因式分解基础测试题
初二因式分解及习题测试
因式分解1.分解因式:a2(b2-c2)-c2(b-c)(a+b)=_________.2.因式分解:(a-2b)(3a+4b)+(2a-4b)(2a-3b)=(a-2b)·( ).3.(2x+1)y2+(2x+1)2y=_________.4.因式分解:(x-y)n-(x-y)n-2=(x-y)n-2·_________.5.m(a-m)(a-n)-n(m-a)(a-n)=_________.6.因式分解:x(m-n)+(n-m)y-z(m-n)=(m-n)( ).7.因式分解:(x+2y)(3x2-4y2)-(x+2y)2(x-2y)=________.8.21a3b-35a2b3=_________.9.3x2yz+15xz2-9xy2z=__________.10.x2-2xy-35y2=(x-7y)( ).11.2x2-7x-15=(x-5)( ).12.20x2-43xy+14y2=(4x-7y)( ).13.18x2-19x+5=( )(2x-1).14.6x2-13x+6=( )( ).15.5x2+4xy-28y2=( )( ).16.-35m2n2+11mn+6=-( )( ).17.6+11a-35a2=( )( ).18.6-11a-35a2=( )( ).19.-1+y+20y2=( )( ).20.20x2+( )+14y2=(4x-7y)(5x-2y).21.x2-3xy-( )=(x-7y)(x+4y).22.x2+( )-28y2=(x+7y)(x-4y).23.x2+( )-21y2=(x-7y)(x+3y).24.kx 2+5x-6=(3x-2)( ),k=______.25.6x 2+5x-k=(3x-2)( ),k=______.26.6x 2+kx-6=(3x-2)( ),k=______.27.18x 2-19x+5=(9x+m)(2x+n),则m=_____,n=_____.28.18x 2+19x+m=(9x+5)(2x+n),则m=_____,n=_____.29.20x 2-43xy+14y 2=(4x+m)(5x+n),则m=_____,n=_____.30.20x 2-43xy+m=(4x-7y)(5x+n),则m=_____,n=_____.31.x 4-4x 3+4x 2-1=_______.32.2x 2-3x-6xy+9y=________.33.21a 2x-9ax 2+6xy 2-14ay 2=________.34.a 3+a 2b+a 2c+abc=________.35.2(a 2-3ac)+a(4b-3c)=_________.36.27x 3+54x 2y+36xy 2+8y 3_______.37.1-3(x-y)+3(x-y)2-(x-y)3=_______.38.(x+y)2+(x+m)2-(m+n)2-(y+n)2=_______.39.25x 2-4a 2+12ab-9b 2=_______.40.a 2-c 2+2ab+b 2-d 2-2cd=_______.41.x 4+2x 2+1-x 2-2ax-a 2=________.42.a 2-4b 2-4c 2-8bc=__________.43.a 2+b 2+4a-4b-2ab+4=________.因式分解单元测试一、精心选一选,慧眼识金!1、下列从左边到右边的变形中,是因式分解的有().A 、(2)(3)(3)(2)m m m m --=--B 、21(1)(1)a a a -=+-C 、(x +3)(x -3)=x 2-9D 、2223(1)2a a a -+=-+2、下列多项式中不能用平方差公式分解的是()A 、-a 2+b 2B 、-x 2-y 2C 、49x 2y 2-z 2D 、16m 4-25n 2p 23、下列代数式中,是完全平方式的有():①2x 2—2x+1;②x 2—xy+14y 2;③4x 4+4x+1;④9x 2+16y 2—12xy ; A 、①②; B 、②③; C 、③④; D 、①④;4、若4x 2+kx+25是完全平方式,则k 等于():A 、±10;B 、20;C 、—20;D 、±20;5、在边长为a 的正方形中挖去一个边长为b 的小正方形()a b >,再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2).根据这两个图形的面积关系,表明下列式子成立的是( )A 、22()()a b a b a b -=+-B 、222()2a b a ab b +=++C 、222()2a b a ab b -=-+D 、222()a b a b -=-6、利用因式分解简便计算57×99+44×99-99正确的是( ) .A 、99×(57+44)=99×101=9999B 、99×(57+44-1)=99×100=9900C 、99×(57+44+1)=99×102=10098D 、99×(57+44-99)=99×2=1987、把多项式m 2(a -2)+m (2-a )分解因式等于()A 、 (a -2)(m 2+m )B 、 (a -2)(m 2-m )C 、m (a -2)(m -1)D 、m (a -2)(m+1)8、一次课堂练习,小敏同学做了如下4道因式分解题,你认为小敏做得不够完整的一题是( ).A 、)1(23-=-x x x xB 、222)(2y x y xy x -=+-C 、)(22y x xy xy y x -=-D 、))((22y x y x y x +-=-9、分解因式:222x xy y x y -++-的结果是( )A 、(x -y )(x -y +1)B 、 (x -y)(x -y -1)C 、()()1x y x y +-+D 、()()1x y x y +--10、某同学粗心大意,分解因式时,把等式a —※=(a+9)(a+3)(a —●)中的两个数弄污了,那么你认为式子中的※,●所对应的一组数是():A 、9,3;B 、81,3;C 、81,9;D 、27,3 耐二、细心填一填,一锤定音!11、在(x+y )(x —y )=x 2—y 2中,从左向右的变形是。
因式分解经典测试题含解析
因式分解经典测试题含解析一、选择题1.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c a b c ++-D .()()a c a b c +-+【答案】A【解析】【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+; 故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.2.下列多项式不能使用平方差公式的分解因式是( )A .22m n --B .2216x y -+C .22b a -D .22449a n -【答案】A【解析】【分析】原式各项利用平方差公式的结构特征即可做出判断.【详解】下列多项式不能运用平方差公式分解因式的是22m n --.故选A .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.3.下列等式从左到右的变形是因式分解的是( )A .2x (x +3)=2x 2+6xB .24xy 2=3x •8y 2C .x 2+2xy +y 2+1=(x +y )2+1D .x 2﹣y 2=(x +y )(x ﹣y )【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4.设a ,b ,c 是ABC V 的三条边,且332222a b a b ab ac bc -=-+-,则这个三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形【答案】D【解析】【分析】把所给的等式能进行因式分解的要因式分解,整理为整理成多项式的乘积等于0的形式,求出三角形三边的关系,进而判断三角形的形状.【详解】解:∵a 3-b 3=a 2b-ab 2+ac 2-bc 2,∴a 3-b 3-a 2b+ab 2-ac 2+bc 2=0,(a 3-a 2b )+(ab 2-b 3)-(ac 2-bc 2)=0,a 2(a-b )+b 2(a-b )-c 2(a-b )=0,(a-b )(a 2+b 2-c 2)=0,所以a-b=0或a 2+b 2-c 2=0.所以a=b 或a 2+b 2=c 2.故选:D.【点睛】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.5.已知12,23x y xy -==,则43342x y x y -的值为( )A .23B .2C .83D .163【答案】C【解析】【分析】利用因式分解以及积的乘方的逆用将43342x y x y -变形为(xy)3(2x-y),然后代入相关数值进行计算即可.【详解】 ∵12,23x y xy -==,∴43342x y x y -=x 3y 3(2x-y)=(xy)3(2x-y)=23×13=83, 故选C .【点睛】本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知识是解题的关键.6.下列各式中不能用平方差公式进行计算的是( )A .(m -n )(m +n )B .(-x -y )(-x -y )C .(x 4-y 4)(x 4+y 4)D .(a 3-b 3)(b 3+a 3)【答案】B【解析】A.(m -n)(m +n),能用平方差公式计算;B.(-x -y)(-x -y),不能用平方差公式计算;C.(x 4-y 4)(x 4+y 4),能用平方差公式计算;D. (a 3-b 3)(b 3+a 3),能用平方差公式计算.故选B.7.下列各式分解因式正确的是( )A .22()()()(1)a b a b a b a b +-+=++-B .236(36)x xy x x x y --=-C .223311(4)44a b ab ab a b -=- D .256(1)(6)x x x x --=+- 【答案】D【解析】【分析】 利用提公因式法、十字相乘法法分别进行分解即可.【详解】A. 22()()()(1)+-+≠++-a b a b a b a b ,故此选项因式分解错误,不符合题意;B. 23-6-(3-6-1)=x xy x x x y ,故此选项因式分解错误,不符合题意;C. 223211(4)44-=-a b ab ab a b ,故此选项因式分解错误,不符合题意; D. 256(1)(6)x x x x --=+-,故此选项因式分解正确,符合题意.故选:D【点睛】本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用其他方法进行分解.8.若()()21553x kx x x --=-+,则k 的值为( )A .-2B .2C .8D .-8【答案】B【解析】【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值.【详解】∵()()253215x x x x -+=--∴2k -=-解得2k =故答案为:B .【点睛】本题考查了因式分解的问题,掌握十字相乘法是解题的关键.9.下列运算结果正确的是( )A .321x x -=B .32x x x ÷=C .326x x x ⋅=D .222()x y x y +=+【答案】B【解析】【分析】根据合并同类项法则、同底数幂乘除法法则、公式法分解因式逐项进行计算即可得.【详解】A 、3x ﹣2x =x ,故A 选项错误;B 、x 3÷x 2=x ,正确;C 、x 3•x 2=x 5,故C 选项错误;D 、x 2+2xy+y 2=(x+y)2,故D 选项错误,故选B.【点睛】本题考查了合并同类项、同底数幂乘除、公式法分解因式,熟练掌握相关的运算法则以及完全平方公式的结构特征是解题的关键.10.下列分解因式,正确的是( )A .()()2x 1x 1x 1+-=+B .()()29y 3y y 3-+=+-C .()2x 2x l x x 21++=++D .()()22x 4y x 4y x 4y -=+- 【答案】B【解析】【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【详解】A. 和因式分解正好相反,故不是分解因式;B. 是分解因式;C. 结果中含有和的形式,故不是分解因式;D. x 2−4y 2=(x+2y)(x−2y),解答错误.故选B.【点睛】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.11.下列因式分解结果正确的是( ).A .10a 3+5a 2=5a(2a 2+a)B .4x 2-9=(4x+3)(4x-3)C .a 2-2a-1=(a-1)2D .x 2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A 可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A 作出判断;而B 符合平方差公式的结构特点,因此可对B 作出判断;C 不符合完全平方公式的结构特点,因此不能分解,而D 可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A 、原式=5a 2(2a+1),故A 不符合题意;B 、原式=(2x+3)(2x-3),故B 不符合题意;C 、a 2-2a-1不能利用完全平方公式分解因式,故C 不符合题意;D 、原式=(x-6)(x+1),故D 符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.12.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( )A .M N <B .M N =C .M N >D .不能确定【答案】C【解析】【分析】 计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.13.下面的多项式中,能因式分解的是( )A .2m n +B .221m m -+C .2m n -D .21m m -+ 【答案】B【解析】【分析】完全平方公式的考察,()2222a b a ab b -=-+【详解】A 、C 、D 都无法进行因式分解B 中,()2222212111m m m m m -+=-⋅⋅+=-,可进行因式分解故选:B【点睛】本题考查了公式法因式分解,常见的乘法公式有:平方差公式:()()22a b a b a b -=+- 完全平方公式:()2222a b a ab b ±=±+14.将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .221a a ++C .2a a +D .22a a +-【答案】D【解析】【分析】先把各个多项式分解因式,即可得出结果.【详解】解:21(1)(1)a a a -=+-Q ,()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-, ∴结果中不含有因式1a +的是选项D ;故选:D .【点睛】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.15.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 【答案】C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.16.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( )A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】提取公因式x y -,即可进行因式分解.【详解】 ()()232x y y x --- ()()322x y x y =--+故答案为:B .【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.17.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.18.下列等式从左到右的变形,属于因式分解的是( )A .2(3)(2)6x x x x +-=+-B .24(2)(2)x x x -=+-C .2323824a b a b =⋅D .1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.19.下列因式分解正确的是( )A .()22121x x x x ++=++B .()222x y x y -=-C .()1xy x x y -=-D .()22211x x x +-=- 【答案】C【解析】【分析】根据平方差公式,提公因式法分解因式,完全平方公式,对各选项逐一分析判断即可得答案.【详解】A.x 2+2x+1=(x+1)2,故该选项不属于因式分解,不符合题意,B.x 2-y 2=(x+y)(x-y),故该选项因式分解错误,不符合题意,C.xy-x=x(y-1),故该选项正确,符合题意,D.x 2+2x-1不能因式分解,故该选项因式分解错误,不符合题意,故选:C .【点睛】本题考查因式分解,因式分解首先看是否有公因式,如果有先提取公因式,然后再利用公式法或十字相乘法进行分解,要分解到不能再分解为止.20.下列各式从左到右因式分解正确的是( )A .()26223x y x y +=--B .()22121x x x x +=+--C .()2242x x =--D .()()311 x x x x x =+-- 【答案】D【解析】【分析】因式分解,常用的方法有:(1)提取公因式;(2)利用乘法公式进行因式分解【详解】A 中,需要提取公因式:()26223+1x y x y +=--,A 错误;B 中,利用乘法公式:()2221x x x +=--1,B 错误;C 中,利用乘法公式:2()4()22x x x =-+-,C 错误;D 中,先提取公因式,再利用乘法公式:()()311x x x x x -=+-,正确 故选:D【点睛】在进行因式分解的过程中,若能够提取公因式,往往第一步是进行提取公因式,在观察剩下部分是否还可进行因式分解.。
因式分解基础测试题含答案
B、x2-x=x(x-1),故选项正确;
C、x-1=x(1- 1 ),不是分解因式,故选项错误; x
D、(x-1)2=x2-2x+1,不是分解因式,故选项错误.
