI +DI +FI )≥(IA +IE +IC )+(BI +DI +FI ) =AD +BE +CF . I 就是一点两心.例11.△ABC 的外心为O ,AB =AC ,D 是AB 中点,E 是△ACD 的重心.证明OE 丄CD . 【解析】:设AM 为高亦为中线,取AC 中点F ,E 必在DF 上且DE :EF =2:1.设CD 交AM 于G ,G 必为△ABC 重心.连GE ,MF ,MF 交DC 于K .易证:DG :GK =31DC :(3121-)DC =2:1. ∴DG :GK =DE :EF ⇒GE ∥MF . ∵OD 丄AB ,MF ∥AB ,∴OD 丄MF ⇒OD 丄GE .但OG 丄DE ⇒G 又是△ODE 之垂心. 易证OE 丄CD .例12.△ABC 中∠C =30°,O 是外心,I 是内心,边AC 上的D 点与边BC 上的E 点使得AD =BE =AB .求证:OI 丄DE ,OI =DE . 【解析】:辅助线如图所示,作∠DAO 平分线交BC 于K . 易证△AID ≌△AIB ≌△EIB ,∠AID =∠AIB =∠EIB . 利用内心张角公式,有∠AIB =90°+21∠C =105°, ∴∠DIE =360°-105°×3=45°. ∵∠AKB =30°+21∠DAO=30°+21(∠BAC -∠BAO ) =30°+21(∠BAC -60°) =21∠BAC =∠BAI =∠BEI . ∴AK ∥IE .由等腰△AOD 可知DO 丄AK ,∴DO 丄IE ,即DF 是△DIE 的一条高.同理EO 是△DIE 之垂心,OI 丄DE .由∠DIE =∠IDO ,易知OI =DE .例13.锐角△ABC 中,O ,G ,H 分别是外心、重心、垂心.设外心到三边距离和为d 外,重心到三边距离和为d 重,垂心到三边距离和为d 垂. 求证:1·d 垂+2·d 外=3·d 重.【解析】:这里用三角法.设△ABC 外接圆半径为1,三个内角记为A ,B ,C . 易知d 外=OO 1+OO 2+OO 3=cos A +co sB +cos C ,∴2d 外=2(cos A +cos B +cos C ). ① ∵AH 1=sin B ·AB =sin B ·(2sin C )=2sin B ·sin C ,同样可得BH 2·CH 3.∴3d 重=△ABC 三条高的和=2·(sin B ·sin C +sin C ·sin A +sin A ·sin B ) ② ∴BCHBH ∠sin =2,∴HH 1=cos C ·BH =2·cos B ·cos C .同样可得HH 2,HH 3.∴d 垂=HH 1+HH 2+HH 3=2(cos B ·cos C +cos C ·cos A +cos A ·cos B ) ③观察①、②、③,须证(cos B ·cos C +cos C ·cos A +cos A ·cos B )+( cos A + cos B + cos C )=sin B ·sin C +sin C ·sin A +sin A ·sin B .即可.Erdos..I P A B C DEF Q S A BCDE FOK G O ABCDEFI K30°BCO IA O G H O G H GO G H 123112233。

三角形五心口诀

三角形五心口诀

三角形的基本性质及应用
三角形的基本性质
• 三角形的内角和为180° • 三角形的两边之和大于第三边 • 三角形的两边之差小于第三边 • 三角形的任意两边之和大于第三边
三角形性质的应用
• 求解三角形的边长和角度 • 证明三角形的相似和全等 • 计算三角形的面积和周长
三角形的角度与边长关系
三角形的角度与边长关系
五心口诀的高级技巧
• 五心口诀的高级技巧可以包括更多的三角形性质和定理的应用 • 五心口诀的高级技巧可以包括三角形与其他图形的关系的应用
五心口诀的窍门
• 五心口诀的窍门可以包括更快地求解三角形问题的方法 • 五心口诀的窍门可以包括更容易地证明几何问题的方法
五心口诀在实际教学中的价值与意义
五心口诀在实际教学中的价值
• 五心口诀可以帮助我们更快地求解三 角形的边长和角度 • 五心口诀可以帮助我们更容易地证明 三角形的性质和定理
五心口诀在求解三角形问题中的应用实 例
• 利用内心定理求解三角形的面积 • 利用外心定理求解三角形的周长 • 利用垂心定理求解三角形的高 • 利用重心定理求解三角形的中线 • 利用旁心定理求解三角形的角平分线
五心口诀的学习方法
• 五心口诀的学习方法可以采用理解记忆法 • 五心口诀的学习方法可以采用实际操作法
五心口诀的学习技巧
• 五心口诀的学习技巧可以包括用图形和图像来帮助理解 • 五心口诀的学习技巧可以包括用数学公式和算法来帮助 记忆
五ห้องสมุดไป่ตู้口诀的学习建议与策略
五心口诀的学习建议
• 五心口诀的学习建议可以包括多做练习和总结 • 五心口诀的学习建议可以包括注重理解和应用
• 五心口诀的学习体会可以包括学习过程中的乐趣和挑战 • 五心口诀的学习体会可以包括学习过程中的成长和收获

