D数控系统调试步骤
西门子D数控系统的参数设定
西门子840D数控系统的参数设定摘要本文主要针对以西门子840D为控制乐境的数控机床,对算机床数据的调整进行了分析,同时对机床限住的设定与驱神的配王进行了论述;关键词保护级别有效方式设定配置l 概述随着电站经济的飞跃发展,对电站产品的加工设备的要求越来越高,对机械加工的要求也越来越高,如高低压加热器的管板,冷凝器的隔板等加工,这些都必须用数控机床来完成;我国在80年代初进口了许多数控机床,其采用的数控系统十分多样化,其中西门子840D数控系统由于其强大的功能,优越的性能,已越来越被广大厂商的各种数控机床所采用,但西门子公司所提供的标准数据并不一定完全适合机床,因些很有必要进行参数的设定与调整;2 相关问题在对机床参数进行调整前,有两个与数据调整有关的问题需要特别注意的:西门子数据的保护级别和数据写入有效的方式;2.1 数据的保护级别西门子共设有7个等级的数据保护级别见表1,级别0是最高的而级别7是最低的,高级别向下兼容低级别;在修改数据的时候,若设定的Password级别不够高,将无法修改某些特定的机床参数;具体修改密码的方法是在操作面板OP上依次按如下的软2.2 数据有效的方式数据修改后并不全是简单的就能有效,840D数控系统提供了多种数据有效的方式,而具体采用哪种方式又取决于所修改数据的参数类型;数据的类型及其生效的方式共有如下几种:1POWER ONof生效方式是按操作2NEW-CONFcf生效方式是按操作面板的或者按机床控制面3RESETre按机床控制面板上的l 键生效4II~ F_,DLt,TEs0数据输人后即可生效3 参数的设定与调整西门子840D数控的控制系统参数是由机床数据MD与设定数据sD组成,机床数据与设定数据的数据范围及其定义见表2所示;由表2中可以看出,机床数据MD主要由通用,特别通道,特别轴等机床数据构成;设定数据sD由通用,特别轴,特别通道设定数据组成;西门子840D数控数据的调整就是对通用数据,通道数据,轴数据和设定数据的调整;现在就对通用机床数据,特别通道机床数据和特别轴机床数据中要设定调整的数据进行分析;3.1 设定通用机床数据MD1000 用于定义轴名称MD10050 定义基本时间;位控;插补时间均是以此为基础MD10060 位控时间系数MD1O070 插补时间系数MD10200 内部计算精度对直线轴,缺省值为小数点后3位MD10210 内部计算精度对旋转轴,缺省值为小数点后3位在此需注意的是:MD18D0后面的通用机床数据;对它们修改时,会引起DRAM区的重新分配,造成数据的丢失;因此在对此类数据修改完成后,要先进行“Atvhive”存档,存档之后再取出,系统会自动进行数据分配;3.2 设定特别通道机床数据MD20050 定义通道中几何轴的数量MIV20060 定义通道中几何轴的名称MD2D70 定义通道中机械轴的数量MD20080 定义通道中机械轴的名称MD207IO 设为1,NC启动时需回参考点;设为0,则不需要在对MIY20OS0设置时,参数名称的前缀定要与MD10300数据的前缀保持一致,而后缀可以不一样,如X+X1;3.3 设定特别轴机床数据MD30130 定义值输出的类型;设成“0”为模拟输出,“1”为指令输出MD30240 设定测量系统的类型; 0’为无测量系统;“1”为增量测量系统; 2为绝对测量系统MD3030O 定义直线轴脯转轴;“0”为直线轴,“1”为旋转轴MD31010 设定光栅尺的栅距,该值要与实际栅距相符MD31040 定义编码器是否直接测量;“0”为否,“1 为是MD32000 设定轴的最大速度MD36200 设定轴的最大上限速度,应大于MD320D的设定MD36020 设定轴监控的精停延时值4 软硬限位的设定在西门子840D数控系统中共为用户提供了四个与机床软限位有关的参数,它们分别为:MD36100 第一负软限位MD36120 第二负软限位MD36110 第一正软限位MD36130 第二正软限位这四个软限位所设定的数值与机床硬限位位置之间的关系如图1所示;从图中可以看出,第一,第二正负限位所设定的数值都应在正负方向硬限位的位置之问,而第二软限位的取值在第一正负软限位的数值之间;在第一与第二软限位的取值中只能一个有效;而且在完成对软限位的数值设定后,机床必须回参考点以后才能使设定有效;5 驱动的配置在对特别轴机床数据进行设定调整的同时,还需要对轴的驱动进行配置;具体步骤如下:1将NCU上的s3开关拨至 1档一NCK RESET,清空Nc一再将s3开关拨至 0档,调出标准的机床数据2设置等级保护密码为:Sunrise3依次按如下软键分别在X;Y界面下修改30130= 1;302400= 1一NCK Reset6 结束语以上只是对840D数控系统的众多参数中几个重要的数据设定诃整进行了简单的分析,以及对软硬限位的设定和驱动的配置进行了讨论;对西门子840D数控参数的调整过程就是将840D数控系统与机床紧密相结合的过程,在实际工作时必须结合机床的具体情况,具体线路,才能真正做到切实有效;。
FANUC 0i-D 系统参数设定的基本方法
FANUC 0i-D系统参数设定的基本方法
任务内容
FANUC 0i-D/0i Mate-D数控系统参数的类型
典型参数的表达方式
参数的显示与搜索
用MDI方式设定参数