故选:B.
【点睛】
本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解
因式.掌握提公因式法和公式法是解题的关键.
9.下列各式从左到右的变形中,属于因式分解的是( ) A.m(a+b)=ma+mb B.a2+4a﹣21=a(a+4)﹣21 C.x2﹣1=(x+1)(x﹣1) D.x2+16﹣y2=(x+y)(x﹣y)+16 【答案】C 【解析】 【分析】 根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】 A、是整式的乘法,故 A 不符合题意;
6.将 a3b ab 进行因式分解,正确的是( )
A. a a2b b
B. ab a 12
C. aba 1a 1
D. ab a2 1
【答案】C 【解析】 【分析】
多项式 a3b ab 有公因式 ab ,首先用提公因式法提公因式 ab ,提公因式后,得到多项式
x2 1 ,再利用平方差公式进行分解.
5n),
故选 C.
【点睛】本题考查了利用平方差公式进行因式分解,解题的关键是要熟记平方差公式的特
征.
13.一次课堂练习,王莉同学做了如下 4 道分解因式题,你认为王莉做得不够完整的一题
是( )
A.x3﹣x=x(x2﹣1)
B.x2﹣2xy+y2=(x﹣y)2
C.x2y﹣xy2=xy(x﹣y)
D.x2﹣y2=(x﹣y)(x+y)
人教版初中数学因式分解经典测试题及答案
一、选择题
1.下列各式从左到右的变形中,属于因式分解的是( ) A.m(a+b)=ma+mb B.a2+4a﹣21=a(a+4)﹣21 C.x2﹣1=(x+1)(x﹣1) D.x2+16﹣y2=(x+y)(x﹣y)+16 【答案】C 【解析】 【分析】 根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】 A、是整式的乘法,故 A 不符合题意; B、没把一个多项式转化成几个整式积的形式,故 B 不符合题意; C、把一个多项式转化成几个整式积的形式,故 C 符合题意; D、没把一个多项式转化成几个整式积的形式,故 D 不符合题意; 故选 C. 【点睛】 本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形 式.
D、是因式分解,故本选项符合题意;
故选:D.
【点睛】
此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多
项式化成几个整式的积的形式,叫因式分解.
14.下列各式由左到右的变形中,属于分解因式的是( ) A.x2﹣16+6x=(x+4)(x﹣4)+6x B.10x2﹣5x=5x(2x﹣1) C.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2 D.a(m+n)=am+an 【答案】B 【解析】 【分析】 根据因式分解的定义逐个进行判断即可. 【详解】
11.若△ABC 三边分别是 a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3 , 则△ABC 是
()
A.等边三角形
B.等腰三角形
C.直角三角形
D.等腰或直角三角形
因式分解经典测试题附答案
A. B.
C. D.
【答案】B
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A.是整式乘法,故A错误;
B.是因式分解,故B正确;
C.左边不是多项式,不是因式分解,故C错误;
D.右边不是整式积的形式,故D错误.
【答案】D
【解析】
试题解析:∵(b﹣c)(a2+b2)=bc2﹣c3,
∴(b﹣c)(a2+b2)﹣c2(b﹣c)=0,
∴(b﹣c)(a2+b2﹣c2)=0,
∴b﹣c=0,a2+b2﹣c2=0,
∴b=c或a2+b2=c2,
∴△ABC是等腰三角形或直角三角形.
故选D.
13.下列各式中从左到右的变形,是因式分解的是()
6.已知a﹣b=2,则a2﹣b2﹣4b的值为()
A.2B.4C.6D.8
【答案】B
【解析】
【分析】
原式变形后,把已知等式代入计算即可求出值.
【详解】
∵a﹣b=2,
∴原式=(a+b)(a﹣b)﹣4b=2(a+b)﹣4b=2a+2b﹣4b=2(a﹣b)=4.
故选:B.
【点睛】
此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.
7.多项式 与 的公因式是()
A. B. C. D.
【答案】B
【解析】
【分析】
直接将原式分别分解因式,进而得出公因式即可.
【详解】
解:∵a2-25=(a+5)(a-5),a2-5a=a(a-5),
∴多项式a2-25与a2-5a的公因式是a-5.
第四章《因式分解》测试题(含答案)
第四章因式分解一、选择题(本大题共8小题,每小题4分,共32分)1.下列从左到右的变形,是因式分解的是()A.(3-x)(3+x)=9-x2B.m3-mn2=m(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1) D.4yz-2y2z+z=2y(2z-yz)+z2.一次课堂练习,小璇同学做了如下4道因式分解题,你认为小璇做得不正确的一题是()A.a3-a=a(a2-1) B.m2-2mn+n2=(m-n)2C.x2y-xy2=xy(x-y) D.x2-y2=(x-y)(x+y)3.如果多项式4a2-(b-c)2=M(2a-b+c),那么M表示的多项式应为()A.2a-b+c B.2a-b-c C.2a+b-c D.2a+b+c4.若a2+8ab+m2是一个完全平方式,则m应是()A.b2B.±2b C.16b2D.±4b5.对于任何整数m,多项式(4m+5)2-9一定能()A.被8整除B.被m整除C.被m-91整除D.被2m-1整除6.若m-n=-1,则(m-n)2-2m+2n的值是()A.3 B.2 C.1 D.-17.因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b 的值,分解的结果是(x-2)(x+1),那么x2+ax+b因式分解的正确结果为() A.(x+2)(x-3) B.(x-2)(x+1) C.(x+6)(x-1) D.无法确定8.若a,b,c是三角形三边的长,则代数式(a2-2ab+b2)-c2的值()A.大于零B.小于零C.大于或等于零D.小于或等于零二、填空题(本大题共6小题,每小题4分,共24分)9.因式分解:3a2-3b2=______________.10.计算:201820192-20172=________.11.请在二项式x2-□y2中的“□”里面添加一个整式,使其能因式分解,你在“□”中添加的整式是________(写出一个即可).12.在半径为R的圆形钢板上,裁去半径为r的四个小圆,当R=7.2 cm,r=1.4 cm时,剩余部分的面积是________cm2(π取3.14,结果精确到个位).13.若△ABC的三边长分别是a,b,c,且a+2ab=c+2bc,则△ABC是____________.14.如图4-Z-1,已知边长为a,b的长方形,若它的周长为24,面积为32,则a2b +ab2的值为________.图4-Z-1三、解答题(本大题共5小题,共44分)15.(9分)将下列各式因式分解:(1)2x3y-2xy3;(2)3x3-27x;(3)(a-b)(3a+b)2+(a+3b)2(b-a).16.(7分)给出三个多项式:12x2+2x-1,12x2+4x+1,12x2-2x,请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.17.(8分)阅读材料:若m2-2mn+2n2-8n+16=0,求m,n的值.解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0,∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)若a2+b2-4a+4=0,则a=________,b=________;(2)已知x2+2y2-2xy+6y+9=0,求x y的值;(3)已知△ABC的三边长a,b,c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC的周长.18.(10分)如图4-Z-2①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.图4-Z-2(1)请用两种不同的方法求图②中阴影部分的面积(直接用含m,n的代数式表示).方法一:________________________________________________________________________;方法二:________________________________________________________________________.(2)根据(1)的结论,请你写出代数式(m+n)2,(m-n)2,mn之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:已知实数a,b满足:a+b=6,ab=5,求a-b的值.19.(10分)阅读材料:对于多项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式.但对于多项式x2+2ax -3a2就不能直接用公式法了,我们可以根据多项式的特点,在x2+2ax-3a2中先加上一项a2,再减去a2这项,使整个式子的值不变.解题过程如下:x2+2ax-3a2=x2+2ax-3a2+a2-a2(第一步)=x2+2ax+a2-a2-3a2(第二步)=(x+a)2-(2a)2(第三步)=(x+3a)(x-a).(第四步)参照上述材料,回答下列问题:(1)上述因式分解的过程,从第二步到第三步,用到了哪种因式分解的方法()A.提公因式法B.平方差公式法C.完全平方公式法D.没有因式分解(2)从第三步到第四步用到的是哪种因式分解的方法:__________;(3)请你参照上述方法把m2-6mn+8n2因式分解.参考答案1.[答案] B2.[解析] A a 3-a =a (a 2-1)=a (a +1)(a -1).故选A.3.[解析] C 4a 2-(b -c )2=[2a +(b -c )][2a -(b -c )]=(2a +b -c )(2a -b +c ).故选C.4.[答案] D5.[解析] A 因为(4m +5)2-9=(4m +5)2-32=(4m +5+3)(4m +5-3)=(4m +8)(4m +2)=4·(m +2)·2(2m +1)=8(m +2)(2m +1),所以(4m +5)2-9一定能被8整除.6.[解析] A ∵(m -n )2-2m +2n =(m -n )2-2(m -n )=(m -n )(m -n -2),m -n =-1,∴原式=(-1)×(-1-2)=3.故选A.7.[解析] A 因为甲看错了a 的值,分解的结果为(x +6)(x -1),所以b =-6.因为乙看错了b 的值,分解的结果是(x -2)(x +1),所以a =-1.所以x 2+ax +b =x 2-x -6=(x +2)(x -3). 8.[解析] B (a 2-2ab +b 2)-c 2=(a -b )2-c 2=(a -b +c )(a -b -c ).因为a ,b ,c 是三角形三边的长,所以a +c >b ,a <b +c ,即a -b +c >0,a -b -c <0,所以(a -b +c )(a -b -c )<0,即(a 2-2ab +b 2)-c 2<0.故选B.[点评] 本题要充分挖掘题目的隐含条件,即a ,b ,c 是三角形的三边长,则a ,b ,c 应是正数且满足三角形三边的关系.9.[答案] 3(a -b )(a +b )10.[答案] 14[解析] 原式=2018(2019+2017)×(2019-2017)=20184036×2=14. 11.[答案] 答案不唯一,如412.[答案] 138[解析] 剩余部分的面积为πR 2-4πr 2.当R =7.2 cm ,r =1.4 cm 时,πR 2-4πr 2=π(R -2r )(R +2r )=π×(7.2-2.8)×(7.2+2.8)=π×4.4×10≈3.14×44≈138(cm 2).13.[答案] 等腰三角形[解析] ∵a +2ab =c +2bc ,∴a +2ab -c -2bc =0,∴(a -c )+2b (a -c )=0,∴(a -c )(2b +1)=0.∵2b +1≠0,∴a =c.14.[答案] 384[解析] 由题意易得a +b =12,ab =32,∴a 2b +ab 2=ab (a +b )=384.故答案为384.15.[解析] (1)先提取公因式2xy ,再用平方差公式;(2)先提取公因式3x ,再运用平方差公式;(3)先提取公因式(a -b ),再运用平方差公式.无论哪一道题目都需要分解到底.解:(1)2x 3y -2xy 3=2xy (x 2-y 2)=2xy (x +y )(x -y ).(2)3x 3-27x=3x (x 2-9)=3x (x +3)(x -3).(3)(a -b )(3a +b )2+(a +3b )2(b -a )=(a -b )[(3a +b )2-(a +3b )2]=(a -b )(3a +b +a +3b )(3a +b -a -3b )=8(a -b )2(a +b ).16.解:(1)⎝⎛⎭⎫12x 2+2x -1+⎝⎛⎭⎫12x 2+4x +1=x 2+6x=x (x +6).(2)⎝⎛⎭⎫12x 2+2x -1+⎝⎛⎭⎫12x 2-2x=x 2-1=(x +1)(x -1).(3)⎝⎛⎭⎫12x 2+4x +1+⎝⎛⎭⎫12x 2-2x=x 2+2x +1=(x +1)2.(答案不唯一,选择其中一种即可)17.解:(1)2 0(2)∵x 2+2y 2-2xy +6y +9=0,∴x 2+y 2-2xy +y 2+6y +9=0,即(x -y )2+(y +3)2=0,则x-y=0,y+3=0,解得x=y=-3,∴x y=(-3)-3=-127.(3)∵2a2+b2-4a-6b+11=0,∴2a2-4a+2+b2-6b+9=0,∴2(a-1)2+(b-3)2=0,则a-1=0,b-3=0,解得a=1,b=3,∵a,b,c都是正整数,由三角形三边关系可知,三角形的三边长分别为1,3,3,则△ABC的周长为1+3+3=7.18.解:(1)方法一:(m+n)2-4mn;方法二:(m-n)2.(2)(m+n)2-4mn=(m-n)2.(3)由(2)可知(a-b)2=(a+b)2-4ab=62-4×5=16.∴a-b=4或a-b=-4.19.解:(1)C(2)平方差公式法(3)m2-6mn+8n2=m2-6mn+8n2+n2-n2=m2-6mn+9n2-n2=(m-3n)2-n2=(m-2n)(m-4n).。