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形五心定理(三角形的重心,外心,垂心,心坎和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,心坎定理,旁心定理的总称.之袁州冬雪创作一、三角形重心定理三角形的三条边的中线交于一点.该点叫做三角形的重心.三中线交于一点可用燕尾定理证明,十分简单.(重心原是一个物理概念,对于等厚度的质量平均的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的间隔与重心到对边中点的间隔之比为2∶1.2、重心和三角形3个顶点组成的3个三角形面积相等.即重心到三条边的间隔与三条边的长成反比.3、重心到三角形3个顶点间隔的平方和最小.4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3.二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心.外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心.2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角).3、当三角形为锐角三角形时,外心在三角形外部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合.4、计算外心的坐标应先计算下列姑且变量:d1,d2,d3分别是三角形三个顶点连向别的两个顶点向量的点乘.c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3.重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c ).5、外心到三顶点的间隔相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心.垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆.2、三角形外心O、重心G和垂心H三点共线,且OG∶GH=1∶2.(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点间隔为此三角形外心到此顶点对边间隔的2倍.4、垂心分每条高线的两部分乘积相等.定理证明已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,毗连CO并延长交AB于点F ,求证:CF⊥AB证明:毗连DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB 因此,垂心定理成立!四、三角形心坎定理三角形内切圆的圆心,叫做三角形的心坎.心坎的性质:1、三角形的三条内角平分线交于一点.该点即为三角形的心坎.2、直角三角形的心坎到边的间隔等于两直角边的和减去斜边的差的二分之一.3、P为ΔABC所在平面上任意一点,点I是ΔABC心坎的充要条件是:向量PI=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c).4、O为三角形的心坎,A、B、C分别为三角形的三个顶点,延长AO交BC边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC五、三角形旁心定理三角形的旁切圆(与三角形的一边和其他双方的延长线相切的圆)的圆心,叫做三角形的旁心.旁心的性质:1、三角形一内角平分线和别的两顶点处的外角平分线交于一点,该点即为三角形的旁心.2、每一个三角形都有三个旁心.3、旁心到三边的间隔相等.如图,点M就是△ABC的一个旁心.三角形任意两角的外角平分线和第三个角的内角平分线的交点.一个三角形有三个旁心,而且一定在三角形外.附:三角形的中心:只有正三角形才有中心,这时重心,心坎,外心,垂心,四心合一.有关三角形五心的诗歌三角形五心歌(重外垂内旁)三角形有五颗心,重外垂内和旁心,五心性质很重要,认真掌握莫记混.重心三条中线定相交,交点位置真奇巧,交点定名为“重心”,重心性质要了然,重心分割中线段,数段之比听分晓;长短之比二比一,矫捷运用掌握好.外心三角形有六元素,三个内角有三边.作三边的中垂线,三线相交共一点.此点定义为外心,用它可作外接圆.心坎外心莫记混,内切外接是关键.垂心三角形上作三高,三高必于垂心交.高线分割三角形,出现直角三对整,直角三角形有十二,构成六对相似形,四点共圆图中有,细心分析可找清.内心三角对应三顶点,角角都有平分线,三线相交定共点,叫做“心坎”有根源;点至三边均等距,可作三角形内切圆,此圆圆心称“心坎”,如此定义理应然.。

