高考数学总复习系列-高中数学必修二
高中数学复习讲义
高中数学复习讲义一、代数1.1 一元一次方程1.2 一元二次方程1.3 平面直角坐标系1.4 解析几何与向量1.5 指数与对数1.6 三角函数与三角恒等变换1.7 数列与数学归纳法二、几何2.1 平面与立体几何基本概念2.2 直线与角2.3 三角形与三角形的性质2.4 四边形与四边形的性质2.5 圆与圆的性质2.6 空间几何与立体几何三、概率与统计3.1 随机事件与概率的计算3.2 组合与排列3.3 抽样与统计四、数学思想方法4.1 推理与证明4.2 逻辑与谬误4.3 数学建模与解题策略五、应用题本讲义将针对高中数学涵盖的主要内容进行复习总结,旨在帮助大家全面复习数学知识,掌握解题方法和技巧,为高考做好充分准备。
一、代数1.1 一元一次方程一元一次方程是数学中最基础的方程形式之一,解一元一次方程需要掌握方程的基本性质和求解方法。
我们将重点讲解常见的一元一次方程类型,并提供解题思路和方法。
掌握一元一次方程的求解技巧对于解决实际问题具有重要意义。
1.2 一元二次方程一元二次方程在高中数学中起着重要的作用,解一元二次方程需要掌握配方法、因式分解法以及求根公式等知识点。
我们将介绍一元二次方程的基本概念和解法,并通过大量例题帮助大家提高解题能力。
1.3 平面直角坐标系平面直角坐标系是研究平面几何和解析几何的基础,了解坐标系的性质和坐标变换的规律对于解决几何问题至关重要。
我们将详细介绍直角坐标系的相关概念和性质,并结合实例进行讲解,帮助大家掌握平面直角坐标系的应用。
1.4 解析几何与向量解析几何是将代数与几何相结合的重要数学分支,研究空间中点、直线、平面等几何对象的解析表达和性质。
向量是解析几何中的重要工具,学习向量的表示方法和运算规律有助于解决几何问题。
我们将讲解解析几何基本概念和向量的数学性质,并通过练习题提高大家的解题能力。
1.5 指数与对数指数和对数是高中数学中重要的数学工具和运算方法,涉及到数学表达式的简化、方程的求解等。
2023年高考数学总复习第二章 函数概念与基本初等函数第7节:函数的图像(教师版)
2023年高考数学总复习第二章函数概念与基本初等函数第7节函数的图像考试要求1.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数;2.会运用基本初等函数的图像分析函数的性质,解决方程解的个数与不等式解的问题.1.利用描点法作函数的图像步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图像变换法作函数的图像(1)平移变换(2)对称变换y =f (x )的图像―——————―→关于x 轴对称y =-f (x )的图像;y =f (x )的图像――——————→关于y 轴对称y =f (-x )的图像;y =f (x )的图像―——————―→关于原点对称y =-f (-x )的图像;y =a x (a >0,且a ≠1)的图像―——————————―→关于直线y =x 对称y =log a x (a >0,且a ≠1)的图像.(3)伸缩变换y =f (x )―——————————————————―→纵坐标不变各点横坐标变为原来的1a (a >0)倍y =f (ax ).y =f (x )―————————————————―→横坐标不变各点纵坐标变为原来的A (A >0)倍y =Af (x ).(4)翻折变换y =f (x )的图像―————————————―→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图像;y =f (x )的图像―——————————————―→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图像.1.函数图像自身的轴对称(1)f (-x )=f (x )⇔函数y =f (x )的图像关于y 轴对称;(2)函数y =f (x )的图像关于直线x =a 对称⇔f (a +x )=f (a -x )⇔f (x )=f (2a -x )⇔f (-x )=f (2a +x );(3)若函数y =f (x )的定义域为R ,且有f (a +x )=f (b -x ),则函数y =f (x )的图像关于直线x =a +b2对称.2.函数图像自身的中心对称(1)f (-x )=-f (x )⇔函数y =f (x )的图像关于原点对称;(2)函数y =f (x )的图像关于点(a ,0)对称⇔f (a +x )=-f (a -x )⇔f (x )=-f (2a -x )⇔f (-x )=-f (2a +x );(3)函数y =f (x )的图像关于点(a ,b )成中心对称⇔f (a +x )=2b -f (a -x )⇔f (x )=2b -f (2a -x ).3.两个函数图像之间的对称关系(1)函数y =f (a +x )与y =f (b -x )的图像关于直线x =b -a2对称(由a +x =b -x 得对称轴方程);(2)函数y =f (x )与y =f (2a -x )的图像关于直线x =a 对称;(3)函数y =f (x )与y =2b -f (-x )的图像关于点(0,b )对称;(4)函数y=f(x)与y=2b-f(2a-x)的图像关于点(a,b)对称.1.思考辨析(在括号内打“√”或“×”)(1)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图像相同.()(2)函数y=af(x)与y=f(ax)(a>0且a≠1)的图像相同.()(3)函数y=f(x)与y=-f(x)的图像关于原点对称.()(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图像关于直线x=1对称.()答案(1)×(2)×(3)×(4)√解析(1)令f(x)=-x,当x∈(0,+∞)时,y=|f(x)|=x,y=f(|x|)=-x,两者图像不同,(1)错误.(2)中两函数当a≠1时,y=af(x)与y=f(ax)是由y=f(x)分别进行横坐标与纵坐标伸缩变换得到,两图像不同,(2)错误.(3)y=f(x)与y=-f(x)的图像关于x轴对称,(3)错误.2.下列图像是函数y 2,x<0,-1,x≥0的图像的是()答案C解析其图像是由y=x2图像中x<0的部分和y=x-1图像中x≥0的部分组成.3.(2021·昆明质检)已知图①中的图像对应的函数为y=f(x),则图②中的图像对应的函数为()A.y=f(|x|)B.y=f(-|x|)C.y=|f(x)|D.y=-|f(x)|答案B解析观察函数图像可得,②是由①保留y 轴左侧及y 轴上的图像,然后将y 轴左侧图像翻折到右侧所得,结合函数图像的对称变换可得变换后的函数的解析式为y =f (-|x |).4.(2021·天津卷)函数y =ln|x |x 2+2的图像大致为()答案B解析设y =f (x )=ln|x |x 2+2,则函数f (x )的定义域为{x |x ≠0},关于原点对称,又f (-x )=ln|-x |(-x )2+2=f (x ),所以函数f (x )为偶函数,排除A ,C ;当x ∈(0,1)时,ln|x |<0,x 2+1>0,所以f (x )<0,排除D.5.(易错题)设f (x )=2-x ,g (x )的图像与f (x )的图像关于直线y =x 对称,h (x )的图像由g (x )的图像向右平移1个单位得到,则h (x )=________.答案-log 2(x -1)解析与f (x )的图像关于y =x 对称的图像所对应的函数为g (x )=-log 2x ,再将其图像右移1个单位得到h (x )=-log 2(x -1)的图像.6.(2022·西安调研)已知函数f (x )的图像如图所示,则函数g (x )=log 2f (x )的定义域是________.答案(2,8]解析当f (x )>0时,函数g (x )=log 2f (x )有意义,由函数f (x )的图像知满足f (x )>0时,x ∈(2,8].考点一作函数的图像例1作出下列函数的图像:(1)y =2|x |+1;(2)y =|lg(x -1)|;(3)y =x 2-|x |-2.解(1)将y =2x 的图像关于y 轴作对称图像,取y ≥1的部分得y =2|x |的图像,再将所得图像向上平移1个单位长度,得到y =2|x |+1的图像,如图①所示(实线部分).(2)首先作出y =lg x 的图像,然后将其向右平移1个单位长度,得到y =lg(x -1)的图像,再把所得图像在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图像,如图②所示(实线部分).(3)y =x 2-|x |-2x 2-x -2,x ≥0,x 2+x -2,x <0,函数为偶函数,先用描点法作出[0,+∞)上的图像,再根据对称性作出(-∞,0)上的图像,其图像如图③所示.感悟提升 1.描点法作图:当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图像的关键点直接作出.2.图像变换法:若函数图像可由某个基本函数的图像经过平移、翻折、对称得到,可利用图像变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.训练1分别作出下列函数的图像:(1)y =|x 2-5x +4|;(2)y =2x -1x -1.解(1)令y =x 2-5x +4=0,解出两根为1,4,得到y =x 2-5x +4的图像.将x 轴以下的部分关于x 轴作对称图形,得到y =|x 2-5x +4|的图像,如图①所示(实线部分).(2)y =2x -1x -1=2+1x -1,故函数的图像可由y =1x 的图像向右平移1个单位,再向上平移2个单位得到,如图②所示.考点二函数图像的辨识1.函数f (x )=sin x +xcos x +x2在[-π,π]的图像大致为()答案D 解析∵f (-x )=sin (-x )-xcos (-x )+(-x )2=-f (x ),且x ∈[-π,π],∴f (x )为奇函数,排除A.当x=π时,f(π)=π-1+π2>0,排除B,C,只有D满足.2.已知函数f(x),x≥0,x<0,g(x)=-f(-x),则函数g(x)的图像是()答案D解析法一当x>0时,-x<0,所以g(x)=-f(-x)=1 x,当x≤0时,-x≥0,g(x)=-x2,从而根据函数的取值正负情况可知D正确.法二也可先画出f(x)的图像,再关于原点对称得g(x)的图像.3.已知函数f(x)x,x≤1,13x,x>1,则函数y=f(1-x)的大致图像是()答案D解析法一先画出函数f(x)x,x≤1,13x,x>1的草图,令函数f(x)的图像关于y轴对称,得函数f(-x)的图像,再把所得的函数f(-x)的图像,向右平移1个单位,得到函数y=f(1-x)的图像(图略),故选D.法二由已知函数f(x)的解析式,得y=f(1-x)1-x,x≥0,log13(1-x),x<0,故该函数过点(0,3),排除A;过点(1,1),排除B;在(-∞,0)上单调递增,排除C.4.(2021·浙江卷)已知函数f(x)=x2+14,g(x)=sin x,则图像如图的函数可能是()A.y=f(x)+g(x)-14B.y=f(x)-g(x)-14C.y=f(x)g(x)D.y=g(x)f(x)答案D解析易知函数f(x)=x2+14是偶函数,g(x)=sin x是奇函数,给出的图像对应的函数是奇函数.选项A,y=f(x)+g(x)-14=x2+sin x为非奇非偶函数,不符合题意,排除A;选项B,y=f(x)-g(x)-14=x2-sin x也为非奇非偶函数,不符合题意,排除B;因为当x∈(0,+∞)时,f(x)单调递增,且f(x)>0,当x 0,π2g(x)单调递增,且g(x)>0,所以y=f(x)g(x)0,π2上单调递增,由图像可知所求函数0,π4上不单调,排除C.故选D.感悟提升 1.抓住函数的性质,定性分析:(1)从函数的定义域,判断图像的左右位置;从函数的值域,判断图像的上下位置;(2)从函数的单调性,判断图像的变化趋势;(3)从周期性,判断图像的循环往复;(4)从函数的奇偶性,判断图像的对称性.2.抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题.考点三函数图像的应用角度1研究函数的性质例2已知函数f(x)=x|x|-2x,则下列结论正确的是()A.f (x )是偶函数,递增区间是(0,+∞)B.f (x )是偶函数,递减区间是(-∞,1)C.f (x )是奇函数,递减区间是(-1,1)D.f (x )是奇函数,递增区间是(-∞,0)答案C解析将函数f (x )=x |x |-2x 去掉绝对值得f (x )2-2x ,x ≥0,x 2-2x ,x <0,画出函数f (x )的图像,如图,观察图像可知,函数f (x )的图像关于原点对称,故函数f (x )为奇函数,且在(-1,1)上是递减的.角度2在不等式中的应用例3(1)若函数f (x )=log 2(x +1),且a >b >c >0,则f (a )a ,f (b )b ,f (c )c的大小关系为________.(2)设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为________.答案(1)f (c )c >f (b )b >f (a )a(2)(-1,0)∪(0,1)解析(1)由题意可得,f (a )a ,f (b )b ,f (c )c分别看作函数f (x )=log 2(x +1)图像上的点(a ,f (a )),(b ,f (b )),(c ,f (c ))与原点连线的斜率.结合图像可知,当a >b >c >0时,f (a )a <f (b )b <f (c )c .(2)因为f (x )为奇函数,所以不等式f (x )-f (-x )x <0可化为f (x )x<0,即xf (x )<0,f (x )的大致图像如图所示,所以原不等式的解集为(-1,0)∪(0,1).角度3求参数的取值范围例4(1)(2022·洛阳模拟)已知f (x )x |,x ≤1,2+4x -2,x >1,若关于x 的方程a =f (x )恰有两个不同的实数根,则实数a 的取值范围是()[1,2)[1,2)C.(1,2)D.[1,2)(2)已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.答案(1)B(2)(0,1)∪(9,+∞)解析(1)关于x 的方程a =f (x )恰有两个不同的实根,即f (x )的图像与直线y=a 恰有两个不同的交点,作出f (x )的图像如图所示.由图像可得a[1,2).(2)设y 1=f (x )=|x 2+3x |,y 2=a |x -1|.在同一直角坐标系中作出y 1=|x 2+3x |,y 2=a |x -1|的图像如图所示.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图像有4个不同的交点,且4个交点的横坐标都小于1,所以=-x 2-3x ,=a (1-x )(-3<x <0)有两组不同解.消去y 得x 2+(3-a )x +a =0,该方程有两个不等实根x 1,x 2,=(3-a )2-4a >0,3<a -32<0,3)2+(3-a )×(-3)+a >0,2+(3-a )×0+a >0,∴0<a <1.=x 2+3x ,=a (x -1)(x >1)有两组不同解.消去y 得x 2+(3-a )x +a =0有两不等实根x 3,x 4,∴Δ=a 2-10a +9>0,又∵x 3+x 4=a -3>2,x 3x 4=a >1,∴a >9.综上可知,0<a <1或a >9.感悟提升1.利用函数的图像研究函数的性质对于已知或易画出其在给定区间上图像的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图像研究,但一定要注意性质与图像特征的对应关系.2.利用函数的图像可解决某些方程和不等式的求解问题,方程f (x )=g (x )的根就是函数f (x )与g (x )图像交点的横坐标;不等式f (x )<g (x )的解集是函数f (x )的图像位于g (x )图像下方的点的横坐标的集合,体现了数形结合思想.训练2(1)(2021·唐山模拟)已知函数f (x )=|x -2|+1,g (x )=kx ,若f (x )>g (x )恒成立,则实数k 的取值范围是________.(2)已知函数y =f (x )的图像是圆x 2+y 2=2上的两段弧,如图所示,则不等式f (x )>f (-x )-2x 的解集是______.(3)已知f (x )x |,x >0,|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数是______.答案(1)-1(2)(-1,0)∪(1,2](3)5解析(1)如图作出函数f (x )的图像,当-1≤k <12时,g (x )的图像恒在f (x )下方.(2)由图像可知,函数f (x )为奇函数,故原不等式可等价转化为f (x )>-x .在同一平面直角坐标系中分别画出y =f (x )与y =-x 的图像,由图像可知不等式的解集为(-1,0)∪(1,2].(3)方程2f 2(x )-3f (x )+1=0的解为f (x )=12或1.