数控系统上电全清
FANUC 0i-D数控系统具有丰富的机床参数。
数控系统参数是数控系统用来匹配数控机床及其功能的一系列数据,数控系统硬件连接完成后,要对其进行系统参数的设定和调整才能保证数控机床正常运行,达到机床加工功能要求和精度要求;同时,参数设置在数控机床调试与维修中起着重要的作用。
一、FANUC 0i-D/0i Mate-D数控系统参数的类型
1、按照数控系统参数的控制功能分
根据数控系统各参数的控制功能,FANUC 0i-D/0i Mate-D数控系统参数类型及其功能见表1:
表1 FANUC 0i-D/0i Mate-D数控系统参数控制功能类型。
第七章西门子840D与810D数控系统安装与调试
SINUMERIK 840D 系统仅集成了 PLC 中央处理单元模块, 即 CPU 模块,数字 I/O 模块必须外挂。
840D 系统多采用 CPU315。 SINUMERIK 840D 系统集成的 PLC 与一般 PLC 原理基本相
PLC与进给轴/主轴驱动数据接口是DB31~DB61,DB31对应 轴1,DB32对应轴2,依次类推。常用的进给轴/主轴驱动内部 数据接口信号如表7-6所示。
表7-6常用的进给轴/主轴驱动内部数据接口信号(DB31~DB61)
7.5 840D PLC与NCK的接口信号
PLC与机床控制面板MMC之间的数据接口为数据块DB19和 DB2,DB19与MMC的操作有关,DB2与PLC状态信息有关, PLC程序把操作信号直接从MMC送到接口数据块,由基本程序 译码操作信号,以便响应操作者在MMC上执行的操作。
必须安装。 3.NCVar Selector—NC变量选择器,如果用到PLC读写NC变
量的功能(FB2/FB3),需要安装;否则,可不安装。 4.PLC Symbols Generator—PLC符号生成器,可不装。 选择完成后,按照提示即可将Toolbox安装完成。
7.3 PLC 与编程设备的通信
在STEP 7安装好后,为了调试PLC,我们通常要新建一个项目 (Project),其结构如图7-3所示。
调试PLC 的主要工作内容是 关于S7-Program★下的 Blocks 中的,我们需要在原 有程序中加进新的控制内容 或增加新的程序块(FB 或 FC 等)。
图7-3 STEP 7项目结构
机床辅助设备的控制是由PLC来完成的,它是在数控机床运行 过程中,根据CNC内部标志以及机床的各控制开关、检测元件、 运行部件的状态,按照程序设定的控制逻辑对诸如刀库运动、 换刀机构、冷却液等的运行进行控制。
数控机床参数的调试
是 % 参数号 $ $ $参数值为’ $ $ $ $$ 参 数 号 $ $ "参数值 为" * $ $ $ $$ 参数号 $ $ *参数值为) * $ $ $$ 参 数 号 $ $ # 参数值为 " / $ $ $ $" 由于 T ? " C "2T ? " C ’$T ? " G "2T ? " G ’ 行程设定为 无限大 " 但这种设定只能执 行 增 量 移 动 指 令 " 机 床 在 执 行绝对值编程零件加工程序 时 ! 空 运 行 超 程 报 警 是 理 所 当然的了 " 参数调整 % 根据加工 零 件 的 实 际 需 要 使 , > 平面坐 标 " 尽量靠近机床参考点 ! 使 , > 平面坐标’接近且小 于机床 , 轴 $> 轴最大行程 & 或参数设 定 范 围 的 负 最 大 值’ " 重新调整参数值 % 令参数号 $ $ $ 参数 值 为 " $ $ $ $$ 参数号 $ $ "参数值为" $ $ $ $$ 参 数 号 $ $ *参数值为4 $ # 参数 值 为 4’ * & $ $ $ $" 由 这 些 参 数 # $ $ $$ 参数号 $ 值所组成的 , 轴 $> 轴的软限位区间满 足 了 机 床 所 设 定 的最大加 工 零 件 的 尺 寸 要 求 ! 又 能 起 到 软 限 位 保 护 作 用 " 参数调整后重新起动 数 控 机 床 ! 超 程 报 警 解 除 ! 空 运行程序正常执行了 "
" ! ! " " #年 第 $ %期 !!!!"# $ % & ’ & ( ) ! $ *"! $ ’
D数控系统调试步骤
1.检查接线,PP72/48(de)地址拨码,MCP地址拨码开关PP72/48 PN S1: ON:1,4,9,10MCP:S2: ON:7,9,102.上电总清3.设置口令,时间,选择选项功能4.设置基本(de)机床参数N10000 $MN_AXCONF_MACHAX_NAME_TAB[0]="MX"N10000 $MN_AXCONF_MACHAX_NAME_TAB[1]="MZ"N10000 $MN_AXCONF_MACHAX_NAME_TAB[2]="MC"N10000 $MN_AXCONF_MACHAX_NAME_TAB[3]="MB"N10000 $MN_AXCONF_MACHAX_NAME_TAB[4]="MSP"N20050 $MC_AXCONF_GEOAX_ASSIGN_TAB[1]=0N20050 $MC_AXCONF_GEOAX_ASSIGN_TAB[2]=2N20070 $MC_AXCONF_MACHAX_USED[4]=5N20080 $MC_AXCONF_CHANAX_NAME_TAB[0]="X"N20080 $MC_AXCONF_CHANAX_NAME_TAB[1]="Z"N20080 $MC_AXCONF_CHANAX_NAME_TAB[2]="C"N20080 $MC_AXCONF_CHANAX_NAME_TAB[3]="B"N20080 $MC_AXCONF_CHANAX_NAME_TAB[4]="SP"N28050=300 number of R parameters设置Profinet上有效(de)模块MD12986[0]=-1 PP72/48 PNMD12986[6]=-1 MCPMD20310 bit9=1 将刀库设为模拟刀库MD20700=05.