图论最大流问题

合集下载

运筹学 第八章 图论 - 全

运筹学 第八章 图论 - 全

(a)明显为二部图,(b)也是二部图,但不明显,改画为(c) 时即可看出。
2017/7/13 11
图与网络的基本知识
次,奇点,偶点,孤立点 与某一个点vi相关联的边的数目称为 点vi的次(也叫做度),记作d(vi)。 右图中d(v1)=4,d(v3)=5,d(v5)=1。次 为奇数的点称作奇点,次为偶数的
2017/7/13
18
图与网络的基本知识
有向图 无向图
道路
回路


道路(边的方向一致)
2017/7/13 19
图与网络的基本知识
连通图
定义10 一个图中任意两点间至少有一条链相连,则称此图为 连通图。任何一个不连通图总可以分为若干个连通子图,每 一个称为原图的一个分图(连通分支)。
连通图
2017/7/13
边,对余下的图重复这个步骤,直至无圈为止。
2、避圈法:每次增加一条边,且与已有边不构成圈,直至恰 有n-1条边为止。
2017/7/13
24

例1、下图是某建筑物的平面图,要求在其内部从每一房间都能走到 别的所有的房间,问至少要在墙上开多少门? 试给出一个开门的方案。


Байду номын сангаас
三 八 一 四 二 五
七 八 九 六
无向图
2017/7/13
有向图
8
图与网络的基本知识
环, 多重边, 简单图 如果边e的两个端点相重,称该边为 环。如右图中边e1为环。如果两个点 之间边多于一条,称为多重边,如右
v2 e5
多重边
e2
e1 v1

e3 v3
e4
图中的e4和e5,对无环、无多重边的

数学建模-图论

数学建模-图论

图论导引
问题3:四色猜想 地图或地球仪上,最多用四种颜色就可把每一 国的版图染好,使得国界线两侧异色。
电子计算机问世以后,由于演算速度迅速提高,加 之人机对话的出现,大大加快了对四色猜想证明的进 程。美国伊利诺大学哈肯在1970年着手改进“放电过 程”,后与阿佩尔合作编制一个很好的程序。就在 1976年6月,他们在美国伊利诺斯大学的两台不同的电 子计算机上,用了1200个小时,作了100亿判断,终于 完成了四色定理的证明,轰动了世界。
有向图:
1, 若vi是ei的始点 aij 1, 若vi是ei的终点 0, 若v 与e 不关联 i i
无向图:
1, 若vi与v j 关联 aij 0, 若vi与v j 不关联
图的矩阵表示
例6:写出右图与其基本图 的关联矩阵 解:分别为:
图论的基本概念
几个基本定理:
1、对图G V,E ,有 d v 2 E .
vV
2、度为奇数的顶点有偶数个。
3、设G V,E 是有向图, 则 d v d v E .
vV vV
子图
定义 设图 G=(V,E, ),G1=(V1,E1, 1 )
(3)设 E1 E,且 E1 ,以 E1 为边集,E1 的端点集为顶点集的图 G 的子图, 称为 G 的由 E1 导出的子图,记为 G[E1].
G
G[{v1,v4,v5}]
G[{e1,e2,e3}]
基 本 概 念
定义1 在无向图 G=(V,E)中: (1) 顶点与边相互交错的有限非空序列 w (v0 e1v1e2 vk 1ek vk ) 称为一条从 v 0 到 v k 的通路,记为 Wv0vk (2)边不重复但顶点可重复的通路称为道路,记为 Tv0vk (3)边与顶点均不重复的通路称为路径,记为 Pv 0 v k 始点和终点相同的路称为圈或回路.