初高中数学衔接课程教案01-三角形的五心

初高中数学衔接课程教案01-三角形的五心

初高中数学衔接课程教案01三角形的五心一、知识点梳理1、三角形的重心:三角形的三条中线交于一点,这点称为三角形的重心. 性质:(1)三角形的重心到边的中点与到相应顶点的距离之比为 1∶ 2. (2)三角形的重心与三顶点的连线所构成的三个三角形面积相等.(3)三角形所在平面内的所有点中,三角形的重心到三个顶点的距离的平方和最小. 2、三角形的垂心:三角形的三条高交于一点,这点称为三角形的垂心.性质:(1)锐角三角形的垂心在三角形的内部;直角三角形的垂心在三角形的直角顶点处;钝角三角形的垂心在三角形的外部.(2)三角形的三个顶点、三个垂足和垂心这7个点可以得到6个共圆的四点组合. (3)斜三角形的三个顶点与垂心这四个点中,任何三个为顶点的三角形的垂心就是第四个点.所以把这样的四个点称为一个“垂心组”.3、三角形的外心:三角形的三条边的垂直平分线交于一点,这点称为三角形的外心. 过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心即三角形的外心,这个三角形叫做这个圆的内接三角形.三角形有且只有一个外接圆.性质:(1)三角形的外心到三角形的三个顶点距离相等.都等于三角形的外接圆半径.(2)锐角三角形的外心在三角形内;直角三角形的外心在斜边中点;钝角三角形的外心在三角形外.4、三角形的内心:三角形的三条内角平分线交于一点,这点称为三角形的内心. 与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心即三角形的内心,这个三角形叫做圆的外切三角形.性质:(1)三角形的内心到三边的距离相等,都等于三角形内切圆半径. (2)若三角形的三条边长分别为a,b,c ,面积为s ,则其内切圆半径2sr a b c=++.(3)直角三角形的内心到各边的距离等于两直角边的和与斜边的差的二分之一. 拓展内容:①内角平分线定理:如图,AD 为△ABC 中BAC ∠的平分线,则有(=)AB BD AC DC =上左下左上右下右(证明:作BE//AC 交其延长线于E ,则E DAC ∠=∠.∵BAD DAC ∠=∠,∴E BAD ∠=∠,AB BE ==c.又∵BE//AC ,易证△ADC ∽△EDB ,∴BD=DCAB EB AC AC =,得证.) ②外角平分线定理:如图,AD 为△ABC 的外角平分ABDCEc b cABCDEF线,交BC 延长线于D ,则有AB BDAC DC=. (证明:作CE//AB 交AD 于E ,则AEC EAF ∠=∠.∵EAF EAC ∠=∠,∴AEC EAC ∠=∠,AC AE =.又∵CE//AB ,易证△ADB ∽△EDC ,∴BD=DCAB AB AC CE =,得证.)5、三角形的旁心:三角形的一条角一条角平分线与另外两个角的外角平分线交于一点,该点称为这个三角形的旁心.性质:(1)三角形有三个旁心.(2)三角形的旁心到三角形三边的距离相等. 二、典型例题例1、证明重心定理:三角形的三条中线交于一点。

三角形五心定律演示教学

三角形五心定律演示教学

三角形五心定律重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。

5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。

外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

5、外心到三顶点的距离相等垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

垂心三角形的三条高的交点叫做三角形的垂心。

锐角三角形垂心在三角形内部。

直角三角形垂心在三角形直角顶点。

钝角三角形垂心在三角形外部。

垂心是高线的交点垂心是从三角形的各顶点向其对边所作的三条垂线的交点。

三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

三角形上作三高,三高必于垂心交。

高线分割三角形,出现直角三对整,直角三角有十二,构成六对相似形,四点共圆图中有,细心分析可找清,重心重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。

证明过程又是塞瓦定理的特例。

重心的几条性质:1、重心到顶点的距离与重心到对边中点的距离之比为2:1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(z1+z2+z3)/35、三角形内到三边距离之积最大的点内心内心是三角形三条内角平分线的交点,即内切圆的圆心。

内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。

内心定理:三角形的三个内角的角平分线交于一点。

该点叫做三角形的内心。

注意到内心到三边距离相等(为内切圆半径),内心定理其实极易证。

若三边分别为l1,l2,l3,周长为p,则内心的重心坐标为(l1/p,l2/p,l3/p)。

直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。

双曲线上任一支上一点与两焦点组成的三角形的内心在实轴的射影为对应支的顶点。

希望对你有帮助!三角形五心定律三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定律指是三角形重心定律,外心定律,垂心定律,内心定律,旁心定律的总称。

一、三角形重心定律三角形的三条边的中线交于一点。

该点叫做作三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。

二、三角形外心定律三角形的三条边的垂直平分线交于一点。

此点为该三角形外接圆的圆心,叫做三角形的外心。

注意到外心到三角形的三个顶点距离相等。

结合垂直平分线定义,此结论其实极好证。

外心的性质:1、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心与斜边中点重合。

4、计算外心的重心坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

三、三角形垂心定律三角形的三条高(所在直线)交于一点。

该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG∶GH=1∶2。

(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

定律证明已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F,求证:CF⊥AB证明:连接DE∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE∵∠EAO=∠DAC∠AEO=∠ADC∴ΔAEO∽ΔADC∴AE/AO=AD/AC∴ΔEAD∽ΔOAC∴∠ACF=∠ADE=∠ABE又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB因此,垂心定律成立!四、三角形内心定律三角形的三条内角平分线交于一点。