解一元二次方程(因式分解法)习题精选附答案
解一元二次方程(因式分解法) 习题精选(一)(时间60分钟,满分100分)(一)基础测试:(每题3分,共18分)1.x x 52-因式分解结果为 ,)3(5)3(2---x x x 因式分解结果为 . 2.96202-+x x 因式分解结果为 ,096202=-+x x 的根为 .3.一元二次方程(1)x x x -=的解是 .4.小华在解一元二次方程x 2-4x=0时.只得出一个根是x=4,则被他漏掉的一个根是x=____.5.若关于x 的方程250x x k -+=的一个根是0,则另一个根是 .6.经计算整式1+x 与4-x 的积为432--x x ,则0432=--x x 的所有根为( )A .4,121-=-=x xB .4,121=-=x xC .4,121==x xD .4,121-==x x(二)能力测试:(7,8,9,10题每题3分,11题每个方程7分,共47分)7.三角形一边长为10,另两边长是方程214480x x -+=的两实根,则这是一个三角形.8.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 . 9.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为( ).A . 1B . -1C . 1或-1D . 1210.将4个数a b c d ,,,排成2行、2列,两边各 加一条竖直线记成a b c d,定义a b c d ad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x = .11.用因式分解法解下列方程:(1)035122=+-x x (2)04)13(2=--x (3)0)32(2)32(32=---x x (4)22)52(16)2(9-=+x x (5)06)3(5)3(2=++-+x x (三)拓展测试:(12,13,14每题5分,15,16每题10分,共35分)12.若04)3)((2222=--++b a b a ,则=+22b a .13.关于x 的一元二次方程052=+-p x x 的两实根都是整数,则整数p 的取值可以有( )A .2个B .4个C .6个D .无数个14.若关于x 的多项式x 2-px -6含有因式x -3,则实数p 的值为( )A .-5B .5C .-1D .115.如果方程062=--bx ax 与方程01522=-+bx ax 有一个公共根是3,求b a ,的值,并分别求出两个方程的另一个根. 16.如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用a ,b ,x 表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.参考答案 1.(50),(3)(250)x x x x --- 2.4,24),4)(24(21=-=-+x x x x3.1,021==x x 4.0 5.5 6.S 7.直角1 8.6或10或129.B 10.2±11.(1)7,521==x x (2)31,1-==x x1114,526)4(611,23)3(21====x x x x1,0)5(21-==x x12.4 13.D 14.C15.,1==b a 另一根为-5.16.(1)a b -4x 2;(2)正方形的边长为。
因式分解基础测试题及答案解析
因式分解基础测试题及答案解析一、选择题1.若a b +=1ab =,则33a b ab -的值为( )A .±B .C .±D .【答案】C【解析】【分析】将原式进行变形,3322()()()a b ab ab a b ab a b a b -=-=+-,然后利用完全平方公式的变形22()()4a b a b ab -=+-求得a-b 的值,从而求解. 【详解】解:∵3322()()()a b ab ab a b ab a b a b -=-=+-∴33)a b b ab a =--又∵22()()4a b a b ab -=+-∴22()414a b -=-⨯=∴2a b -=±∴33(2)a b ab =±=±-故选:C .【点睛】本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键.2.已知12,23x y xy -==,则43342x y x y -的值为( )A .23B .2C .83D .163【答案】C【解析】【分析】利用因式分解以及积的乘方的逆用将43342x y x y -变形为(xy)3(2x-y),然后代入相关数值进行计算即可.【详解】 ∵12,23x y xy -==,∴43342x y x y -=x 3y 3(2x-y)=(xy)3(2x-y)=23×1 3=83,故选C.【点睛】本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知识是解题的关键.3.把多项式分解因式,正确的结果是()A.4a2+4a+1=(2a+1)2B.a2﹣4b2=(a﹣4b)(a+b)C.a2﹣2a﹣1=(a﹣1)2D.(a﹣b)(a+b)=a2+b2【答案】A【解析】【分析】本题考查的是因式分解中的平方差公式和完全平方公式【详解】解:A. 4a2+4a+1=(2a+1)2,正确;B. a2﹣4b2=(a﹣2b)(a+2b),故此选项错误;C. a2﹣2a+1=(a﹣1)2,故此选项错误;D. (a﹣b)(a+b)=a2﹣b2,故此选项错误;故选A4.下列等式从左边到右边的变形,属于因式分解的是( )A.2ab(a-b)=2a2b-2ab2B.x2+1=x(x+1 x )C.x2-4x+3=(x-2)2-1 D.a2-b2=(a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B.不是因式分解,等式左边的x是取任意实数,而等式右边的x≠0C.不是因式分解,原式=(x-3)(x-1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法、分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法.5.下列运算结果正确的是( )A .321x x -=B .32x x x ÷=C .326x x x ⋅=D .222()x y x y +=+【答案】B【解析】【分析】根据合并同类项法则、同底数幂乘除法法则、公式法分解因式逐项进行计算即可得.【详解】A 、3x ﹣2x =x ,故A 选项错误;B 、x 3÷x 2=x ,正确;C 、x 3•x 2=x 5,故C 选项错误;D 、x 2+2xy+y 2=(x+y)2,故D 选项错误,故选B.【点睛】本题考查了合并同类项、同底数幂乘除、公式法分解因式,熟练掌握相关的运算法则以及完全平方公式的结构特征是解题的关键.6.将3a b ab 进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【解析】【分析】多项式3a b ab 有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选:C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;7.如图,边长为a ,b 的矩形的周长为10,面积为6,则a 2b +ab 2的值为( )A .60B .16C .30D .11【答案】C【解析】【分析】 先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.【详解】∵矩形的周长为10,∴a+b=5,∵矩形的面积为6,∴ab=6,∴a 2b+ab 2=ab (a+b )=30.故选:C .【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.8.下列从左到右的变形,是因式分解的是( )A .2(a ﹣b)=2a ﹣2bB .221(a b)(a b)1-=-+++a bC .2224(2)x x x -+=-D .22282(2)(2)x y x y x y -=-+【答案】D【解析】【分析】根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.【详解】解:由因式分解的定义可知:A. 2(a ﹣b)=2a ﹣2b ,不是因式分解,故错误;B. 221(a b)(a b)1-=-+++a b ,不是因式分解,故错误;C. 2224(2)x x x -+=-,左右两边不相等,故错误;D. 22282(2)(2)x y x y x y -=-+是因式分解;故选:D【点睛】本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.9.下列因式分解正确的是()A.x2﹣y2=(x﹣y)2B.a2+a+1=(a+1)2C.xy﹣x=x(y﹣1)D.2x+y=2(x+y)【答案】C【解析】【分析】【详解】解:A、x2﹣y2=(x+y)(x﹣y),故此选项错误;B、a2+a+1无法因式分解,故此选项错误;C、xy﹣x=x(y﹣1),故此选项正确;D、2x+y无法因式分解,故此选项错误.故选C.【点睛】本题考查因式分解.10.下列等式从左到右的变形,属于因式分解的是()A.8x2y3=2x2⋅4 y3B.(x+1)(x﹣1)=x2﹣1C.3x﹣3y﹣1=3(x﹣y)﹣1 D.x2﹣8x+16=(x﹣4)2【答案】D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D正确;故选D.【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.11.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2 B.x2+4x+4=(x+2)2C.(a+b)(a﹣b)=a2﹣b2 D.ax2﹣a=a(x2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.12.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形【答案】D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b ﹣c=0,a 2+b 2﹣c 2=0,∴b=c 或a 2+b 2=c 2,∴△ABC 是等腰三角形或直角三角形.故选D .13.下面式子从左边到右边的变形中是因式分解的是( )A .()2212x x x x --=--B .()()22a b a b a b +-=-C .()()2422x x x -=+-D .()2222a b a b ab +=++ 【答案】C【解析】【分析】根据把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解进行分析即可.【详解】A 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.B 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.C 选项:等式右边是乘积的形式,故是因式分解,符合题意.D选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.故选:C.【点睛】考查了因式分解的意义,关键是掌握因式分解的定义(把一个多项式化为几个整式的积的形式).14.下列各因式分解正确的是()A.﹣x2+(﹣2)2=(x﹣2)(x+2)B.x2+2x﹣1=(x﹣1)2C.4x2﹣4x+1=(2x﹣1)2D.x3﹣4x=2(x﹣2)(x+2)【答案】C【解析】【分析】分别根据因式分解的定义以及提取公因式法和公式法分解因式得出即可.【详解】A.﹣x2+(﹣2)2=(2+x)(2﹣x),故A错误;B.x2+2x﹣1无法因式分解,故B错误;C.4x2﹣4x+1=(2x﹣1)2,故C正确;D、x3﹣4x= x(x﹣2)(x+2),故D错误.故选:C.【点睛】此题主要考查了提取公因式法与公式法分解因式以及分解因式的定义,熟练掌握相关公式是解题关键.15.下列式子从左到右变形是因式分解的是()A.12xy2=3xy•4y B.(x+1)(x﹣3)=x2﹣2x﹣3C.x2﹣4x+1=x(x﹣4)+1 D.x3﹣x=x(x+1)(x﹣1)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.16.把多项式分解因式,正确的结果是( )A .4a 2+4a +1=(2a +1)2B .a 2﹣4b 2=(a ﹣4b )(a +b )C .a 2﹣2a ﹣1=(a ﹣1)2D .(a ﹣b )(a +b )=a 2﹣b 2【答案】A【解析】【分析】直接利用平方差公式和完全平方公式进行分解因式,进而判断得出答案.【详解】A .4a 2+4a +1=(2a +1)2,正确;B .a 2﹣4b 2=(a ﹣2b )(a +2b ),故此选项错误;C .a 2﹣2a ﹣1在有理数范围内无法运用公式分解因式,故此选项错误;D .(a ﹣b )(a +b )=a 2﹣b 2,是多项式乘法,故此选项错误.故选:A .【点睛】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.17.已知a 、b 、c 是ABC 的三条边,且满足22a bc b ac +=+,则ABC 是( ) A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c ≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.18.