运筹学-图与网络模型以及最小费用最大流(高级课堂)

运筹学-图与网络模型以及最小费用最大流(高级课堂)

v4
v5
高等课堂 7
图与网络的基本概念与模型
环, 多重边, 简单图
e1
如果边e的两个端点相重,称该边为 环。如右图中边e1为环。如果两个点 v2
e2
e4 v1e3
v3
之间多于一条,称为多重边,如右图
e5
中的e4和e5,对无环、无多重边的图
e6
e7
e8
称作简单图。
v4
v5
高等课堂 8
图与网络的基本概念与模型
的长度(单位:公里)。
17
v2
5
6
15
6 v4
V1
(甲地)
43
10
4
4
2
v5
v6
解:这是一个求v3无向图的最短路的问题。可以把无向图的每一边
(vi,vj)都用方向相反的两条弧(vi,vj)和(vj,vi)代替,就化为有向图,
即可用Dijkstra算法来求解。也可直接在无向图中用Dijkstra算法来求解。
最短路问题
最短路问题:对一个赋权的有向图D中的指定的两个点Vs和Vt找 到一条从 Vs 到 Vt 的路,使得这条路上所有弧的权数的总和最小, 这条路被称之为从Vs到Vt的最短路。这条路上所有弧的权数的总 和被称为从Vs到Vt的距离。
• 求最短路有两种算法:
狄克斯屈拉(Dijkstra)(双标号)算法 逐次逼近算法
• 图论中图是由点和边构成,可以反映一些对象之间的关系。 • 一般情况下图中点的相对位置如何、点与点之间联线的长短曲
直,对于反映对象之间的关系并不是重要的。
图的定义(P230)
若用点表示研究的对象,用边表示这些对象之间的联系,则图 G可以定义为点和边的集合,记作:

图论最大流问题.ppt

图论最大流问题.ppt
则 t S ,否则存在s到t的一条可增路,矛盾。 因此,S ,则任意 x S, y S 的边(x,y)有
若 ( x, y)是向前边,fx y cxy; ( y, x) 是后前边,
f yx 0 由定理1, max w min c(S, S )
c(S, S) c(e)
e( S ,S )
网络N中容量最小的割 (S* , S* ) 称为N的最小割。
不难证明,任何一个可行流的流量w都不会超过 任一割的容量,即
w c(S, S)
例如,图2中,若 S {s},(S, S ) {(s, v3 ),(s, v2 )} c(S, S ) 4 3 7.
二、可行流与最大流
1. 定义
在实际问题中,对于流有两个显然的要求:一是 每个弧上的流量不能超过该弧的最大通过能力(即弧 的容量);二是中间点的流量为0,源点的净流出量 和汇点的净流入量必相等。因此有定义如下。
定义2 网络N中每条边都给定一个非负实数fij满足 下列条件
(1)容量约束:0≤fij≤cij,(vi,vj)∈E, (2)守恒条件
过修改,使得整个网络的流值增大。 定义3 设f是一个可行流,P是从源点s到汇点t的一
条路,若P满足下列条件: (1)在P上的所有前向弧(vi→vj)都是非饱和弧,即
0≤fij<cij; (2)在P上的所有后向弧(vi←vj)都是非零弧,即
0<fij≤cij。则称P为(关于可行流f的)一条可增广路 径。
a
第1条可增路s,c,b,t, =2
(1,0) s (2,0)
(1,0)
第2条可增路s,a,b,c,d,t,
(2,0)
t
c (2,0) b
(1,0)
(1,0)

最大流算法

最大流算法

1
基本概念



这是一个典型的网络流模型。为了解答此题,我们先了解网 络流的有关定义和概念。 若有向图G=(V,E)满足下列条件: 1. 有且仅有一个顶点S,它的入度为零,即d-(S) = 0,这 个顶点S便称为源点,或称为发点。 2. 有且仅有一个顶点T,它的出度为零,即d+(T) = 0,这 个顶点T便称为汇点,或称为收点。 3. 每一条弧都有非负数,叫做该边的容量。边(vi, vj)的容 量用cij表示。 则称之为网络流图,记为G = (V, E, C)
如何求最小费用可改进路