该点叫做三角形的内心,即三角形内切圆的圆心。

注意到内心到三边距离相等(为内切圆半径),内心定律其实极易证。

性质:若三边分别为l1,l2,l3,周长为p,则内心的重心坐标为(l1/p,l2/p,l3/p)。

直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。

双曲线上任一支上一点与两焦点组成的三角形的内心在实轴的射影为对应支的顶点。

五、三角形旁心定律三角形一内角平分线和另外两顶点处的外角平分线交于一点。

三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心,叫做旁心。

性质:每个三角形都有三个旁心。

它到三边的距离相等。

如图,点M就是△ABC的一个旁心。

三角形任意两角的外角平分线和第三个角的内角平分线的交点。

一个三角形有三个旁心,而且一定在三角形外。

附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

有关三角形五心的诗歌三角形五心歌(重外垂内旁)三角形有五颗心,重外垂内和旁心,五心性质很重要,认真掌握莫记混.重心三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好.外心三角形有六元素,三个内角有三边.作三边的中垂线,三线相交共一点.此点定义为外心,用它可作外接圆.内心外心莫记混,内切外接是关键.垂心三角形上作三高,三高必于垂心交.高线分割三角形,出现直角三对整,直角三角形有十二,构成六对相似形,四点共圆图中有,细心分析可找清.内心三角对应三顶点,角角都有平分线,三线相交定共点,叫做“内心”有根源;点至三边均等距,可作三角形内切圆,此圆圆心称“内心”如此定义理当然.三角形的五心有许多重要性质,它们之间也有很密切的联系,如:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等;(2)三角形的外心到三顶点的距离相等;(3)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心;(4)三角形的内心、旁心到三边距离相等;(5)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;(6)三角形的外心是它的中点三角形的垂心;(7)三角形的重心也是它的中点三角形的重心;(8)三角形的中点三角形的外心也是其垂足三角形的外心.(9)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍.下面是更为详细的性质:1:垂心三角形三边上的高的交点称为三角形的垂心。

三角形垂心有下列有趣的性质:设△ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H。

性质1垂心H关于三边的对称点,均在△ABC的外接圆上。

性质2△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AH·HD=BH·HE=CH·HF。

性质3 H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一垂心组)。

性质4△ABC,△ABH,△BCH,△ACH的外接圆是等圆。

性质5在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则AB/AP·tanB+AC/AQ·tanC=tanA+tanB+tanC。

性质6三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。

性质7设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。

性质8锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。

性质9锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。

2:内心三角形的内切圆的圆心简称为三角形的内心,内心有下列优美的性质:性质1设I为△ABC的内心,则I为其内心的充要条件是:到△ABC三边的距离相等。

性质2设I为△ABC的内心,则∠BIC=90°+12∠A,类似地还有两式;反之亦然。

性质3设I为△ABC内一点,AI所在直线交△ABC的外接圆于D。

I为△ABC 内心的充要条件是ID=DB=DC。

性质4设I为△ABC的内心,BC=a,AC=b,AB=c,I在BC、AC、AB上的射影分别为D、E、F;内切圆半径为r,令p=()(a+b+c),则(1)S△ABC=pr;(2)r=2S△ABC/a+b+c;(3)AE=AF=p-a,BD=BF=p-b,CE=CD=p-c;(4)abcr=p·AI·BI·CI。

性质5三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若I为△ABC的∠A平分线AD(D在△ABC的外接圆上)上的点,且DI=DB,则I为△ABC的内心。

性质6设I为△ABC的内心,BC=a,AC=b,AB=c,∠A的平分线交BC于K,交△ABC的外接圆于D,则AI/KI =AD/DI =DI/DK = (b+c)/a。

3:外心三角形的外接圆的圆心简称三角形的外心.外心有如下一系列优美性质:性质1三角形的外心是三角形三条边垂直平分线的交点;三角形的外心到三顶点的距离相等,反之亦然。

性质2设O为△ABC的外心,则∠BOC=2∠A,或∠BOC=360°-2∠A(还有两式)。

性质3设三角形的三条边长,外接圆的半径、面积分别为a、b、c,R、S△,则R=abc/4S△。

性质4过△ABC的外心O任作一直线与边AB、AC(或延长线)分别相交于P、Q两点,则AB/AP·sin2B+ AC/AQ·sin2C=sin2A+sin2B+sin2C。

性质5锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和。

4:重心性质1设G为△ABC的重心,△ABC内的点Q在边BC、CA、AB边上的射影分别为D、E、F,则当Q与G重合时QD·QE·QF最大;反之亦然。

性质2设G为△ABC的重心,AG、BG、CG的延长线交△ABC的三边于D、E、F,则S△AGF=S△BGD=S△CGE;反之亦然。

性质3设G为△ABC的重心,则S△ABG=S△BCG=S△ACG= ()S△ABC;反之亦然。

相关文档
最新文档