下列各式分解因式正确的是( )A .2112(12)(12)22a a a -=+-B .2224(2)x y x y +=+C .2239(3)x x x -+=-D .222()x y x y -=- 【答案】A【解析】【分析】根据因式分解的定义以及平方差公式,完全平方公式的结构就可以求解.【详解】 A. 2112(12)(12)22a a a -=+-,故本选项正确; B. 2222224(2)(2)=+44x y x y x y x xy y +≠+++,,故本选项错误;C. 222239(3)(3)=69x x x x x x -+≠---+,,故本选项错误;D. ()22()x y x y x y -=-+,故本选项错误. 故选A.【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握平方差公式,完全平方公式.19.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( )A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】提取公因式x y -,即可进行因式分解.【详解】 ()()232x y y x --- ()()322x y x y =--+故答案为:B .【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.20.下列因式分解正确的是( )A .()222x xy x x y -=-B .()()2933x x x +=+- C .()()()2x x y y x y x y ---=-D .()22121x x x x -+=-+ 【答案】C【解析】【分析】根据提公因式法和公式法进行判断求解即可.【详解】A. 公因式是x ,应为()222x xy x x y -=-,故此选项错误; B. 29x +不能分解因式,故此选项错误;C. ()()()()()2x x y y x y x y x y x y ---=--=-,正确;D. ()2221=1x x x x -+=-,故此选项错误.故选:C【点睛】此题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.。
因式分解单元测试题
因式分解单元测试题一、选择题(每题2分,共10分)1. 下列哪个表达式是因式分解的结果?A. \( x^2 - 4 = x - 2 \)B. \( x^2 - 4 = (x - 2)(x + 2) \)C. \( x^2 - 4 = 2(x - 2) \)D. \( x^2 - 4 = 2x - 8 \)2. 因式分解 \( x^3 - 8 \) 的正确结果是:A. \( (x - 2)(x^2 + 2x + 4) \)B. \( (x - 2)^3 \)C. \( (x - 2)(x^2 + 2x + 4) \)D. \( (x - 2)(x + 2)(x + 4) \)3. 多项式 \( 2x^2 - 4x \) 可以因式分解为:A. \( 2x(x - 2) \)B. \( 2x(x + 2) \)C. \( x(2x - 4) \)D. \( 2(x^2 - 2x) \)4. 因式分解 \( a^2 - b^2 \) 的结果是:A. \( (a - b)(a + b) \)B. \( a^2 - b^2 \)C. \( (a + b)(a - b) \)D. \( (a^2 - b^2) \)5. 如果 \( x^2 + 5x + 6 \) 可以因式分解,那么正确的因式分解是:A. \( (x + 1)(x + 6) \)B. \( (x + 2)(x + 3) \)C. \( (x + 3)(x + 2) \)D. \( (x + 6)(x + 1) \)二、填空题(每题3分,共15分)6. 因式分解 \( x^2 + 7x + 10 \) 为 \( (x + \_\_\_\_\_\_)(x + \_\_\_\_\_\_) \)。
7. 多项式 \( 4y^2 - 9 \) 是一个差平方,可以因式分解为\( (\_\_\_\_\_\_ + \_\_\_\_\_\_)(\_\_\_\_\_\_ - \_\_\_\_\_\_) \)。
因式分解测试题
因式分解测试题一、填空1、分解因式: =-2ab a ,2、分解因式:=-+-y x y x )12()12(2 ,=---2222)()(a b y b a x3、222b ab a +-、22b a -的公因式是 。
4、+162x ()2) (1=+, 2y ]) [()] (21[) (4122-+=-x x 5、分解因式:=-+222224)(b a b a 。
6、分解因式:=+----321963n n n y y y。
7、若)4)(2(2-+=++x x q px x ,则p = ,q = 。
二、选择1、下列从左边到右边的变形,是因式分解的是( )(A )29)3)(3(x x x -=+- (B ))1)(1(2n n m mn m -+=-(C ))1)(3()3)(1(+--=-+y y y y (D )z yz z y z z y yz +-=+-)2(22422、下列多项式中能用平方差公式分解因式的是( )(A )22)(b a -+ (B )mn m 2052- (C )22y x -- (D )92+-x3、若E p q p q q p ⋅-=---232)()()(,则E 是( )(A )p q --1 (B )p q - (C )q p -+1 (D )p q -+14、多项式b a a b 36422-++-按下列分组后能进行因式分解的是( )(A ))36()4(22b a a b -++- (B ))64()3(22a a b b ++--(C )b a a b 3)64(22-++- (D ))34()6(22b a a b -++-5、若)5)(3(+-x x 是q px x ++2的因式,则p 为( )(A )-15 (B )-2 (C )8 (D )28、下列多项式的分解因式,正确的是( )(A ))34(391222xyz xyz y x xyz -=- (B ))2(363322+-=+-a a y y ay y a(C ))(22z y x x xz xy x -+-=-+- (D ))5(522a a b b ab b a +=-+9、下列各式不能继续因式分解的是( )(A )31x - (B )22y x - (C )2)(y x + (D )a a 22+10、多项式m x x +-42可以分解为)7)(3(-+x x ,则m 的值为( )(A )3 (B )-3 (C )-21 (D )2111、能用完全平方公式分解的是( )(A )2242x ax a ++ (B )2244x ax a +--(C )2412x x ++- (D )2444x x ++12、将多项式3222231236b a b a b a +--分解因式时,应提取的公因式是( )(A )ab 3- (B )223b a - (C )b a 23- (D )333b a -三、计算题 15、5335y x y x +- 16、22)(16)(4b a b a +--17、228168ay axy ax -+- 18、234)(18)(3)(b a b a b a +-+-+19、229162169b ab a +- 20、 2224)1(a a -+13、因式分解:(1))3()3(2a a -+-(2)352281216xz z xy y x -+-(3)251024+-x x (4)12422---y y x四、解答题1、已知:45=a ,42=b ,求4222++-+-b a b ab a 的值。
《因式分解》测试题及答案
《因式分解》一、填空题(每题3分,共30分)1.若m 2+2m+n 2-6n+6=0,则m= .n= .2.分解因式y 4+2y 2+81= .3.多项式x 4-2x 2+ax+b 有因式x 2-x+1,试将这多项式分解因式,则x4-2x 2+ax+b= ,其中a= .b= .4.若(x 2+y 2)(x 2+y 2-1)-12=0,则x 2+y 2= .5.分解因式a 2(b-c)+b 2(c-a)+c 2(a-b)= .6.如果m=31a(a+1)(a+2),n=31a(a-1)(a+1),那么m-n= . 7. 分解因式7x n+1-14x n +7x n-1(n 为不小于1的整数)= .8. 已知a-b =1,ab =2,则a 2b-2a 2b 2+ab 2的值是9. 观察下列算式,32-12=8 52-32=16 72-52=24 92-72=32……根据探寻到的规律,请用n 的等式表示第n 个等式10.若x-1是x 2-5x+c 的一个因式,则c= .二、选择题(每题3分,共24分)11.下列从左边到右边的变形①15x 2y =3x ·5xy ②(a+b )(a-b )=a 2-b 2 ③a 2-2a+1=(a-1)2④x 2+3x+1=x(x+3+x1)其中因式分解的个数为( ) A .0个 B .2个 C .3个 D .1个12.在多项式①x 2+2y 2,②x 2-y 2,③-x 2+y 2,④-x 2-y 2中能用两数和乘以它们的差的公式进行因式分解的有( )A .1个B .2个C .3个D .4个13.下列各式中不能分解因式的是( )A .4x 2+2xy+41y 2 B .4x 2-2xy+41y 2 C .4x 2-41y 2 D .-4x 2-41y 2 14.下列能用两数和的平方公式进行因式分解的是( )A .m 2-9n 2B .p 2-2pq+4q 2C .-x 2-4xy+4y 2D .9(m+n )2-6(m+n )+115.若25x 2+kxy+4y 2可以解为(5x-2y )2,则k 的值为( )A .-10B .10C .-20D .2016.下列多项式中不能用提公因式进行因式分解的是( )A .-41x 2-xy+y 2 B .x-xy C .-m 3+mn 2 D .-3x 2+917.81-xk=(9+x 2)(3+x)(3-x),那么k 的值是( )A.k=2B.k=3C.k=4D.k=618.9x 2+mxy+16y 2是一个完全平方式,那么m 的值是( )A.12B.24C.±12.D.±24三、解答题(共54分)19.把下列各式分解因式(每题4分,共20分)(1)8a 2-2b 2(2)4xy 2-4x 2y-y 3(3)4x 2y 2-(x 2+y 2)2(4)9x 2+16(x+y)2-24x(x+y)(5)(a-b )3-2(b-a)2+a-b20. (8分已知xy=5,a-b=6,求证xya 2+xyb 2-2abxy 的值21.(8分)若x 2+2(m-3)x+16是一个整式的完全平方,求m 的值.22.(8分)求证32002-4×32001+10×32000能被7整除.23. .(10分)已知a 2+b 2+a 2b 2+1=4ab ,求a ,b 的值四、综合探索题(12分)24.已知a 、b 、c 为三角形三边,且满足0ac bc ab c b a 222=---++.试说明该三角形是等边三角形.参考答案:一、1.-3; 3 2 .(y 2+4y+9)(y 2-4y+9) 3 .(x 2-x+1)(x+2)(x-1); 3; -2 4. 45. (a-b)(b-c)(a-c)6.a(a+1)7. 7x n-1(x-1)2 (提示: 7x n+1-14x n +7x n-1=7·x n-1·x 2-14x n-1·x+7x n-1=7x n-1(x 2-2x+1)=7x n-1(x-1)2)8. 2 ( 提示:解这种题型比较简便而常用的方法是先对所给的代数式进行因式分解,使之出现ab ,a-b 的式子,代入求值.简解如下:∵a-b =1,ab =2 ∴a 3b-2a 2b 2+ab 3=ab (a 2-2ab+b 2)=ab (a-b )2=2×1=2)9.(2n+1)2-(2n-1)2=8n (提示:等式的左边是两个连续的奇数的平方差,右边是8×1,8×2,8×3,8×4,……,8×n .)10. 4 (提示:令x =1,则x-1=0,这时x 2-5x+c =0即1-5+c =0,c =4)新 课 标第 一网二、11.D ( 提示:①②④均不是因式分解).12.B 13.D 14.D15.C (提示:(5x-2y )2=25x 2-20xy+4y 2故k =-20)16.A (点拨:B 中有公因式x ,C 中有m ,D 中有3). 17.C (提示:将等式的右边按多项式乘法展开,建立恒等式后,令等式左右两边对应项项系数相等即可)18.D (提示:完全平方公式有两个,勿漏解)三、19.(1)2(2a+b)(2a-b) (2)-y(2x-y)2 (3) 4x 2y 2-(x 2+y 2)2=(2xy )2-(x 2+y 2)2=(2xy+x 2+y 2)(2xy-x 2-y 2)=-(x 2+2xy+y 2)(x 2-2xy+y 2)=-(x+y )2(x-y )2(4)9x 2+16(x+y )2-24x (x+y )=[4(x+y )]2-2×4(x+y )·3x+(3x )2=[4(x+y )-3x]2=(x+4y )2(5)(a-b )3-2(b-a )2+a-b=(a-b )3-2(a-b )2+a-b =(a-b )[(a-b )2-2(a-b )+1]=(a-b )[(a-b )2-2(a-b )+12]=(a-b )(a-b-1)220. 18021.解:∵x 2+2(m-3)x+16=x 2+2(m-3)x+42∴ 2(m-3)x =±2×4x ∴m =7或m =-122.证明:32002-4×32001+10×32000=32×32000-4×3×32000+10×3200=32000(32-12+10)=7×32000 ∴32002-4×32001+10×32000能被7整除.23.a=1,b=1或a=-1,b=-1.四、24.解:0ac bc ab c b a 222=---++,0)ac bc ab c b a (2222=---++,0ac 2c a bc 2c b ab 2b a 222222=-++-++-+,0)c a ()c b ()b a (222=-+-+-,∴a -b =0,b -c =0,a -c =0,∴a =b =c .∴此三角形为等边三角形.新课标第一网。
初中数学因式分解经典测试题附答案
A. B. C. D.
【答案】D
【解析】
【分析】
先把各个多项式分解因式,即可得出结果.