作出y =f (x )的图像,由图像知y =f (x )与y =12有2个交点,y =f (x )与y =1有3个交点,故零点的个数为5.1.在2h 内将某种药物注射进患者的血液中,在注射期间,血液中的药物含量呈线性增加;停止注射后,血液中的药物含量呈指数衰减,能反映血液中药物含量Q 随时间t 变化的图像是()答案B解析依题意知,在2h 内血液中药物含量Q 持续增加,停止注射后,Q 呈指数衰减,图像B 适合.2.(2022·河南名校联考)函数f (x )=x cos x +sin x x 2+1的部分图像大致为()答案A 解析因为f (x )=x cos x +sin xx 2+1,所以f (-x )=-x cos (-x )+sin (-x )(-x )2+1=-x cos x+sin xx2+1=-f(x),所以函数f(x)为奇函数,排除选项C,D;又当x f(x)>0,所以排除B.选A.3.若函数f(x)=a x-a-x(a>0且a≠1)在R上为减函数,则函数y=log a(|x|-1)的图像可能是()答案D解析由f(x)在R上是减函数,知0<a<1.又y=log a(|x|-1)是偶函数,定义域是(-∞,-1)∪(1,+∞).∴当x>1时,y=log a(x-1)的图像由y=log a x的图像向右平移一个单位得到.因此D正确.4.下列函数中,其图像与函数y=ln x的图像关于直线x=1对称的是()A.y=ln(1-x)B.y=ln(2-x)C.y=ln(1+x)D.y=ln(2+x)答案B解析法一设所求函数图像上任一点的坐标为(x,y),则其关于直线x=1的对称点的坐标为(2-x,y),由对称性知点(2-x,y)在函数f(x)=ln x的图像上,所以y=ln(2-x).法二由题意知,对称轴上的点(1,0)在函数y=ln x的图像上也在所求函数的图像上,代入选项中的函数表达式逐一检验,排除A,C,D,选B.5.(2021·郑州模拟)已知函数f(x)=-x+1+log2x,则不等式f(x)<0的解集是()A.(0,2)B.(-∞,1)∪(2,+∞)C.(1,2)D.(0,1)∪(2,+∞)答案D解析函数f (x )=-x +1+log 2x 的定义域为(0,+∞),且f (1)=f (2)=0,由f (x )<0可得log 2x <x -1,作出函数y =log 2x 与函数y =x -1的图像如图所示.则函数y =log 2x 与函数y =x -1图像的两个交点的坐标为(1,0),(2,1),由图像可知,不等式log 2x <x -1的解集为(0,1)∪(2,+∞).故选D.6.(2022·大庆模拟)我们从某公司的商标中抽象出一个图像,如图所示.其对应的函数解析式可能是()A.f (x )=1x 2-1B.f (x )=1x 2+1C.f (x )=1|x -1|D.f (x )=1||x |-1|答案D解析由题图可知,f (x )为偶函数,故C 错误;又f (x )>0恒成立,对于A ,f (x )=1x 2-1>0不恒成立,故A 错误;由图知f (x )在x =-1和x =1处无定义,故B 错误.故选D.7.已知f (x )=2x -1,g (x )=1-x 2.当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )()A.有最小值-1,最大值1B.有最大值1,无最小值C.有最小值-1,无最大值D.有最大值-1,无最小值答案C解析如图,画出y=|f(x)|=|2x-1|与y=g(x)=1-x2的图像,它们交于A,B两点.由“规定”,在A,B两侧,|f(x)|≥g(x),故h(x)=|f(x)|;在A,B之间,|f(x)|<g(x),故h(x)=-g(x).综上可知,y=h(x)的图像是图中的实线部分,因此h(x)有最小值-1,无最大值.8.若函数y=f(x)的图像恒过点(2,2),则函数y=f(5-x)的图像一定经过点________.答案(3,2)解析∵f(5-x)的图像可以看作y=f(x)的图像先关于y轴对称,再向右平移5个单位长度得到,点(2,2)关于y轴对称的点(-2,2),再将此点向右平移5个单位长度为(3,2),∴y=f(5-x)的图像一定过点(3,2).9.已知函数f(x)=x2-2|x|-m的零点有两个,则实数m的取值范围是________.答案{-1}∪(0,+∞)解析在同一平面直角坐标系内作出函数y=x2-2|x|的图像和直线y=m,可知当m>0或m=-1时,直线y=m与函数y=x2-2|x|的图像有两个交点,即函数f(x)=x2-2|x|-m有两个零点.10.已知函数f(x)在R上单调且其部分图像如图所示,若不等式-2<f(x+t)<4的解集为(-1,2),则实数t的值为________.答案1解析由图像可知不等式-2<f(x+t)<4,即f(3)<f(x+t)<f(0).又y=f(x)在R上单调递减,∴0<x+t<3,不等式解集为(-t,3-t).依题意,得t=1.11.(2021·兰州质检)设函数y=f(x)的图像与y+a的图像关于直线y=x对称,且f(3)+4,则实数a=________.答案-2解析设(x,y)是y=f(x)图像上任意一点,则(y,x)在函数y+a的图像上,所以x+a,则y=log13x-a.因此f(x)=log13x-a.由f(3)+4,得-1+1-2a=4,所以a=-2.12.(2022·哈尔滨模拟)若函数f(x)2+1,x<1,,x≥1的值域是(a,+∞),则a的取值范围是________.答案2 3,解析画出函数f(x)2+1,x<1,,x≥1的图像,如图所示.f(x)=x2+1(x<1)的值域是[1,+∞),f(x)=a(x≥1),a+13,要使函数f (x )的值域是(a ,+∞),+13≥1,<1,解得23≤a <1,所以a 的取值范围是23,13.若直角坐标系内A ,B 两点满足:(1)点A ,B 都在f (x )的图像上;(2)点A ,B 关于原点对称,则称点对(A ,B )是函数f (x )的一个“和谐点对”,(A ,B )与(B ,A )可看作一个“和谐点对”.已知函数f (x )2x (x <0),(x ≥0),则f (x )的“和谐点对”有()A.1个B.2个C.3个D.4个答案B解析作出函数y =x 2+2x (x <0)的图像关于原点对称的图像(如图中的虚线部分),看它与函数y =2e x (x ≥0)的图像的交点个数即可,观察图像可得交点个数为2,即f (x )的“和谐点对”有2个.14.(2021·上海卷)已知函数y =f (x )的定义域为R ,下列是f (x )无最大值的充分条件的是()A.f (x )为偶函数且图像关于点(1,1)对称B.f (x )为偶函数且图像关于直线x =1对称C.f (x )为奇函数且图像关于点(1,1)对称D.f (x )为奇函数且图像关于直线x =1对称答案C解析选项A ,B ,D 的反例如图1,2,3所示,故选项A ,B ,D 错误;对于选项C ,∵f (x )为奇函数且图像关于点(1,1)对称,∴f (x )+f (-x )=0,f (2+x )+f (-x )=2,∴f (2+x )-f (x )=2,∴f (2k +x )=f (x )+2k ,k ∈Z ,又f (0)=0,∴f (2k )=2k ,k ∈Z ,当k →+∞时,f (2k )=2k →+∞,∴函数f (x )无最大值,故选C.15.已知函数f (x )πx ,0≤x ≤1,2022x ,x >1,若实数a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是________.答案(2,2023)解析函数f (x )πx ,0≤x ≤1,2022x ,x >1的图像如图所示,不妨令a <b <c ,由正弦曲线的对称性可知a +b =1,而1<c <2022,所以2<a +b +c <2023.16.已知函数g (x )-1|,h (x )=cos πx ,当x ∈(-2,4)时,函数g (x )与h (x )的交点横坐标分别记为x i (i =1,2,…,n ),则∑ni =1x i 等于________.答案7解析易知g (x )-1|的图像关于直线x =1对称,h (x )=cos πx 的图像关于直线x =1对称.作出两个函数的图像,如图所示.根据图像知,两函数有7个交点,其中一个点的横坐标为x =1,另外6个交点关于直线x =1对称,因此∑7i =1x i =3×2+1=7.。
2024年高考数学总复习第二章《函数与基本初等函数》2
2024年高考数学总复习第二章《函数与基本初等函数》§2.7函数的图象最新考纲 1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.2.学会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解的问题.1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.2.图象变换(1)平移变换(2)对称变换①y =f (x )――――――→关于x 轴对称y =-f (x );②y =f (x )――――――→关于y 轴对称y =f (-x );③y =f (x )―――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――――――→关于y =x 对称y =log a x (a >0且a ≠1).(3)伸缩变换①y =f (x )―――――――――――――――――――――――→a >1,横坐标缩短为原来的1a 倍,纵坐标不变0<a <1,横坐标伸长为原来的1a 倍,纵坐标不变y =f (ax ).②y =f (x )――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x ).(4)翻折变换①y =f (x )――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|.②y =f (x )―――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |).概念方法微思考1.函数f (x )的图象关于直线x =a 对称,你能得到f (x )解析式满足什么条件?提示f (a +x )=f (a -x )或f (x )=f (2a -x ).2.若函数y =f (x )和y =g (x )的图象关于点(a ,b )对称,求f (x ),g (x )的关系.提示g (x )=2b -f (2a -x )题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到.(×)(2)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.(×)(3)函数y =f (x )与y =-f (x )的图象关于原点对称.(×)(4)函数y =f (x )的图象关于y 轴对称即函数y =f (x )与y =f (-x )的图象关于y 轴对称.(×)题组二教材改编2.[P35例5(3)]函数f (x )=x +1x的图象关于()A .y 轴对称B .x 轴对称C .原点对称D .直线y =x 对称答案C 解析函数f (x )的定义域为(-∞,0)∪(0,+∞)且f (-x )=-f (x ),即函数f (x )为奇函数,故选C.3.[P32T2]小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是.(填序号)答案③解析小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除①.因交通堵塞停留了一段时间,与学校的距离不变,故排除④.后来为了赶时间加快速度行驶,故排除②.故③正确.4.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是.答案(-1,1]解析在同一坐标系内作出y =f (x )和y =log 2(x +1)的图象(如图).由图象知不等式的解集是(-1,1].题组三易错自纠5.下列图象是函数y 2,x <0,-1,x ≥0的图象的是()答案C6.把函数f (x )=ln x 的图象上各点的横坐标扩大到原来的2倍,得到的图象的函数解析式是________________.答案y =解析根据伸缩变换方法可得,所求函数解析式为y =7.(2018·太原调研)若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是__________.答案(0,+∞)解析在同一个坐标系中画出函数y =|x |与y =a -x 的图象,如图所示.由图象知,当a >0时,方程|x |=a -x 只有一个解.题型一作函数的图象分别画出下列函数的图象:(1)y =|lg(x -1)|;(2)y =2x +1-1;(3)y =x 2-|x |-2;(4)y =2x -1x -1.解(1)首先作出y =lg x 的图象,然后将其向右平移1个单位,得到y =lg(x -1)的图象,再把所得图象在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图象,如图①所示(实线部分).(2)将y =2x 的图象向左平移1个单位,得到y =2x +1的图象,再将所得图象向下平移1个单位,得到y =2x +1-1的图象,如图②所示.(3)y =x 2-|x |-2x 2-x -2,x ≥0,x 2+x -2,x <0,其图象如图③所示.(4)∵y =2+1x -1,故函数的图象可由y =1x 1个单位,再向上平移2个单位得到,如图④所示.思维升华图象变换法作函数的图象(1)熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +1x的函数.(2)若函数图象可由某个基本函数的图象经过平移、翻折、对称和伸缩得到,可利用图象变换作出,但要注意变换顺序.题型二函数图象的辨识例1(1)函数y =x 2ln|x ||x |的图象大致是()答案D 解析从题设提供的解析式中可以看出函数是偶函数,x ≠0,且当x >0时,y =x ln x ,y ′=1+ln x 0,1e 上单调递减,在区间1e,+∞ D.(2)设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是()A .y =f (|x |)B .y =-|f (x )|C .y =-f (-|x |)D .y =f (-|x |)答案C 解析题图中是函数y =-2-|x |的图象,即函数y =-f (-|x |)的图象,故选C.思维升华函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.跟踪训练1(1)函数f (x )=1+log 2x 与g (x )=12x 在同一直角坐标系下的图象大致是()答案B 解析因为函数g (x )=12为减函数,且其图象必过点(0,1),故排除A ,D.因为f (x )=1+log 2x的图象是由y =log 2x 的图象上移1个单位得到的,所以f (x )为增函数,且图象必过点(1,1),故可排除C ,故选B.(2)函数y =1ln|e x -e -x |的部分图象大致为()答案D 解析令f (x )=1ln|e x -e -x |,则f (-x )=1ln|e -x -e x |=1ln|e x -e -x |=f (x ),∴f (x )是偶函数,图象关于y 轴对称,排除B ,C.当x >1时,y =1ln|e x -e -x |=1ln (e x -e -x ),显然y >0且函数单调递减,故D 正确.题型三函数图象的应用命题点1研究函数的性质例2(1)已知函数f (x )=x |x |-2x ,则下列结论正确的是()A .f (x )是偶函数,单调递增区间是(0,+∞)B .f (x )是偶函数,单调递减区间是(-∞,1)C .f (x )是奇函数,单调递减区间是(-1,1)D .f (x )是奇函数,单调递增区间是(-∞,0)答案C 解析将函数f (x )=x |x |-2x去掉绝对值,得f (x )x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.(2)设f (x )=|lg(x -1)|,若0<a <b 且f (a )=f (b ),则ab 的取值范围是________.答案(4,+∞)解析画出函数f (x )=|lg(x -1)|的图象如图所示.由f (a )=f (b )可得-lg(a -1)=lg(b -1),解得ab =a +b >2ab (由于a <b ,故取不到等号),所以ab >4.命题点2解不等式例3函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x<0的解集为.答案-π2,-1∪1,π2解析当x ∈0,π2y =cos x >0.当x ∈π2,4y =cos x <0.结合y =f (x ),x ∈[0,4]上的图象知,当1<x <π2时,f (x )cos x <0.又函数y =f (x )cos x为偶函数,所以在[-4,0]上,f (x )cos x<0-π2,-1,所以f (x )cos x<0-π2,-1∪1,π2命题点3求参数的取值范围例4(1)已知函数f (x )12log x ,x >0,2x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是.