超临界色谱

合集下载

《超临界色谱》课件

《超临界色谱》课件

校准
定期对仪器设备进行校准,确保检测 结果的准确性和可靠性。
保养记录
建立保养记录,记录仪器设备的维护 和保养情况,方便追踪和管理。
03
超临界色谱的实验技术
实验前的准备
确定实验目标
准备色谱柱
明确实验目的,如分离纯化、检测分析等 ,以便选择合适的色谱条件和材料。
根据实验需求选择合适的色谱柱,确保其 稳定性和重现性。
准备样品
准备超临界流体
对样品进行预处理,如溶解、过滤、稀释 等,以满足实验要求。
选择合适的超临界流体,如二氧化碳、甲 醇等,并进行纯化和调节。
实验操作步骤
01
安装色谱柱
将色谱柱正确安装在色谱仪中,确 保密封性和稳定性。
进样分析
将样品注入色谱仪,开始进行分离 分析。
03
02
调节实验条件
根据实验目标和样品性质,调节温 度、压力、流速等实验参数。
04
超临界色谱的分离机制
分离机制的原理
流体在超临界状态下具有高扩散系数和低粘度, 有利于溶质的快速传递和扩散。
超临界流体对溶质的溶解能力随压力的增加而增 强,从而实现溶质的分离。
通过调节压力、温度等参数,实现对不同溶质的 分离。
分离机制的应用
01
在食品、药品、环保等领域用于分离和纯化天然产 物、药物成分和有害物质。
收集数据
记录色谱图、峰形等信息,以便后 续分析。
04
实验结果分析
数据处理
对收集的数据进行整理、分析和处理,提取 有用的信息。
结果解释
根据数据处理结果,解释样品的组成和性质 ,评估分离效果和纯度。
结果验证
通过重复实验或对比实验,验证结果的可靠 性和准确性。

超临界流体色谱法常用文档

超临界流体色谱法常用文档

压力效应:
SFC的柱压降大(比毛细管色谱大30倍),对分离有影响 (柱前端与柱尾端分配系数相差很大,产生压力效应);
超临界流体的密度受压力在临界压力处最大,超过该点, 影响小,超过临界压力20%,柱压降对分离的影响小;
压力效应:在SFC中,压力变化对容量因子产生显著影响, 超流体的密度随压力增加而增加,密度增加提高溶剂效率, 淋洗时间缩短。
超临界流体色谱法
一、超临界流体色谱的特点与原理 principle and character of supercritical fluid chromatography
1.超临界流体的特性。 对于某些纯物质来说,具有三相点 和临界点,如图所示,从图中可以 看出,物质在三相点,气、液、固 三态处于平衡状态,当处于临界温 度和临界压力以上时,则不论施加 多大压力,气体也不会液化,此时 即非气体,也非液体,而是以超临 界流体形式存在。
粘度 (g/cm.s)
10-4 10-4-10-3 10-2
2.原理
SFC的流动相:超临界流体;CO2、N2O、NH3 SFC的固定相:固体吸附剂(硅胶)或键合到载体(或毛 细管壁)上的高聚物;可使用液相色谱的柱填料。填充柱SFC 和毛细管柱SFC; 分离机理:吸附与脱附。组分在两相间的分配系数不同 而被分离; 通过调节流动相的压力(调节流动相的密度),调整组 分保留值;
CO2流动相,当压力改变:7.0→9.0×106 Pa,则: C16H34的保留时间 25min → 5min。
与GC法和HPLC法比较,因超临界流体的粘度接近于气相
CO2应色用最谱广泛的; 流动相,对溶质的传质阻力小,可以使用更高的流速 洗脱,因此SFC的分离速度快于HPLC而与GC相当;超临 对于某些纯物质来说,具有三相点和临界点,如图所示,从图中可以看出,物质在三相点,气、液、固三态处于平衡状态,当处于临

