桥梁结构地震响应与抗震性能分析
地震作用下桥梁动态响应分析
地震作用下桥梁动态响应分析地震是一种破坏力极大的自然灾害,对桥梁等基础设施的安全构成严重威胁。
桥梁作为交通运输的关键节点,其在地震作用下的动态响应特性直接关系到人员生命和财产安全。
因此,深入研究地震作用下桥梁的动态响应具有重要的理论和实际意义。
一、桥梁在地震中的受力特点桥梁在地震作用下主要受到水平地震力和竖向地震力的影响。
水平地震力通常是导致桥梁结构破坏的主要因素,它会使桥梁产生水平位移、弯曲变形和剪切破坏。
竖向地震力虽然相对较小,但在某些情况下也可能引起桥梁的墩柱破坏、支座失效等问题。
此外,地震波的传播特性也会对桥梁的受力产生影响。
地震波包括纵波、横波和面波,它们的传播速度和振动方式不同,使得桥梁在不同部位受到的地震作用存在差异。
例如,面波在地表附近传播,其能量较大,对桥梁基础的影响较为显著。
二、桥梁结构对地震响应的影响1、桥梁的类型和跨度不同类型的桥梁(如梁桥、拱桥、斜拉桥等)在地震作用下的响应有所不同。
一般来说,梁桥的结构相对简单,但其跨度较小,在地震中的变形能力有限;拱桥具有较好的抗压性能,但对水平地震力的抵抗能力相对较弱;斜拉桥由于其复杂的结构体系,地震响应较为复杂,需要进行详细的分析。
桥梁的跨度也是影响地震响应的重要因素。
跨度越大,桥梁的自振周期越长,与地震波的共振可能性就越大,从而导致更大的地震响应。
2、桥墩和桥台的形式桥墩和桥台是桥梁的重要支撑结构,它们的形式和尺寸对地震响应有显著影响。
实心桥墩的抗弯和抗剪能力较强,但在地震作用下容易产生较大的内力;空心桥墩则具有较好的延性,但在强震作用下可能发生局部屈曲。
桥台的类型(如重力式桥台、轻型桥台等)也会影响桥梁与地基的相互作用,进而改变地震响应。
3、支座和伸缩缝支座是连接桥梁上部结构和下部结构的关键部件,其力学性能直接影响桥梁在地震中的变形和受力。
常见的支座类型如板式橡胶支座、盆式支座等,它们在地震中的滑移和变形特性不同,会导致桥梁的地震响应有所差异。
桥梁设计中的地震响应分析与减震控制
桥梁设计中的地震响应分析与减震控制桥梁是人类社会固有的重要交通设施之一,自古以来就有着跨越河流、峡谷等特殊地理环境的需要。
然而,地震是一个不可预知、不可避免的自然灾害,其对桥梁的破坏是不可估量的。
因此,在桥梁的设计、建设和维护中,地震响应分析和减震控制显得尤为重要。
一、桥梁地震响应分析桥梁在地震中的响应主要表现为结构的变形、应力的分布、动态特性的变化等。
因此,为了准确评估桥梁在地震中的破坏情况,需要进行地震响应分析。
地震响应分析主要包括静力分析和动力分析两种方法。
静力分析是建立在弹性理论基础上的方法,它假设桥梁在地震作用下的响应具有线性的特性,且桥梁结构的变形是可逆的。
这种方法可以快速计算出桥梁在地震中的内力、位移等参数,然而它无法刻画桥梁在非线性时的响应情况。
动力分析则是基于桥梁结构的实际响应情况进行的,它可以准确评估桥梁在地震中的响应,包括结构的变形、应力的分布、动态特性的变化等。
目前常用的动力分析方法主要包括时程分析、反应谱分析等。
时程分析可以模拟不同地震强度下桥梁的响应情况,而反应谱分析则可以在给定地震作用下,计算出桥梁的动态特性并评估其响应情况。
二、桥梁减震控制技术为了减小桥梁在地震中受到的破坏,需要采用有效的减震控制技术。
目前常用的桥梁减震控制技术主要有被动控制和主动控制两种。
被动控制是指在桥梁结构中预制加装减震装置,利用减震器等器件来吸收地震能量并减小桥梁结构的振动响应。
被动控制技术具有结构简单、成本低等优点,但是其减震效果受到地震作用的影响较大,而且其减震器等器件在使用过程中容易发生疲劳或损坏。
主动控制是指利用主动控制装置来控制桥梁结构的振动响应,在地震发生后能够快速响应并调整结构的动态特性。