答案(0,1]解析作出函数y =f (x )与y =k 的图象,如图所示,由图可知k ∈(0,1].(2)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是.答案解析先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的取值范围思维升华(1)注意函数图象特征与性质的对应关系.(2)方程、不等式的求解可转化为函数图象的交点和上下关系问题.跟踪训练2(1)(2018·昆明检测)已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )()A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值答案C 解析画出y =|f (x )|=|2x -1|与y =g (x )=1-x 2的图象,它们交于A ,B 两点.由“规定”,在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值.(2)设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是.答案[-1,+∞)解析如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知,当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).高考中的函数图象及应用问题高考中考查函数图象问题主要有函数图象的识别,函数图象的变换及函数图象的应用等,多以小题形式考查,难度不大,常利用特殊点法、排除法、数形结合法等解决.熟练掌握高中涉及的几种基本初等函数是解决前提.一、函数的图象和解析式问题例1(1)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为()答案B 解析当x ∈0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A ,C ;当x ∈π4,3π4时,1+5,22.∵22<1+5,∴D ,故选B.(2)已知函数f (x )的图象如图所示,则f (x )的解析式可以是()A .f (x )=ln|x |x B .f (x )=e x xC .f (x )=1x2-1D .f (x )=x -1x答案A 解析由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x,则x →+∞时,f (x )→+∞,排除D ,故选A.(3)(2018·全国Ⅱ)函数f (x )=e x -e -x x 2的图象大致为()答案B 解析∵y =e x -e -x 是奇函数,y =x 2是偶函数,∴f (x )=e x -e -x x 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e >0,排除D 选项.又e>2,∴1e <12,∴e -1e >32,排除C 选项.故选B.二、函数图象的变换问题例2已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为()答案D 解析方法一先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象;然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D.方法二先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y=-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D.方法三当x =0时,y =-f (2-0)=-f (2)=-4.故选D.三、函数图象的应用例3(1)已知函数f (x )|,x ≤m ,2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是.答案(3,+∞)解析在同一坐标系中,作y =f (x )与y =b 的图象.当x >m 时,x 2-2mx +4m =(x -m )2+4m-m 2,所以要使方程f (x )=b 有三个不同的根,则有4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.(2)不等式3sin π2x-12log x<0的整数解的个数为.答案2解析不等式3sin π2x12log x<0,即3sinπ2x<12log x.设f(x)=3sinπ2x,g(x)=12log x,在同一坐标系中分别作出函数f(x)与g(x)的图象,由图象可知,当x为整数3或7时,有f(x)<g(x),所以不等式3sin π2x12log x<0的整数解的个数为2.(3)已知函数f(x)sinπx,0≤x≤1,log2020x,x>1,若实数a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是.答案(2,2021)解析函数f(x)sinπx,0≤x≤1,log2020x,x>1的图象如图所示,不妨令a<b<c,由正弦曲线的对称性可知a+b=1,而1<c<2020,所以2<a+b+c<2021.1.(2018·浙江)函数y=2|x|sin2x的图象可能是()答案D解析由y =2|x |sin 2x 知函数的定义域为R ,令f (x )=2|x |sin 2x ,则f (-x )=2|-x |sin(-2x )=-2|x |sin 2x .∵f (x )=-f (-x ),∴f (x )为奇函数.∴f (x )的图象关于原点对称,故排除A ,B.令f (x )=2|x |sin 2x =0,解得x =k π2(k ∈Z ),∴当k =1时,x =π2,故排除C.故选D.2.如图,不规则四边形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 交AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分的面积为y ,则y 关于x 的图象大致是()答案C解析当l 从左至右移动时,一开始面积的增加速度越来越快,过了D 点后面积保持匀速增加,图象呈直线变化,过了C 点后面积的增加速度又逐渐减慢.故选C.3.已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致为()答案A解析先作出函数f(x)=log a x(0<a<1)的图象,当x>0时,y=f(|x|+1)=f(x+1),其图象由函数f(x)的图象向左平移1个单位得到,又函数y=f(|x|+1)为偶函数,所以再将函数y=f(x+1)(x>0)的图象关于y轴对称翻折到y轴左边,得到x<0时的图象,故选A.4.若函数f(x)ax+b,x<-1,ln(x+a),x≥-1的图象如图所示,则f(-3)等于()A.-12B.-54C.-1D.-2答案C解析由图象可得-a+b=3,ln(-1+a)=0,得a=2,b=5,∴f(x)2x+5,x<-1,ln(x+2),x≥-1,故f(-3)=2×(-3)+5=-1,故选C.5.函数f(x)的图象向右平移1个单位,所得图象与曲线y=e x关于y轴对称,则f(x)的解析式为()A.f(x)=e x+1B.f(x)=e x-1C.f(x)=e-x+1D.f(x)=e-x-1答案D解析与y=e x的图象关于y轴对称的函数为y=e-x.依题意,f(x)的图象向右平移一个单位,得y=e-x的图象.∴f(x)的图象由y=e-x的图象向左平移一个单位得到.∴f(x)=e-(x+1)=e-x-1.6.(2018·承德模拟)已知函数f(x)的定义域为R,且f(x)2-x-1,x≤0,f x-1),x>0,若方程f(x)=x+a有两个不同实根,则实数a的取值范围为() A.(-∞,1)B.(-∞,1]C .(0,1)D .(-∞,+∞)答案A解析当x ≤0时,f (x )=2-x -1,当0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.类推有f (x )=f (x -1)=22-x -1,x ∈(1,2],…,也就是说,x >0的部分是将x ∈(-1,0]的部分周期性向右平移1个单位得到的,其部分图象如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1).7.设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为.答案{x |x ≤0或1<x ≤2}解析画出f (x )的大致图象如图所示.不等式(x -1)f (x )≤0>1,x )≤0<1,x )≥0.由图可知符合条件的解集为{x |x ≤0或1<x ≤2}.8.设函数y =f (x )的图象与y =2x -a 的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则实数a =.答案-2解析由函数y =f (x )的图象与y =2x -a 的图象关于直线y =-x 对称,可得f (x )=-a -log 2(-x ),由f (-2)+f (-4)=1,可得-a -log 22-a -log 24=1,解得a =-2.9.已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,且在[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R ,k ≠-1)有四个实数根,则k 的取值范围是.答案-13,解析由题意作出f (x )在[-1,3]上的示意图如图所示,记y =k (x +1)+1,∴函数y =k (x +1)+1的图象过定点A (-1,1).记B (2,0),由图象知,方程有四个实数根,即函数f (x )与y =kx +k +1的图象有四个交点,故k AB <k <0,k AB =0-12-(-1)=-13,∴-13<k <0.10.给定min{a ,b },a ≤b ,,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m与函数y =f (x )的图象有3个交点,则实数m 的取值范围为.答案(4,5)解析作出函数f (x )的图象,函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y=m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5).11.已知函数f (x )2(1-x )+1,-1≤x <0,3-3x +2,0≤x ≤a的值域为[0,2],则实数a 的取值范围是.答案[1,3]解析先作出函数f (x )=log 2(1-x )+1,-1≤x <0的图象,再研究f (x )=x 3-3x +2,0≤x ≤a的图象.令f ′(x )=3x 2-3=0,得x =1(x =-1舍去),由f ′(x )>0,得x >1,由f ′(x )<0,得0<x <1.又f (0)=f (3)=2,f (1)=0.所以1≤a ≤ 3.12.已知函数f (x )=2x ,x ∈R .(1)当实数m 取何值时,方程|f (x )-2|=m 有一个解?两个解?(2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求实数m 的取值范围.解(1)令F (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出F (x )的图象如图所示.由图象可知,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个实数解;当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个实数解.(2)令f (x )=t (t >0),H (t )=t 2+t ,t >0,因为H (t )-14在区间(0,+∞)上是增函数,所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0,即所求m 的取值范围为(-∞,0].13.已知函数f (x )2+2x -1,x ≥0,2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是()A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0答案D解析函数f (x )的图象如图实线部分所示,且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数,又0<|x 1|<|x 2|,∴f (x 2)>f (x 1),即f (x 1)-f (x 2)<0.14.已知函数f (x )=x |x -1|,g (x )=1+x +|x |2,若f (x )<g (x ),则实数x 的取值范围是.答案解析f (x )+1x -1,x >1,1+11-x,x <1,g (x )+x ,x ≥0,,x <0,作出两函数的图象如图所示.当0≤x <1时,由-1+11-x=x +1,解得x =5-12;当x >1时,由1+1x -1=x +1,解得x =5+12.结合图象可知,满足f (x )<g (x )的x -∞,5-12∪1+52,+∞15.已知函数f (x )-x 2+x ,x ≤1,13logx ,x >1,g (x )=|x -k |+|x -2|,若对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,则实数k 的取值范围为____________.答案-∞,74∪94,+∞解析对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,即f (x )max ≤g (x )min .观察f (x )-x 2+x ,x ≤1,13log x ,x >1的图象可知,当x =12时,函数f (x )max =14.因为g (x )=|x -k |+|x -2|≥|x -k -(x -2)|=|k -2|,所以g (x )min =|k -2|,所以|k -2|≥14,解得k ≤74或k ≥94.故实数k 的取值范围是-∞,74∪94,+∞16.已知函数f (x )(x -1)2,0≤x ≤2,14x -12,2<x ≤6.若在该函数的定义域[0,6]上存在互异的3个数x 1,x 2,x 3,使得f (x 1)x 1=f (x 2)x 2=f (x 3)x 3=k ,求实数k 的取值范围.解由题意知,直线y =kx 与函数y =f (x )(x ∈[0,6])的图象至少有3个公共点.函数y =f (x )的图象如图所示,由图知k ,1 6.。
新高考数学高二知识点汇总
新高考数学高二知识点汇总高中数学作为新高考必考科目,占据着总分的一大部分。
对于即将步入高二的同学来说,全面了解并掌握数学高二的知识点是至关重要的。
本文将对高二数学的知识点进行汇总,帮助同学们更好地备考。
1. 三角函数高二数学开始学习三角函数的概念和性质。
三角函数是和角度相关的函数,包括正弦函数、余弦函数和正切函数等。
同学们需要掌握三角函数的周期性、图像变换和函数性质,能够解决与三角函数相关的各种问题。
2. 平面向量平面向量是数学中的一个重要概念。
在高二数学中,同学们将学习平面向量的定义、基本运算以及与几何关系的应用。
重点掌握平面向量的加减法、数量积和向量积,能够熟练应用平面向量解决几何问题。
3. 数列与数列的极限数列是一系列按照一定规律排列的数的集合。
高二数学中将学习数列的概念、性质以及求解数列的通项公式和前n项和的方法。
同时,还将引入数列的极限的概念,包括数列的敛散性和极限计算等内容。
4. 函数与导数函数在高二数学中的地位非常重要。
同学们将学习函数的概念、性质以及函数的运算和函数图像的变换。
重点掌握函数的复合、反函数以及函数的周期性等内容。
此外,函数的导数也是高二数学的重点,同学们需要掌握函数的导数定义、性质和常用求导法则,能够应用导数计算函数的变化率和解决相关的最值和极值问题。
5. 不等式不等式是高二数学中的一个重要内容,包括一元一次不等式、一元二次不等式、绝对值不等式等。
同学们需要深入理解不等式的基本性质,能够解决各种不等式的求解和证明问题。
6. 概率与统计概率与统计是数学中的一个实用分支,包括事件的概率、条件概率等概率知识,以及频率、样本和总体等统计知识。
同学们需要熟悉概率与统计的基本概念、性质和计算方法,能够应用概率与统计解决实际问题。
7. 解析几何解析几何是数学中的一个重要分支,结合了代数和几何的内容。
高二数学中的解析几何主要包括直线方程、圆的方程和二次曲线方程。
同学们需要掌握直线和圆的方程的求解和应用,能够分析二次曲线的性质并绘制图像。
2024年高考数学总复习第二章函数的概念与基本初等函数真题分类10函数与方程
由于f1(1)=0,当n≥2时,fn(1)=212+312+…+n12>0,故fn(1)≥0.