只下载MCP面板控制程序,其他程序不下载.6.驱动(de)调试7.检查PLC 输入点、输出点状态,检查接线是否有错误8.用户PLC程序调试9.报警文本(de)传入报警文本(de)初始文件需要在系统中进行创建,创建完初始文件后,拷贝到电脑中进行报警文本(de)编辑.PLC报警文本(de)传输路径如下图:PLC报警文本(de)编辑,在RCS中找到报警文本,在文件名称上点击右键在弹出(de)菜单中选择“Open with TS Editor”,弹出如上图中(de)窗口,在上图中(de)窗口中即可进行PLC报警文本(de)编辑.编辑好(de)报警文本下传到系统中再利用系统中(de)编辑功能进行报警文本显示颜色(de)修改.10.用户画面easy screen(de)传入(1)配置文件(de)拷贝:通过RCS或者U盘将文件:custom.ini,easyscreen.ini,slamconfig.ini,systemconfigration.ini 拷贝到目录System CF-Card/oem/sinumerik/hmi/cfg(2)图片文件(de)拷贝将图片文件拷贝到System CF-Card/oem/sinumerik/hmi/ico/ico640(3)画面文件(de)拷贝将文件custom拷贝到目录System CF-Card/oem/sinumerik/hmi/proj11.主轴参数(de)设置主轴参数设置,采用虚拟主轴.30300=130310=130320=130350=132000=2032010=20 JOG快速32020=10 JOG点动速度35000=135100=30035200= 速度环(de)加速度根据变频器(de)实际加速度进行设置. 36200=330DB9006.DBD8 给定转速乘倍率得到(de)速度DB9006.DBD4 给定转速。
西门子802D数控系统的连接与调试
西门子802D数控系统的连接与调试目录前言 (3)摘要 (4)1 SINUMERIK 802D数控装置组成模块的功能介绍及连接 (5)2 机床数据(MD)和设定数据(SD)的结构 (10)3 机床数据的输入 (11)4 控制器的上电和引导 (12)5 语言设定 (13)6 技术设定 (14)7 Profibusf 地址的设定 (14)8 坐标轴/主轴调试 (15)9 机床串行备份 (17)10 数据备份 (18)总结 (21)参考文献 (22)前言随着我国产业化程度的加速,产业结构的调整和升级,数控技术在现代企业中大量应用,使制造业朝着数字化的方向迈进。
数控技术水平的高低和数控设备拥有的多少已成为衡量一个国家工业现代化的重要标志。
微型计算机已经被用于数控系统,即:计算机数控系统。
采用了计算机的数控系统是由软件来实现其部分或全部的功能,具有良好的“柔性”,通过软件很容易改变或扩展其功能,以适应各类数控机床和特殊工件的要求。
也为柔性制造系统和计算机集成制造系统的发展奠定了基础。
大幅度的提高了生产效率。
数控技术水平的高低和数控设备拥有的多少已成为衡量一个国家工业现代化的重要标志。
数控机床作为机电一体化的典型产品,在机械制造中发挥着巨大的作用,很好地解决了现代机械制造中结构复杂、精密、批量小、多变零件的加工问题,且能稳定产品的加工质量,大幅度提高生产效率。
摘要论文介绍了802D数控系统的连接与调试方法,主要内容包括:SINUMERIK 802D数控装置组成模块的功能介绍及连接;机床数据(MD)和设定数据(SD)的结构;机床数据的输入;控制器的上电和引导;语言设定;技术设定;机床数据的输入;Profibusf 地址的设定;坐标轴/主轴调试;机床串行备份;内部数据备份;使用NC卡进行外部数据备份。
涉及到接口定义及连接方法的内容要求配有插图。
通过本论文的撰写,应该具备802D数控系统的硬件安装能力、802D电气控制系统的调试能力、SIMODRIVE 611UE伺服驱动器调试能力、数控车床电气系统故障诊断能力、802D数控机床数据备份能力、802D软件升级能力。
数控机床的参数调试
表7-3-3 发那科Oi-D参数号分类
起始参数号
功能
0000 0100
输入输出信号 参数 显示编辑参数
1000
编程参数
1200
螺补参数
1300
刀具补偿参数
1400
固定循环参数
1600
宏程序参数
1800
跳步功能参数
起始参数号 3000
3100 3400 3600 5000 5100 6000 6200
在参数设定支援画面上,将光标指向要进行初始化的项目。按下软键【操作】,显 示如下软键【初始化】,如图7-3-1。
03 数控机床的参数调试