主动控制技术具有减震效果好、控制精度高等优点,但是其设计成本较高,控制系统也较为复杂,运行维护和管理难度较大。
此外,还有一种较为常用的混合控制技术,即被动控制与主动控制相结合的混合减震控制。
桥梁结构地震反应分析
g / 1 达到最大值 共振
2.方程的特解II——冲击强迫振动
地面冲击运动:
xg
(
)
x0g
0 dt dt
对质点冲击力:
P
mxg 0
0 dt dt
质点加速度(0~dt):
a
P m
xg
dt时刻的速度:
V
P m
dt
xg dt
dt时刻的位移: d 1 P (dt)2 0 2m
4.1 概述
1.基本概念:
地震作用——地震引的结构振动,在结构中产生动力荷载效 应(内力、变形等),属于间接作用。地震作用是建筑抗震 设计的基本依据,取决于地震强弱、场地、结构动力特性等。
地震作用效应——地震作用在结构中产生的内力和变形。
结构动力特性——结构固有的动力性能,如自振周期、阻尼、 振型等。
C —— 阻尼系数
*弹性恢复力 ——由结构弹性变形产生
f r kx k —— 体系刚度
力的平衡条件:
fI fc fr 0
mx cx kx mxg
令 k c
m
2m
x 2x 2 x xg
二、运动方程的解
自由振动:在没有外界激励的 情况下结构体系的运动
1.方程的齐次解——自由振动
M
g (t) (t)
kH
g max
g
定义为水平地震系数, 根据抗震设防烈度选用
g (t)
图 4.11
单质点体系示意图
g
max
g max
为动力放大系数,根据选定的反应谱曲线 及体系的自振周期确定
规范中,还引入综合影响系数 Cz ,以考虑结构的延性耗能作用,则
P Cz kH . W
桥梁结构地震响应分析与评估方法研究
桥梁结构地震响应分析与评估方法研究地震是自然界中一种具有破坏性的自然灾害,对于桥梁结构来说,地震所带来的影响尤为重要。
因此,研究桥梁结构地震响应的分析与评估方法显得十分必要。
本文将探讨桥梁结构地震响应的分析与评估方法,以期提供有效的指导和保障桥梁结构在地震中的安全性能。
一、地震响应分析方法地震响应分析是指利用工程力学原理和地震学原理,对桥梁结构在地震作用下的动力响应进行计算和分析。
常用的地震响应分析方法包括静力弹性分析法、谐波响应分析法、时程分析法和模态分析法。
静力弹性分析法是一种简化的分析方法,假设结构具有线性弹性行为,并忽略结构的非线性效应。
该方法适用于较小震级的地震,对于大震级地震的响应评估则较为不准确。
谐波响应分析法是一种利用谐波激励模拟地震响应的分析方法。
该方法将地震作用看作是一系列正弦波组成的谐波激励,通过对结构在各个谐波激励下的响应进行分析,得到结构的地震反应。
时程分析法是一种基于实际地震波记录对结构进行响应分析的方法。
该方法将实际地震波的时程作为输入,通过数值模拟求解结构在地震作用下的动力响应。
时程分析法考虑了地震波的非线性和非平稳性特征,因此可以更准确地评估结构的地震响应。
模态分析法是一种将结构的地震响应分解为不同模态的分析方法。
该方法通过求解结构的振动模态和模态振型,得到结构在不同模态下的地震响应,并将其叠加得到总体响应。
模态分析法适用于复杂结构和多自由度系统的地震响应分析。
二、地震响应评估方法地震响应评估是指通过对桥梁结构的地震响应进行分析和评估,判断结构的安全性能和耐震能力。
常用的地震响应评估方法包括位移评估、应力评估和能量评估。
位移评估方法主要关注结构的位移响应情况,通过计算和分析结构的最大位移、塑性位移等指标,评估结构的变形程度和塑性变形能力。
位移评估方法更注重结构的整体性能和抗震能力。
应力评估方法主要关注结构的应力状态,通过计算和分析结构的最大应力、剪应力、弯矩等指标,评估结构的承载能力和抗震性能。
地震作用下桥梁结构的抗震设计
地震作用下桥梁结构的抗震设计地震是一种极具破坏力的自然灾害,它给人类社会带来了巨大的生命和财产损失。