【详解】
解: ,
,
,
结果中不含有因式 的是选项D;
故选:D.
【点睛】
本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.
16.把多项式分解因式,正确的结果是( )
3.把代数式 分解因式,结果正确的是()
A. B.
C. D.
【答案】D
【解析】
此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.
解答:解: ,
=3x(x2-2xy+y2),
=3x(x-y)2.
故选D.
4.设a,b,c是 的三条边,且 ,则这个三角形是
A.等腰三角形B.直角三角形
C、xy﹣x=x(y﹣1),故此选项正确;
D、2x+y无法因式分解,故此选项错误.
故选C.
【点睛】
本题考查因式分解.
2.若 ,则 的值为()
A.-2B.2C.8D.-8
【答案】B
【解析】
【分析】
利用十字相乘法化简 ,即可求出 的值.
【详解】
∵
∴
解得
故答案为:B.
【点睛】
本题考查了因式分解的问题,掌握十字相乘法是解题的关键.
【答案】B
【解析】
【分析】
因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.
【详解】
初中数学-《因式分解》测试题(有答案)
初中数学-《因式分解》测试题一、选择题1.下列各式从左到右的变形,正确的是()A.﹣x﹣y=﹣(x﹣y)B.﹣a+b=﹣(a+b)C.(y﹣x)2=(x﹣y)2D.(a﹣b)3=(b﹣a)32.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1 B.2m C.2 D.m+23.把10a2(x+y)2﹣5a(x+y)3因式分解时,应提取的公因式是()A.5a B.(x+y)2C.5(x+y)2D.5a(x+y)24.将多项式a(b﹣2)﹣a2(2﹣b)因式分解的结果是()A.(b﹣2)(a+a2)B.(b﹣2)(a﹣a2)C.a(b﹣2)(a+1)D.a(b﹣2)(a﹣1)5.下列因式分解正确的是()A.mn(m﹣n)﹣m(n﹣m)=﹣m(n﹣m)(n+1)B.6(p+q)2﹣2(p+q)=2(p+q)(3p+q ﹣1)C.3(y﹣x)2+2(x﹣y)=(y﹣x)(3y﹣3x+2)D.3x(x+y)﹣(x+y)2=(x+y)(2x+y)二、填空题6.把多项式(x﹣2)2﹣4x+8因式分解开始出现错误的一步是解:原式=(x﹣2)2﹣(4x﹣8)…A=(x﹣2)2﹣4(x﹣2)…B=(x﹣2)(x﹣2+4)…C=(x﹣2)(x+2)…D.7.﹣xy2(x+y)3+x(x+y)2的公因式是;(2)4x(m﹣n)+8y(n﹣m)2的公因式是.8.分解因式:(x+3)2﹣(x+3)=.9.因式分解:n(m﹣n)(p﹣q)﹣n(n﹣m)(p﹣q)=.10.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=.三、解答题11.将下列各式因式分解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2;(2)(b﹣a)2+a(a﹣b)+b(b﹣a);(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a);(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d.12.若x,y满足,求7y(x﹣3y)2﹣2(3y﹣x)3的值.13.先阅读下面的材料,再因式分解:要把多项式am+an+bm+bn因式分解,可以先把它的前两项分成一组,并提出a;把它的后两项分成一组,并提出b,从而得至a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n),又有因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了.请用上面材料中提供的方法因式分解:(1)ab﹣ac+bc﹣b2:(2)m2﹣mn+mx﹣nx;(3)xy2﹣2xy+2y﹣4.14.求使不等式成立的x的取值范围:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0.15.阅读题:因式分解:1+x+x(x+1)+x(x+1)2解:原式=(1+x)+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)[(1+x)+x(1+x)]=(1+x)2(1+x)=(1+x)3.(1)本题提取公因式几次?(2)若将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式多少次?结果是什么?16.已知x,y都是自然数,且有x(x﹣y)﹣y(y﹣x)=12,求x、y的值.《第4章因式分解》参考答案与试题解析一、选择题1.下列各式从左到右的变形,正确的是()A.﹣x﹣y=﹣(x﹣y)B.﹣a+b=﹣(a+b)C.(y﹣x)2=(x﹣y)2D.(a﹣b)3=(b﹣a)3【考点】完全平方公式;去括号与添括号.【分析】A、B都是利用添括号法则进行变形,C、利用完全平方公式计算即可;D、利用立方差公式计算即可.【解答】解:A、∵﹣x﹣y=﹣(x+y),故此选项错误;B、∵﹣a+b=﹣(a﹣b),故此选项错误;C、∵(y﹣x)2=y2﹣2xy+x2=(x﹣y)2,故此选项正确;D、∵(a﹣b)3=a3﹣3a2b+3ab2﹣b3,(b﹣a)3=b3﹣3ab2+3a2b﹣a3,∴(a﹣b)3≠(b﹣a)3,故此选项错误.故选C.【点评】本题主要考查完全平方公式、添括号法则,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.括号前是“﹣”号,括到括号里各项都变号,括号前是“+”号,括到括号里各项不变号.2.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1 B.2m C.2 D.m+2【考点】因式分解﹣提公因式法.【专题】压轴题.【分析】先提取公因式(m﹣1)后,得出余下的部分.【解答】解:(m+1)(m﹣1)+(m﹣1),=(m﹣1)(m+1+1),=(m﹣1)(m+2).故选D.【点评】先提取公因式,进行因式分解,要注意m﹣1提取公因式后还剩1.3.把10a2(x+y)2﹣5a(x+y)3因式分解时,应提取的公因式是()A.5a B.(x+y)2C.5(x+y)2D.5a(x+y)2【考点】公因式.【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定公因式.【解答】解:10a2(x+y)2﹣5a(x+y)3因式分解时,公因式是5a(x+y)2故选D【点评】本题主要考查公因式的确定,熟练掌握公因式的定义及确定方法是解题的关键.4.将多项式a(b﹣2)﹣a2(2﹣b)因式分解的结果是()A.(b﹣2)(a+a2)B.(b﹣2)(a﹣a2)C.a(b﹣2)(a+1)D.a(b﹣2)(a﹣1)【考点】因式分解﹣提公因式法.【分析】找出公因式直接提取a(b﹣2)进而得出即可.【解答】解:a(b﹣2)﹣a2(2﹣b)=a(b﹣2)(1+a).故选:C.【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.5.下列因式分解正确的是()A.mn(m﹣n)﹣m(n﹣m)=﹣m(n﹣m)(n+1)B.6(p+q)2﹣2(p+q)=2(p+q)(3p+q ﹣1)C.3(y﹣x)2+2(x﹣y)=(y﹣x)(3y﹣3x+2)D.3x(x+y)﹣(x+y)2=(x+y)(2x+y)【考点】因式分解﹣提公因式法.【分析】把每一个整式都因式分解,比较结果得出答案即可.【解答】解:A、mn(m﹣n)﹣m(n﹣m)=m(m﹣n)(n+1)=﹣m(n﹣m)(n+1),故原选项正确;B、6(p+q)2﹣2(p+q)=2(p+q)(3p+3q﹣1),故原选项错误;C、3(y﹣x)2+2(x﹣y)=(y﹣x)(3y﹣3x﹣2),故原选项错误;D、3x(x+y)﹣(x+y)2=(x+y)(2x﹣y),故原选项错误.故选:A.【点评】此题考查提取公因式法因式分解,注意提取负号时括号内式子的变化.二、填空题6.把多项式(x﹣2)2﹣4x+8因式分解开始出现错误的一步是C解:原式=(x﹣2)2﹣(4x﹣8)…A=(x﹣2)2﹣4(x﹣2)…B=(x﹣2)(x﹣2+4)…C=(x﹣2)(x+2)…D.【考点】因式分解﹣提公因式法.【分析】利用提取公因式法一步步因式分解,逐一对比进行判定,得出答案即可.【解答】解:原式═(x﹣2)2﹣(4x﹣8)…A=(x﹣2)2﹣4(x﹣2)…B=(x﹣2)(x﹣2﹣4)…C=(x﹣2)(x﹣6)…D.通过对比可以发现因式分解开始出现错误的一步是C.故答案为:C.【点评】此题考查提取公因式法因式分解,注意提取负号时括号内式子的变化.7.﹣xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;(2)4x(m﹣n)+8y(n﹣m)2的公因式是4(m﹣n).【考点】公因式.【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定公因式.【解答】解:(1)﹣xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;(2)4x(m﹣n)+8y(n﹣m)2的公因式是4(m﹣n).故答案为:4(m﹣n)x(x+y)2.【点评】本题主要考查公因式的确定,熟练掌握公因式的定义及确定方法是解题的关键.8.分解因式:(x+3)2﹣(x+3)=(x+2)(x+3).【考点】因式分解﹣提公因式法.【分析】本题考查提公因式法分解因式.将原式的公因式(x﹣3)提出即可得出答案.【解答】解:(x+3)2﹣(x+3),=(x+3)(x+3﹣1),=(x+2)(x+3).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式.9.因式分解:n(m﹣n)(p﹣q)﹣n(n﹣m)(p﹣q)=2n(m﹣n)(p﹣q).【考点】因式分解﹣提公因式法.【分析】首先得出公因式为n(m﹣n)(p﹣q),进而提取公因式得出即可.【解答】解:n(m﹣n)(p﹣q)﹣n(n﹣m)(p﹣q)=n(m﹣n)(p﹣q)+n(m﹣n)(p﹣q)=2n(m﹣n)(p﹣q).故答案为:2n(m﹣n)(p﹣q).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.10.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=﹣31.【考点】因式分解﹣提公因式法.【专题】压轴题.【分析】首先提取公因式3x﹣7,再合并同类项即可得到a、b的值,进而可算出a+3b的值.【解答】解:(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13),=(3x﹣7)(2x﹣21﹣x+13),=(3x﹣7)(x﹣8)=(3x+a)(x+b),则a=﹣7,b=﹣8,故a+3b=﹣7﹣24=﹣31,故答案为:﹣31.【点评】此题主要考查了提公因式法分解因式,关键是找准公因式.三、解答题11.将下列各式因式分解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2;(2)(b﹣a)2+a(a﹣b)+b(b﹣a);(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a);(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d.【考点】因式分解﹣提公因式法.【分析】均直接提取公因式即可因式分解.【解答】解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2=5a3b(a﹣b)2(a﹣b﹣2ab2)(2)(b﹣a)2+a(a﹣b)+b(b﹣a)=(a﹣b)(a﹣b+a﹣b)=2(a﹣b)2;(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a)=(7a﹣8b)(3a﹣4b﹣11a+12b)=8(7a﹣8b)(b﹣a)(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d=(b+c﹣d)(x+y﹣1).【点评】考查了因式分解的知识,解题的关键是仔细观察题目,并确定公因式.12.若x,y满足,求7y(x﹣3y)2﹣2(3y﹣x)3的值.【考点】因式分解的应用;解二元一次方程组.【分析】应把所给式子进行因式分解,整理为与所给等式相关的式子,代入求值即可.【解答】解:7y(x﹣3y)2﹣2(3y﹣x)3,=7y(x﹣3y)2+2(x﹣3y)3,=(x﹣3y)2[7y+2(x﹣3y)],=(x﹣3y)2(2x+y),当时,原式=12×6=6.【点评】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.13.先阅读下面的材料,再因式分解:要把多项式am+an+bm+bn因式分解,可以先把它的前两项分成一组,并提出a;把它的后两项分成一组,并提出b,从而得至a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n),又有因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了.请用上面材料中提供的方法因式分解:(1)ab﹣ac+bc﹣b2:(2)m2﹣mn+mx﹣nx;(3)xy2﹣2xy+2y﹣4.【考点】因式分解﹣分组分解法.【专题】阅读型.【分析】(1)首先将前两项与后两项分组,进而提取公因式,分解因式即可;(2)首先将前两项与后两项分组,进而提取公因式,分解因式即可;(3)首先将前两项与后两项分组,进而提取公因式,分解因式即可.【解答】解:(1)ab﹣ac+bc﹣b2=a(b﹣c)+b(c﹣b)=(a﹣b)(b﹣c);(2)m2﹣mn+mx﹣nx=m(m﹣n)+x(m﹣n)=(m﹣n)(m﹣x);(3)xy2﹣2xy+2y﹣4=xy(y﹣2)+2(y﹣2)=(y﹣2)(xy+2).【点评】此题主要考查了分组分解法分解因式,正确分组进而提取公因式是解题关键.14.求使不等式成立的x的取值范围:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0.【考点】因式分解﹣提公因式法;解一元一次不等式.【分析】首先把x2﹣2x+3因式分解为(x﹣1)(x﹣2),进一步利用提取公因式法以及非负数的性质,探讨得出答案即可.【解答】解:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)=(x﹣1)3﹣(x﹣1)2(x﹣2)=(x﹣1)2(x+1);因(x﹣1)2是非负数,要使(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0,只要x+1≥0即可,即x≥﹣1.【点评】此题考查提取公因式法因式分解,结合非负数的性质来探讨不等式的解法.15.阅读题:因式分解:1+x+x(x+1)+x(x+1)2解:原式=(1+x)+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)[(1+x)+x(1+x)]=(1+x)2(1+x)=(1+x)3.(1)本题提取公因式几次?(2)若将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式多少次?结果是什么?【考点】因式分解﹣提公因式法.【专题】阅读型.【分析】(1)根据题目提供的解答过程,数出提取的公因式的次数即可;(2)根据总结的规律写出来即可.【解答】解:(1)共提取了两次公因式;(2)将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式n次,结果是(x+1)n+1.【点评】本题考查了因式分解的应用,解题的关键是从题目提供的材料确定提取的公因式的次数.16.已知x,y都是自然数,且有x(x﹣y)﹣y(y﹣x)=12,求x、y的值.【考点】因式分解﹣提公因式法.【分析】首先把等号右边的整式因式分解,得出关于x、y的整式的乘法算式,对应12的分解,得出答案即可.【解答】解:x(x﹣y)﹣y(y﹣x)=(x﹣y)(x+y);因为x,y都是自然数,又12=1×12=2×6=3×4;经验证(4﹣2)×(4+2)=2×6符合条件;所以x=4,y=2.【点评】此题考查提取公因式因式分解,进一步利用题目中的条件限制分析探讨得出答案.。