色谱分析法第十章 超临界流体色谱法

色谱分析法第十章 超临界流体色谱法

级),柱过程阻力小,可采用细长色谱柱以增加柱效。ቤተ መጻሕፍቲ ባይዱ
③超临界流体的扩散系数在气体和液体之间,具有较快的传质速
2
度,使分析速度加快(低于GC),峰形变窄,增加检测灵敏度。 ④通过变更流动相压力等参数可改变超临界流体的密度,即可改变 它的溶解能力、粘度和扩散系数,因此可以程度不同地改善色谱分 离效能。在SFC系统中,设定变更流动相压力程序是SFC分离分析工 作特点之一。 ⑤可作流动相的超临界流体的物质较多,易得,便宜,优于HPLC流 动相的选择。 ⑥SFC系统中既可使用GC的检测器也可以使用HPLC的检测器。 10.1.3超临界流体色谱法的发展 10.1.4SFC系统流程图 SFC系统流程图见图10.1,流动相有两种情况输送:(1)常压
聚乙二醇齐聚物等,由于SFC的流动相能较好地溶解它们,因此可
以用SFC进行分析。实例如图10.23。
24
图10.23 CSFC 分析Triton-100
图10.24 CSFC对农药的分离
25
10.7.4甾族化合物
甾族化合物是一类含有羟基的极性异构体混合物,性质很相 近,极难分离,利用CSFC,采用选择性强的固定液可直接进行分
选用CO2比用NH3好,但常采用的是CO2和正戊烷作流动相,操作起
来更加方便。表10.1列出了一些化合物的临界物理性质。
4
10.2.2固定相 10.2.3柱压力
图10.2 恒温改变柱压力时正构烷烃的分离
5
图10.3 SFC法程序升压分离聚苯乙烯(M=2 100)
图10.4 裂解石脑油族分离SFC图
时为气体的流动相,可将高压气瓶中流动相减压至所需压力或用泵
增加压力输送到色谱柱;(2)在室温常压下时为液体的流动相, 采用无脉动注射泵来输送。

5超临界流体色谱法

5超临界流体色谱法

超临界流体:在高于临界压力与临界温度时,物质的一种状态。

性质介于液体和气体之间。

超临界流体即不是气体,也不是液体,而且一种介于二者之间的一种对分离很有利的流体。

图:纯物质的相图幻灯片66.1 超临界流体色谱法概述超临界流体(Supercritical fluid, SF):性质介于液体和气体之间§气体的低粘度,传质阻力小,可以快速高效的分离;§液体的高密度,适于低温下分离热不稳定、分子量大的物质SFC的扩散系数、粘度和溶解力都是密度的函数,可通过改变SFC的密度调节组分分离。

超临界流体的密度和压力有关。

幻灯片76.1 超临界流体色谱法概述超临界流体色谱(s u p e r c r i t i c a l f l u i d c h r o m a t o g r a p h y):以超临界流体做流动相依靠流动相的溶剂化能力来进行分离、分析的色谱过程。

1869年,Andrews首先发现临界现象以来,各种研究工作陆续展开:1958年,James Lovelock首次提出设想。

1962年,Klesper第一篇关于用超临界流体二氯二氟甲烷和二氯二氟甲烷作的流动相,分离镍卟啉异构体。

1966年,正戊烷为流动相,分析多环芳烃、染料和环氧树脂。

1968年,Gidding等以CO2和氨为流动相,分析核苷、糖、氨基酸、甾醇、类固醇、类胡萝卜素等。

1981年,Novotay &Lee利用了毛细管柱超临界流体色谱才完善技术。

幻灯片86.2 超临界流体色谱的分类超临界流体色谱分类根据所用色谱柱不同填充柱超临界流体色谱packed column supercritical fluid chromatography, pcSFC毛细管超临界流体色谱capillary supercritical fluid chromatography根据色谱过程的用途分析型SFC制备型SFC(超临界二氧化碳作为流动相)幻灯片96.3 超临界流体色谱法的特点超临界流体(Supercritical fluid, SF)传质阻力小,可得到快速高效的分离;在较低温度下,可分析热不稳定性和分子量大的物质,同时还能增加柱子的选择性;流体的密度可改变流体的性质。

超临界流体和超临界流体色谱总结

超临界流体和超临界流体色谱总结


SFC可调参数

固定相 流动相以及组成 夹带剂Co-solvents 添加剂Additives 温度Temperature 压力Pressure



SFC适用范围
SFC适用范围很广 理论上,能够用HPLC分离和测定的化合物, 都可以用SFC来分离和测定 某些用HPLC不能分离的物质,用SFC也能得 到较好的分离效果。
SFC添加剂Additive

对于强极性的化合物仅加入极性改性剂是不够的 为实现对强极性物质的SFC分离,在改性剂中加入 了微量的强极性有机物(称之为添加剂) 成功地分离了有机酸和有机碱



流动相中微量强极性添加剂的加入拓宽了SFC的适 用范围
举例: 例如,加入 0.05% 到0.5%三乙胺 (triethylamine)或者二乙基甲胺(diethyl methylamine)到改性剂中一辅助胺的洗脱 加入0.05 % 到0.5% 乙酸(acetic acid)或者三 氟醋酸酐 (trifluoroaceticacid)等来辅助洗 脱酸性的物质. 少量 (1-10mM) volatile salts挥发性盐 (醋酸 胺ammonium acetate) 的加入可以辅助洗脱极性 和离子分析物.
SFC发展