第5页
返回层目录 返回目录
真题分类10 函数与方程
又fn23=-1+23+k∑=n 223k2k ≤-13+14k∑=n 223k =-13+14·23211--2323n-1 =-13·23n-1<0, 所以存在唯一的xn∈23,1,满足fn(xn)=0.
第9页
返回层目录 返回目录
真题分类10 函数与方程
高考·数学
答案:C
(1-a)x,x<0, 由题意,b=f(x)-ax=13x3-12(a+1)x2,x≥0.
(1-a)x,x<0, 设 y=b,g(x)=13x3-12(a+1)x2,x≥0.
即以上两个函数的图象恰有 3 个交点,根据选项进行讨论.
高考·数学
第2页
返回目录
真题分类10 函数与方程
高考·数学
Ⅰ.函数零点存在定理法判断函数零点所在区间 Ⅱ.数形结合法Fra bibliotek断函数零点所在区间
01 判断函数在某个区间上是否存在零点的方法
(1)解方程:当函数对应的方程易求解时,可通过解方程判断方程是否有根落在给定区 间上.
(2)利用函数零点存在定理进行判断. (3)画出函数图象,通过观察图象与 x 轴在给定区间上是否有交点来判断.
真题分类10 函数与方程
高考·数学
第二章 函数的概念与基本初等函数
§ 2.6 函数与方程
真题分类10 函数与方程
C1.函数零点所在区间的判断 C2.函数零点个数的判断 C3.函数零点求和的问题 C4.零点与参数的综合问题
高中数学总复习系列之函数及其表示
高中数学总复习系列之函数及其表示第页高考调研·高三总复习·数学(理)第二章函数与基本初等函数第1课时函数及其表示第页高考调研·高三总复习·数学(理)…2018考纲下载…1.了解构成函数的要素会求一些简单函数的定义域和值域.了解映射的概念在实际情景中会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.了解简单的分段函数并能简单应用.请注意本节是函数的起始部分以考查函数的概念、三要素及表示法为主同时函数的图像、分段函数的考查是热点另外实际问题中的建模能力偶有考查.特别是函数的表达式及图像仍是2019年高考考查的重要内容.课前自助餐函数与映射的概念函数映射两集合A设A是两个非空数集设A 是两个非空集合对应关系:A→B 如果按照某种确定的对应关系f使对于集合A中的任意一个数x在集合B中有唯一的数(x)和它对应如果按某一个确定的对应关系f使对于集合A中的任意一个元素x在集合B中有唯一的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=(x),x∈A 对应f:A→B是一个映射函数(1)函数实质上是从一个非空数集到另一个非空数集的映射.(2)函数的三要素:定义域、值域、对应法则.(3)函数的表示法:解析法、图像法、列表法.(4)两个函定义域和对应法则都分别相同时这两个函数才相同.分段函数在一个函数的定义域中对于自变量x的不同取值范围有着不同的对应关系这样的函数叫分段函数分段函数是一个函数而不是几个函数.1.判断下列说法是否正确(打“√”或“×”).(1)f(x)=+(2)A=R=R:x→y=表示从集合A到集合B的映射(也是函数).(3)函数(x)的图像与直线x=1的交点最多有2个.(4)y=2x(x∈{1)的值域是2(5)y=与y=2表示同一函数.(6)f(x)=则f(-x)=答案(1)×(2)×(3)×(4)×(5)×(6)√2.2018年是平年假设月份构成集合A每月的天数构成集合B是月份与天数的对应关系其对应如下:月份 1 2 3 4 5 6 7 8 9 10 11 12 天数 31 28 31 30 31 30 31 31 30 31 30 31对照课本中的函数概念上述从A到B的对应是函数吗?又从B到A的对应是函数吗?答案是不是3.已知(x)=m(x∈R)则f(m)等于(). D.不确定答案4.已知f(x+1)=x-1则(x)=________答案x-2x5.函数y=(x)的图像如图所示那么(x)的定义域是________;值域是________;其中只与x的一个值对应的y值的范围是________.答案[-3]∪[2,3][1][1)∪(4,5]6.(2018·衡水调研卷)函数(x)=则()=________;方程f(-x)=的解是________答案-2-或1解析f()==-2;当x<0时由f(-x)=(-x)=解得x=-当x>0时由f(-x)=2-x=解得x=1.授人以渔题型一函数与映射的概念(1)下列对A到B的映射能否构成函数?A=N=N:x→y=(x-1);=N=R:x→y=±;=N=Q:x→y=;={衡中高三·一班的同学}=[0],f:每个同学与其高考数学的分数相对应.【解析】①是映射也是函数.不是映射更不是函数因为从A到B的对应为“一对多”.当x =1时值不存在故不是映射更不是函数.是映射但不是函数因为集合A 不是数集.【答案】①是映射也是函数不是映射更不是函数不是映射更不是函数是映射但不是函数(2)下列表格中的x与y能构成函数的是()【解析】中0既是非负数又是非正数;B中0又是偶数;D中自然数也是整数也是有理数.【答案】★状元笔记★映射与函数的含义(1)映射只要求第一个集合A中的每个元素在第二个集合B中有且只有一个元素与之对应;至于B中的元素有无原象、有几个原象却无所谓.(2)函数是特殊的映射:当映射f:A→B中的A 为非空数集时即成为函数.(3)高考对映射的考查往往结合其他思考题1(1)下图中建立了集合P中元素与集合M中元素的对应f.其中为映射的对应是________.【解析】①中:P中元素-3在M中没有象.③中中元素2在M 中有两个不同的元素与之对应.④中中元素1在M中有两个不同的元素与之对应.【答案】②⑤(2)集合A={x|0≤x≤4}={y|0≤y≤2}下列不表示从A到B的函数的是():x→y=.:x→y=:x→y=:x→y=【解析】依据函数概念集合A中任一元素在集合B中都有唯一确定的元素与之对应选项不符合.(2018·湖北宜昌一中月考)已知函数(x)=|x-1|则下列函数中与(x)相等的函数是()(x)=(x)=(x)=(x)=x-1【解析】∵g(x)=与(x)的定义域和对应关系完全一致故选【答案】★状元笔记★判断两个函数是否相同的方法(1)构成函数的三要素中(2)两个函数当且仅当定义域和对应法则相同时才是相同函数.思考题2下列五组函数中表示同一函数的是________(x)=x-1与g(x)=(x)=与g(x)=2(x)=x+2与g(x)=x+2(u)=与f(v)==(x)与y =f(x+1)【答案】④题型二函数的解析式求下列函数的解析式:(1)已知f()=求(x)的解析式;(2)已知f(+)=x+求(x)的解析式;(3)已知(x)是二次函数(x+1)-(x)=2x+1且f(0)=3求(x)的解析式;(4)定义在(0+∞)上的函数(x)满足(x)=()·-1求(x)的解析式.【解析】(1)(换元法)设=t[-1],∵f(cosx)==1-(t)=1-t[-1].即(x)=1-x[-1].(2)(凑配法)∵f(+)=(+)-2(x)=x-2[2,+∞).(3)(待定系数法)因为(x)是二次函数可设(x)=ax+bx+c(a≠0)(x+1)+b(x+1)+c-(ax+bx+c)=2x+1.即2ax+a+b=2x+1解得又∵f(0)=3=3(x)=x+3.(4)(方程组法)在(x)=2f()-1中用代替x得f()=2(x)-1将f()=-1代入(x)=2f()-1中可求得(x)=+【答案】(1)(x)=1-x[-1](2)f(x)=x-2[2,+∞)(3)f(x)=x+3(4)f(x)=+★状元笔记★函数解析式的求法(1)凑配法:由已知条件f(g(x))=(x),可将(x)改写成关于g(x)的表达式然后以x替代g(x)便得(x)的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法:已知复合函数f(g(x))的解析式可用换元法(4)方程思想:已知关于(x)与f()或f(-x)等的表达式可根据已知条件再构造出另外一个等式组成方程组通过解方程组求出(x).思考题3(1)若函数(x)满足f(1+)=求(x)的解析式.(2)定义在R上的函数(x)满足f(x+1)=2(x),若当0≤x≤1时(x)=x(1-x)当-1≤x≤0时求(x)解析式.(3)已知(x)+2f()=x(x≠0)求(x).【解析】(1)令1+=t=t-1=-1(t)=(x)=(2)当0≤x≤1时(x)=x(1-x)当-1≤x≤00≤x+1≤1(x+1)=(x+1)[1-(x+1)]=-x(x+1)而(x)=(x+1)=--当-1≤x≤0时(x)=--(3)∵f(x)+2f()=x将原式中的x与互换得f()+2(x)=于是得关f(x)的方程组解得(x)=-(x≠0).【答案】(1)(x)=(2)f(x)=--(3)f(x)=(x≠0)题型三分段函数与复合函数(1)已知函数(x)=(x)=x+1则:①g[(x)]=________;②f[g(x)]=________.【解析】①x<0时f(x)=[f(x)]=+1;时(x)=x[f(x)]=x+1.[f(x)]=由x+1<0得x<-1.由x+1≥0得x≥-1.∴f[g(x)]=【答案】①g[(x)]=[g(x)]=(2)(2018·南京金陵中学模拟)已知函数(x)=则使得(x)≤3成立的x的取值范围是________【解析】当x≥0时-1≤3=2当x<0时-2x≤3-2x-3≤0-1≤x<0.综上可得x∈[-1].【答案】[-1]★状元笔记★分段函数、复合函思考题4(1)(2018·河北清苑一中模拟)设(x)=则f(f(-1))=________(x)的最小值是________【解析】∵f(-1)=(-1)+1=2(f(-1))=f(2)=2+-3=0.当x≥1时(x)在[1]上单调递减在[+∞)上单调递增(x)min=f()=2-3<0.当x<1时(x)min=1,∴f(x)的最小值为2-3.【答案】02-3(2)(2017·课标全国Ⅲ)设函数(x)=则满足(x)+f(x-)>1的x的取值范围是________【解析】当x>0时(x)=2x恒成立当x-即x>时(x-)=2-当x-即01恒成立.当x≤0时(x)+f(x-)=x+1+x+=2x+所以-综上所述的取值范围是(-+∞).【答案】(-+∞)常用结论记心中快速解题特轻松:映射问题允许多对一但不允许一对多!换句话说就是允许三石一鸟但不允许一石三鸟!函数问题定义域优先!抽象函数不要怕赋值方法解决它!4.分段函数分段算本课时主要涉及到三类题型:函数的三要素分段函数函数的解析式.通过例题的讲解(有些题目直接源于教材)一方面使学生掌握各类题型的解法;另一方面也要教给学生把握复习的尺度教学大纲是高考命题的依据而教材是贯彻大纲的载体研习教材是学生获取知识、能力的重要途径.从近几年的新课标高考试题可以看到高考试题严格遵循教学大纲及《高考大纲》有一定数量的试题直接源自教材这就要求我们在教学过程中要紧扣教材和大纲全面、系统地抓好对基础知识、基本技能、基本思想和方法的教学对各模块的内容要课外阅读抽象函数设函数(x)的定义域为R对于任意实数x都有f(x)+f(x)=2f()f()(π)=-1则(0)=________.【解析】令x=x=则f()+f()=2f()f(0),∴f(0)=1.【答案】1已知偶函数(x),对任意的x恒有(x1+x)=f(x)+f(x)+2x+1则函数(x)的解析式为________.【解析】取x=x=0所以f(0)=2f(0)+1.所以f(0)=-1.因为f[x +(-x)]=(x)+f(-x)+2x·(-x)+1又f(-x)=(x),所以(x)=x-1.【答案】(x)=x-1【讲评】抽象函数问题的处理一般有两种途径:(1)看其性质符合哪类具(2)利用特殊值代入寻求规律和解法。
高考数学一轮总复习第二章函数导数及其应用2.5指数与指数函数课件理
第六页,共42页。
(2)有理数指数幂的性质 ①aras= ar+s (a>0,r,s∈Q); ②(ar)s= ars (a>0,r,s∈Q); ③(ab)r= arbr (a>0,b>0,r∈Q).
第七页,共42页。
2.指数函数的图象与性质
y=ax
a>1
0<a<1
图象
定义域
R
第八页,共42页。
第九页,共42页。
故②正确;③
= = 2;④ 4 -24=2;⑤当 a≠0 时,由(1+a2)m<(1
+a2)n 可知 m<n,当 a=0 时不成立.
答案:②
第十五页,共42页。
3
考点疑难突破
第十六页,共42页。
指数(zhǐshù)幂的化简与求值
计算:
第十七页,共42页。
【解】 (1)原式=
- 51-0 2+1=
第二十页,共42页。
[自 主 演 练]
1.化简 4 16x8y4(x<0,y<0)得( A.2x2y C.4x2y
) B.2xy D.-2x2y
解析: 4 16x8y4=(16x8y4) =[24(-x)8·(-y)4] =
=
2(-x)2(-y)=-2x2y.
答案:D
第二十一页,共42页。
2.(2017 届四川绵阳一诊)计算:2 3×3 1.5×6 12=________. 解析:原式=
【答案】 C
第三十三页,共42页。
角度三 探究指数型函数的性质
(1)函数 y=14x-12x+1 在区间[-3,2]上的值域是________.
(2)函数 f(x)=
的单调减区间为________.
第三十四页,共42页。
【解析】 (1)因为 x∈[-3,2], 所以令 t=12x,则 t∈14,8, 故 y=t2-t+1=t-122+34. 当 t=12时,ymin=34;当 t=8 时,ymax=57. 故所求函数的值域为34,57.