桥梁作为交通网络中的关键枢纽,在地震中的安全性能至关重要。
因此,进行科学合理的抗震设计是确保桥梁在地震作用下能够保持结构完整性和功能性的关键。
桥梁在地震中可能会遭受多种破坏形式,如墩柱的弯曲破坏、剪切破坏,支座的移位、脱落,以及桥梁上部结构的碰撞、落梁等。
这些破坏不仅会导致桥梁无法正常使用,还可能引发更严重的次生灾害。
为了减轻地震对桥梁的破坏,我们需要从多个方面入手进行抗震设计。
首先,在桥梁的选址和布局阶段就要充分考虑地震因素。
应尽量避开地震活动频繁、地质条件复杂的区域,选择相对稳定的场地。
同时,合理确定桥梁的走向和跨度,避免出现不规则的结构形式,减少地震作用下的扭转效应。
结构体系的选择也是抗震设计的重要环节。
常见的桥梁结构体系包括简支梁桥、连续梁桥、刚构桥等。
不同的结构体系在抗震性能上存在差异,需要根据具体情况进行权衡。
例如,简支梁桥在地震作用下相对容易发生落梁,但结构简单,施工方便;连续梁桥整体性较好,但墩柱受力较大。
在构件设计方面,墩柱是桥梁结构中承受地震力的关键构件。
为了提高墩柱的抗震能力,可以采用增加配筋率、设置箍筋加密区、采用高强混凝土等措施。
同时,要注意控制墩柱的长细比,避免出现过于细长的墩柱。
对于支座,应选择具有良好抗震性能的类型,如减隔震支座,能够有效地减小地震能量的传递。
在计算分析方面,需要运用先进的地震分析方法和软件,准确模拟地震作用下桥梁结构的响应。
常用的方法包括反应谱法、时程分析法等。
反应谱法计算简便,能够快速得到结构的地震响应,但对于复杂结构可能不够精确;时程分析法能够考虑地震波的时间历程,但计算量较大。
在实际设计中,通常会结合两种方法进行综合分析。
除了结构设计,还需要重视桥梁的构造措施。
例如,在墩柱与盖梁、基础的连接处设置足够的钢筋锚固长度,增强节点的抗震性能;在梁端设置挡块,防止落梁的发生;合理设置伸缩缝,避免相邻桥梁结构在地震中的相互碰撞。
液化场地简支桥梁体系地震反应与抗震性态分析
液化场地简支桥梁体系地震反应与抗震性态分析液化场地是指土壤在地震力作用下失去原有的固结结构,土体颗粒间的胶结力较弱,从而导致土壤呈现液态流动的状态。
在液化场地中存在诸多地震风险,因此对于液化场地上的简支桥梁体系的地震反应与抗震性态进行分析和评估具有重要意义。
液化场地对桥梁体系的地震反应会导致以下几方面的影响:1.桥梁的动力性能下降:液化场地的土体刚度降低,会使桥梁的共振频率降低,从而导致桥梁在地震作用下的动力响应增大。
2.地震动输入的不确定性增加:液化场地的地震动输入的频谱特性可能发生改变,地震动的频率内容可能增加,因此对液化场地上桥梁体系的地震动输入要进行充分考虑。
3.土壤侧向液化引起的侧移位:液化场地的土体容易出现失稳和液化,会引起桥墩的侧向液化和侧移,进而导致桥梁结构破坏或失稳。
为了对液化场地上的简支桥梁体系的地震反应与抗震性态进行分析,需要进行以下几方面的研究:1.土壤动力特性研究:对液化场地进行室内和现场实验,获取土壤的动力特性参数,包括固结指数、动力刚度、阻尼特性等。
2.液化潜能分析:根据现场勘测和土壤试验数据,开展液化潜能分析,确定液化场地上的土层对地震作用的响应特点和潜在液化情况。
3. 地震动输入分析:对液化场地上的桥梁体系进行有效波动输入的确定,考虑地震动的频率内容和Ricker波的主要周期,进行地震动输入的合理化处理。
4.桥梁体系的受力性态分析:根据桥梁结构的几何形状、材料属性、地震动输入等条件,进行桥梁体系的动力响应分析,包括自振频率、振型、位移和应力的计算。
5.桥梁结构的抗震性能评估:将桥梁结构的受力性态与设计要求进行对比,评估桥梁结构的抗震性能是否满足要求,确定是否需要采取抗震加固措施。
通过上述分析和评估,可以对液化场地上的简支桥梁体系的地震反应与抗震性态进行有效的评估和改进设计,提高桥梁结构的抗震能力和安全性。