因式分解基础测试题及解析
因式分解基础测试题及解析一、选择题1.下列因式分解正确的是( )A .x 2﹣y 2=(x ﹣y )2B .a 2+a+1=(a+1)2C .xy ﹣x=x (y ﹣1)D .2x+y=2(x+y )【答案】C【解析】【分析】【详解】解:A 、x 2﹣y 2=(x+y )(x ﹣y ),故此选项错误;B 、a 2+a+1无法因式分解,故此选项错误;C 、xy ﹣x=x (y ﹣1),故此选项正确;D 、2x+y 无法因式分解,故此选项错误.故选C .【点睛】本题考查因式分解.2.已知实数a 、b 满足等式x=a 2+b 2+20,y =a(2b -a ),则x 、y 的大小关系是( ). A .x ≤ yB .x ≥ yC .x < yD .x > y【答案】D【解析】【分析】判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系.【详解】解:22222202()x y a b ab a a b a -=++-+=-++20, 2()0a b -≥Q ,20a ≥,200>,0x y ∴->,x y ∴>,故选:D .【点睛】本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.3.下列各式中不能用平方差公式进行计算的是( )A .(m -n )(m +n )B .(-x -y )(-x -y )C .(x 4-y 4)(x 4+y 4)D .(a 3-b 3)(b 3+a 3)【答案】B【解析】A.(m -n)(m +n),能用平方差公式计算;B.(-x -y)(-x -y),不能用平方差公式计算;C.(x 4-y 4)(x 4+y 4),能用平方差公式计算;D. (a 3-b 3)(b 3+a 3),能用平方差公式计算.故选B.4.已知2021201920102010201020092011x -=⨯⨯,那么x 的值为( )A .2018B .2019C .2020D .2021.【答案】B【解析】【分析】将2021201920102010-进行因式分解为2019201020092011⨯⨯,因为左右两边相等,故可以求出x 得值.【详解】解:2021201920102010- ()()()2019220192019220192019=201020102010=20102010120102010120101201020092011⨯-⨯-=⨯-⨯+=⨯⨯∴2019201020092011201020092011x ⨯⨯=⨯⨯∴x=2019故选:B .【点睛】本题主要考查的是因式分解中提取公因式和平方差公式,正确的掌握因式分解的方法是解题的关键.5.下列运算结果正确的是( )A .321x x -=B .32x x x ÷=C .326x x x ⋅=D .222()x y x y +=+【答案】B【解析】【分析】根据合并同类项法则、同底数幂乘除法法则、公式法分解因式逐项进行计算即可得.【详解】A 、3x ﹣2x =x ,故A 选项错误;B 、x 3÷x 2=x ,正确;C 、x 3•x 2=x 5,故C 选项错误;D 、x 2+2xy+y 2=(x+y)2,故D 选项错误,故选B.【点睛】本题考查了合并同类项、同底数幂乘除、公式法分解因式,熟练掌握相关的运算法则以及完全平方公式的结构特征是解题的关键.6.如图,边长为a ,b 的矩形的周长为10,面积为6,则a 2b +ab 2的值为( )A .60B .16C .30D .11【答案】C【解析】【分析】 先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.【详解】∵矩形的周长为10,∴a+b=5,∵矩形的面积为6,∴ab=6,∴a 2b+ab 2=ab (a+b )=30.故选:C .【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.7.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c a b c ++-D .()()a c a b c +-+【答案】A【解析】【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+; 故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.8.若()()21553x kx x x --=-+,则k 的值为( )A .-2B .2C .8D .-8【答案】B【解析】【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值.【详解】∵()()253215x x x x -+=--∴2k -=-解得2k =故答案为:B .【点睛】本题考查了因式分解的问题,掌握十字相乘法是解题的关键.9.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( )A .-2B .2C .-50D .50【答案】A【解析】试题分析:先提取公因式ab ,整理后再把a+b 的值代入计算即可.当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2.考点:因式分解的应用.10.下列分解因式错误的是( ).A .()2155531a a a a +=+B .()()22x y x y x y --=-+- C .()()1ax x ay y a x y +++=++D .()()2a bc ab ac a b a c --+=-+ 【答案】B【解析】【分析】利用因式分解的定义判断即可.【详解】解:A. ()2155531a a a a +=+,正确; B. ()2222x y x y --=-+,所以此选项符合题意;C. ()()()1ax x ay y a x y x y a x y +++=+++=++ ,正确;D. ()()2()()a bc ab ac a a b c a b a b a c --+=-+-=-+,正确 故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法是解本题的关键.11.若a b +=1ab =,则33a b ab -的值为( )A .±B .C .±D .【答案】C【解析】【分析】将原式进行变形,3322()()()a b ab ab a b ab a b a b -=-=+-,然后利用完全平方公式的变形22()()4a b a b ab -=+-求得a-b 的值,从而求解. 【详解】解:∵3322()()()a b ab ab a b ab a b a b -=-=+-∴33)a b b ab a =--又∵22()()4a b a b ab -=+-∴22()414a b -=-⨯=∴2a b -=±∴33(2)a b ab =±=±-故选:C .【点睛】本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键.12.下列变形,属于因式分解的有( )①x 2﹣16=(x +4)(x ﹣4);②x 2+3x ﹣16=x (x +3)﹣16;③(x +4)(x ﹣4)=x 2﹣16;④x 2+x =x (x +1)A .1个B .2个C .3个D .4个【答案】B【解析】【分析】【详解】解:①x 2-16=(x+4)(x-4),是因式分解;②x 2+3x-16=x (x+3)-16,不是因式分解;③(x+4)(x-4)=x 2-16,是整式乘法;④x 2+x =x (x +1)),是因式分解.故选B .13.下列因式分解正确的是( )A .x 3﹣x =x (x 2﹣1)B .x 2+y 2=(x+y )(x ﹣y )C .(a+4)(a ﹣4)=a 2﹣16D .m 2+4m+4=(m+2)2【答案】D【解析】【分析】逐项分解因式,即可作出判断.【详解】 A 、原式=x (x 2﹣1)=x (x+1)(x ﹣1),不符合题意;B 、原式不能分解,不符合题意;C 、原式不是分解因式,不符合题意;D 、原式=(m+2)2,符合题意,故选:D .【点睛】此题主要考查了提公因式法,以及公式法在因式分解中的应用,要熟练掌握.14.下列各式中从左到右的变形,是因式分解的是( )A .(a +3)(a -3)=a 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab (a +b )D .x 2+1=x (x +1x) 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没把一个多项式转化成几个整式积的形式,故B 错误;C 、因式分解是把一个多项式转化成几个整式积的形式,故C 正确;D 、因式中含有分式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.15.下列各因式分解的结果正确的是( )A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-【答案】C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】()321a a a a -=-=a (a+1)(a-1),故A 错误; 2(1)b ab b b b a ++=++,故B 错误;2212(1)x x x -+=-,故C 正确;22x y +不能分解因式,故D 错误,故选:C .【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.16.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c ≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.17.已知三个实数a ,b ,c 满足a ﹣2b +c <0,a +2b +c =0,则( )A .b >0,b 2﹣ac ≤0B .b <0,b 2﹣ac ≤0C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥0【答案】C【解析】【分析】根据a ﹣2b +c <0,a +2b +c =0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况.【详解】∵a ﹣2b +c <0,a +2b +c =0,∴a+c=﹣2b,∴a﹣2b+c=(a+c)﹣2b=﹣4b<0,∴b>0,∴b2﹣ac=222222a c a ac cac+++⎛⎫-=⎪⎝⎭=222242a ac c a c-+-⎛⎫= ⎪⎝⎭…,即b>0,b2﹣ac≥0,故选:C.【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b和b2-ac 的正负情况.18.已知x﹣y=﹣2,xy=3,则x2y﹣xy2的值为()A.2 B.﹣6 C.5 D.﹣3【答案】B【解析】【分析】先题提公因式xy,再用公式法因式分解,最后代入计算即可.【详解】解:x2y﹣xy2=xy(x﹣y)=3×(﹣2)=﹣6,故答案为B.【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.19.下列各式从左到右的变形中,是因式分解的为()A.ab+ac+d=a(b+c)+d B.(x+2)(x﹣2)=x2﹣4C.6ab=2a⋅3b D.x2﹣8x+16=(x﹣4)2【答案】D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C、等式左边是单项式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选D.【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.20.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( ) A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】提取公因式x y -,即可进行因式分解.【详解】 ()()232x y y x --- ()()322x y x y =--+故答案为:B .【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.。
因式分解经典测试题及答案解析