设带费用的网络流图G = (V, E, C, W),它的一个可行流是f。我们构造 带权有向图B = (V’, E’),其中: V’ = V。 若<Vi, Vj>∈E,fij<Cij,那么<Vi, Vj>∈E’,权为Wij。 若<Vi, Vj>∈E,fij>0,那么<Vj, Vi>∈E’,权为-Wij。 显然,B中从S到T的每一条道路都对应关于f的一条可改进路;反之, 关于f的每条可改进路也能对应B中从S到T的一条路径。即两者存在 一一映射的逻辑关系。 故若B中不存在从S到T的路径,则f必然没有可改进路;不然,B中从S 到T的最短路径即为f的最小费用可改进路。 现在的问题变成:给定带权有向图B = (V’, E’),求从S到T的一条最短路 径。
算法


求最小费用最大流的基本思想是贪心法。即:对于流f,每次 选择最小费用可改进路进行改进,直到不存在可改进路为止。 这样的得到的最大流必然是费用最小的。 算法可描述为: 第1步. 令f为零流。 第2步. 若无最小费用可改进路,转第5步;否则找到最小 费用可改进路,设为P。 第3步. 根据P求delta(改进量)。 第4步. 放大f。转第2步。 第5步. 算法结束。此时的f即最小费用最大流。

运筹学-图论

运筹学-图论
初等链:链中所含的点均不相同, 也称通路;
圈:若 v0 ≠ vn 则称该链为开链,否则称为闭链或 回路或圈;
简单圈:如果在一个圈中所含的边均不相同 初等圈:除起点和终点外链中所含的点均不相
同的圈;
初等链: (v1 , v2 , v3 , v6 , v7 , v5 )
v1
初等圈: (v1 , v2 , v3 , v5 , v4 , v1 )
图的基本概念
图论中的图是由点、点与点之间的线所组成的。通常, 我们把点与点之间不带箭头的线叫做边,带箭头的线叫 做弧。
如果一个图是由点和边所构成的,那么称为无向图,
记作G=(V,E),其中V表示图G 的点集合,E表示图G的
边集合。连接点vi , vj V 的边记作[vi , vj],或者[vj , vi]。 如果一个图是由点和弧所构成的,那么称为它为有向
v2 (3) v3 (3)
(2)
v5
(4)
v1
v4(6)
多重图
以点v为端点的边的个数称为点v的度(次),记 作 d(v), 如 图 5.4 中 d(v1)=3 , d(v2 )=4 , d(v3 )=4 , d(v4 )=3。
度为零的点称为弧立点,度为1的点称为悬挂点。 悬挂点的边称为悬挂边。度为奇数的点称为奇点, 度为偶数的点称为偶点。
郑州
济南 徐州
青岛 连云港
重庆
武汉 南京
上海
图5.3
例5.2 有六支球队进行足球比赛,我们分别用
点v1 ,…,v6表示这六支球队,它们之间的比赛情 况,也可以用图反映出来,已知v1队战胜v2 队,v2 队战胜v3 队,v3 队战胜v5队,如此等等。这个胜负
情况,可以用图5.3所示的有向图反映出来

第8章图论方法

第8章图论方法

Page 12
【例题·计算题】某城市东到西的交通道路如下图所示,线 上标注的数字为两点间距离(单位:千米)。某公司现需从市 东紧急运送一批货物到市西。假设各条线路的交通状况相同, 请为该公司寻求一条最佳路线。
2 东3
4
3 1
7
2
5
7
3
3
4
4
7 5
6
4 6
7 3
7
西
8
【答案】
1-4-7-西 10 3
9
2
3
5
7
3.5
4
6
10
1
6
4
3
8
2
5
【答案】
2 5
4
6
1
3
5
3 3.5 4
2
Page 8
【解析】按照克鲁斯喀尔的算法很轻松得出答案。
1.(11年7月)已知连接5个城镇的公路交通图如图。为了沿公路架设5个城镇的
光缆线,并要求光缆线架设的总长度为最小,试以最小枝杈树方法求出Pa最ge优9 方 案并计算光缆线的总长度。
8.2 树和树的逐步生成法
Page 4
1、树:连通且不含圈(回路)的图称为树。 2、树的边数=结点数-1。
【选择题】以下叙述中,正确的是( ) A.树的点数为线数加1 B.图的点数小于线数 C.图的点数大于线数 D.树可能含有圈 【答案】A 【解析】树的点数和边数差1,普通图的点数和边数谁多谁少不 确定。 【知识点】图和树的基本概念
Page 22
5.(09年7月)某网络如图,线上标注的数字是单位时间通过两节点的流量。
Page 23
试求单位时间由网络始点到网络终点的最大流量(单位:吨)。