同时,也对液化场地上的其他工程项目的地震反应和抗震性态分析具有一定的借鉴和参考价值。
地震作用下桥梁结构的抗震设计
地震作用下桥梁结构的抗震设计桥梁作为交通运输的重要枢纽,在地震作用下的安全性至关重要。
地震可能导致桥梁结构的损坏甚至倒塌,严重影响救援和灾后重建工作。
因此,对桥梁结构进行科学合理的抗震设计是保障桥梁安全的关键。
一、地震对桥梁结构的影响地震是一种突发的自然灾害,其释放的能量以地震波的形式传播。
当地震波到达桥梁所在地时,会对桥梁结构产生多种影响。
首先是水平地震力的作用。
水平地震力会使桥梁产生水平位移和加速度,导致桥墩、桥台等构件承受较大的弯矩和剪力。
如果这些构件的强度和刚度不足,就可能发生开裂、屈服甚至破坏。
其次是竖向地震力的影响。
虽然竖向地震力通常比水平地震力小,但在某些情况下,如近断层地震或大跨径桥梁中,竖向地震力也不可忽视。
它可能导致桥梁支座脱空、梁体与墩台的碰撞等问题。
此外,地震还可能引起地基土的液化、滑坡等现象,削弱桥梁基础的承载能力,导致桥梁整体失稳。
二、桥梁结构抗震设计的原则为了确保桥梁在地震作用下的安全性,抗震设计应遵循以下原则:1、多道防线原则在桥梁结构中设置多个抗震防线,当第一道防线失效后,后续的防线能够继续发挥作用,从而提高桥梁的抗震能力。
例如,墩柱可以作为第一道防线,当墩柱破坏后,支座、伸缩缝等构件能够起到一定的耗能作用。
2、能力设计原则通过合理的设计,使桥梁结构的各个构件在地震作用下能够按照预定的方式屈服和破坏,避免出现脆性破坏和不合理的破坏模式。
例如,应确保桥墩的塑性铰出现在预期的位置,并且具有足够的变形能力。
3、整体性原则注重桥梁结构的整体性,使各个构件之间能够协同工作,共同抵抗地震作用。
例如,通过合理设置系梁、盖梁等构件,增强桥墩之间的连接,提高桥梁的整体刚度和稳定性。
三、桥梁结构抗震设计的方法1、静力法静力法是一种简单的抗震设计方法,它将地震作用等效为一个静态的水平力,作用在桥梁结构上。
这种方法适用于规则、简单的桥梁结构,但对于复杂的桥梁结构,其计算结果可能不够准确。
桥梁设计中的抗震技术与应用研究
桥梁设计中的抗震技术与应用研究桥梁作为交通基础设施的重要组成部分,在保障人员和物资的流通方面发挥着关键作用。
然而,地震作为一种不可预测且破坏力巨大的自然灾害,对桥梁的安全构成了严重威胁。
因此,在桥梁设计中充分考虑抗震因素,采用先进的抗震技术,对于提高桥梁在地震中的稳定性和安全性至关重要。
一、桥梁在地震中的破坏形式要有效地设计桥梁的抗震性能,首先需要了解桥梁在地震中可能出现的破坏形式。
常见的有以下几种:1、桥墩破坏桥墩是桥梁的主要支撑结构,在地震中容易受到水平力和弯矩的作用。
可能出现的破坏形式包括混凝土开裂、钢筋屈服、墩身倾斜甚至折断。
2、桥台破坏桥台与路堤的连接部位在地震中容易产生不均匀沉降和位移,导致桥台开裂、倾斜或坍塌。
3、支座破坏支座是连接桥梁上部结构和下部结构的重要部件,在地震中可能会发生移位、脱落或损坏,从而影响桥梁的整体受力性能。
4、梁体破坏梁体在地震作用下可能会出现裂缝、断裂或移位,严重影响桥梁的通行能力。
二、桥梁抗震设计的基本原则为了提高桥梁的抗震性能,在设计过程中需要遵循以下基本原则:1、场地选择应尽量选择地质条件良好、地势平坦的场地建设桥梁,避免在地震断层、软弱土层等不利地段建造。
2、合理的结构体系选择具有良好抗震性能的结构形式,如连续梁桥、刚构桥等,避免采用抗震性能较差的结构。
3、强度和延性设计既要保证桥梁结构在地震作用下具有足够的强度,能够承受地震力的作用,又要具备一定的延性,能够通过塑性变形来消耗地震能量。
4、多道抗震防线通过设置多个抗震构件和体系,形成多道抗震防线,当一道防线失效时,其他防线能够继续发挥作用,保证桥梁的整体稳定性。