SFC始于20世纪60年代。 直到20世纪80年代早期开发成功了空心毛细管柱式SFC, 应用于分析领域。 随着微柱高效液相色谱(HPLC)的发展,出现了填充柱式 SFC。这类色谱采用HPLC普遍使用的柱子和填料,根据 流动相的特点,由HPLC改装而成,成功地用于分析某些 热敏性、低挥发性、极性化合物。 由于超临界流体的高扩散性和低粘性,使分离速度加快, 同时由于密度的变化可直接影响流动相的溶剂化能力,因 此可通过改变影响密度的因素(如压力、温度等)较容易地 使欲分离物质从流动相中分离出来,收集起来。因此,填 充柱式SFC不仅可用于物质的分析,而且在此基础上发展 了制备型SFC。

超临界流体色谱-Agilent

超临界流体色谱-Agilent

超临界流体色谱超临界流体色谱基础导论Terry A. Berger本文中的信息、说明和指标如有变更,恕不另行通知。

© 安捷伦科技公司,20152015 年 7 月 1 日,中国印刷5991-5509CHCN目录目录 III前言 VI作者简介 XI引言 XIII符号 XIV缩写 XIV1 超临界流体色谱简介 11.1 什么是 SFC 11.2 为什么采用 SFC 21.3 SFC 能够分离哪些化合物 121.4 这一名称的含义 162 流动相 192.1 为什么使用 CO2 192.2 使用 100% CO2 212.3 改性剂或共溶剂 232.4 添加剂 312.5 添加水以扩展溶质极性 343 固定相 353.1 材料 353.2 非手性键合相 353.3 固定相比较 403.4 填料粒径与色谱柱尺寸之间的关系 413.5 推荐的色谱柱尺寸 453.6 用于手性分离的色谱柱 48III4 流动相变量对保留值和选择性的影响 494.1 改性剂浓度 494.2 温度 504.3 压力 534.4 流速 554.5 可控变量对保留时间和选择性的影响概述 575 方法开发 585.1 溶质与固定相极性的匹配 585.2 极性窗口 605.3 入门指南 605.4 极性溶质 615.5 低极性溶质 645.6 多变量方法 656 非手性分离 666.1 案例研究 1 —典型的低极性样品 666.2 案例研究 2 —中等极性样品 716.3 案例研究 3 —磺胺类药物 836.4 其他结果 897 手性分离 907.1 背景 907.2 对映体过量率测定 917.3 用于手性分离的正相技术 917.4 可控变量对手性分离的影响 937.5 开发手性方法 98 IV8 SFC 定量分析 103 8.1 验证阶段 103 8.2 开发方法用于定量分析饮料和食品中的山梨酸盐、苯甲酸盐和咖啡因 105 8.3 校正 108 8.4 苯甲酸盐、山梨酸盐和咖啡因的定量分析结果总结 1168.5 手性分离 1169 仪器注意事项 121 9.1 泵 121 9.2 UV 检测器优化 124 9.3 双梯度 137 9.4 自动进样器注意事项 138 9.5 其他 146 9.6 SFC 的超高性能 148 9.7 在 SFC 与 HPLC 之间切换的混合型系统 150 9.8 质谱接口 154 9.9 其他检测器 156参考文献159V前言作者 Terry Berger 在我们如今称之为超临界流体色谱 (SFC) 的领域中拥有独特的丰富经历,是撰写本基础导论的不二人选。

超临界流体色谱法

超临界流体色谱法

二、超临界流体色谱仪的结构与流程
instrument structure and the general process of SFC
1.结构流程
2.主要部件
(1)SFC的高压泵 SFC的高压泵
无脉冲的注射泵;通过电子压力传感器和流量检测器, 计算机控制流动相的密度和流量;
(2)SFC的色谱柱和固定相 SFC的色谱柱和固定相
(二)改性剂。 改性剂。 在SFC中,弱极性或非极性超临界流体流动相如CO2,对于一些极性化 合物的溶解能力较差。为了加强其对极性溶质的溶解和洗脱能力,常常向其 中加入一定比例的极性溶剂称为改性剂,加入的量一般为1%-5%,以甲醇 最常用,其次是其他脂肪醇,表中列出了部分适于二氧化碳的改性剂及应用 特性。 表 常用CO2改性剂 CO2改性剂 甲醇 检测方法 UVD MS FIDC(用量应少 于1%) 脂肪醇 四氢呋喃 2- 基乙醇 UV MS UV MS UV CO2改性剂 脂肪 二甲基亚砜 乙 二氧甲烷 甲醇 二氧化碳 水 检测方法 UV UV UV MS UV MS UV MS FID UV MS FID UV MS FID
可以采用液相色谱柱和交联毛细管柱; SFC的固定相:固体吸附剂(硅胶)或键合到载体(或 毛细管壁)上的高聚物;专用的毛细管柱SFC;
色谱柱 ①填充柱 填充柱与HPLC柱相似,基于分配平衡实现分离,柱长可达 25cm,分离柱内径0.5-4.6mm。使用粒径为3-10m的填料 填充。如硅胶、-NH2、-CN及C18、C8等化学键合相均可用 于SFC。其中以极性填料的分离效果更好。SFC在手性化合 物的分离上效果优于HPLC。 在实际操作中,往往会因压力变化而产生较大的柱压降,使 柱入、出口处的保留时间有很大差异,所以一般采用高于超 临界压力20%左右的压力以减小影响。在填料的选择上也要 注意与所分析的样品相适应,如分析极性或碱性化合物时, 填料覆盖度小,会产生不对称峰。若使用“封端”填料则会 得到改善。