图论能解决的问题

图论能解决的问题

图论能解决的问题:1 最短路问题(SPP-shortest path problem)一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。

从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。

2 公路连接问题某一地区有若干个主要城市,现准备修建高速公路把这些城市连接起来,使得从其中任何一个城市都可以经高速公路直接或间接到达另一个城市。

假定已经知道了任意两个城市之间修建高速公路的成本,那么应如何决定在哪些城市间修建高速公路,使得总成本最小?3 指派问题(assignment problem)一家公司经理准备安排名员工去完成项任务,每人一项。

由于各员工的特点不同,不同的员工去完成同一项任务时所获得的回报是不同的。

如何分配工作方案可以使总回报最大?4 中国邮递员问题(CPP-chinese postman problem)一名邮递员负责投递某个街区的邮件。

如何为他(她)设计一条最短的投递路线(从邮局出发,经过投递区内每条街道至少一次,最后返回邮局)?由于这一问题是我国管梅谷教授1960年首先提出的,所以国际上称之为中国邮递员问题。

5 旅行商问题(TSP-traveling salesman problem)一名推销员准备前往若干城市推销产品。

如何为他(她)设计一条最短的旅行路线(从驻地出发,经过每个城市恰好一次,最后返回驻地)?这一问题的研究历史十分悠久,通常称之为旅行商问题。

6 运输问题(transportation problem)某种原材料有个产地,现在需要将原材料从产地运往个使用这些原材料的工厂。

假定个产地的产量和家工厂的需要量已知,单位产品从任一产地到任一工厂的运费已知,那么如何安排运输方案可以使总运输成本最低?7.最短路已有成熟的算法:迪克斯特拉(Dijkstra)算法8.计算赋权图中各对顶点之间最短路径,显然可以调用Dijkstra算法。

图论讲义第9章-网络流理论

图论讲义第9章-网络流理论

注:网络 N 的一个割 K 称为最小割,如果网络 N 中不存在割 K′使得 CapK ′ < CapK 。 推论 9.1.1 设 f * 是网络 N 的一个最大流,K*是 N 的一个最小割,则 Val f * ≤ CapK * . 证明显然。 推论 9.1.2 设 f 是 N 的一个可行流,K 是 N 的一个割,若 Val f = CapK ,则 f 是最大流而
a∈K

(S ) =
a∈( S , S )

f (a ) ≥ 0 。
由引理 9.1.1, Val f = f + ( S ) − f − ( S ) ≤ CapK , 可见第 一个结论成立。另外注意到 f + ( S ) = CapK 当且仅当
S K
S
( S , S ) 中每条弧都是 f 饱和的;而 f − ( S ) = 0 当且仅当 ( S , S ) 中每条弧都是 f 零的,故定理的第二个结论也成立。证毕。
v2 v1 x P Q v3 y v6 v4 v5
定义 9.2.2 设 f 是网络 N = (V , x, y , A, C ) 中的一可行流,P 是 N 中一条 x-y 路。如果对于 P 上任一条弧
a ,都有
(1) 若弧 a 是 P 的正向弧,则 Δf ( a ) (2) 若弧 a 是 P 的反向弧,则 Δf ( a )
Байду номын сангаас
§9.1 网络与网络流的基本概念
定义 9.1.1 一个网络 N=(V,A)是指一个连通无环弧且满足下列条件的有向图: (1) 有一个顶点子集 X,其每个顶点的入度都为 0; (2) 有一个与 X 不相交的顶点子集 Y,其每个顶点的出度都为 0; (3) 每条弧都有一个非负的权,称为弧的容量。 注: 上述网络 N 可写作 N=(V, X, Y, A, C),X 称为网络的发点集或源点集,Y 称为网络的 收点集或汇点集,C 称为网络的容量函数。 例:

运筹学基础-图论方法

运筹学基础-图论方法

间V的弧即为最小V截集,最小截集容量即为该网络最大流量;
最大流最小截 的标号法步骤
第二步:增广过程
1、对增广链中的前向弧,令 f=f +q (t),q(t) 为节点 t 的标记 值
2、对增广链中的后向弧,令 f=fq (t) 3、非增广链上的所有支路流量保持不变
第三步:抹除图上所有标号,回到第一步
1
2
3
5
6 Θ=2
1
2
4
3 截止
截止,最大流量=9+5=14(或者最大流量=7+5+2=14
(六)利用 EXCEL求网 络最大流量
建立各结点间的流量矩阵
各结点间的流量矩阵
v1
v2
v3
v1
30
80
v2
v3
10
v4
v5
20 60
v6
2
20 30
1 80
10
100 3
v4
v5
60 100
10
4 70
10
5(34)
2(0)
6(01)
t
最大流量为5+9=14
7(65)
2
4
(s+, 1) 9(9)
10(98)
第二条链:(s+,)→(s+,1) → (2-,1) → (1+,1)截止
又例:利用标 号法(确定最 小截集)求最
大流量
(3-,1)
(1+,1)
1
3(2)
4
5(5)
(s+,) s
3(3)
3(3(5) -,41()4)
1(0)
(s+,)

最大流问题2

最大流问题2

Ford-Fulkerson算法的步骤
(S,4) (0,∞) S 5(4) A2 6(5) A4 12(9) (A2,1) 15(11) A1 13(11) A3 4(0) (A1,2)
7(6) (A3,1)
10(9) T
(S,1)
第三步:修改流量。设图中原有可行流为f,令
fi , f fi , f , i 对增广链上所有 对增广链上所有 s t 的弧 t s 的弧

建立最大流问题模型

决策变量:每条弧的实际流量
顶点 A B
B
f AB
C
f AC
D
E
f AE
F
f BD
C
D E
fCD
f DE f ED
f DF
f EF

目标函数:可行流量 最大
m ax Z f E F f D F
约束条件:
弧的实际流量小于等于弧的容量:
f A B 2, ..., f E F 3
转化的方法:网络结点设置为每种语言和每个
应聘人各一个结点,再加上起点和终点。某个 应聘人懂某种语言就将语言和应聘人连线,边 的权数为1。再将起点与每种语言相连,将终 点与每个应聘人相连,边的权数也为1。
俄 v1 英 v2 vs
甲 v6 乙 v7
日 v3
德 v4 法 v5
丙 v8
丁 v9 戊 v10
s 1 t 2
我们应该炸毁哪个截集中的所有桥梁才能 使破坏的桥梁最少? 截量的概念:给定截集(V1,V2),把截集 (V1,V2)中所有弧的容量之和称为这个截集 的截量。 找到截量最小的截集也就能使破坏的桥梁 最少 根据最大流问题最小截量定理:任一个网 络D中,从vs到vt的最大流的流量等于分离 vs,vt的最小截量。