高三数学第二轮专题复习系列(2)-- 函数
高三数学第二轮专题复习系列(2)-- 函数一、本章知识结构:二、高考要求(1)了解映射的概念,理解函数的概念.(2)了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程.(3)了解反函数的概念及互为反函数的函数图像间关系,会求一些简单函数的反函数. (4)理解分数指数的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质. (5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 三、热点分析函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题。
在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新。
以基本函数为背景的应用题和综合题是高考命题的新趋势。
考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象。
②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点。
③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想。
四、复习建议1. 认真落实本章的每个知识点,注意揭示概念的数学本质①函数的表示方法除解析法外还有列表法、图象法,函数的实质是客观世界中量的变化的依存关系;②中学数学中的“正、反比例函数,一次、二次函数,指数、对数函数,三角函数”称为基本初等函数,其余的函数的解析式都是由这些基本初等函数的解析式形成的. 要把基本初等函数的图象和性质联系起来,并且理解记忆;③掌握函数单调性和奇偶性的一般判定方法,并能联系其相应的函数的图象特征,加强对函数单调性和奇偶性应用的训练;④注意函数图象的变换:平移变换、伸缩变换、对称变换等;函数的三要素函数的表示法 函数的性质 反函数 函数的应用 初等函数基本初等函数: 指数函数 对数函数对数指数映射函数射⑤掌握复合函数的定义域、值域、单调性、奇偶性;⑥理解掌握反函数的概念,会求反函数,弄清互为反函数的两个函数的定义域、值域、单调性的关联及其图像间的对称关系。
新教材人教A版高中数学选择性必修第二册全册2022新高考一轮复习课件(第四章数列、第五章导数)
1
1
1
因为 Sn≠0,所以 − =1,即 − =-1.
+1
+1
1
1
又因为 =-1,所以 是首项为-1,公差为-1
1
1
1
所以 =-1+(n-1)×(-1)=-n,所以 Sn=- .
的等差数列.
1 , = 1,
解题心得1.已知数列{an}的前n项和Sn,则通项公式 an= - , ≥ 2. 当
n+1
所以第 2 021 项 a2 021=(-1)
×
2 022
2×2 021
2×2 021+1
=
4 042
.
4 043
(3)已知数列 1,-√3, √5,-√7,…,则 3√5是这个数列的第( D )项.
A.20
B.21
C.22
D.23
由已知,数列的一个通项公式为 an=(-1)n+1· 2-1.
1
-
.
由题意得Sn+1=2an+1+1,Sn=2an+1,两式相减,得Sn+1-Sn=2an+1-2an,即an+1=2an.
又S1=2a1+1=a1,因此a1=-1,
所以数列{an}是以a1=-1为首项,2为公比的等比数列,所以an=-2n-1.
(2)因为an+1=Sn+1-Sn,an+1=SnSn+1,所以Sn+1-Sn=SnSn+1.
负符号变化,可用(-1)n或(-1)n+1来调整.
2.若此类问题为选择题,则可以利用给出数列的前几项进行检验排除,即可
新课标2022版高考数学总复习第二章函数第一节函数及其表示练习含解析理
高考数学总复习:第一节 函数及其表示学习要求:1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.1.函数与映射的概念函数映射两集合A 、B设A 、B 是两个① 非空数集 设A 、B 是两个② 非空集合对应关系f :A →B按照某种确定的对应关系f ,使对于集合A中的③ 任意 一个数x ,在集合B 中都有④ 唯一确定 的数f (x )与之对应按某种确定的对应关系f ,使对于集合A 中的⑤ 任意 一个元素x ,在集合B 中都有⑥ 唯一确定 的元素y 与之对应名称 称f :A →B 为从集合A 到集合B 的一个函数 称对应f :A →B 为从集合A 到集合B 的一个映射记法y =f (x ),x ∈A 对应f :A →B▶提醒 判断一个对应关系是不是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点.2.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的⑦ 定义域 ;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的⑧ 值域 .(2)函数的三要素:⑨ 定义域 、值域和对应关系.(3)相等函数:若两个函数的⑩ 定义域 相同,且 对应关系 完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示方法: 解析法 、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.▶提醒一个分段函数的解析式要把每一段写在一个大括号内,各段函数的定义域不可以相交.知识拓展1.常见函数的定义域(1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于等于0.(3)一次函数、二次函数的定义域为R.(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R.(5)y=tan x的定义域为{x|x∈R且x≠xπ+π2,x∈Z}.(6)函数f(x)=x0的定义域为{x|x∈R且x≠0}.(7)y=log a x(a>0,且a≠1)的定义域为{x|x>0}.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.(2)y=ax2+bx+c(a≠0)的值域:当a>0时,值域为[4xx-x24x ,+∞);当a<0时,值域为(-∞,4xx-x24x].(3)y=xx(k≠0)的值域是{y|y≠0}.(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.1.判断正误(正确的打“√”,错误的打“✕”).(1)函数y=1与y=x0是同一个函数.()(2)f(x)=√x-3+√2-x是一个函数.()(3)若两个函数的定义域与值域相同,则这两个函数相等.()(4)函数y=f(x)的图象与直线x=1的交点最多有1个.()答案(1)✕(2)✕(3)✕(4)√2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是 ( )答案 B3.(新教材人教A 版必修第一册P65例2改编)函数f (x )=√2x的定义域为 ( )A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞) 答案 A 要使f (x )=2x有意义,需满足2x-1>0,解得x >0,∴函数f (x )=2x的定义域为(0,+∞),故选A.4.(2020山东威海一中期中)已知函数f (x )的定义域为(-1,0),则函数f (2x -2)的定义域为( ) A.(-1,1) B.(-1,-12) C.(-1,0) D.(12,1)答案 D ∵f (x )的定义域为(-1,0),∴-1<2x -2<0,解得12<x <1,∴函数f (2x -2)的定义域为(12,1),故选D .5.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )= ( )A.x +1B.2x -1C.-x +1D.x +1或-x -1答案 A 因为f (x )是一次函数,所以可设f (x )=kx +b (k ≠0).由f [f (x )]=x +2得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,所以k 2=1,kb +b =2,解得k =1,b =1,则f (x )=x +1.故选A.函数、映射概念的理解典例1 (1)给出下列四个对应:①A =R,B =R,对应关系f :x →y ,y =1x +1,x ∈A ,y ∈B ;②A ={x |12x ∈N *},B ={x |x =1x,x ∈N *},对应关系f :a →b ,b =1x;③A ={x |x ≥0},B =R,对应关系f :x →y ,y 2=x ,x ∈A ,y ∈B ;④A ={x |x 是平面α内的矩形},B ={y |y 是平面α内的圆},对应关系f :每一个矩形都对应它的外接圆. 其中是从A 到B 的映射的为( )A.①③B.②④C.①④D.③④ (2)下列函数中,与函数y =x +1是相等函数的是 ( )A.y =(√x +1)2B.y =√x 33+1C.y =x 2x+1 D.y =√x 2+1答案 (1)B (2)B解析 (1)对于①,当x =-1时,y 的值不存在,所以①不是从A 到B 的映射;对于②,A ,B 是两个集合,分别用列举法表述为A ={2,4,6,…},B ={1,12,13,14,…},由对应关系f :a →b ,b =1x 知,②是从A 到B 的映射;③不是从A 到B 的映射,如A 中的元素1对应B 中两个元素±1;④是从A 到B 的映射.(2)对于A,函数y =(√x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B,两个函数的定义域和对应关系都相同,是相等函数;对于C,函数y =x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域不同,不是相等函数;对于D,两个函数的定义域相同,但对应关系不同,不是相等函数,故选B .名师点评1.定义域和值域都相同的两个函数不一定是相等函数.2.判断一个从集合A 到集合B 的对应是不是一个函数(映射)的依据可归纳为可以一对一,也可以多对一,但不能一对多.1.下列对应关系:①A ={1,4,9},B ={-3,-2,-1,1,2,3}, f :x →x 的平方根; ②A =R,B =R, f :x →x 的倒数; ③A =R,B =R, f :x →x 2-2;④A ={-1,0,1},B ={-1,0,1}, f :x →x 2. 其中是A 到B 的映射的是 ( )A.①③B.②④C.③④D.②③ 答案 C2.下列四组函数中,表示相等函数的一组是 ( )A.f (x )=|x |,g (x )=√x 2B.f (x )=√x 2,g (x )=(√x )2C.f (x )=x 2-1x -1,g (x )=x +1D.f (x )=√x +1·√x -1,g (x )=√x 2-1 答案 A函数的定义域角度一 具体函数的定义域典例2 (1)函数f (x )=√x +1+lg(6-3x )的定义域为 ( )A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2] (2)函数f (x )=√4-|x |+lgx 2-5x +6x -3的定义域为 ( )A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6] 答案 (1)C (2)C解析 (1)要使函数f (x )=√x +1+lg(6-3x )有意义,则{x +1≥0,6-3x >0,即-1≤x <2.故函数f (x )的定义域为[-1,2).(2)要使函数f (x )有意义,需满足{4-|x |≥0,x 2-5x +6x -3>0,即{|x |≤4,(x -3)(x -2)x -3>0,解得2<x <3或3<x ≤4,故f (x )的定义域为(2,3)∪(3,4].角度二 已知函数定义域,求参数的取值范围典例3 (1)(2019河北衡水联考)若函数y =xx -1xx 2+4xx +3的定义域为R,则实数m 的取值范围是 ( )A.(0,34]B.(0,34)C.[0,34]D.[0,34)(2)若函数f (x )=√xx 2+xxx +x 的定义域为{x |1≤x ≤2},则a +b 的值为 . 答案 (1)D (2)-92解析 (1)要使函数的定义域为R, 则mx 2+4mx +3≠0恒成立, ①当m =0时,显然满足条件; ②当m ≠0时,由Δ=(4m )2-4m ×3<0, 得0<m <34. 综上可知,0≤m <34.(2)函数f (x )=√xx 2+xxx +x 的定义域是不等式ax 2+abx +b ≥0的解集.由题意知不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2}, 所以{x <0,1+2=-x ,1×2=xx,解得{x =-32,x =-3, 所以a +b =-32-3=-92. 角度三 抽象函数的定义域典例4 已知函数f (x )的定义域是[0,2],则函数g (x )=f (x +12)+f (x -12)的定义域是 .答案 [12,32]解析 因为函数f (x )的定义域是[0,2],所以函数g (x )=f (x +12)+f (x -12)中的自变量x 需要满足{0≤x +12≤2,0≤x -12≤2,解得12≤x ≤32,所以函数g (x )的定义域是[12,32]. ◆变式探究 若函数y =f (x )的定义域是[0,2],则函数g (x )=x (2x )x -1的定义域是 .答案 [0,1)解析 由题意得{0≤2x ≤2,x -1≠0,解得0≤x <1,所以g (x )的定义域为[0,1).名师点评简单函数定义域的类型及求法(1)已知函数的解析式,构造使解析式有意义的不等式(组)求解. (2)抽象函数:①若已知函数f (x )的定义域为[a ,b ],则函数f [g (x )]的定义域由不等式a ≤g (x )≤b 求出; ②若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.1.(1)函数f (x )=√2x -1-1的定义域是 . (2)函数f (x )=(x -12)0√x +2的定义域是 .答案 (1)(1,3] (2)(-2,12)∪(12,+∞) 2.若函数y =的定义域为R,则实数a 的取值范围是 .答案 [0,12)解析 由题意得ax 2-4ax +2>0恒成立, 则a =0或{x >0,x =(-4x )2-4×x ×2<0,解得0≤a <12.3.已知函数y =f (x 2-1)的定义域为[0,2],则函数g (x )=x (2x )x -1的定义域是 .答案 [-12,1)∪(1,32]解析 因为y =f (x 2-1)的定义域为[0,2],所以x ∈[0,2],x 2-1∈[-1,3],所以{-1≤2x ≤3,x -1≠0,解得-12≤x ≤32且x ≠1,所以函数g (x )的定义域是[-12,1)∪(1,32].函数的解析式典例5 (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ). (2)已知函数f (x )满足f (-x )+2f (x )=2x,求f (x ). 解析 (1)解法一(待定系数法):因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c.