超临界流体色谱法

超临界流体色谱法
1.超临界流体的特性。
较长用的填充毛细管柱内径≤,柱长为10-30mm; 填充柱与HPLC柱相似,基于分配平衡实现分离,柱长可达25cm,分离柱内径。
❖ 在实际操作中,往往会因压力变化而产生较大的柱压降,使柱入、出口处的保留时间有很大差异,所以一般采用高于超临界压力20%
开管毛细管柱主要是内径为50-100μm化学交连的各 左右的压力以减小影响。
CO2流动相,当压力改变:7.0→9.0×106 Pa,则: C16H34的保留时间 25min → 5min。
与GC法和HPLC法比较,因超临界流体的粘度接近于气相 色谱的流动相,对溶质的传质阻力小,可以使用更高的流速 洗脱,因此SFC的分离速度快于HPLC而与GC相当;超临 界流体的扩散率介于GC和LC之间,因而峰展宽小于在气体 中。
SFC中的流动相不是惰性的传输介质,这不同于GC而与 LC一样,溶质与流动相间有相互作用,利用此点可调控选 择因子α
当考虑溶质分压时,也可利用SFC的两重性,即被测物 质在超临界流体中的溶解性非常接近其挥发性,而发生温
度却较低,因此,在一定压力下,超临界流体溶解的分子
的分压比在气体中高几个数量级,这就可以实现对大分子、 热不稳定性化合物、 高聚物等的有效分离。
操作简便,也有用微填充柱的,将3-10μm的填料填
充到内径几个毫米或更小的毛细管柱中。
与GC法和HPLC法比较,因超临界流体的粘度接近于气相色谱的流动相,对溶质的传质阻力小,可以使用更高的流速洗脱,因此SFC的分
②毛细管柱 离速度快于HPLC而与GC相当;
❖ 表对气体、液体、和超临界流体的有关物理性质进行了比较。

超临界流体对于分离具有极其有用的物理性质,这些性 质恰好介于气体和液体之间。表对气体、液体、和超临界 流体的有关物理性质进行了比较。

sfc超临界制备色谱

sfc超临界制备色谱

sfc超临界制备色谱
SFC(Supercritical Fluid Chromatography,超临界流体色谱)是一种基于超临界流体作为流动相的色谱技术。

它结合了液相色谱和气相色谱的优点,具有高效、快速、环境友好等特点。

SFC超临界制备色谱是在SFC技术基础上进行的制备级别的分离和纯化。

下面是SFC超临界制备色谱的详细步骤:
1. 准备样品:将需要分离和纯化的化合物溶解在适当的溶剂中。

2. 准备流动相:选择适当的超临界流体作为流动相,常用的超临界流体有二氧化碳(CO2)和乙醇等。

将超临界流体通过压缩和升温使其达到超临界状态。

3. 准备色谱柱:选择适当的色谱柱,常用的填料材料有硅胶、炭、硅胶凝胶等。

色谱柱的尺寸和填料粒径根据需要进行选择。

4. 装载样品:将准备好的样品溶液通过自动进样器或手动装载器装载到色谱柱中。

5. 进行分离:打开流动相的阀门,使超临界流体通过色谱柱,样品在超临界流体中进行分离。

通过调整流动相的温度、压力和流速等参数,控制分离过程。

6. 收集分离物:根据需求,设置适当的检测器来监测分离
物的出 eluent。

根据分离物的特性,可以选择采用紫外检测器、质谱仪等进行检测。

7. 分析和纯化:根据分离物的特性和纯化要求,对分离物进行进一步的分析和纯化。

可以采用旋转蒸发、结晶、溶剂萃取等技术来获得纯化的化合物。

需要注意的是,SFC超临界制备色谱的操作条件和参数需要根据具体的样品和分离要求进行优化和调整,以获得最佳的分离效果和纯化效果。

超临界色谱

超临界色谱

样品前处理
水分和盐等物质对提取率有明显影响,建议
应该对样品进行必要的均质化过程 (homogenization)和适当的干燥处理,干燥剂 通常有硅藻土
(HMX)、干冰、无水硫酸钠、无水硫酸镁、
无水硫酸铜等。
pH值 水分含量
改变pH值会影响对农药的提取
样品中水分含量对农药提取有明显影响
(4)被溶解的物质迁移到固体外部表面;(5)被溶解物
通过外部界面并有可能发生相变;(6)被溶解物进入
超临界流体主相并随流体一起离开固体物料主