图与网络分析试题及答案

图与网络分析试题及答案

图与网络分析试题及答案一、填空题1.图的最基本要素是点、点与点之间构成的边2.在图论中,通常用点表示,用边或有向边表示研究对象,以及研究对象之间具有特定关系。

3.在图论中,通常用点表示研究对象,用边或有向边表示研究对象之间具有某种特定的关系。

4.在图论中,图是反映研究对象_之间_特定关系的一种工具。

5.任一树中的边数必定是它的点数减1。

6.最小树问题就是在网络图中,找出若干条边,连接所有结点,而且连接的总长度最小。

7.最小树的算法关键是把最近的未接_结点连接到那些已接结点上去。

8.求最短路问题的计算方法是从0≤f ij≤c ij开始逐步推算的,在推算过程中需要不断标记平衡和最短路线。

二、单选题1、关于图论中图的概念,以下叙述(B)正确。

A图中的有向边表示研究对象,结点表示衔接关系。

B图中的点表示研究对象,边表示点与点之间的关系。

C图中任意两点之间必有边。

D图的边数必定等于点数减1。

2.关于树的概念,以下叙述(B)正确。

A树中的点数等于边数减1 B连通无圈的图必定是树C含n个点的树是唯一的D任一树中,去掉一条边仍为树。

3.一个连通图中的最小树(B),其权(A)。

A是唯一确定的 B可能不唯一 C可能不存在 D一定有多个。

4.关于最大流量问题,以下叙述(D)正确。

A一个容量网络的最大流是唯一确定的B达到最大流的方案是唯一的C当用标号法求最大流时,可能得到不同的最大流方案D当最大流方案不唯一时,得到的最大流量亦可能不相同。

5.图论中的图,以下叙述(C)不正确。

A.图论中点表示研究对象,边或有向边表示研究对象之间的特定关系。

B.图论中的图,用点与点的相互位置,边的长短曲直来表示研究对象的相互关系。

C.图论中的边表示研究对象,点表示研究对象之间的特定关系。

D.图论中的图,可以改变点与点的相互位置。

只要不改变点与点的连接关系。

6.关于最小树,以下叙述(B)正确。

A.最小树是一个网络中连通所有点而边数最少的图B.最小树是一个网络中连通所有的点,而权数最少的图C.一个网络中的最大权边必不包含在其最小树内D.一个网络的最小树一般是不唯一的。

图论教案

图论教案

第六章图论(Graph Theory)◎知识目标:掌握图的方法与原理;图的基本概念;最小树、最短路、最大流的概念、计算与应用;了解中国邮路问题与解法。

◎能力目标:通过学习,使学生掌握图的方法与原理,提高分析问题和解决问题的能力。

◎本章重点:最小树、最短路、最大流的计算与应用◎本章难点:最短路的应用、最大流的计算引例:哥尼斯堡七桥问题18世纪著名古典数学问题之一。

在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。

问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。

有关图论研究的热点问题。

18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。

当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。

这就是哥尼斯堡七桥问题。

L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。

他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。

当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。

Konigsberg城中有一条名叫Pre gel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。

Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。

后来推论出此种走法是不可能的。

他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。

所以每行经一点时,计算两座桥(或线),从起点离开的线与最後回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。

运筹学图与网络分析

运筹学图与网络分析
v6
07
含有奇点的连通图中不含欧拉圈,此时,最优的邮递路线是什么呢?
08
求解中国邮路问题的奇偶点图上作业法
奇偶点表上作业法
奇偶点表上作业法 (1)找出奇点(一定为偶数个),在每两个奇点之间找一条链,在这些链经过的所有边上增加一条边,这样所有的奇点变为偶点,一定存在欧拉圈,但是不一定是路线最短的,所以需要检验和调整。 (2)检验增加的边的权值是否是最小的。 定理3 假设M是使得图G中不含奇点的所有增加边,则M是权值总和为最小的增加边的充分必要条件是: 1)图G中每条边上最多增加一条边; 2)在图G的每个圈上,增加的边的总权值不超过该圈总权值的一半。 如果上述两个条件都满足则已经找到权值最小的欧拉圈 否则转入3) 3)调整增加边。如果1)不满足,则从该条边的增加边中去掉偶数条; 如果2)不满足,则将这个圈上的增加边去掉,将该圈的其余边上添加增 加边,转入(2)
v1
v2
v3
v4
v5
v1
v2
v3
v4
v5
图2
图3
如果在比赛中: A胜E, B胜C, A胜D, C胜A, E胜D, A胜B,
v1
v2
v3
v4
v5
注:本章所研究的图与平面几何中的图不 同,这里我们只关心图有几个点,点与点 之间有无连线,两条线有无公共顶点,点 与线是否有关联,至于连线的方式是直线 还是曲线,点与点的相对位置如何都是无 关紧要的。
求从v1到v8的最短路
(0)
(1,1)
(1,3)
(3,5)
(2,6)
(5,10)
(5,9)
(5,12)
注:在给顶点编号时,如果在多个为标号点均取得最小值Llk则对这多个点同时标号,这些点的第二个标号相同,但是第一个标号不一定相同。