图7-3-1 发那科Oi-D数控系统参数设定支 援画面
按下软键[初始化]。软键按如下方式切换,显示警告信息“是否设定初始值?”, 按下软键[执行],设定所选项目的标准值。通过本操作,自动地将该项目所包含的参数 设定为标准值。不希望设定标准值时,按下软键[取消],即可中止设定。另外,没有提 供标准值的参数,不会被变更。
03 数控机床的参数调试 (2)按照用途分类
用途 分类 路径 型
用途
与路径相 关的设定
轴 型
主轴 型
与控制轴 相关的设 定 与主轴相 关的设定
表7-3-2 发那科Oi-D数控系统参数用途分类
参数举例
03 数控机床的参数调试 (3)根据使用目的,参数号分类
功能 设定参数
输入/输出通道参数 轴控制参数 坐标系参数 软限位检测参数 速度参数 加减速参数 伺服参数
(5)主轴监视画面
主要是进行主轴状态的监视,如主轴报警、运行方式、速度、负载表等。按【 SYSTEM】键后按右扩展键出现【SP设定】软键,按下【SP监测】软键出现图7-3-7画 面。
第九章西门子840D与810D数控系统安装与调试
2. 垂度误差补偿用机床参数 MD18342:补偿表的最大补偿点数。 MD32710:激活补偿表。 MD32720:下垂补偿表在某点的补偿值总和的极
限值。系统对垂度补偿值进行监控,若计算的总垂 度补偿值大于MD32720中设定的值,将会发生 20124号“总补偿值太高”报警。840DE(出口型) 为1mm ,840D(非出口型)为10mm。 设定机床数据如下: SD41300:垂度补偿表有效。 SD41310:垂度补偿表的加权因子。
tan
(T
)
(T
T0
)
TK Tm a x
max
T0
图9-7 温度系数曲线图
二、热变形补偿系统的软硬件设计
1.硬件设计
在机床靠近丝杠处安装热电阻传感器,测量范围可 以为0℃~300℃,完全符合机床使用温度在5℃~ 45℃区间的要求,进行机床温度的测量。在数控 系统的PLC上外扩A/D转换模块SM331。将热传感 器输入的模拟热信号转换成数字信号后送至数控系 统NCK-PLC接口。PLC定时采样此温度值,利用公 式9-4计算出温度补偿系数,然后送到系统的NCK 中刷新温度补偿参数SD43910 (TEMP_COMP_SLOP)。
$AA_CEC_DIRECTION[ t ]=0:补偿值对基准轴的两个方向都有效; $AA_CEC_DIRECTION[ t ]=1:补偿值只对基准轴的正方向有效,其负方向无补偿值; $AA_CEC_DIRECTION[ t ]=-1:补偿值只对基准轴的负方向有效,其正方向无补偿 值。 (8) $AA_CEC_IS_MODULO[ t ]:基准轴的补偿表模功能。 $AA_CEC_IS_MODULO[ t ]=0 表示无模补偿功能; $AA_CEC_IS_MODULO[ t ]=1 表示激活模补偿功能。 (9) $AA_CEC_MULT_BY_TABLE[t1]= t2:定义一个表的补偿值与另一个表相乘, 其结果作为附加补偿值累加到总补偿值中,t1为补偿坐标轴表1的索引号,t2为补偿坐 标轴表2的索引号,两者不能相同,一般 t1=t2+1。
数控系统参数设置实验(doc 10页)
数控系统参数设置实验(doc 10页)实验七数控系统参数设置一.实验目的1.了解数控系统参数在数控系统中的作用。
2.了解数控系统硬件连接与系统参数的关系。
二.实验内容1.如何显示和查找FANUC 0i Mate-D 参数。
2.FANUC 0i Mate-D数控系统参数设定。
机床系统上电前查看机床当前状态,确认外观是否异常;确认急停按钮(红蘑菇钮)是否良好且在按下状态(急停状态);确认各进给轴行程限位开关及其线路是否正常;确认机床当前位置。
2.在数控机床系统上电时,告知小组其他同学,此时不要触碰任何电气控制部件,避免意外触电。
3.在设定或修改数控系统参数时,必须事先弄懂相关参数,必须有明确的操作目的和操作步骤。
4.只能设定或修改本次实验所及的参数,不得随意修改非本次实验参数。
做任何参数的改动都要专门记录所及参数的原始设定值。
六.相关知识与技能机床数据主要由参数、PLC程序、加工程序三大部分组成,而参数学起来是比较枯燥和乏味的,但了解它们的作用很有必要,不仅对电气系统的安装调试,而且对加工过程都有一定影响,会经常修改一些必须的参数,以提高机床的性能,用起来会更加顺畅!参数的分类(这里只介绍主要的几种),FANUC 0I系统主要包括以下参数:有关“设定”的参数;有关阅读机/穿孔机接口的参数;有关轴控制/设定单位的参数;有关坐标系的参数;有关储存行程检测参数;有关进给速度的参数;有关伺服的参数;有关显示及编辑的参数;有关编程的参数;有关螺距误差补偿的参数;有关主轴控制的参数;有关软操作面板的参数;七.实验步骤(一)如何查找显示数控系统参数1.按MDI键盘的功能键[SYSTEM]数次,或在按下功能键[SYSTEM]后,再按下软键[参数],当前显示参数画面。
2.参数画面由数页构成。
可通过如下两种方法之一,显示包含希望使其显示的参数的那一页。
(a)用翻页键或光标移动键,显示所需的页。
(b)输入希望使其显示的参数的数据号,按下软键[搜索号码]。
大中型数控机床安装调试和验收的详细步骤与方法