因为f (2x +1)=4x 2-6x +5,所以{4x =4,4x +2x =-6,x +x +x =5,解得{x =1,x =-5,x =9,所以f (x )=x 2-5x +9(x ∈R). 解法二(换元法): 令2x +1=t (t ∈R),则x =x -12,所以f (t )=4(x -12)2-6·x -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R).解法三(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)(解方程组法)由f (-x )+2f (x )=2x①, 得f (x )+2f (-x )=2-x②,①×2-②得3f (x )=2x +1-2-x,即f (x )=2x +1-2-x3.故函数的解析式是f (x )=2x +1-2-x3(x ∈R).方法技巧求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的式子,然后以x 替代g (x )得f (x )的解析式.(2)换元法:已知函数f (g (x ))的解析式,求f (x )的解析式时可用换元法,即令g (x )=t ,从中解出x ,代入已知解析式进行换元,此时要注意新元的取值范围.(3)待定系数法:若已知函数的类型(如一次函数、二次函数),则可用待定系数法.(4)解方程组法:已知关于f (x )与f (1x )或f (-x )的等式,可根据已知条件构造出等式,组成方程组,通过解方程组求出f (x )的解析式.(2020河北衡水中学调研)已知f (x )是二次函数,且f (0)=0, f (x +1)=f (x )+x +1.求f (x )的解析式.解析 设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0知c =0,则f (x )=ax 2+bx ,又由f (x +1)=f (x )+x +1得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以{2x +x =x +1,x +x =1,解得a =b =12,所以f (x )=12x 2+12x (x ∈R).分段函数角度一 分段函数的最值问题典例6 已知函数f (x )={x 2-2xx +9,x ≤1,x +4x +x ,x >1,若f (x )的最小值为f (1),则实数a 的取值范围是 .答案 [2,+∞)解析 当x >1时, f (x )=x +4x +a ≥4+a ,当且仅当x =2时,等号成立.当x ≤1时, f (x )=x 2-2ax +9为二次函数,要想在x =1处取最小值,则函数图象的对称轴要满足x =a ≥1,并且f (1)≤4+a ,即1-2a +9≤a +4,解得a ≥2.角度二 已知函数值,求参数的值(或取值范围)典例7 设函数f (x )={x 2+2x ,x <0,x +1,x ≥0,则f (-1)= ;若f (a )>f (a -1),则实数a 的取值范围是 .答案 -1;(-12,+∞)名师点评分段函数问题的求解策略(1)根据分段函数的解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.1.(2020辽宁盘锦一中模拟)已知函数f (x )={2e x -1,x <1,x 3+x ,x ≥1,则f (f (x ))<2的解集为 ( )A.(1-ln 2,+∞)B.(-∞,1-ln 2)C.(1-ln 2,1)D.(1,1+ln 2)答案 B 因为当x ≥1时, f (x )=x 3+x ≥2,当x <1时, f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2e x -1<1,解得x <1-ln 2, 所以f (f (x ))<2的解集为(-∞,1-ln 2),故选B.2.(2018课标全国Ⅰ文,12,5分)设函数f (x )={2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是 ( )A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)答案 D 函数f (x )={2-x ,x ≤0,1,x >0的图象如图所示:由f (x +1)<f (2x )得{2x <0,2x <x +1,得{x <0,x <1.∴x <0,故选D .3.已知函数f (x )={log 2(3-x ),x ≤0,2x -1,x >0,若f (a -1)=12,则实数a = .答案 log 23解析 由题意知当a -1≤0,即a ≤1时,log 2(3-a +1)=12,解得a =4-√2>1,舍去.当a -1>0,即a >1时,2a -1-1=12,解得a =log 23>1,成立.故a =log 23.微专题——新定义函数的有关计算新定义函数问题是近几年高考中函数的热点题型,解答这类问题的关键在于阅读理解时准确把握新定义、新信息,并把它纳入已有的知识体系之中,用原来的知识和方法来解决新情境下的问题,一般有两方面的考查:(1)利用新函数进行计算;(2)讨论新函数的性质.典例 (2020浙江镇海中学高三模拟)定义符号函数sgn x ={1,x >0,0,x =0,-1,x <0,若f (x )是定义在R 上的减函数,g (x )=f (x )-f (ax )(a >1),则 ( )A.sgn[g (x )]=sgn xB.sgn[g (x )]=-sgn xC.sgn[g (x )]=sgn[f (x )]D.sgn[g (x )]=-sgn[f (x )] 答案 A解析 由题意知g (x )=f (x )-f (ax ),且f (x )是R 上的减函数, 当x >0时,x <ax ,则有f (x )>f (ax ), 则g (x )=f (x )-f (ax )>0, 此时sgn[g (x )]=1;当x =0时,x =ax ,则有f (x )=f (ax ), 则g (x )=f (x )-f (ax )=0, 此时sgn[g (x )]=0;当x <0时,x >ax ,则有f (x )<f (ax ), 则g (x )=f (x )-f (ax )<0, 此时sgn[g (x )]=-1. 综上所述,sgn[g (x )]=sgn x. 故选A.根据新定义得到f (x )的表达式,判断函数f (x )在定义域的单调性,可得结果.1.(2020辽宁大连高三月考)在实数的原有运算法则中,我们定义新运算 “x” 如下:当a ≥b 时,a x b =a ;当a <b 时,a x b =b 2,则函数f (x )=(1x x )·x -(2x x )(x ∈[-2,2])的最大值等于(“·”和“-”仍为通常的乘法和减法) ( )A.-1B.1C.12D.6 答案 D 因为a x b ={x ,x ≥x ,x 2,x <x ,所以f (x )=(1x x )·x -(2x x )={x -2,-2≤x ≤1,x 3-2,1<x ≤2,易知函数f (x )在[-2,2]上单调递增,所以f (x )max =f (2)=6,故选D.2.定义符号函数sgn x ={1,x >0,0,x =0,-1,x <0,则当x ∈R 时,不等式x +2>(2x -1)sgn x的解集为 .答案 {x |-3-√334<x <3}解析 当x >0时,不等式可转化为x +2>2x -1,解得0<x <3; 当x =0时,不等式可转化为2>1,不等式成立;当x <0时,不等式可转化为x +2>12x -1①,因为2x -1<0,所以①等价于(x +2)(2x -1)<1,即2x 2+3x -3<0,解得-3-√334<x <0.综上所述,不等式的解集为 {x |-3-√334<x <3}.A 组 基础达标1.下列各组函数中,表示同一个函数的是 ( )A.f (x )=x 2和f (x )=(x +1)2B.f (x )=(√x )2x和f (x )=(x )2C.f (x )=log a x 2和f (x )=2log a xD.f (x )=x -1和f (x )=√(x -1)2答案 B2.函数y =ln(x 2-x )+√4-2x 的定义域为 ( )A.(-∞,0)∪(1,+∞)B.(-∞,0)∪(1,2]C.(-∞,0)D.(-∞,2)答案 B 由已知得{x 2-x >0,4-2x≥0,解得{x <0或x >1,x ≤2,即x ∈(-∞,0)∪(1,2],故选B.3.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A.(-1,1) B.(-1,-12)C.(-1,0)D.(12,1)答案 B4.已知函数f (x +1)=3x +2,则f (x )= ( )A.3x +2B.3x +1C.3x -1D.3x +4 答案 C5.已知f (10x)=x ,则f (5)= ( )A.105B.510C.log 510D.lg 5 答案 D6.(2020湖南湘潭一中模拟)已知函数f (x )={x +1x -2,x >2,x 2+2,x ≤2,则f (f (1))= ( )A.-12 B.2 C.4 D.11 答案 C ∵函数f (x )={x +1x -2,x >2,x 2+2,x ≤2,∴f (1)=12+2=3,∴f (f (1))=f (3)=3+13-2=4.故选C.7.已知函数f (x )={3-x +1(x ≤0),x x +2(x >0),若f (f (-1))=18,则实数a 的值是 ( )A.0B.1C.2D.3 答案 C8.设函数f :R →R 满足f (0)=1,且对任意的x ,y ∈R 都有f (xy +1)=f (x )·f (y )-f (y )-x +2,则f (2 017)= ( ) A.0 B.1 C.2 017 D.2 018答案 D 令x =y =0,则f (1)=f (0)·f (0)-f (0)-0+2=1×1-1-0+2=2,令y =0,则f (1)=f (x )·f (0)-f (0)-x +2,将f (0)=1, f (1)=2代入得f (x )=1+x ,所以f (2 017)=2 018,故选D .9.(2020湖南郴州二中模拟)设x ∈R,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数.例如:[-2.1]=-3,[3.1]=3,已知函数f (x )=2x +32x +1,则函数y =[f (x )]的值域为 ( )A.{0,1,2,3}B.{0,1,2}C.{1,2,3}D.{1,2} 答案 D f (x )=2x +32x+1=2x +1+22x+1=1+22x+1,∵2x>0,∴1+2x>1,∴0<22x+1<2,∴1<1+22x +1<3,即1<f (x )<3.当1<f (x )<2时,[f (x )]=1;当2≤f (x )<3时,[f (x )]=2.综上,函数y =[f (x )]的值域为{1,2},故选D.B 组 能力拔高10.已知函数f (x )={(x -1)x +4-2x ,x <1,1+log 2x ,x ≥1,若f (x )的值域为R,则实数a 的取值范围是( )A.(1,2]B.(-∞,2]C.(0,2]D.[2,+∞)答案 A 当x ≥1时, f (x )=1+log 2x ≥1;当x <1时, f (x )=(a -1)x +4-2a 必须是增函数,且值域区间的右端点的值大于或等于1,才能满足f (x )的值域为R,可得{x -1>0,x -1+4-2x ≥1,解得1<a ≤2.11.(2020江苏苏州一中期中)已知函数f (x )={2x ,x ≤1,log 3(x -1),x >1,且f (x 0)=1,则x 0=( )A.0B.4C.0或4D.1或3 答案 C 当x 0≤1时,由f (x 0)=2x 0=1得x 0=0(满足x 0≤1);当x 0>1时,由f (x 0)=log 3(x 0-1)=1得x 0-1=3,得x 0=4(满足x 0>1),故选C. 12.(2020北京,11,5分)函数f (x )=1x +1+ln x 的定义域是 .答案 (0,+∞)解析 要使函数f (x )有意义,则{x +1≠0,x >0,故x >0,因此函数f (x )的定义域为(0,+∞). 13.(2019湖南衡阳模拟)已知函数f (x )=xxx -1,若f (x )+f (1x )=3,则f (x )+f (2-x )= .答案 6 解析 ∵f (x )=xx x -1, f (x )+f (1x)=3, ∴f (x )+f (1x )=xx x -1+xx 1x-1=xx x -1-x x -1=x (x -1)x -1=3,解得a =3,∴f (x )=3x x -1,∴f (x )+f (2-x )=3x x -1+6-3x 2-x -1=6(x -1)x -1=6.C 组 思维拓展14.(2020广东珠海一中模拟)已知x 为实数,用[x ]表示不超过x 的最大整数,例如[1.2]=1,[-1.2]=-2,[1]=1.对于函数f (x ),若存在m ∈R 且m ∉Z,使得f (m )=f ([m ]),则称函数f (x )是Ω函数. (1)判断函数f (x )=x 2-13x ,g (x )=sin πx 是不是Ω函数(只需写出结论);(2)已知f (x )=x +x x,请写出a 的一个值,使得f (x )为Ω函数,并给出证明. 解析 (1)f (x )=x 2-13x 是Ω函数,g (x )=sin πx 不是Ω函数. (2)a =32.证明:设k ∈N *,取a ∈(k 2,k 2+k ),令[m ]=k ,m =x x ,则一定有m -[m ]=xx -k =x -x 2x∈(0,1),且f (m )=f ([m ]),所以f (x )是Ω函数.。
高中数学知识点总结大全(最新版复习资料)
元素和它对应,那么这样的对应(包括集合 A , B 以及 A 到 B 的对应法则 f )叫做集合 A 到 B 的映射,记
作 f :AB.
②给定一个集合 A 到集合 B 的映射,且 a A,b B .如果元素 a 和元素 b 对应,那么我们把元素 b 叫做元
素 a 的象,元素 a 叫做元素 b 的原象.
以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、 数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时, 进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有 4 个系列: 系列 1:由 2 个模块组成。 选修 1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修 1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列 2:由 3 个模块组成。 选修 2—1:常用逻辑用语、圆锥曲线与方程、
不等式
解集
| x | a(a 0)
{x | a x a}
| x | a(a 0)
x | x a 或 x a}
| ax b | c,| ax b | c(c 0)
(2)一元二次不等式的解法 判别式
b2 4ac
二次函数
y ax2 bx c(a 0)
的图象
0
把 ax b 看 成 一 个 整 体 , 化 成 | x | a , | x | a(a 0) 型不等式来求解
③ f (x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1.