体而被萃取出。
超临界CO2特点
(1)提取温度低,能最大限度地避免对有效成分的破 坏; (2)对难挥发性物质溶解度大,传质速率高,萃取速 度快; (3)可通过改变操作温度和压力来调节可选择性; (4)流程简单,操作方便; (5)C02惰性无毒,产品中无溶剂残留,对人和环境 无
SCF的应用研究Biblioteka 德国建立从咖啡豆中提取咖啡因的工厂.
法国和英国也相继建立起超临界流体二氧化
碳萃取啤酒花工厂。 美国采用超临界二氧化碳萃取法(SCFE)提取 豆油获得成功.产品质量大幅度提高,井解 决了污染问题
SCF的应用研究
咖啡中含有的咖啡因对人体有害。西德
Max—Plank煤炭研究所的 Zesst博士开发了 用该技术从咖啡豆提取咖啡因的专利技术 美国ADL公司用此技术开发出提取酒精的方 法.还开发了从油腻的快餐食品中除去过多 的油脂.而不失其原有色香味及保有其外观 和内部组织结构的专利技术。
如 水的临界点为374℃和220个大气压;CO2的临界点为31℃ 和73个大气压;甲醇的临界点239℃和79个大气压

二氧化碳的相图

超临界色谱原理

超临界色谱原理

超临界色谱原理
超临界色谱(Supercritical Fluid Chromatography,简称SFC)是一种涉及超临界流体的色谱技术。

超临界流体是一种介于气态和液态之间的状态,通常是将液体提升至临界点以上的温度和压力条件下获得。

超临界色谱的原理是基于溶剂的选择性溶解性质。

通常,超临界流体用作固定相,样品经溶解于流体中并通过色谱柱进行分离。

不同于传统液相色谱中使用的有机溶剂,超临界流体具有较低的粘度和较高的扩散系数,从而提供了更好的柱效和较快的分析速度。

超临界色谱的分离机理主要涉及流体与样品分子之间的物理化学作用。

超临界流体具有高溶解度和低粘度,可与样品中的非极性和中等极性化合物发生较强的相互作用。

此外,超临界色谱还可以通过调节流体的温度和压力来改变其溶剂力,实现对不同极性化合物的选择性提取。

超临界色谱在分析和制备化学中具有广泛的应用。

它不仅可以用于食品、环境、制药和天然产物等领域的分析,还可以用于提取和纯化目标化合物。

与传统液相色谱相比,超临界色谱具有更高的速度、更好的分离效果和较低的溶剂消耗,因此被认为是一种更环保和可持续发展的色谱技术。

超临界流体色谱

超临界流体色谱
超临界流体色谱
主要内容
超临界流体色谱概述 流动相 固定相 检测器及联用技术 应用 展望
概述
超临界流体(supercritical liquid) ——高于临界压力与临界温度时物质的一种状态
常用的超临界流体
CO2、H2O、NH3、N2O、丁烷等
超临界流体的性质
性质介于气体和液体之间
名称 常压气体(15~60℃) 超临界流体(Tc, Pc) 超临界流体(Tc,4Pc) 液体(有机溶剂、水, 15~60℃) 密度( 密度(g/mL) ) (0.6~2)×10-3 0.2~0.5 0.4~0.9 0.6~1.6 粘度系数 (gcm-1s-1) (1~3)×10-4 (1~3)×10-4 (3~9)×10-4 (0.2~3)×10-2 扩散系数 (cm2s-1) 0.1~0.4 0.7×10-3 0.2×10-3 (0.2~2)×10-2
在测量红外光谱前消除流动相的干扰 直接测量流动相存在下的投射光谱
SFC-NMR
采用CO2 为流动相,无质子,大大方便了溶质NMR 的测定
SFC的应用
食品和天然产物 药物分析 手性分离 其它应用
食品和天然产物
测定牛奶中乳清素
在CO2流动相中添加20%的甲醇及0.25%三氟乙酸 作改性剂,于填充柱上分离,检测波长为280nm。 在测定范围内,对照品浓度与峰面积呈良好的线性 关系(r=0.9991)。分析过程迅速,3min即可完成 ,且样品前处理简单
作用机理
使一些物质溶解度增大,改变了分离选择性
SFC的固定相
固定相的要求:
抗溶剂冲刷、化学稳定性好、热稳定性好等
常用的固定相
填充柱 小颗粒键合硅胶或硅胶填料 毛细管柱 键合到毛细管壁上的高聚物