大中型数控机床安装调试和验收的详细步骤与方法一、机床主体初就位和连接用户在机床到达之前应按机床制造商提供的机床基础图做好机床基础,在安装地脚螺栓的部位做好预留孔。
当数控机床运到用户后,按开箱手续把机床部件运至安装场地。
然后,按说明书中介绍把组成机床的各大部件分别在地基上就位。
就位时,垫铁、调整垫块和地脚螺栓等相应对号入座。
然后把机床各部件组装成整机部件组装完成后就进行电缆、油管和气管的连接。
机床说明书中有电气接线图和气、液压管路图,应据此把有关电缆和管道按标记一一对号接好。
此阶段注意事项如下:1)机床拆箱后首先找到随机的文件资料,找出机床装箱单,按照装箱单清点各包装箱内零部件、电缆、资料等是否齐全。
2)机床各部件组装前,首先去除安装连接面、导轨和各运动面上的防锈涂料,做好各部件外表清洁工作。
3)连接时特别要注意清洁工作和可靠的接触及密封,并检查有无松动和损坏。
电缆插上后一定要拧紧紧固螺钉,保证接触可靠。
油管、气管连接中要特别防止异物从接口中进入管路,造成整个液压系统故障,管路连接时每个接头都要拧紧。
电缆和油管连接完毕后,要做好各管线的就位固定,防护罩壳的安装,保证整齐的外观。
二、数控系统的连接和调试1.数控系统的开箱检查无论是单个购入的数控系统还是与机床配套整机购入的数控系统,到货开箱后都应进行仔细检查。
检查包括系统本体和与之配套的进给速度控制单元和伺服电动机、主轴控制单元和主轴电动机。
2.外部电缆的连接外部电缆连接是指数控装置与外部MDI/CRT单元、强电柜、机床操作面板、进给伺服电动机动力线与反馈线、主轴电动机动力线与反馈信号线的连接及与手摇脉冲发生器等的连接。
应使这些符合随机提供的连接手册的规定。
最后还应进行地线连接。
3.数控系统电源线的连接应在切断数控柜电源开关的情况下连接数控柜电源变压器原边的输入电缆。
4.设定的确认数控系统内的印刷线路板上有许多用跨接线短路的设定点,需要对其适当设定以适应各种型号机床的不同要求。
数控机床的基本操作步骤
数控机床的基本操作步骤数控机床是指通过数字信号来控制机床运动和加工工序的一种机床。
相比传统的机械机床,数控机床具有精度高、重复性好、生产效率高等优点,被广泛应用于各个行业的制造过程中。
为了能够正确、高效地操作数控机床,我们需要掌握以下基本操作步骤。
第一步:开机准备在使用数控机床前,我们首先需要进行开机准备工作。
首先检查电源是否接好并打开,确认电源开关处于启动位置。
然后确保机床各个部位的联接是否牢固,各个坐标轴是否处于初始位置,润滑系统是否正常工作等。
完成这些准备工作后,即可开始下一步操作。
第二步:装夹工件数控机床通常用于对工件进行加工,因此在开始加工之前,我们需要将工件正确地装夹在机床上。
这一步骤十分重要,因为装夹操作的准确性将直接影响加工结果的质量。
我们需要根据工件的形状和尺寸,选择合适的夹具和夹具位置,并用夹具将工件固定在机床上。
装夹过程中,还需要注意夹具的平整度和固定牢度,以确保装夹的稳定性。
第三步:编写加工程序数控机床的加工过程是通过程序来控制的。
在开始加工之前,我们需要编写相应的加工程序。
加工程序是一系列指令的集合,它告诉机床如何进行切削和运动。
编写加工程序时,我们需要根据工件的形状和要求,确定切削路径、切削速度、进给速度等参数,并将这些信息转化为机床可以理解的指令。
编写好程序后,将其输入到机床的数控系统中,即可进行下一步操作。
第四步:调试程序在正式开始加工之前,我们还需要对编写好的加工程序进行调试。
调试程序的目的是为了确保程序的准确性和可靠性。
我们可以在空转模式下运行程序,观察机床的运动情况是否符合预期,同时检查各个运动轴是否平稳、稳定。
如果发现问题,及时进行修改和调整,直到程序的运行正常为止。
第五步:开始加工调试程序完成后,我们可以开始正式进行加工操作。
在加工过程中,数控机床将根据我们编写好的程序进行切削和运动。
我们需要密切关注机床的运行情况,确保切削过程的平稳性和精度。
同时,注意及时清理切削产生的废料和切屑,以保持加工环境的整洁。
第四章西门子840D与810D数控系统安装与调试
1)进给轴使用绝对编码器控制位置; 2) 绝对值编码器已校正 (M034210=2)。
二、增量式回参考点 4、绝对式回参考点
7)监控用机床数据 监控用机床数据主要包 括定位数据、软限位、速度监控、轮廓监控 等数据,见表 4-13 所示。
五、机床设定数据
机床设定数据可以根据实际的机床情况进行 调整。对机床数据的修改可以通过零件程序 的方法进行,也可以通过机床操作面板上的 参数调整区进行。通常需要调整的机床数据 如表所示。
re:复位(RESET),按控制单元上的“RESET” 键使数据生效;
so:立即(IMMEDIATELY),值输入以后立即生效。
三、数据生效方式
图4-2 隐藏文件设置的选择显示屏幕
四、机床数据分类
4.2数控系统常用机床数据
一、操作面板用机床数据
操作面板用机床数据主要用来设置屏幕的显 示方式;刀具参数的写/读保护等级;R参数 的保护等级;用户变量的写/读保护等级; 零件程序与循环程序的保护等级;其他数据 的保护等级等,如表4-4所示。
否则数控机床通电后,由于坐标轴的当前位置已经超过 了参考点挡块,数控系统在执行回参考点操作时,找不 到参考点挡块而直接碰到硬限位挡块,假如硬限位挡块 的长度不够,坐标轴就有可能冲过硬限位挡块,损坏机 床的机械部件。