图论与网络流问题的LINGO求解技巧

图论与网络流问题的LINGO求解技巧

图论与网络流问题的LINGO 求解技巧我们介绍使用LINGO 求解图论与网络问题中的一些典型问题。

如最短路问题、最大流问题、关键路径问题、最优树问题,以及TSP 问题。

这里主要介绍使用LINGO 求解的方法,重在应用和解决问题。

1 最短路问题的Lingo 求解设图共有个节点,其赋权图的邻接矩阵为n n n w ×.ij w p =表示节点i 到j 的权值为.当为有向图时,p ji w w ij =;当为无向图时,和ij w ji w 分别由图得到,通常不一样。

当,表示节点i 与节点0ij w =j 不连通。

令0ii w =。

假设图的所有权值 0ij w ≥现求节点a 到节点b 的最短路,其线性规划模型为:模型一、决策变量:设1ij i j x i j ⎧=⎨⎩节点与节点连通节点与节点不连通目标函数为寻找一条节点到节点的通路,使其上权值和最小,故目标函数为:a b 11min .nnij ij i j Z w x ===∑∑1. 对节点恰有一条路出去,却不能有路回来,故有:a 11najj j ax=≠=∑ 且10nkak k a x=≠=∑2. 对节点恰有一条路到达,却不能有路出去,故有:b 11nkbk k bx=≠=∑ 且10nbjj j bx=≠=∑3. 对除起始点a 和目标点之外,其它点进入和出去的路是一样多(可都为0),则:b 11,nnkiijk j xx i a ===≠∑∑b4. 对不通的路不取,约束为:,1,2,ij ijx w i j ≤=L n总的线性规划模型为:11111111min .,10..10,1,2,,01n nij iji j nnki ijk j naj j j a n ka k k a n kb k k a nbj j j a ij ijijZ w x x x i a b x x s t x x x w i j x =====≠=≠=≠=≠=⎧=≠⎪⎪⎪=⎪⎪⎪⎪=⎪⎪⎪⎪=⎨⎪⎪⎪=⎪⎪⎪≤=⎪⎪=⎪⎪⎪⎩∑∑∑∑∑∑∑∑L 或n示例演示。

运筹学图与网络分析(高级课堂)

运筹学图与网络分析(高级课堂)

E
I
A
2 C
2
4
G
5
1S
2
3
3K
B2
2 F 2 26 J
D
H
高等课堂
26
[例]今有煤气站A,将给一居民区供应煤气,居民区各 用户所在位置如图所示,铺设各用户点的煤气管道所需 的费用(单位:万元)如图边上的数字所示。要求设计 一个最经济的煤气管道路线,并求所需的总费用。
E
I
A
2 C
2
4
G
5
1S
2
3
3K
例 : G1为不连通图, G2为连通图
G1
高等课堂
G2
8
5、支撑子图
图G=(V,E)和G'=(V ' ,E '),若V =V ' 且E ' E ,
则称G' 为G的支撑子图。
例 :G2为G1的支撑子图
v5
v5
v1
v4 v1
v4
v2
v3
v2
v3
G1
G2
高等课堂
9
例 : G2 是G1 的子图;
v2
e1 v1
H
高等课堂
24
[例]今有煤气站A,将给一居民区供应煤气,居民区各 用户所在位置如图所示,铺设各用户点的煤气管道所需 的费用(单位:万元)如图边上的数字所示。要求设计 一个最经济的煤气管道路线,并求所需的总费用。
E
I
A 3.5
2
C
2
4
G
5
1S
2
3
3K
B2
2 F 2 26 J
D
H
高等课堂
25