三、桥梁抗震技术1、基础隔震技术基础隔震是通过在桥梁基础和上部结构之间设置隔震装置,如橡胶支座、摩擦摆支座等,来延长结构的自振周期,减少地震能量的输入。
隔震装置能够有效地隔离水平地震作用,降低上部结构的地震响应。
2、耗能减震技术耗能减震技术是在桥梁结构中设置耗能装置,如金属阻尼器、粘滞阻尼器等,在地震作用下,耗能装置通过自身的变形和摩擦来消耗地震能量,从而减轻结构的破坏。
浅谈桥梁结构抗震分析及抗震措施
浅谈桥梁结构抗震分析及抗震措施摘要:我国是一个多地震国家,近二十多年来,大批桥梁雨后春笋般涌现,确保桥梁在可能发生的地震中安全可靠运营,最大限度避免人员伤亡,减轻震灾带来的经济损失,且设计上又不过于保守,成为工程界日益关注的话题。
在桥梁设计过程中采取适宜的抗震措施来减小乃至避免地震对桥梁破坏,降低经济损失。
关键词:抗震;桥梁设计;抗震措施1 震害形式“前车之鉴,后世之师”,通过对汶川、玉树地震发生后,桥梁破坏的调查与研究,桥梁震害形式主要有以下几种:1.1 支撑连接部件(支座)震害支座在地震中破坏形式有锚固螺栓拔出、剪断、支座位移、活动支座脱落等且支座破坏又会引起连锁反应如伸缩缝、挡块破坏、甚至落梁危险等。
1.2 上部结构震害受地震水平力作用桥梁上部结构在纵横向及扭转发生移位。
主要表现形式有梁体间脱离、错位、顶撞;大位移会使梁体超出墩台支撑面造成落梁(如汶川百花大桥、庙子坪大桥落梁)。
落梁的毁坏性是巨大的特别是顺桥向的,梁体掉下来会直接砸到墩台,造成不可修复性的破坏。
1.3 下部结构震害分为桥墩和基础的破坏,该震害是由于桥梁受到较大水平力,瞬时反复振动导致薄弱截面产生破坏而引起的。
1.3.1 桥墩破坏经大量震害实例调查研究,柔性桥墩的长细比较大多为弯曲破坏(延性破坏),表现形式为:混凝土开裂、压溃、钢筋裸露与压弯并会产生很大的塑性变形,原因主要是由于横向约束箍筋配置不足、间距过大,纵向钢筋搭接或焊接不足、失效,钢筋锚固长度不足,箍筋端部没有弯钩等;粗矮墩的长细比小多为剪切破坏(脆性破坏)。
表现形式为:混凝土大裂缝、钢筋切断等,原因主要是由于墩柱抗剪强度和横向箍筋配置不足等。
1.3.2 基础破坏基础破坏主要是基础移位、场地土液化、不均匀沉降或是上部结构的惯性力影响引起桩基剪断、弯曲破坏等。
2 桥梁抗震设计与措施汶川地震后调查显示干线公路桥梁震后破坏程度远小于地方道路桥梁,主要是因为干线桥梁采用了有效的抗震构造措施且结构安全富裕较多,事实表明合理的抗震构造措施可以有效减轻震害,而所耗费的工程代价比较低,因此抗震构造措施在常规桥梁抗震设计作用重大。
桥梁结构的地震动力响应分析与结构加固方法
桥梁结构的地震动力响应分析与结构加固方法地震是一种自然灾害,常常给桥梁结构带来巨大的破坏。
为了确保桥梁结构的安全性和可靠性,在设计和施工过程中,必须进行地震动力响应分析,并采取适当的结构加固方法。
本文将对桥梁结构的地震动力响应分析与结构加固方法进行探讨。
一、地震动力响应分析地震动力响应分析旨在评估桥梁结构在地震作用下的动力反应,包括位移、加速度和应力等。
通过地震动力响应分析,可以预测桥梁结构在地震中的响应情况,为结构的加固设计提供依据。
在地震动力响应分析中,常用的方法包括等效静力法、地震动力时程分析法和地震反应谱分析法。
等效静力法是一种简化的方法,通过将地震力转化为等效静力,从而进行结构的响应计算。
地震动力时程分析法则是通过数值模型,在给定的地震波动输入下,计算出结构的动力响应。
地震反应谱分析法则是通过将地震波动转换为反应谱,从而评估结构的地震响应。
二、结构加固方法针对桥梁结构的地震动力响应,常采取以下几种结构加固方法,以提高结构的抗震性能:1. 增加结构的刚度:通过加固桥墩或增加纵梁的截面尺寸和数量,可以提高结构的刚度,使其能够更好地抵抗地震力的作用。
此外,可以考虑采用混凝土加固钢筋的方式,增加结构的刚度和强度。