二、增量式回参考点 1、有挡块回参考点
二、增量式回参考点 2、无挡块回参考点
如果把 MD34000 设置为 0,则回参考点方式将是不 带参考点挡块,这时的同步脉冲信号是编码器的零脉冲 或接近开关信号 BERO。
数控机床调试步骤要求
数控机床调试步骤要求(一)安装调试的前期准备工作:用户的准备事项,由售后服务人员联系落实。
(1)立式加工中心1.机床的吊运与安装:包括机床的吊运、开箱、安装、粗调水平、防锈油的清洗。
其中安装可采用混凝土地基加地脚螺钉固定机床,或直接使用随机的调整垫铁加地脚螺钉固定机床。
2.根据机床型号的不同确定外接电源线的线径,以下为各种型号机床参考线径:2.1 CY-VMC650采用10平方毫米左右线径。
2.2 CY-VMC850采用16平方毫米左右线径。
2.3 CY-VMC1060/1270/1370采用25平方毫米左右线径。
2.4 CY-VMC1580/1690/1890采用35平方毫米左右线径。
2.5 所有机床必须可靠接地。
3.安装调试前用户需购买以下备件物品:3.1 空压机,要求排量在0.6立方米/分钟以上。
3.2 连接空压机至机床的PTV气管,外径为12毫米。
3.3 标准刀柄和拉钉:CY-VMC650/850/1060采用型号为BT-40刀柄和45°拉钉;CY-VMC1270/1370/1580采用型号为BT-50刀柄和45°拉钉。
3.4刀具的购买:根据用户加工零件的实际情况,来确定购买不同夹持方式的刀柄和刀具,比如:3.4.1铣平面用的盘铣刀柄和直径为Ф63、Ф80、Ф100不等的盘铣刀体及刀片。
3.4.2强力铣夹头刀柄,主要方便于夹持直径较大的外圆铣刀和球头铣刀,例如夹持Ф20毫米的球头铣刀。
3.4.3弹簧夹头刀柄,主要方便于夹持小直径外圆铣刀和球头铣刀,例如夹持Ф3~Ф16毫米的外圆铣刀。
常用的刀柄规格型号为Ф32型刀柄。
3.4.4一体式或分离式钻夹头刀柄,主要用于装夹直柄小直径钻头,常见刀柄规格型号为Ф3~Ф13毫米的钻夹头。
3.4.5带扁尾莫氏锥孔刀柄,主要用于装夹锥柄钻头。
常用的刀柄规格型号是3号和4号莫氏锥孔刀柄。
3.4.6不带扁尾莫氏锥孔刀柄,主要用于装夹锥柄外圆铣刀。
D数控系统调试步骤
D数控系统调试步骤数控系统调试是指在数控机床安装与电气连接完成之后,对数控系统进行测试、校准以及优化,确保数控机床正常运行的过程。
下面将介绍数控系统调试的主要步骤。
1.电气连接检查在进行数控系统调试之前,首先需要检查数控系统与数控机床之间的电气连接情况。
包括检查各个电气元器件的连接是否紧固,电气元器件的接线是否正确等。
2.电源及开关检查检查数控系统的电源是否正常接通,各个开关是否处于正常状态。
确保数控系统的供电正常,各个开关处于正确的工作状态。
3.机床坐标系设定根据机床的结构特点,确定机床的坐标系。
通常情况下,数控机床具有三个直角坐标轴X、Y、Z,可以通过调整数控系统的参数来设定机床的坐标系。
4.伺服轴调试数控系统中的伺服轴是负责执行运动指令的关键元器件。
调试时需要逐一检查伺服轴的位置与速度反馈功能是否正常,包括位置传感器、编码器、驱动器等。
5.数控系统参数调试根据数控机床的实际情况,调整数控系统的相关参数,以满足机床的运动精度要求。
包括速度加速度的设置、伺服轴的反馈增益调整、误差补偿等。
6.机床轴线运动测试在进行数控系统调试的过程中,需要对机床的各个轴线进行运动测试。
通过对各个轴线进行正反向运动、快慢移动、圆弧插补等测试,确保机床运动的平稳性、精确性。
7.编程及操作界面调试数控系统的编程及操作界面是操作数控机床的重要环节。
在调试过程中,需要测试数控系统的编程功能、操作界面的操作性能,确保用户可以顺利地进行编程和操作。
8.自动加工测试在完成了上述步骤之后,可以进行自动加工测试。
通过编写简单的加工程序,在数控机床上进行自动加工,测试数控系统的稳定性、精度以及加工效果。
9.故障排除及优化在调试过程中,可能会出现故障或不理想的情况。
这时需要根据实际情况进行故障排除,并对数控系统进行进一步的优化。
可以通过调整参数、更换元器件等方式来解决问题,以提高数控机床的运行性能。
10.确认调试结果调试完成后,需要对数控机床进行全面的检查,确保调试结果符合要求。
数控机床调试步骤要求
数控机床调试步骤要求 The manuscript was revised on the evening of 2021数控机床调试步骤要求(一)安装调试的前期准备工作:用户的准备事项,由售后服务人员联系落实。
(1)立式加工中心1.机床的吊运与安装:包括机床的吊运、开箱、安装、粗调水平、防锈油的清洗。
其中安装可采用混凝土地基加地脚螺钉固定机床,或直接使用随机的调整垫铁加地脚螺钉固定机床。
2.根据机床型号的不同确定外接电源线的线径,以下为各种型号机床参考线径:CY-VMC650采用10平方毫米左右线径。
CY-VMC850采用16平方毫米左右线径。
CY-VMC1060/1270/1370采用25平方毫米左右线径。
CY-VMC1580/1690/1890采用35平方毫米左右线径。
所有机床必须可靠接地。
3.安装调试前用户需购买以下备件物品:空压机,要求排量在立方米/分钟以上。