高考数学总复习 第二章 函数、导数及其应用 课时作业9 理(含解析)新人教A版-新人教A版高三全册数
课时作业9 对数与对数函数1.(2019·某某某某统考)函数f (x )=1ln3x +1的定义域是( B )A.⎝ ⎛⎭⎪⎫-13,+∞B.⎝ ⎛⎭⎪⎫-13,0∪(0,+∞)C.⎣⎢⎡⎭⎪⎫-13,+∞ D .[0,+∞)解析:由⎩⎪⎨⎪⎧3x +1>0,ln 3x +1≠0,解得x >-13且x ≠0,故选B.2.(2019·某某某某模拟)设a =60.4,b =log 0.40.5,c =log 80.4,则a ,b ,c 的大小关系是( B )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:∵a =60.4>1,b =log 0.40.5∈(0,1),c =log 80.4<0,∴a >b >c .故选B. 3.已知lg a ,lg b 是方程2x 2-4x +1=0的两个实根,则lg(ab )·⎝ ⎛⎭⎪⎫lg a b 2=( B )A .2B .4C .6D .8解析:由已知,得lg a +lg b =2,即lg(ab )=2. 又lg a ·lg b =12,所以lg(ab )·⎝ ⎛⎭⎪⎫lg a b2=2(lg a -lg b )2=2[(lg a +lg b )2-4lg a ·lg b ]=2×⎝⎛⎭⎪⎫22-4×12=2×2=4,故选B.4.若函数y =a -a x(a >0,a ≠1)的定义域和值域都是[0,1],则log a 37+log a 1123=( D )A .1B .2C .3D .4解析:若a >1,则y =a -a x在[0,1]上单调递减,则⎩⎨⎧a -a =0,a -1=1,解得a =2,此时,log a 37+log a 1123=log 216=4;若0<a <1,则y =a -a x在[0,1]上单调递增,则⎩⎨⎧a -a =1,a -1=0,无解,故选D.5.(2019·某某省际名校联考)已知f (x )满足对∀x ∈R ,f (-x )+f (x )=0,且当x ≤0时,f (x )=1ex +k (k 为常数),则f (ln5)的值为( B )A .4B .-4C .6D .-6解析:易知函数f (x )是奇函数,故f (0)=1e 0+k =1+k =0,即k =-1,所以f (ln5)=-f (-ln5)=-(e ln5-1)=-4.6.(2019·某某某某南雄模拟)函数f (x )=x a满足f (2)=4,那么函数g (x )=|log a (x +1)|的图象大致为( C )解析:∵f (2)=4,∴2a=4,解得a =2,∴g (x )=|log 2(x +1)|=⎩⎪⎨⎪⎧log 2x +1,x ≥0,-log 2x +1,-1<x <0,∴当x ≥0时,函数g (x )单调递增,且g (0)=0;当-1<x <0时,函数g (x )单调递减,故选C.7.已知函数f (x )=e x+2(x <0)与g (x )=ln(x +a )+2的图象上存在关于y 轴对称的点,则实数a 的取值X 围是( A )A .(-∞,e)B .(0,e)C .(e ,+∞)D .(-∞,1)解析:由题意知,方程f (-x )-g (x )=0在(0,+∞)上有解,即e -x-ln(x +a )=0在(0,+∞)上有解,即函数y =e -x与y =ln(x +a )的图象在(0,+∞)上有交点,则ln a <1,即0<a <e ,则a 的取值X 围是(0,e),当a ≤0时,y =e -x与y =ln(x +a )的图象总有交点,故a 的取值X 围是(-∞,e),故选A.8.(2019·某某省级名校模拟)已知函数f (x )=(e x-e-x)x ,f (log 5x )+f (log 15x )≤2f (1),则x 的取值X 围是( C )A.⎣⎢⎡⎦⎥⎤15,1 B .[1,5]C.⎣⎢⎡⎦⎥⎤15,5D.⎝⎛⎦⎥⎤-∞,15∪[5,+∞) 解析:∵f (x )=(e x-e -x)x ,∴f (-x )=-x (e -x -e x )=(e x -e -x)x =f (x ), ∴函数f (x )是偶函数.∵f ′(x )=(e x -e -x )+x (e x +e -x)>0在(0,+∞)上恒成立. ∴函数f (x )在(0,+∞)上单调递增. ∵f (log 5x )+f (log 15 x )≤2f (1), ∴2f (log 5x )≤2f (1),即f (log 5x )≤f (1), ∴|log 5x |≤1,∴15≤x ≤5.故选C.9.函数f (x )=log 2x ·log2(2x )的最小值为-14.解析:依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎪⎫log 2x +122-14≥-14,当且仅当log 2x =-12,即x =22时等号成立,因此函数f (x )的最小值为-14.10.(2019·某某质检)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=9__.解析:f (x )=|log 3x |=⎩⎪⎨⎪⎧-log 3x ,0<x <1,log 3x ,x ≥1,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 由0<m <n 且f (m )=f (n ), 可得⎩⎪⎨⎪⎧0<m <1,n >1,log 3n =-log 3m ,则⎩⎪⎨⎪⎧0<m <1,n >1,mn =1,所以0<m 2<m <1,则f (x )在[m 2,1)上单调递减,在(1,n ]上单调递增,所以f (m 2)>f (m )=f (n ),则f (x )在[m 2,n ]上的最大值为f (m 2)=-log 3m 2=2,解得m =13,则n =3,所以nm=9. 11.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解:(1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3,∴函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], ∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.12.已知函数f (x )=log a (a 2x+t ),其中a >0且a ≠1. (1)当a =2时,若f (x )<x 无解,求t 的取值X 围;(2)若存在实数m ,n (m <n ),使得x ∈[m ,n ]时,函数f (x )的值域也为[m ,n ],求t 的取值X 围.解:(1)∵log 2(22x+t )<x =log 22x,∴22x+t <2x 无解,等价于22x +t ≥2x恒成立, 即t ≥-22x+2x=g (x )恒成立, 即t ≥g (x )max ,∵g (x )=-22x +2x=-⎝⎛⎭⎪⎫2x -122+14,∴当2x=12,即x =-1时,g (x )取得最大值14,∴t ≥14,故t 的取值X 围是⎣⎢⎡⎭⎪⎫14,+∞. (2)由题意知f (x )=log a (a 2x+t )在[m ,n ]上是单调增函数,∴⎩⎪⎨⎪⎧f m =m ,f n =n ,即⎩⎪⎨⎪⎧a 2m +t =a m,a 2n +t =a n,问题等价于关于k 的方程a 2k-a k+t =0有两个不相等的实根,令a k=u >0,则问题等价于关于u 的二次方程u 2-u +t =0在u ∈(0,+∞)上有两个不相等的实根,即⎩⎪⎨⎪⎧ u 1+u 2>0,u 1·u 2>0,Δ>0,即⎩⎪⎨⎪⎧t >0,t <14,得0<t <14.∴t 的取值X 围为⎝ ⎛⎭⎪⎫0,14.13.已知f (x )是定义在(0,+∞)上的函数.对任意两个不相等的正数x 1,x 2,都有x 2f x 1-x 1f x 2x 1-x 2>0,记a =f 30.230.2,b =f 0.320.32,c =f log 25log 25,则( B ) A .a <b <c B .b <a <c C .c <a <bD .c <b <a解析:已知f (x )是定义在(0,+∞)上的函数, 对任意两个不相等的正数x 1,x 2, 都有x 2f x 1-x 1f x 2x 1-x 2>0,故x 1-x 2与x 2f (x 1)-x 1f (x 2)同号, 则x 1-x 2与x 2f x 1-x 1f x 2x 1x 2⎝ ⎛⎭⎪⎫即f x 1x 1-f x 2x 2同号, ∴函数y =f xx是(0,+∞)上的增函数, ∵1<30.2<2,0<0.32<1,log 25>2, ∴0.32<30.2<log 25,∴b <a <c ,故选B.14.设f (x )是定义在R 上的偶函数,且f (2+x )=f (2-x ),当x ∈[-2,0]时,f (x )=⎝⎛⎭⎪⎫22x-1,若在区间(-2,6)内关于x 的方程f (x )-log a (x +2)=0(a >0且a ≠1)恰有4个不同的实数根,则实数a 的取值X 围是( D )A.⎝ ⎛⎭⎪⎫14,1B .(1,4)C .(1,8)D .(8,+∞)解析:依题意得f (x +2)=f (-(2-x ))=f (x -2),即f (x +4)=f (x ),则函数f (x )是以4为周期的函数,结合题意画出函数f (x )在x ∈(-2,6)上的图象与函数y =log a (x +2)的图象,结合图象分析可知.要使f (x )与y =log a (x +2)的图象有4个不同的交点,则有⎩⎪⎨⎪⎧a >1,log a 6+2<1,由此解得a >8,即a 的取值X 围是(8,+∞).15.(2019·某某某某模拟)已知函数f (x )=ln(x +x 2+1),g (x )=f (x )+2 017,下列命题:①f (x )的定义域为(-∞,+∞); ②f (x )是奇函数;③f (x )在(-∞,+∞)上单调递增;④若实数a ,b 满足f (a )+f (b -1)=0,则a +b =1;⑤设函数g (x )在[-2 017,2 017]上的最大值为M ,最小值为m ,则M +m =2 017. 其中真命题的序号是①②③④__.(写出所有真命题的序号) 解析:对于①,∵x 2+1>x 2=|x |≥-x , ∴x 2+1+x >0,∴f (x )的定义域为R ,∴①正确.对于②,f (x )+f (-x )=ln(x +x 2+1)+ln(-x +-x2+1)=ln[(x 2+1)-x 2]=ln1=0.∴f (x )是奇函数,∴②正确. 对于③,令u (x )=x +x 2+1, 则u (x )在[0,+∞)上单调递增. 当x ∈(-∞,0]时,u (x )=x +x 2+1=1x 2+1-x,而y =x 2+1-x 在(-∞,0]上单调递减,且x 2+1-x >0.∴u (x )=1x 2+1-x在(-∞,0]上单调递增,又u (0)=1,∴u (x )在R 上单调递增,∴f (x )=ln(x +x 2+1)在R 上单调递增,∴③正确. 对于④,∵f (x )是奇函数,而f (a )+f (b -1)=0,∴a +(b -1)=0, ∴a +b =1,∴④正确.对于⑤,f (x )=g (x )-2 017是奇函数,当x ∈[-2 017,2 017]时,f (x )max =M -2 017,f (x )min =m -2 017, ∴(M -2 017)+(m -2 017)=0, ∴M +m =4 034,∴⑤不正确. 16.已知函数f (x )=lnx +1x -1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性; (2)对于x ∈[2,6],f (x )=lnx +1x -1>ln mx -17-x恒成立,某某数m 的取值X 围.解:(1)由x +1x -1>0,解得x <-1或x >1, ∴函数f (x )的定义域为(-∞,-1)∪(1,+∞), 当x ∈(-∞,-1)∪(1,+∞)时,f (-x )=ln-x +1-x -1=ln x -1x +1=ln ⎝ ⎛⎭⎪⎫x +1x -1-1=-ln x +1x -1=-f (x ).∴f (x )=lnx +1x -1是奇函数. (2)由于x ∈[2,6]时,f (x )=lnx +1x -1>ln mx -17-x恒成立, ∴x +1x -1>mx -17-x>0, ∵x ∈[2,6],∴0<m <(x +1)(7-x )在x ∈[2,6]上恒成立. 令g (x )=(x +1)(7-x )=-(x -3)2+16,x ∈[2,6],由二次函数的性质可知,x ∈[2,3]时函数g (x )单调递增,x ∈[3,6]时函数g (x )单调递减, 即x ∈[2,6]时,g (x )min =g (6)=7, ∴0<m <7.故实数m 的取值X 围为(0,7).。
2020版高考数学总复习第八篇平面解析几何(必修2、选修2_1)第3节椭圆课件理
等于常数2a(2a>|F1F2|)的点的轨
焦点
,两焦点间的距离叫做椭圆
2.椭圆的标准方程及其简单几何性质
标准 方程
焦点在 x 轴上 x2 + y 2 =1(a>b>0) a2 b2
图形
范围 对称性
|x|≤a;|y|≤b
曲线关于 x轴、 y轴、原点 对称
焦点在 y 轴上 y 2 + x2 =1(a>b>0) a2 b2
答案:④⑤
考点专项突破
在讲练中理解知识
考点一 椭圆的定义及其应用
【例1】 (1)已知△ABC的周长为26且点A,B的坐标分别是(-6,0),(6,0),则点
C的轨迹方程为
.
解析:(1)因为△ABC 的周长为 26,顶点 A(-6,0),B(6,0),所以|AB|=12,|AC|+|BC|=2612=14,且 14>12,点 C 到两个定点的距离之和等于定值,所以点 C 的轨迹是椭圆,因为
【跟踪训练 3】
(1)过椭圆 x2 a2
+ y2 b2
=1(a>b>0)的左焦点 F1 作 x 轴的垂线交椭圆于点 P,F2
为椭圆的右焦点,若∠F1PF2=60°,则椭圆的离心率为( )
(A) 2 (B) 3 (C) 1
5 55 以 b2≥1,所以 a2-c2≥1,4-c2≥1,解得 0<c≤ 3 ,所以 0< c ≤ 3 ,所以椭圆的离心率
a2 的取值范围为(0, 3 ).故选 A.
2
反思归纳 (1)求椭圆离心率的方法 ①直接求出a,c的值,利用离心率公式直接求解. ②列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e 的方程(或不等式)求解. (2)利用椭圆几何性质求值或范围的思路 求解与椭圆几何性质有关的参数问题时,要结合图形进行分析,当涉及顶点、 焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系.
(新课标)高考数学总复习-第二节 等差数列及其前n项和课件 理 新人教A版
4.数列{an}为等差数列,公差 d=-2,Sn 为其前 n 项和, 若 S10=S11,则 a1=________.
解析:由题意知 10a1+10×2 9d=11a1+11×2 10d, 又∵d=-2,∴10a1-90=11a1-110,∴a1=20.
答案:20
[典题 1] (1)在等差数列{an}中,a1+a5=8,a4=7,则 a5
2.已知公差大于零的等差数列an的前 n 项和为 Sn,且满 足 a3·a4=117,a2+a5=22.
(1)求数列{an}的通项公式; (2)若数列bn满足 bn=nS+n c,是否存在非零实数 c 使得{bn} 为等差数列?若存在,求出 c 的值;若不存在,请说明理由.
(5)若{an}是等差数列,公差为 d,则 ak,ak+m,ak+2m,…(k,m ∈N*)是公差为 md 的等差数列.
(6)数列 Sm,S2m-Sm,S3m-S2m,…也是等差数列. (7)S2n-1=(2n-1)an. (8)若 n 为偶数,则 S 偶-S 奇=n2d; 若 n 为奇数,则 S 奇-S 偶=a 中(中间项).
的差等于 同一个常数 ,那么这个数列就叫做等差数列,这个常数
叫做等差数列的公差,通常用字母 d
表示,定义表达式为
an-an-1=d(常数)(n∈N*,n≥2) 或 an+1-an=d(常数)(n∈N*) .
(2)等差中项
若三个数 a,A,b 成等差数列,则 A 叫做 a 与 b 的等差中项,
a+b
且有 A= 2 .