2. 加强连接部位:连接部位是桥梁结构中容易产生破坏的关键位置,对连接部位进行加固,可以提高结构的整体稳定性。
常见的加固措施包括增加连接面积、采用高强度螺栓连接和增加焊缝数量等。
3. 设置减震装置:减震装置是一种常用的桥梁结构抗震措施,通过吸收地震能量,减小结构的动力响应。
常见的减震装置包括液压缓冲器、摩擦式滑移支座和钢板液压阻尼器等。
4. 引入阻力体系:针对某些细长的桥梁结构,可以采用引入阻力体系的方式,通过设置横向和纵向的支撑系统,提高结构的抗震性能。
典型的阻力体系包括双塔斜拉桥和悬索桥等。
5. 增加桥面铺装的延性:在桥面铺装中加入延性材料,如橡胶等,可以有效提升结构的延性和耗能能力,从而减小地震引起的破坏。
桥梁地震响应及抗震抗风研究现状分析
批世 界级 的大跨 桥梁 的建设如 世界 最大跨 度 的钢拱桥 一 上海 卢浦 大桥 、世
界 最大跨 度 的斜 拉桥 一苏 通 江 大桥 和世 界最大 跨度 的钢箱梁 悬索 桥一舟 山 西 喉 门大 桥等 , 各种 改善桥 梁抗 风稳 定性 的措施 得 到了, 泛 的应用 采 取何 种经 济、 高效 、 可靠 的措施 来减 小风荷 载和 地震造 成 的影 响, 保证 桥梁 结构 的安全 , 摆在广 是 大工 稃技术 人 员和科研 工作 者面前 的 个现实 的、
支座设 计往往 没有 充分考虑 地震 的要求, 连接 与支挡 等构 造措施 不足, 以
及 某些支座 形式 和材料 本 身的缺 陷。 座破 坏会 引起力 的传递 方式发 生 改变, 支
从 而对 结构其他 部位 的抗震 性能产 生影 响, 一步加 重震 害 。19 进 9 5年阪神 地
震 中 日术某 桥 的支座震 害 。1 9 年 兵库 县南部地 震 中东神 户火 桥支座 破坏 。 95 1 3 下部 结构和 基础 的震害 . 桥梁墩 台和基础 的震害 由 J受到较 大的水 地震力, F 瞬时反复振 动在相对 薄弱 的截面产 生破 坏而 引起 的, 严重 时桥 梁倒 塌, 震后难 以修 复 。 在
出详 细 规定 : 甚至 对 复杂 桥梁 的 计算 和设 计做 出详 细 规定 等等 。
座丧 失约束 能力后 引起 的破坏形 式 。上 部相邻 结构 的碰 撞破坏 也是 非常不 利 的, 因为撞 击力大 大增加 墩柱 的剪力 。 以这种 碰撞 应通 过设置足 够 的间距 予 所 以避免 。 1 2 支座 的破坏
一
强度控 制到 强度 、位 移双标 准控 制, 到现 在足 多指标 的结 构性能控 制, 归纳
地震对桥梁建造的影响与抗震设计
地震动的频谱特性与桥梁结构的自振 频率相互作用,影响结构的振动幅度 和破坏程度。
桥梁结构的振动响应
地震波引起的地面运动使桥梁结构产 生振动,包括水平、垂直和扭转振动 。
地震引起的桥梁破坏形式
01
02
03
支座破坏
地震作用下,桥梁支座可 能出现位移、剪切破坏或 脱落等现象。
桥墩破坏
桥墩是桥梁的主要承重构 件,在地震中可能因弯曲 、剪切或扭转而破坏。
未来发展趋势与挑战
智能化抗震设计
利用人工智能、大数据等技术,实现桥梁抗震设 计的智能化和精细化,提高设计效率和准确性。
减震隔震技术创新
发展新型减震隔震技术,如摩擦摆隔震支座、金 属耗能装置等,降低地震对桥梁结构的破坏力。
高性能材料应用
研发和应用高性能材料,如超高性能混凝土、碳 纤维复合材料等,提高桥梁结构的抗震性能和耐 久性。
旧金山-奥克兰海湾大桥
该桥在1989年洛马普列塔地震中受损,但经过抗震加固和 改造,成功抵御了后续地震,展现了先进的抗震设计理念 和工程技术。
日本东名高速公路
在多次地震中,该高速公路的桥梁结构表现稳定,得益于 其采用的隔震支座和耗能装置等先进技术,有效降低了地 震对桥梁的破坏。
中国港珠澳大桥
作为世界最长的跨海大桥,港珠澳大桥在设计中充分考虑 了地震因素,采用了高性能混凝土、纤维增强塑料等先进 材料,提高了桥梁的抗震性能。