连接空压机至机床的PTV气管,外径为12毫米。
标准刀柄和拉钉:CY-VMC650/850/1060采用型号为BT-40刀柄和45°拉钉;CY-VMC1270/1370/1580采用型号为BT-50刀柄和45°拉钉。
刀具的购买:根据用户加工零件的实际情况,来确定购买不同夹持方式的刀柄和刀具,比如:铣平面用的盘铣刀柄和直径为Ф63、Ф80、Ф100不等的盘铣刀体及刀片。
强力铣夹头刀柄,主要方便于夹持直径较大的外圆铣刀和球头铣刀,例如夹持Ф20毫米的球头铣刀。
弹簧夹头刀柄,主要方便于夹持小直径外圆铣刀和球头铣刀,例如夹持Ф3~Ф16毫米的外圆铣刀。
常用的刀柄规格型号为Ф32型刀柄。
一体式或分离式钻夹头刀柄,主要用于装夹直柄小直径钻头,常见刀柄规格型号为Ф3~Ф13毫米的钻夹头。
带扁尾莫氏锥孔刀柄,主要用于装夹锥柄钻头。
常用的刀柄规格型号是3号和4号莫氏锥孔刀柄。
不带扁尾莫氏锥孔刀柄,主要用于装夹锥柄外圆铣刀。
常用的刀柄规格型号是3号和4号莫氏锥孔刀柄。
FANUC 0i(-mate)-D数控车床功能调试
FANUC 0i(-mate)-D数控车床功能调试一、数控系统参数的全清FANUC 0i(-mate)-D数控系统是利用1.进入IPL 监控器画面:IPL 监控器通过如下操作而启动;(1)同时按下MDI 键[.]和[-],接通电源;(2)出现IPL监控器画面及“IPL MENU”(即,IPL菜单),如图1-1所示。
图1-1 IPL 监控器画面2.从上述“IPL MENU”菜单中选择“3”,则出现如图1-2的显示画面;在此画面中选择某项菜单,则将清除所选中的个别文件,进行格式化处理。
图1-2 个别文件的清除画面3. 在图1-2所示的菜单中选择要操作的项。
如要清空系统参数,则用MDI 键盘键“1”→按键;4. 则显示器上会出现“CLEAR FILE OK ? (NO=0,YES=1)”的提问;5. 如果想清空参数则键入“1”时;如果不想清空参数,则键入“0”表示中止操作。
6. 若要继续清除其它文件时,重复第3~5步骤的操作;7. 若想结束操作并返回上一级菜单画面(图1-1)时,请键入“0”。
也可以直接下电再重新上电,以便于检查系统参数是否全清。
二、数控系统参数设置数控系统正常运行的重要条件是必须保证各种参数的正确设定,不正确的参数设置与更改,可能造成严重的后果。
因此,必须理解参数的功能,熟悉设定值,详细内容参考《参数说明书》。
1. 显示参数的操作(1)按MDI 面板上的【SYSTEM 】功能键数次或者按【SYSTEM 】功能键一次,再按〖参数〗软键,选择参数画面,见图2-1。
图2-1 参数画面(2)参数画面由多页组成,可用光标移动键或翻页键,寻找相应的参数画面,也可由键盘输入要显示的参数号,然后按下〖号搜索〗软健,显示指定参数所在的页面,此时光标位于指定参数的位置。
2.用MDI设定参数(1)在操作面板上选择MDI方式或急停状态。
(2)按下【OFS/SET】功能键,再按〖设定〗软键,可显示“设定”画面的第一页。
西门子840D数控系统调试
西门子840D数控系统调试上电之前的准备一:卸下Nck主板,检查Nck主板上的电池是否安装正确。
正确安装后,将Nck主板安装到NCU盒上。
2:外围线路的连接(1)每根轴的动力线,编码器反馈线是否正确安装(x411-轴1编码器,x422轴2编码器,动力线插口x轴对应a1口,z轴对应a2口,2-axis)(2)设备母线与直流母线连接是否正确可靠。
?(3) u、W、V进线连接是否可靠。
(4)simatic线的连接(im361接out口,nck接x111口)?(5)mpi线的连接(两头on中间off)(6)设置MCP面板的节点地址开关(810D面板的节点地址为14),机床控制面板后面的S3开关(1-8)依次设置为OFF ON OFF;840D面板的区段地址为6,机床控制面板后面的S3开关从左到右设置为onoff onoff onoff onoff(7)如果是pcu50,要将显示器后面的硬盘开关拨到on的位置。
上电之后先安装hmi软件。
软件拷贝到e盘三:上电(1)通电前,请断开CNC系统的热控制,拔下MCP和OPI面板上的24V电源,以避免因接线错误烧坏设备。
?(2)通电后,检查CNC系统的供电电压是否为380V、MCP和opi面板的电源是否为直流24v,且正负极性正确。
?(3)如果2正确,断电,合上热控,mcp和opi面板的直流电源插上,上电调试。
四:plc,nc总清1、nc总清步骤:(1)转动NC起动开关S3→ "1":(2)启动nc,如nc已启动,按复位按钮s1:(3) NC成功启动后,七段显示屏显示“6”或“B”,以及S3→ "0"; 此时,H1(左列)显示灯“+5V”显示绿色,NC一般清除执行完成。
也就是说,在S3设置为1位置后,按下复位按钮S1,在七段代码管显示“6”或“B”后,将S3设置为0位置。
清除NC 后,SRAM内存中的所有内容都被清除,所有机器数据都被预设为默认值。
数控机床的电气连接与调试
840C型数控装置是32位微处理机系统,具有计算机辅助设计 (CAD)功能,能控制多轴,可5轴联动。
⑤SINUMERIK8型
8型数控装置时用于柔性制造的控制系统,它采用多微处理器, CPU均为8086
2021/9/15
7
项目1:数控系统的连接及调试