基于图论的网络优化模型

基于图论的网络优化模型

基于图论的网络优化模型图论是一门研究图结构的数学分支,广泛应用于网络优化问题的建模和解决。

网络优化模型基于图论可以帮助我们解决各种实际问题,如交通优化、物流配送、电力网络规划等。

本文将探讨基于图论的网络优化模型及其应用。

1. 图论基础在开始讨论基于图论的网络优化模型之前,我们需要了解一些图论的基本概念。

图是由节点和边组成的,节点表示对象,边表示对象之间的连接或关系。

图论研究的是如何用数学方法描述和分析这些连接或关系。

有向图是包含有向边的图,边有方向,表示从一个节点到另一个节点的箭头。

无向图是边没有方向的图,表示节点之间的双向连接。

路径是指在图中通过边从一个节点到另一个节点的序列。

最短路径是连接两个节点的路径中,边的数量最小的路径。

2. 网络优化模型网络优化模型利用图论的概念和方法,描述和解决各种实际网络问题,通过优化路径、流量分配等策略,提高网络效率和性能。

2.1 最短路径问题最短路径问题是网络优化中最基本的问题之一,它涉及找到两个节点之间的最短路径。

最短路径算法中,Dijkstra算法是一种常用的方法。

该算法用于计算带权有向图中的最短路径。

通过不断迭代找到从起始节点到其他节点的最短路径。

2.2 最小生成树问题最小生成树问题是在一个连通图中找到一棵包含所有节点的生成树,且其边的权重之和最小。

Prim和Kruskal算法是解决最小生成树问题的两种主要方法。

Prim算法从一个起始节点开始,逐步扩展生成树。

Kruskal算法则是按照边的权重进行排序,逐个添加边,直到生成树包含所有节点为止。

2.3 最大流问题最大流问题是在有向图中,从一个节点到另一个节点的最大流量路径。

Ford-Fulkerson算法是解决最大流问题的一种常用方法。

该算法通过在网络中找到增广路径,并根据路径上的最小剩余容量来增大流量,直到无法找到增广路径为止。

3. 应用案例基于图论的网络优化模型在各个领域有广泛的应用。

3.1 交通优化交通优化问题是指如何在城市交通网络中提高道路利用率,减少拥堵等问题。

最大流标号法

最大流标号法

8
12 6 10
00
30 上8
10
京 18
广
0

W ( f* ) =10+6+12+30+12+10+5 = 85
多个发点多个收点的情形
对于多发点多收点的容量网络的最大流问题可 以通过添加两个新点vs与vt扩充为新的单发点 与单收点的容量网络的方式解决。
+∞ x1
vs
x2
使fij=0的弧称为零流弧,使fij>0的弧称为非零
流弧。
v2 3,1
vs
1,0
5,2
4,1 1,0
v4 5,2
3,1 2,1vt
若μ是联结发点vs 和收点vt的一条链,
我们规定链的方向是
从vs到vt,则链上的
v1
2,2 v3
弧被分成两类:前向
弧、后向弧。
设f是一个可行流,μ是从vs到vt的一条链,若
号(vi,l(vj)),其中l(vj)=min[l(vi),cij – fij],vj成为已标号未检查的点;若有非零 弧(vj,vi),则vj标号(-vi,l(vj)),其中l(vj)=min[l(vi), fji],vj成为已标号未检查的 点。vi成为已标号已检查的点。 • 重复步骤(2),直到vt成为标号点或所有标号点都检查过。若vt成为标号点,表 明得到一条vs到vt的增广链,转入调整过程;若所有标号点都检查过,表明这 时的可行流就是最大流,算法结束。
1 x3
1
[xv4s,1] 1
x5
[vs,1]
y1
1
y2
y3 [x3,1y]4 1 [x3,1y]5
[x2,1y]1 [x1,1y]2 1 [x1,1y]3 [x5,1y]4 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档