03
桥梁结构抗震措施
基础隔震技术
隔震沟和隔震槽
在桥梁墩台下方设置隔震沟或隔 震槽,通过阻断地震波的传播路 径来减小地震力对桥梁结构的影
响。
隔震支座
采用特殊设计的隔震支座,如橡 胶隔震支座、滑动隔震支座等, 以延长桥梁结构的自振周期,降
桥梁结构的地震响应分析与设计
桥梁结构的地震响应分析与设计地震是自然界中一种常见的灾害,对建筑物和桥梁结构造成严重破坏的能力不可小觑。
在桥梁结构的设计和建设中,地震响应分析与设计是确保桥梁在地震中具备合适抗震能力的关键步骤。
本文将介绍桥梁结构的地震响应分析与设计的基本原理和方法。
1. 地震对桥梁结构的作用桥梁结构在地震中受到两个主要作用:地震激励和地震反应。
地震激励指的是地震震级和地震波对桥梁结构的作用力,地震反应则是指桥梁结构对地震激励的响应。
2. 地震响应分析方法地震响应分析是通过数值模拟的方法,模拟桥梁结构在地震中的动力响应。
常用的地震响应分析方法包括等效静力法、模态叠加法和时程分析法。
等效静力法适用于简单桥梁结构,模态叠加法适用于中等复杂度的桥梁结构,而时程分析法适用于较为复杂的桥梁结构。
3. 设计地震动参数设计地震动参数是进行地震响应分析与设计中的关键参数,通常包括设计地震加速度、周期、阻尼比等。
这些参数需要根据地震区域和结构特性进行合理选择。
4. 桥梁结构的抗震设计抗震设计是指根据地震响应分析的结果,对桥梁结构进行合理的结构抗震设计,确保其在地震中的安全性能。
抗震设计的具体内容包括选择合适的结构形式、确定截面尺寸和材料强度、设计抗震支座等。
5. 结构减震措施除了传统的抗震设计方法外,还可以采用结构减震措施来提高桥梁结构的抗震能力。
常见的结构减震措施包括增加阻尼器、设置减震支座、采用橡胶支座等。
6. 桥梁结构的监测与评估在桥梁结构的使用过程中,地震响应分析与设计的有效性需要进行监测和评估。
通过定期的结构健康监测和评估,可以及时发现并修复潜在的结构问题,确保桥梁结构的长期安全性能。
总结:地震响应分析与设计是确保桥梁结构在地震中具备合适抗震能力的重要步骤。
通过合理选择分析方法、设计地震动参数和采用适当的抗震设计方法,可以有效提高桥梁结构的抗震能力。
此外,结构减震措施和监测评估也是确保桥梁结构长期安全性能的重要手段。
在桥梁结构的设计与建设中,地震响应分析与设计应被高度重视,以确保桥梁结构在地震中的安全可靠性。
桥梁结构的地震响应分析与隔震设计
桥梁结构的地震响应分析与隔震设计地震是自然灾害中最具破坏性的一种,给桥梁结构的安全稳定性带来了巨大的挑战。
因此,对于桥梁结构在地震中的响应进行分析,并采取隔震设计措施,成为保障桥梁结构安全运行的关键所在。
本文将就桥梁结构的地震响应分析以及隔震设计进行探讨。
一、桥梁结构地震响应分析桥梁结构的地震响应分析是指在地震发生时,通过数学模型和工程力学原理,对桥梁结构在地震荷载作用下的受力情况进行计算和分析。
地震响应分析的目的是预测桥梁结构在地震中的变形、位移、应力、应变等参数,为桥梁设计和抗震设计提供依据。
在进行地震响应分析时,首先需要确定桥梁所受到的地震荷载。
地震荷载主要包括地震作用时间历程、地震波参数等。
通过对地震参数的研究和分析,可以确定合适的地震响应谱,并结合桥梁结构的特征和受力情况,进行地震响应计算。
地震响应分析中还需要考虑桥梁结构的动力特性。
桥梁结构的动力特性包括固有周期、振型、频率等。
通过对桥梁结构的动力特性进行研究和分析,可以了解桥梁在地震中的受力状况,有助于评估桥梁结构的稳定性和抗震性能。
同时,地震响应分析还需要考虑桥梁结构的减震效应、隔震效应等。
二、桥梁结构的隔震设计隔震设计是指采用一定的隔震装置,在桥梁结构与地基之间设置缓冲层,使桥梁结构在地震时能够独立自由地进行振动,减少地震对桥梁结构的破坏程度。