⑥SINUMERIK840D型 SINUMERIK 840D系统适用于所有的数控场合,10个加工通道,从2轴 到31轴控制。系统有三种基于不同计算机性能主板而分别适用于高级、 中级和基本的应用范围。840D系统控制器和相关的软件均按照模块化 结构进行配备,可以实现从复杂的多轴运动控制直到高速切削所需要 的数控系统基础平台和应用范围很广的应用操作知识库。零件的编程 以易于操作使用为原则,可使用循环方式和轮廓方式直接进行编程, 用通俗易懂的图形模拟方式验证切削路径和几何尺寸,可选定一个面、 顶部或三维观察的方式,采用带刀尖轨迹或不带刀尖轨迹进行模拟显 示
2021/9/15
1
项目1:数控系统的连接及调试
④F16系列
F16系列的性能位于F15系列和F0系列之间,结构为多主控总线, 它采用CISC处理器的基础上增加了用于高速运算处理的32位RISC 高速处理器
⑤F18系列
F18系列是在F16系列之后推出的32位数控装置,性能位于F15系列 和F0系列之间。但低于F16系列
简单的操作编程支持工具MANUAL GUIDE 0i
针对磨床的独特控制功能
以太网功能
数据服务器功能
2021/9/15
3
项目1:数控系统的连接及调试
2021/9/15
CP1:系统直流24V输入电源接 口FUSE:系统DC24V输入熔断
器(5A)。 JA7A:串行主轴/主轴位置编码器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D数控系统调试步骤文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]
1.检查接线,PP72/48的地址拨码,MCP地址拨码开关
PP72/48 PN S1: ON:1,4,9,10
MCP:S2: ON:7,9,10
2.上电总清
3.设置口令,时间,选择选项功能
4.设置基本的机床参数
N10000 $MN_AXCONF_MACHAX_NAME_TAB[0]="MX"
N10000 $MN_AXCONF_MACHAX_NAME_TAB[1]="MZ"
N10000 $MN_AXCONF_MACHAX_NAME_TAB[2]="MC"
N10000 $MN_AXCONF_MACHAX_NAME_TAB[3]="MB"
N10000 $MN_AXCONF_MACHAX_NAME_TAB[4]="MSP"
N20050 $MC_AXCONF_GEOAX_ASSIGN_TAB[1]=0
N20050 $MC_AXCONF_GEOAX_ASSIGN_TAB[2]=2
N20070 $MC_AXCONF_MACHAX_USED[4]=5
N20080 $MC_AXCONF_CHANAX_NAME_TAB[0]="X"
N20080 $MC_AXCONF_CHANAX_NAME_TAB[1]="Z"
N20080 $MC_AXCONF_CHANAX_NAME_TAB[2]="C"
N20080 $MC_AXCONF_CHANAX_NAME_TAB[3]="B"
N20080 $MC_AXCONF_CHANAX_NAME_TAB[4]="SP"
N28050=300 number of R parameters
设置Profinet上有效的模块
MD12986[0]=-1 PP72/48 PN
MD12986[6]=-1 MCP
MD20310 bit9=1 将刀库设为模拟刀库
MD20700=0
5.只下载MCP面板控制程序,其他程序不下载。
6.驱动的调试
7.检查PLC 输入点、输出点状态,检查接线是否有错误
8.用户PLC程序调试
9.报警文本的传入
报警文本的初始文件需要在系统中进行创建,创建完初始文件后,拷贝到电脑中进行报警文本的编辑。
PLC报警文本的传输路径如下图:
PLC报警文本的编辑,在RCS中找到报警文本,在文件名称上点击右键在弹出的菜单中选择“Open with TS Editor”,弹出如上图中的窗口,在上图中的窗口中即可进行PLC报警文本的编辑。
编辑好的报警文本下传到系统中再利用系统中的编辑功能进行报警文本显示颜色的修改。
10.用户画面easy screen的传入
(1)配置文件的拷贝:
通过RCS或者U盘将文件:custom.ini,easyscreen.ini,
slamconfig.ini,systemconfigration.ini 拷贝到目录System
CF-Card/oem/sinumerik/hmi/cfg
(2)图片文件的拷贝
将图片文件拷贝到System CF-
Card/oem/sinumerik/hmi/ico/ico640
(3)画面文件的拷贝
将文件拷贝到目录System CF-
Card/oem/sinumerik/hmi/proj
11.主轴参数的设置
主轴参数设置,采用虚拟主轴。
30300=1
30310=1
30320=1
30350=1
32000=20
32010=20 JOG快速
32020=10 JOG点动速度
35000=1
35100=300
35200= 速度环的加速度根据变频器的实际加速度进行设置。
36200=330
DB9006.DBD8 给定转速乘倍率得到的速度
DB9006.DBD4 给定转速。