因式分解经典测试题及答案解析一、选择题1.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2 B.x2+4x+4=(x+2)2C.(a+b)(a﹣b)=a2﹣b2 D.ax2﹣a=a(x2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A选项,从左到右变形错误,不符合题意,B选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法. 2.设a,b,c是ABC的三条边,且332222a b a b ab ac bc-=-+-,则这个三角形是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】D【解析】【分析】把所给的等式能进行因式分解的要因式分解,整理为整理成多项式的乘积等于0的形式,求出三角形三边的关系,进而判断三角形的形状.【详解】解:∵a3-b3=a2b-ab2+ac2-bc2,∴a3-b3-a2b+ab2-ac2+bc2=0,(a3-a2b)+(ab2-b3)-(ac2-bc2)=0,a2(a-b)+b2(a-b)-c2(a-b)=0,(a-b)(a2+b2-c2)=0,所以a-b=0或a2+b2-c2=0.所以a=b或a2+b2=c2.故选:D.【点睛】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.3.下列等式从左到右的变形属于因式分解的是( )A .a 2﹣2a +1=(a ﹣1)2B .a (a +1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .mx ﹣my +1=m (x ﹣y )+1【答案】A【解析】【分析】直接利用因式分解的定义分析得出答案.【详解】解:A 、a 2﹣2a+1=(a ﹣1)2,从左到右的变形属于因式分解,符合题意;B 、a (a+1)(a ﹣1)=a 3﹣a ,从左到右的变形是整式乘法,不合题意;C 、6x 2y 3=2x 2•3y 3,不符合因式分解的定义,不合题意;D 、mx ﹣my+1=m (x ﹣y )+1不符合因式分解的定义,不合题意;故选:A .【点睛】本题考查因式分解的意义,解题关键是熟练掌握因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.4.下列各式中不能用平方差公式进行计算的是( )A .(m -n )(m +n )B .(-x -y )(-x -y )C .(x 4-y 4)(x 4+y 4)D .(a 3-b 3)(b 3+a 3)【答案】B【解析】A.(m -n)(m +n),能用平方差公式计算;B.(-x -y)(-x -y),不能用平方差公式计算;C.(x 4-y 4)(x 4+y 4),能用平方差公式计算;D. (a 3-b 3)(b 3+a 3),能用平方差公式计算.故选B.5.将3a b ab 进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【解析】【分析】多项式3a b ab 有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选:C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;6.多项式225a -与25a a -的公因式是( )A .5a +B .5a -C .25a +D .25a -【答案】B【解析】【分析】直接将原式分别分解因式,进而得出公因式即可.【详解】解:∵a 2-25=(a+5)(a-5),a 2-5a=a (a-5),∴多项式a 2-25与a 2-5a 的公因式是a-5.故选:B .【点睛】此题主要考查了公因式,正确将原式分解因式是解题的关键.7.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.8.将2x 2a -6xab +2x 分解因式,下面是四位同学分解的结果:①2x (xa -3ab ), ②2xa (x -3b +1), ③2x (xa -3ab +1), ④2x (-xa +3ab -1). 其中,正确的是( )A .①B .②C .③D .④【答案】C【解析】【分析】直接找出公因式进而提取得出答案.【详解】2x 2a-6xab+2x=2x (xa-3ab+1).故选:C .【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9.多项式2()()()x y a b xy b a y a b ---+-提公因式后,另一个因式为( )A .21x x --B .21x x ++C .21x x --D .21x x +-【答案】B【解析】【分析】各项都有因式y (a-b ),根据因式分解法则提公因式解答.【详解】 2()()()x y a b xy b a y a b ---+-=2()()()x y a b xy a b y a b -+-+-=2()(1)y a b x x -++,故提公因式后,另一个因式为:21x x ++,故选:B.【点睛】此题考查多项式的因式分解,掌握因式分解的方法是解题的关键.10.将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .221a a ++C .2a a +D .22a a +-【答案】D【解析】【分析】先把各个多项式分解因式,即可得出结果.【详解】解:21(1)(1)a a a -=+-,()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-, ∴结果中不含有因式1a +的是选项D ;故选:D .【点睛】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.11.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( ) A .1B .-1C .-8D .18- 【答案】A【解析】【分析】多项式3212x mx nx ++-的最高次数是3,两因式乘积的最高次数是2,所以多项式的最后一个因式的最高次数是1,可设为()x a +,再根据两个多项式相等,则对应次数的系数相等列方程组求解即可.【详解】解:多项式3212x mx nx ++-的最高次数是3,2(3)(2)6x x x x -+=--的最高次数是2,∵多项式3212x mx nx ++-含有因式()3x -和()2x +,∴多项式的最后一个因式的最高次数应为1,可设为()x a +,即3212(3)(2)()++-=--+x mx nx x x x a ,整理得:323212(1)(6)6++-=+--+-x mx nx x a x a x a , 比较系数得:1(6)612m a n a a =-⎧⎪=-+⎨⎪=⎩,解得:182m n a =⎧⎪=-⎨⎪=⎩,∴811-==n m ,故选:A .【点睛】此题考查了因式分解的应用,运用待定系数法设出因式进行求解是解题的关键.12.下列等式从左到右的变形,属于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x12-xx⎛⎫+⎪⎝⎭D.4my-2=2(2my-1)【答案】D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.13.已知三个实数a,b,c满足a﹣2b+c<0,a+2b+c=0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【答案】C【解析】【分析】根据a﹣2b+c<0,a+2b+c=0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况.【详解】∵a﹣2b+c<0,a+2b+c=0,∴a+c=﹣2b,∴a﹣2b+c=(a+c)﹣2b=﹣4b<0,∴b>0,∴b2﹣ac=222222a c a ac cac+++⎛⎫-=⎪⎝⎭=222242a ac c a c-+-⎛⎫= ⎪⎝⎭,即b>0,b2﹣ac≥0,故选:C.【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b和b2-ac 的正负情况.14.已知x﹣y=﹣2,xy=3,则x2y﹣xy2的值为()A .2B .﹣6C .5D .﹣3【答案】B【解析】【分析】 先题提公因式xy ,再用公式法因式分解,最后代入计算即可.【详解】解:x 2y ﹣xy 2=xy (x ﹣y )=3×(﹣2)=﹣6,故答案为B .【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.15.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( )A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】提取公因式x y -,即可进行因式分解.【详解】 ()()232x y y x --- ()()322x y x y =--+故答案为:B .【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.16.下列从左到右的变形属于因式分解的是( )A .(x +1)(x -1)=x 2-1B .m 2-2m -3=m(m -2)-3C .2x 2+1=x(2x +1x) D .x 2-5x +6=(x -2)(x -3) 【答案】D【解析】【分析】根据因式分解的定义,因式分解是把多项式写出几个整式积的形式,对各选项分析判断后利用排除法求解.【详解】解:A 、(x+1)(x-1)=x 2-1不是因式分解,是多项式的乘法,故本选项错误; B 、右边不全是整式积的形式,还有减法,故本选项错误;C 、右边不是整式积的形式,分母中含有字母,故本选项错误;D 、x 2-5x +6=(x -2)(x -3)符合因式分解的定义,故本选项正确.故选:D .【点睛】本题主要考查了因式分解的定义,因式分解与整式的乘法是互为逆运算,要注意区分.17.已知a ﹣b=1,则a 3﹣a 2b+b 2﹣2ab 的值为( )A .﹣2B .﹣1C .1D .2【答案】C【解析】【分析】先将前两项提公因式,然后把a ﹣b =1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a 3﹣a 2b +b 2﹣2ab =a 2(a ﹣b )+b 2﹣2ab =a 2+b 2﹣2ab =(a ﹣b )2=1.故选C .【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.18.下列不是多项式32633x x x +-的因式的是( )A .1x -B .21x -C .xD .3+3x【答案】A【解析】【分析】将多项式32633x x x +-分解因式,即可得出答案.【详解】解:∵32633x x x +-=23(21)3(21)(1)x x x x x x +-=-+又∵3+3x =3(x+1)∴21x -,x ,3+3x 都是32633x x x +-的因式,1x -不是32633x x x +-的因式. 故选:A【点睛】此题主要考查了提公因式法与十字相乘法的综合运用,熟练应用十字相乘法分解因式是解题关键.19.下列因式分解正确的是( )A .()222x xy x x y -=-B .()()2933x x x +=+- C .()()()2x x y y x y x y ---=-D .()22121x x x x -+=-+ 【答案】C【解析】【分析】根据提公因式法和公式法进行判断求解即可.【详解】A. 公因式是x ,应为()222x xy x x y -=-,故此选项错误; B. 29x +不能分解因式,故此选项错误;C. ()()()()()2x x y y x y x y x y x y ---=--=-,正确;D. ()2221=1x x x x -+=-,故此选项错误.故选:C【点睛】此题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.20.三角形的三边a 、b 、c 满足a (b ﹣c )+2(b ﹣c )=0,则这个三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 【答案】A【解析】【分析】首先利用提取公因式法因式分解,再进一步分析探讨得出答案即可【详解】解:∵a (b-c )+2(b-c )=0,∴(a+2)(b-c )=0,∵a 、b 、c 为三角形的三边,∴b-c=0,则b=c ,∴这个三角形的形状是等腰三角形.故选:A .【点睛】本题考查了用提取公因式法进行因式分解,熟练掌握并准确分析是解题的关键.。
第二章-因式分解单元测试题
第二章 因式分解 一、选择题 1.下列各式中从左到右的变形,是因式分解的是( )(A)(a +3)(a -3)=a 2-9 (B)x 2+x -5=(x -2)(x +3)+1 (C)a 2b +ab 2=ab (a +b ) (D)x 2+1=x (x +x 1) 2.下列各式的因式分解中正确的是( )(A)-a 2+ab -ac = -a (a +b -c ) (B)9xyz -6x 2y 2=3xyz (3-2xy ) (C)3a 2x -6bx +3x =3x (a 2-2b ) (D)21xy 2+21x 2y =21xy (x +y ) 3.把多项式m 2(a -2)+m (2-a )分解因式等于( )(A)(a -2)(m 2+m ) (B)(a -2)(m 2-m ) (C)m (a -2)(m -1) (D)m (a -2)(m+1)4.下列多项式能分解因式的是( )(A)x 2-y (B)x 2+1 (C)x 2+y +y 2 (D)x 2-4x +45.下列多项式中,不能用完全平方公式分解因式的是( ) (A)412m m ++ (B)222y xy x -+- (C)224914b ab a ++- (D)13292+-n n 6.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( )(A)4x (B)-4x (C)4x 4 (D)-4x 47.下列分解因式错误的是( )(A)15a 2+5a =5a (3a +1) (B)-x 2-y 2= -(x 2-y 2)= -(x +y )(x -y ) (C)k (x +y )+x +y =(k +1)(x+y ) (D)a 3-2a 2+a =a (a -1)28.下列多项式中不能用平方差公式分解的是( )(A)-a 2+b 2 (B)-x 2-y 2 (C)49x 2y 2-z 2 (D)16m 4-25n 2p 29.下列多项式:①16x 5-x ;②(x -1)2-4(x -1)+4;③(x +1)4-4x (x +1)+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( )(A)①② (B)②④ (C)③④ (D)②③10.两个连续的奇数的平方差总可以被 k 整除,则k 等于( )(A)4 (B)8 (C)4或-4 (D)8的倍数二、填空题11.分解因式:m 3-4m = .12.已知x +y =6,xy =4,则x 2y +xy 2的值为 .13.将x n -y n 分解因式的结果为(x 2+y 2)(x +y )(x -y ),则n 的值为 .14.若ax 2+24x +b =(mx -3)2,则a = ,b = ,m = . (第15题图)15.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是 .三、(每小题6分,共24分)16.分解因式:(1)-4x 3+16x 2-26x (2)21a 2(x -2a )2-41a (2a -x )3(3)56x 3yz+14x 2y 2z -21xy 2z 2 (4)mn(m -n)-m(n -m)17.分解因式:(1) 4xy –(x 2-4y 2) (2)-41(2a -b )2+4(a -21b )218.分解因式:(1)-3ma 3+6ma 2-12ma (2) a 2(x -y )+b 2(y -x )19、分解因式(1)23)(10)(5x y y x -+-; (2)32)(12)(18b a b a b ---; (3))(6)(4)(2a x c x a b a x a ---+-;20.分解因式:(1)21ax 2y 2+2axy +2a (2)(x 2-6x )2+18(x 2-6x )+81 (3) –2x 2n -4x n21.将下列各式分解因式:(1)2294n m -; (2)22)(16)(9n m n m --+; (3)4416n m -;22.分解因式(1)25)(10)(2++++y x y x ; (2)4224817216b b a a +-;23.用简便方法计算:(1)57.6×1.6+28.8×36.8-14.4×80 (2)39×37-13×34 (3).13.731175.231178.193117⨯-⨯+⨯24.试说明:两个连续奇数的平方差是这两个连续奇数和的2倍。
因式分解经典测试题及答案
【答案】B
【解析】
【分析】
各项都有因式y(a-b),根据因式分解法则提公因式解答.