(8)等差数列{an}的首项为 a1,公差为 d,取出数列中的所有奇 数项,组成一个新的数列,一定还是等差数列.( )
答 案 : (1)× (2)√ (3)√ (4)√ (5)√ (6)× (7)√ (8)√
新课程北师大版高中数学高考必考+选考内容教材目录
必考内容(必修+选修系列1,2)《数学1》(必修)全书共分四章:第一章集合;第二章函数;第三章指数函数和对数函数;第四章函数的应用全书目录:第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算阅读材料康托与集合论第二章函数§1 生活中的变量关系§2 对函数的进一步认识§3 函数的单调性§4 二次函数性质的再研究§5 简单的幂函数阅读材料函数概念的发展课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数概念的扩充§3 指数函数§4 对数§5 对数函数§6 指数函数、幂函数、对数函数增长的比较阅读材料历史上数学计算方面的三大发明第四章函数应用§1 函数与方程§2 实际问题的函数建模阅读材料函数与中学数学探究活动同种商品不同型号的价格问题《数学2》(必修)本书是根据《普通高中数学课程标准(实验)》编写的,包括两部分内容:第一部分是立体几何初步,第二部分是解析几何初步。
全书目录:第一章立体几何初步§1 简单几何体§2 三视图§3 直观图§4 空间图形的基本关系与公理§5 平行关系§6 垂直关系§7 简单几何体的面积和体积§8 面积公式和体积公式的简单应用阅读材料蜜蜂是对的课题学习正方体截面的形状第二章解析几何初步§1 直线与直线的方程§2 圆与圆的方程§3 空间直角坐标系阅读材料笛卡儿与解析几何探究活动1 打包问题探究活动2 追及问题《数学3》(必修)本书是根据《普通高中数学课程标准(实验)》编写的。
共分三章:第一章统计,第二章算法初步,第三章概率。
全书目录第一章统计§1 统计活动:随机选取数字§2 从普查到抽样§3 抽样方法§4 统计图表§5 数据的数字特征§6 用样本估计总体§7 统计活动:结婚年龄的变化§8 相关性§9 最小二乘法阅读材料统计小史课题学习调查通俗歌曲的流行趋势第二章算法初步§1 算法的基本思想§2 算法的基本结构及设计§3 排序问题§4 几种基本语句课题学习确定线段n等分点的算法第三章概率§1 随机事件的概率§2 古典概型§3模拟方法――概率的应用探究活动用模拟方法估计圆周率π的值《数学4》(必修)全书共三章:第一章三角函数;第二章平面向量;第三章三角恒等变形。
2023年高考数学总复习第二章 函数概念与基本初等函数第6节:对数与对数函数(学生版)
2023年高考数学总复习第二章函数概念与基本初等函数第6节对数与对数函数考试要求1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,12的对数函数的图像;3.体会对数函数是一类重要的函数模型;4.了解指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.1.对数的概念一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么数b 叫作以a 为底N 的对数,记作log a N =b .其中a 叫作对数的底数,N 叫作真数.2.对数的性质、运算性质与换底公式(1)对数的性质:①a log a N =N ;②log a a b =b (a >0,且a ≠1).(2)对数的运算性质如果a >0且a ≠1,M >0,N >0,那么①log a (MN )=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R ).(3)换底公式:log b N =log a Nlog a b(a ,b 均大于零且不等于1,N >0).3.对数函数及其性质(1)概念:函数y =log a x (a >0,且a ≠1)叫作对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的图像与性质a >10<a <1图像性质定义域:(0,+∞)值域:R当x =1时,y =0,即过定点(1,0)当x >1时,y >0;当0<x <1时,y <0当x >1时,y <0;当0<x <1时,y >0在(0,+∞)上是增函数在(0,+∞)上是减函数4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图像关于直线y =x 对称.1.换底公式的两个重要结论(1)log a b =1log b a (a >0,且a ≠1;b >0,且b ≠1).(2)log a m b n =nm log a b (a >0,且a ≠1;b >0;m ,n ∈R ,且m ≠0).2.在第一象限内,不同底的对数函数的图像从左到右底数逐渐增大.3.对数函数y =log a x (a >0,且a ≠1)的图像过定点(1,0),且过点(a ,1)函数图像只在第一、四象限.1.思考辨析(在括号内打“√”或“×”)(1)log 2x 2=2log 2x .()(2)函数y =log 2(x +1)是对数函数.()(3)函数y =ln1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.()(4)当x >1时,若log a x >log b x ,则a <b .()2.(2021·全国甲卷)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lg V .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(1010≈1.259)()A.1.5B.1.2C.0.8D.0.63.(2021·天津卷)设a =log 20.3,b =log 120.4,c =0.40.3,则a ,b ,c 的大小关系为()A.a <b <cB.c <a <bC.b <c <aD.a <c <b4.(易错题)函数y =log a (x -1)+2(a >0,且a ≠1)的图像恒过的定点是________.5.(易错题)已知lg x +lg y =2lg(x -2y ),则xy=________.6.若函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________.考点一对数的运算1.(2020·全国Ⅰ卷)设a log 34=2,则4-a =()A.116B.19C.18D.162.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为()A.1010.1B.10.1C.lg 10.1D.10-10.13.(2021·天津卷)若2a =5b =10,则1a +1b =()A.-1B.lg 7C.1D.log 7104.计算:(1-log 63)2+log 62·log 618log 64=________.考点二对数函数的图像及应用例1(1)函数f (x )=log a |x |+1(0<a <1)的图像大致为()(2)若方程4x =log a x 0,12上有解,则实数a 的取值范围为________.训练1(1)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a≠1)的图像如图,则下列结论成立的是()A.a >1,c >1B.a >1,0<c <1C.0<a <1,c >1D.0<a <1,0<c <1(2)已知函数f (x )log 2x ,x >0,3x,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.考点三解决与对数函数的性质有关的问题角度1比较大小例2(1)已知a =2-13,b =log 213,c =log 1213,则()A.a >b >cB.a >c >bC.c>b>aD.c>a>b(2)若实数a,b,c满足log a2<log b2<log c2<0,则下列关系中正确的是()A.a<b<cB.b<a<cC.c<b<aD.a<c<b(3)(2021·衡水中学检测)已知a,b=log120.2,c=a b,则a,b,c的大小关系是()A.a<b<cB.c<a<bC.a<c<bD.b<c<a角度2解对数不等式例3(1)(2022·太原质检)定义在R上的奇函数f(x),当x∈(0,+∞)时,f(x)=log2x,则不等式f(x)<-1的解集是________.(2)不等式log a(a2+1)<log a(2a)<0,则a的取值范围是________.角度3对数型函数性质的综合应用例4已知函数f(x)=log(1)若函数f(x)是R上的奇函数,求a的值;(2)若函数f(x)的定义域是一切实数,求a的取值范围;(3)若函数f(x)在区间[0,1]上的最大值与最小值的差不小于2,求实数a的取值范围.训练2(1)(2019·天津卷)已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为()A.c <b <aB.a <b <cC.b <c <aD.c <a <b(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为________.(3)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________.1.已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是()A.d =acB.a =cdC.c =adD.d =a +c2.(2021·濮阳模拟)已知函数f (x )=x +43x +的值域是全体实数,则实数m 的取值范围是()A.(-4,+∞)B.[-4,+∞)C.(-∞,-4)D.(-∞,-4]3.若函数f (x )=|x |+x 3,则f (lg 2)+f (lg 5)+()A.2B.4C.6D.84.(2021·新高考Ⅱ卷)已知a =log 52,b =log 83,c =12,则下列判断正确的是()A.c <b <aB.b <a <cC.a <c <bD.a <b <ca>0,且a≠1)的图像可能是5.在同一直角坐标系中,函数y=1a x,y=log()6.已知函数f(x)=log2(1-|x|),则关于函数f(x)有下列说法:①f(x)的图像关于原点对称;②f(x)的图像关于y轴对称;③f(x)的最大值为0;④f(x)在区间(-1,1)上单调递增.其中正确的是()A.①③B.①④C.②③D.②④7.(2021·济南一中检测)已知函数y=log a(2x-3)+2(a>0且a≠1)的图像恒过定点A,若点A也在函数f(x)=3x+b的图像上,则b=________.8.计算:lg25+lg50+lg2·lg500+(lg2)2=________.9.函数f(x)=log2x·log2(2x)的最小值为________.10.已知f(x)是定义在R上的偶函数,且当x≥0时,f(x)=log a(x+1)(a>0,且a≠1).(1)求函数f(x)的解析式;(2)若-1<f(1)<1,求实数a的取值范围.11.已知函数f(x)=log21+ax(a为常数)是奇函数.x-1(1)求a的值与函数f(x)的定义域;(2)若当x∈(1,+∞)时,f(x)+log2(x-1)>m恒成立,求实数m的取值范围.12.(2022·烟台模拟)某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:mg/L)与时间t(单位:h)间的关系式为P=P0e-kt,其中P0,k为正常数.如果一定量的废气在前10h的过滤过程中污染物被消除了20%,那么污染物减少到最初含量的50%还需要经过多长时间?(结果四舍五入取整数,参考数据:ln 2≈0.693,ln5≈1.609)()A.11hB.21hC.31hD.41h13.已知函数f(x)log2(x-1),x>1,2x,x≤1,且关于x的方程f(x)-a=0有两个实数根,则实数a的取值范围为()A.(0,1)B.(0,1]C.(1,2)D.(0,2]14.(2022·郑州调研)在①f(x)+f(-x)=0,②f(x)-f(-x)=0,③f(-2)=-f(2)这三个条件中选择一个合适的补充在下面问题中,并给出解答.已知函数f(x)=log2(x2+a+x)(a∈R)满足________.(1)求a的值;(2)若函数g(x)=2f(-x)+1-x2+1,证明:g(x2-x)≤54.注:如果选择多个条件分别解答,按第一个解答计分.。
《2011年高考数学总复习系列》_高中数学必修二
《2012年高考数学总复习系列》——高中数学必修二第一章 立体几何初步一、基础知识(理解去记)(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征 1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱底面为矩形 侧棱与底面边长相等①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
补充知识点 长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222c o s c o s c o s 2αβγ++=,222sin sin sin 1αβγ++=.AB1.4侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.5面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)注意:大多数省市在高考试卷会给出面积体积公式,因此考生可以不用刻意地去记 2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.2.4面积、体积公式: S圆柱侧=2rh π;S圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高)3.棱锥3.1棱锥——有一个面是多边形,其余各面是有3.3侧面展开图:正n 棱锥的侧面展开图是有n 个全等的等腰三角形组成的。
高考数学知识点总结整理(精选15篇)
高考数学知识点总结整理(精选15篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、合同协议、心得体会、条据书信、规章制度、礼仪常识、自我介绍、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, contract agreements, personal experiences, normative letters, rules and regulations, etiquette knowledge, self introduction, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高考数学知识点总结整理(精选15篇)高考数学知识点总结整理(精选15篇)高考数学知识点总结整理篇1两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 立体几何初步
一、基础知识(理解去记)
(一)空间几何体的结构特征
(1)多面体——由若干个平面多边形围成的几何体.
围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共
点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直
线称为旋转体的轴。
(2)柱,锥,台,球的结构特征 1.棱柱
1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:
①⎧⎪⎧−−−−−→⎨⎪
−−−−−→⎨⎪
⎪⎩⎩
底面是正多形
棱垂直于底面
斜棱柱棱柱正棱柱直棱柱其他棱柱
底面为矩形
①侧棱都相等,侧面是平行四边形;
②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;
④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
补充知识点 长方体的性质:
①长方体一条对角线长的平方等于一个顶点上三条棱的
平方
和;【如图】2222
11AC AB AD AA =++
②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成
的角分别是αβγ,,,那么2
2
2
cos cos cos 1αβγ++=,
222sin sin sin 2αβγ++=;
③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则
222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.
1.4侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.
1.5面积、体积公式:
2S c h
S c h S S h
=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)
注意:大多数省市在高考试卷会给出面积体积公式,因此考生可以不用刻意地去记 2.圆柱
2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.
2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.
2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长
为邻边的矩形.
2.4面积、体积公式:
S 圆柱侧=2rh π;S 圆柱全=2
22rh r ππ+,V 圆柱=S 底h=2
r h π(其中r 为底面半径,h 为圆柱高)
3.棱锥
3.1棱锥——有一个面是多边形,其余各面是有
③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。
)(如上图:,,,SOB SOH SBH OBH 为直角三角形)3.3侧面展开图:正n 棱锥的侧面展开图是有n 个全等的等腰三角形组成的。
3.4面积、体积公式:S 正棱锥侧=
12
ch ',S 正棱锥全=12ch S '+底,V 棱锥=1
3
S h ⋅底.(其中c 为底面周长,h '侧面斜高,h 棱锥的高)
4.圆锥
4.1圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
4.2圆锥的性质:
①平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比; ②轴截面是等腰三角形;如右图:SAB ③如右图:2
2
2
l h r =+.
4.3圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。
4.4面积、体积公式:
侧面母线B
S 圆锥侧=rl π,S 圆锥全=()r r l π+,V 圆锥=2
1
3
r h π(其中 r 为底面半径,h 为圆锥的高,l 为母线长) 5.棱台
5.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 5.2正棱台的性质:
①各侧棱相等,各侧面都是全等的等腰梯形;
②正棱台的两个底面以及平行于底面的截面是正多边形; ③ 如右图:四边形`,``O MNO O B BO 都是直角梯形
④棱台经常补成棱锥研究.如右图:`SO M 与SO N ,S`O `B`与SO B相似,注意考虑相似比.
5.3棱台的表面积、体积公式:S S S 全上底下底=S ++侧
,1S `)3
V S h 棱台=(,(其中,`S S 是上,下底面面积,h 为棱台的高) 6.圆台
6.1圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 6.2圆台的性质:
①圆台的上下底面,与底面平行的截面都是圆; ②圆台的轴截面是等腰梯形;
③圆台经常补成圆锥来研究。
如右图: `SO A SOB 与相似,注意相似比的应用. 6.3圆台的侧面展开图是一个扇环;
6.4圆台的表面积、体积公式:22()S r R R r l πππ+++全=,
V
圆台2211S `))33
S h r rR R h πππ++=(=(,(其中r ,R 为上下底面半径,h 为高) 7.球
7.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.
或空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体叫做球体,简称球; 7.2球的性质:
①球心与截面圆心的连线垂直于截面;
②r d 、球的半
径为R 、截面的半径为r )
7.3球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.
7.4R
为球的半径)
(二)空间几何体的三视图与直观图
根据最近几年高考形式上看,三视图的考察已经淡化,所以同学只需了解即可 1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。