超临界流体色谱

超临界流体色谱
从其溶剂力上考虑是很好的溶剂,但是在用高压泵 压缩时很困难(超临界NH3容易溶解泵的封口),而 且其化学性质活泼,常规使用时危险。甲醇也是一 个极好的溶剂,但因它的临界温度高而且在常压状 态下是液体,故较少使用。
在萃取强极性的组分时,用单纯的CO2会 遇到困难,解决的办法有三种:
①选择更强溶剂力的流体或混合流体代替CO2;
从80年代起,SFE技术的发展呈现出了前所未有 的势头,成为分析化学中一种新的样品制备手段。 与索氏抽提和液一液萃取等传统方法相比,SFE具有 效率高、费时少、不使用或少使用有毒溶剂、萃取 流体易与萃取物分离、自动化程度高等优点,因而 日益受到化学工作者的重视,SFE技术的应用在食品、 石油、化工、医药、环境保护等领域都有了很大发 展。到了90年代,对各种环境样品中微量污染物的 萃取成为SFE应用的热点。
溶剂力与异丙醇( δ= 10.8)和吡啶( 10.7) 相当,对于非极性的香料如烷烃和萜烯(δ=6~8)
来说,CO2是极好的萃取剂;对于中等极性的香料和 多环芳烃(PAHs)、多氯联苯(PCBs)、醛、酯、
醇、有机氯杀虫剂和脂肪(δ= 8~11),CO2也是 比足较够合的适溶的剂。力但 。是NH对3(于更δ=大1极3.性2)的的化溶合剂物力CO比2则乙没醇有强,
咖啡、茶的脱咖啡因、啤酒花膏的萃取
植物色素的萃取(辣椒、栀子)
酒精饮料的软化
能源工业
煤成分的萃取(杂酚油、焦油等) 煤炭液化油的萃取及脱灰 石油残油的脱沥青、脱重金属
原油的三次采油
天然香料的萃取,合成香料的分离精制
香料化妆品 烟草的脱尼古丁
工业
化妆品原料的萃取精制(表面活性剂、单甘油酯等)
烃的分离 有机合成原料的精制 共沸混合物的分离

超临界流体色谱法原理

超临界流体色谱法原理

超临界流体色谱法原理超临界流体色谱(Supercritical Fluid Chromatography,简称SFC)是一种基于超临界流体作为流动相的色谱分析技术。