【详解】
=
= ,
故提公因式后,另一个因式为: ,
故选:B.
【点睛】
此题考查多项式的因式分解,掌握因式分解的方法是解题的关键.
12.下列各式中不能用平方差公式分解的是()
A. B. C. D.
【答案】C
【点睛】
本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.
17.将下列多项式因式分解,结果中不含有因式(a+1)的是()
A.a2-1
B.a2+a
C.a2+a-2
D.(a+2)2-2(a+2)+1
【答案】C
【解析】
试题分析:先把四个选项中的各个多项式分解因式,即a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C;故答案选C.
【详解】
2x2a-6xab+2x=2x(xa-3ab+1).
故选:C.
【点睛】
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
2.下列各式从左到右的变形中,是因式分解的为().
A. B.
C. D.
【答案】C
【解析】
【分析】
根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解基础测试题一、选择题1.某天数学课上,老师讲了提取公因式分解因式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-12xy 2+6x 2y+3xy=-3xy•(4y-______)横线空格的地方被钢笔水弄污了,你认为横线上应填写( )A .2xB .-2xC .2x-1D .-2x-l【答案】C【解析】【分析】根据题意,提取公因式-3xy ,进行因式分解即可.【详解】解:原式=-3xy×(4y-2x-1),空格中填2x-1.故选:C .【点睛】本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,同时要注意提取公因式后各项符号的变化.2.把32a 4ab -因式分解,结果正确的是( )A .()()a a 4b a 4b ?+-B .()22a a 4b ?-C .()()a a 2b a 2b +-D .()2a a 2b - 【答案】C【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式a ,再对余下的多项式继续分解.【详解】a 3-4ab 2=a (a 2-4b 2)=a (a+2b )(a-2b ).故选C .【点睛】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.3.下列等式从左到右的变形是因式分解的是( )A .2x (x +3)=2x 2+6xB .24xy 2=3x •8y 2C .x 2+2xy +y 2+1=(x +y )2+1D .x 2﹣y 2=(x +y )(x ﹣y )【答案】D【解析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4.若三角形的三边长分别为a 、b 、c ,满足22230a b a c b c b -+-=,则这个三角形是( )A .直角三角形B .等边三角形C .锐角三角形D .等腰三角形 【答案】D【解析】【分析】首先将原式变形为()()()0b c a b a b --+=,可以得到0b c -=或0a b -=或0a b +=,进而得到b c =或a b =.从而得出△ABC 的形状.【详解】∵22230a b a c b c b -+-=,∴()()220a b c b c b -+-=,∴()()220b c a b --=,即()()()0b c a b a b --+=,∴0b c -=或0a b -=或0a b +=(舍去),∴b c =或a b =,∴△ABC 是等腰三角形.故选:D .【点睛】本题考查了因式分解-提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.5.下列变形,属于因式分解的有( )①x 2﹣16=(x +4)(x ﹣4);②x 2+3x ﹣16=x (x +3)﹣16;③(x +4)(x ﹣4)=x 2﹣16;④x 2+x =x (x +1)A .1个B .2个C .3个D .4个【解析】【分析】【详解】解:①x2-16=(x+4)(x-4),是因式分解;②x2+3x-16=x(x+3)-16,不是因式分解;③(x+4)(x-4)=x2-16,是整式乘法;④x2+x=x(x+1)),是因式分解.故选B.6.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2 B.x2+4x+4=(x+2)2C.(a+b)(a﹣b)=a2﹣b2 D.ax2﹣a=a(x2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A选项,从左到右变形错误,不符合题意,B选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.7.下列因式分解结果正确的是( ).A.10a3+5a2=5a(2a2+a)B.4x2-9=(4x+3)(4x-3)C.a2-2a-1=(a-1)2D.x2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A作出判断;而B符合平方差公式的结构特点,因此可对B作出判断;C不符合完全平方公式的结构特点,因此不能分解,而D可以利用十字相乘法分解因式,综上所述,即可得出答案.A 、原式=5a 2(2a+1),故A 不符合题意;B 、原式=(2x+3)(2x-3),故B 不符合题意;C 、a 2-2a-1不能利用完全平方公式分解因式,故C 不符合题意;D 、原式=(x-6)(x+1),故D 符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.8.下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+ 【答案】D【解析】【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A. 2161x +只有两项,不符合完全平方公式;B. 221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C. 2224a ab b +-,其中2a 与24b - 不能写成平方和的形式,不符合完全平方公式;D. 214x x -+符合完全平方公式定义, 故选:D.【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.9.下列各因式分解的结果正确的是( )A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-【答案】C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】 ()321a a a a -=-=a (a+1)(a-1),故A 错误;2(1)b ab b b b a ++=++,故B 错误;2212(1)x x x -+=-,故C 正确;22x y +不能分解因式,故D 错误,故选:C .【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.10.将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .221a a ++C .2a a +D .22a a +-【答案】D【解析】【分析】先把各个多项式分解因式,即可得出结果.【详解】解:21(1)(1)a a a -=+-Q , ()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-, ∴结果中不含有因式1a +的是选项D ;故选:D .【点睛】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.11.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( ) A .1B .-1C .-8D .18- 【答案】A【解析】【分析】多项式3212x mx nx ++-的最高次数是3,两因式乘积的最高次数是2,所以多项式的最后一个因式的最高次数是1,可设为()x a +,再根据两个多项式相等,则对应次数的系数相等列方程组求解即可.【详解】解:多项式3212x mx nx ++-的最高次数是3,2(3)(2)6x x x x -+=--的最高次数是2,∵多项式3212x mx nx ++-含有因式()3x -和()2x +,∴多项式的最后一个因式的最高次数应为1,可设为()x a +,即3212(3)(2)()++-=--+x mx nx x x x a ,整理得:323212(1)(6)6++-=+--+-x mx nx x a x a x a , 比较系数得:1(6)612m a n a a =-⎧⎪=-+⎨⎪=⎩,解得:182m n a =⎧⎪=-⎨⎪=⎩,∴811-==n m ,故选:A .【点睛】此题考查了因式分解的应用,运用待定系数法设出因式进行求解是解题的关键.12.若a b c 、、为ABC ∆三边,且满足222244a c b c a b -=-,则ABC ∆的形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均有可能 【答案】D【解析】【分析】把已知等式左边分解得到()()()2220a b a b c a b ⎡⎤+--+=⎣⎦,-a b =0或()222c a b -+=0,即a=b 或222c a b =+,然后根据等腰三角形和直角三角形的判定方法判断.【详解】因为a b c 、、为ABC ∆三边,222244a c b c a b -=-所以()()()2220a b a b c a b ⎡⎤+--+=⎣⎦ 所以-a b =0或()222c a b -+=0,即a=b 或222c a b =+所以ABC ∆的形状是等腰三角形、等腰三角形、等腰直角三角形故选:D【点睛】本题考查因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.13.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形 B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】 已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c ≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.14.下列各式能用平方差公式分解因式的是( )A .21a +B .20.040.09y --C .22x y +D .22x y -【答案】D【解析】【分析】判断各个选项是否满足平方差的形式,即:22a b -的形式【详解】A 、C 都是22a b +的形式,不符;B 中,变形为:-(20.04+0.09y ),括号内也是22a b +的形式,不符;D 中,满足22a b -的形式,符合故选:D【点睛】本题考查平方差公式,注意在利用乘法公式时,一定要先将式子变形成符合乘法公式的形式,我们才可利用乘法公式简化计算.15.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形【答案】D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b﹣c=0,a2+b2﹣c2=0,∴b=c或a2+b2=c2,∴△ABC是等腰三角形或直角三角形.故选D.16.下列各式从左到右的变形中,是因式分解的为()A.ab+ac+d=a(b+c)+d B.(x+2)(x﹣2)=x2﹣4C.6ab=2a⋅3b D.x2﹣8x+16=(x﹣4)2【答案】D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C、等式左边是单项式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选D.【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.17.若x2+mxy+y2是一个完全平方式,则m=()A.2 B.1 C.±1 D.±2【答案】D【解析】根据完全平方公式:(a+b)2=a2+2ab+b2与(a-b)2=a2-2ab+b2可知,要使x2+mxy+y2符合完全平方公式的形式,该式应为:x2+2xy+y2=(x+y)2或x2-2xy+y2=(x-y)2. 对照各项系数可知,系数m的值应为2或-2.故本题应选D.点睛:本题考查完全平方公式的形式,应注意完全平方公式有(a+b)2、(a-b)2两种形式. 考虑本题时要全面,不要漏掉任何一种形式.18.下列由左到右边的变形中,是因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣1=1 () x xxC.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2﹣4=(x+2)(x﹣2)【解析】【分析】直接利用因式分解的意义分别判断得出答案.【详解】A 、(x+2)(x-2)=x 2-4,是多项式乘法,故此选项错误;B 、x 2-1=(x+1)(x-1),故此选项错误;C 、x 2-4+3x=(x+4)(x-1),故此选项错误;D 、x 2-4=(x+2)(x-2),正确.故选D .【点睛】此题主要考查了因式分解的意义,正确把握定义是解题关键.19.下列各式从左到右因式分解正确的是( )A .()26223x y x y +=--B .()22121x x x x +=+--C .()2242x x =--D .()()311 x x x x x =+-- 【答案】D【解析】【分析】因式分解,常用的方法有:(1)提取公因式;(2)利用乘法公式进行因式分解【详解】A 中,需要提取公因式:()26223+1x y x y +=--,A 错误;B 中,利用乘法公式:()2221x x x +=--1,B 错误;C 中,利用乘法公式:2()4()22x x x =-+-,C 错误;D 中,先提取公因式,再利用乘法公式:()()311x x x x x -=+-,正确 故选:D【点睛】在进行因式分解的过程中,若能够提取公因式,往往第一步是进行提取公因式,在观察剩下部分是否还可进行因式分解.20.下列因式分解正确的是( )A .()222x xy x x y -=-B .()()2933x x x +=+- C .()()()2x x y y x y x y ---=-D .()22121x x x x -+=-+ 【答案】C【分析】根据提公因式法和公式法进行判断求解即可.【详解】A. 公因式是x ,应为()222x xy x x y -=-,故此选项错误; B. 29x +不能分解因式,故此选项错误;C. ()()()()()2x x y y x y x y x y x y ---=--=-,正确;D. ()2221=1x x x x -+=-,故此选项错误.故选:C【点睛】此题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.。