相比传统的液相色谱和气相色谱,SFC具有高效分离、较快速度、较低操作温度、减少有机溶剂使用量等优点。

其原理是利用超临界流体的高扩散性和调节性溶解性来实现样品组分的分离和分析。

超临界流体是指温度和压力均高于其临界点的流体,常见的超临界流体有二氧化碳(CO2)和氨(NH3)。

超临界流体具有类似液相和气相的物理和化学性质。

与液相色谱相比,超临界流体的扩散系数更高,熵效应高,因此在SFC中具有更好的分离能力。

同时,超临界流体的溶解力可以通过改变温度、压力和流体组分来进行调节,从而实现对分析物的选择性溶解和分离。

超临界流体色谱的工作原理可以分为两个步骤:样品溶解和分离。

首先,将待分析的样品溶解在超临界流体中,形成一个混合物。

然后,将混合物从系统进样口注入分离柱,分离柱中填充有吸附剂。

样品在混合物中与吸附剂相互作用,根据样品与吸附剂之间的亲疏性选择性吸附在吸附剂上。

最后,在流动相的驱动下,样品分离后被逐个洗脱出来,并通过检测器进行检测和定量。

分离程度和选择性可以通过调节超临界流体的温度、压力、流速和选择性吸附剂等因素来控制。

超临界流体色谱法在药物分析、天然产物分离纯化、环境监测等领域具有广泛的应用前景。

通过优化超临界流体的选择和操作参数,可以实现对不同极性和疏水性分子的高效分离和纯化。

此外,超临界流体色谱还可以与其他色谱分离技术(如高效液相色谱、气相色谱等)进行联用,提高分析灵敏度和分析效果。

总结起来,超临界流体色谱法利用超临界流体的高扩散性和调节性溶解性实现分析样品的分离和分析。

其原理是将待分析样品溶解在超临界流体中,样品与填充在分离柱中的吸附剂相互作用,根据样品与吸附剂之间的亲疏性选择性吸附和分离。

超临界流体色谱在药物分析、天然产物分离纯化、环境监测等领域具有广泛的应用前景。

超临界流体色谱

超临界流体色谱

超临界流体色谱
超临界流体色谱(SFC)是一种新兴的分离技术,它利用超临界流体(SCF)作为溶剂,以改变物质的溶解度,从而实现分离。

超临界流体色谱技术具有良好的分离性能,可以有效地分离复杂的混合物,并且具有较高的灵敏度和精确度。

超临界流体色谱技术的优势在于它可以使用温和的条件,从而避免了传统溶剂萃取技术中的温度和压力的控制问题。

此外,超临界流体色谱技术还可以有效地减少溶剂的使用量,从而降低成本。

超临界流体色谱技术的应用非常广泛,可以用于分离和分析复杂的混合物,如药物、植物提取物、食品添加剂、环境样品等。

此外,超临界流体色谱技术还可以用于分离和分析有机物、无机物和生物分子。

超临界流体色谱技术的发展为分离和分析复杂混合物提供了新的选择,它具有良好的分离性能,可以有效地减少溶剂的使用量,并且可以在温和的条件下进行分离和分析。

超临界流体色谱技术的发展将为分离和分析复杂混合物提供更多的可能性,为科学研究提供更多的便利。

超临界流体色谱法简介

超临界流体色谱法简介
(2)与气相色谱法比较 出于流体的扩散系数与 粘度介于气体和液体之间,因此SFC的谱带展宽比GC 要小;另外,SFC中流动相的作用类似LC中流动相, 流体作流动相不仅载带溶质移动,而且与溶质会产生 相互作用力,参与选择竞争。还有,如果我们把溶质 分子溶解在超临界流体看作类似于挥发,这样,大分 子物质的分压很大,因此可应用比GC低得多的温度, 实现对大分子物质、热不稳定性化合物、高聚物等的 有效分离。
(2)超临界流体的特性
超临界流体具有对于分离极其有利的物理性质。 它们的这些性质恰好介于气体和液体之间。超临界 流体的扩散系数和粘度接近于气相色谱,因此溶质 的传质阻力小,可以获得快速高效分离。另一方面, 其密度与液相色谱类似,这样就便于在较低温度下 分离和分析热不稳定性、相对分子质量大的物质。 另外,超临界流体的物理性质和化学性质,如扩散、 粘度和溶剂力等,都是密度的函数。因此,只要改 变流体的密度,就可以改变流体的性质,从类似气 体到类似液体,无需通过气液平衡曲线。超临界流 体色谱中的程序升密度相当于气相色谱中程序升温 度和液相色谱中的梯度淋洗。
超临界流体色谱法被广泛应用于天然物、 药物、表面活性剂、高聚物、多聚物、 农药、炸药和火箭推进剂等物质的分离 和分析。
四.超临界流体色谱的应用
application of SFC
1.聚苯醚低聚物的分析
色谱柱:10m× 63μm i.d. 毛细管柱,
固定相:键合二甲基聚硅氧烷; 流动相:CO2 ;柱温:120 C;
(3)HPLC 与SFC 范氏曲线 比较
(4)应用范围的比较
( 图20-s7描绘了SFC与其他色谱 方法测定相对分子质量范围的比较。由 图20-s7看出SFC比起GC法测定相对分 子质量的范围要大出好几个数量级,基 本与LC法相当。当然,尺寸排阻色谱 法(SEC)所测分子质量范围是所有色 谱法中最大的。

色谱分析超临界流体色谱法

色谱分析超临界流体色谱法
表 常用CO2改性剂
CO2改性剂
甲醇
脂肪醇 四氢呋喃 2- 基乙醇
检测方法
UVD MS FIDC(用量应少 于1%)
UV MS UV MS UV
CO2改性剂
脂肪 二甲基亚砜 乙 二氧甲烷
甲醇 二氧化碳 水
检测方法
UV UV UV MS UV MS
UV MS FID UV MS FID UV MS FID
2021/3/10
11
❖ 色谱柱
❖ ①填充柱
❖ 填充柱与HPLC柱相似,基于分配平衡实现分离,柱长可达 25cm,分离柱内径0.5-4.6mm。使用粒径为3-10µm的填料 填充。如硅胶、-NH2、-CN及C18、C8等化学键合相均可用 于SFC。其中以极性填料的分离效果更好。SFC在手性化合 物的分离上效果优于HPLC。
1.结构流程
2021/3/10
10
2.主要部件
(1)SFC的高压泵
无脉冲的注射泵;通过电子压力传感器和流量检测器, 计算机控制流动相的密度和流量;
(2)SFC的色谱柱和固定相
可以采用液相色谱柱和交联毛细管柱; SFC的固定相:固体吸附剂(硅胶)或键合到载体(或 毛细管壁)上的高聚物;专用的毛细管柱SFC;
压力大于临界压力时,该物质处于超临界状态。
温度及压力均处于临界点以上的液体叫超临界流体
(supercritical fluid,简称SCF)。
例如:当水的温度和压强升高到临界点(t=374.3 ℃,
p=22.05 MPa)以上时,就处于一种既不同于气态,也不同于
液态和固态的新的流体态──超临界态,该状态的水即称之
超临界流体的定义:
纯净物质根据温度和压力的不同,呈现出液体、气体、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

00:24:49
一,超临界流体色谱的特点与原理 一,超临界流体色谱的特点与原理
principle and character of supercritical fluid chromatography
1.概述
超临界流体:在高于临界压力与临界温度时,物质的一 超临界流体 种状态.性质介于液体和气体之间. 超临界流体色谱(SFC),80年代快速发展,具有液相, 气相色谱不具有的优点: 可处理高沸点, ( 1 ) 可处理高沸点, 不挥发试 样; LC有更高的柱效和分离 ( 2 ) 比 LC 有更高的柱效和分离 效率. 效率.
(1)SFC的高压泵 SFC的高压泵
无脉冲的注射泵;通过电子压力传感器和流量检测器, 计算机控制流动相的密度和流量;
(2)SFC的色谱柱和固定相 SFC的色谱柱和固定相
可以采用液相色谱柱和交联毛细管柱; SFC的固定相:固体吸附剂(硅胶)或键合到载体(或 毛细管壁)上的高聚物;专用的毛细管柱SFC;
第十章 液相色谱分析法
high performance liquid chromatograph
第六节 超临界色谱
supercritical fluid chromatograph, SFC
一,超临界流体色谱的特点 与原理 feature and principle of SFC 二,超临界流体色谱仪的结 构流程 structure and general process of SFC 三,超临界流体色谱的应用 application of SFC
第四节 影响分离的因素与操作条件选择
factors influenced separation and choice of operation condition
第五节 离子色谱法
ion chromatograph
第六节 超临界流体色谱
supercritical fluid chromatograph
00:24:49
压力效应: 压力效应:
SFC的柱压降大(比毛细管色谱大30倍),对分离有影 响(柱前端与柱尾端分配系数相差很大,产生压力效应); 超临界流体的密度受压力在临界压力处最大,超过该点 ,影响小,超过临界压力20%,柱压降对分离的影响小; 压力效应:在SFC中,压力变化对容量因子产生显著影 响,超流体的密度随压力增加而增加,密度增加提高溶剂效 率,淋洗时间缩短. CO2流动相,当压力改变:7.0→9.0×106 Pa,则: C16H34的保留时间 25min → 5min.
00:24:49
主要部件
(3)流动相
SFC的流动相:超临界流体;CO2,N2O,NH3 CO2应用最广泛;无色,无味,无毒,易得,对各类有机 物溶解性好,在紫外光区无吸收;缺点:极性太弱;加少量甲 醇等改性;
(4)检测器
可采用液相色谱检测器,也可采用气相色谱的FID检测器
00:24:49
三,超临界流体色谱的应用 三,超临界流体色谱的应用
application of SFC 1.聚苯醚低聚物的分析
色谱柱:10m× 63μm i.d. 毛细管柱, 固定相:键合二甲基聚硅氧烷; 流动相:CO2 ;柱温:120 °C; 程序升压;
00:24:49
2.甘油三酸酯的分析 2.甘油三酸酯的分析
四种组分仅双键 数目和位置不同,难 分离; 色谱柱:DB-225 SFC毛细管柱; 流动相: CO2 ;从 15MPa程序升压到 27MPa;2.5hr完全分 离.
00:24:49
2. 超临界流体性质
(1)性质介于液体和气体之间; 性质介于液体和气体之间; 具有气体的低黏度, 液体的高密度, 具有气体的低黏度 , Байду номын сангаас体的高密度 , 扩散系数位于两 者之间. 者之间. 可通过改变超临界流体的密度(程序改变) (2)可通过改变超临界流体的密度(程序改变)调节组分 分离( 类似于气相色谱的程序升温 , 液相色谱中的梯度淋 分离 ( 类似于气相色谱的程序升温, 洗). 超临界流体的密度与压力有关. 超临界流体的密度与压力有关.
00:24:49
结束

00:24:49
3.原理 3.原理
SFC的流动相 的流动相:超临界流体;CO2,N2O,NH3 的流动相 SFC的固定相 SFC的固定相:固体吸附剂(硅胶)或键合到载体(或毛 的固定相 细管壁)上的高聚物;可使用液相色谱的柱填料.填充柱SFC 和毛细管柱SFC; 分离机理: 分离机理:吸附与脱附.组分在两相间的分配系数不同 而被分离; 通过调节流动相的压力(调节流动相的密度),调整组 分保留值;
00:24:49
内容选择
第一节 高效液相色谱的特点与仪器
feature and instrument of HPLC
第二节 基本原理与主要分离类型
basic principle and main separating types
第三节 固定相与流动相
stationary phase and mobile phase
00:24:49
程 序 升 压
00:24:49
HPLC与 HPLC与SFC 比较
00:24:49
二,超临界流体色谱的结构与流程 二,超临界流体色谱的结构与流程
instrument structure and the general process of SFC
1.结构流程
00:24:49
2.主要部件 2.主要部件
相关文档
最新文档