隔震设计的核心思想是通过减小桥梁与地震的相互作用,达到保护桥梁结构的目的。
隔震设计主要采用的隔震装置有橡胶支座、钢球隔震支座等。
这些隔震装置在地震发生时具有较大的变形能力和能量吸收能力,可以减少桥梁结构所受到的地震荷载,降低结构的动力响应。
在隔震设计中,还需要考虑隔震装置的选用和布置。
隔震装置的选用需要充分考虑桥梁结构的特征和地震要求,选择合适的隔震装置,确保桥梁结构在地震发生时能够得到有效的隔离保护。
同时,隔震装置的布置也需要合理设计,确保桥梁结构的稳定性和耐久性。
隔震设计在实际工程中已经得到了广泛的应用。
桥梁结构的地震响应分析方法
桥梁结构的地震响应分析方法地震是一种自然灾害,对桥梁结构的破坏具有重要影响。
为了保证桥梁的安全性,人们对桥梁结构的地震响应进行了广泛的研究,并提出了不同的分析方法。
一、静力方法静力方法是最简单直观的地震响应分析方法之一。
它基于静态平衡的原理,假设地震作用是一个等效的静力,通过计算结构的内力和位移来评估结构的地震响应。
在静力方法中,结构通常被简化为杆件或连续梁模型,并忽略了结构的非线性性质。
由于静力方法没有考虑桥梁结构的动力特性和地震激励的时序性,因此存在一定的局限性。
它适用于简单的结构和小震情况下的地震分析。
二、模态分析方法模态分析方法是基于结构体系的固有振动模态进行地震响应分析的一种方法。
它通过求解结构的振动方程来计算结构的模态参数,并根据模态响应来评估结构的地震反应。
在模态分析方法中,结构首先被离散化为有限个振型,然后通过求解模态方程得到每个振型的频率、振型形态和振型质量。
最后,将地震激励转化为模态坐标系下的等效静力,再对各模态进行叠加得到结构的总响应。
模态分析方法能够考虑结构的合理振型,具有较高的精度和可靠性。
然而,在研究复杂桥梁结构时,模态分析方法需要考虑更多的模态,并解决模态叠加的问题,计算量较大。
三、时程分析方法时程分析方法是一种基于结构的精确动力学行为进行地震响应分析的方法。
它通过数值积分求解结构的运动方程,在时域上模拟结构对地震激励的响应过程。
在时程分析方法中,地震激励通常采用加速度时程记录,并与结构的质量、刚度和阻尼等参数一起输入到数值模型中。
通过迭代计算,可以得到结构在时间上的响应。
时程分析方法能够考虑材料的非线性、结构的非弹性变形和伪力效应等复杂因素,具有较高的准确性和可靠性。
然而,时程分析方法的计算量较大,需要有相应的计算工具和计算资源支持。
在桥梁结构的地震响应分析中,不同的方法可以相互补充,用于不同的分析对象和要求。
静力方法适用于简化的结构和小震情况下的分析,模态分析方法能够考虑结构的振动特性,时程分析方法则适用于研究复杂桥梁结构的地震响应。
下承式钢管混凝土拱桥地震响应分析
下承式钢管混凝土拱桥地震响应分析下承式钢管混凝土拱桥地震响应分析1. 引言地震是一种常见的自然灾害,对人类的生命和财产造成了巨大的破坏。
在建设桥梁时,为了确保桥梁在地震发生时具有足够的抗震能力,钢管混凝土拱桥这种具有较高抗震性能的结构形式应运而生。
本文将对下承式钢管混凝土拱桥在地震中的响应进行分析。
2. 下承式钢管混凝土拱桥结构特点下承式钢管混凝土拱桥是一种利用钢管与混凝土相结合形成的桥梁结构,具有以下特点:2.1 钢管拱作为主体承载结构能够提供很好的受力性能,能够吸收大部分的地震作用力;2.2 混凝土填充钢管能够增强拱桥的整体刚度,提高抗震能力;2.3 拱的几何形状能够分散地震作用力并减小与桥梁之间的接触面积,降低地震对桥梁的影响。
3. 地震动分析地震动是地震时地面上所产生的振动波动,对于拱桥的抗震设计,必须对地震动进行分析。
常用的地震动分析方法有基于经验公式的地震动响应谱法和有限元法。
3.1 地震动响应谱法:通过对地震动的频谱特性进行分析,得出不同频率下的加速度、速度和位移等结果,用于拱桥的抗震设计;3.2 有限元法:将拱桥结构离散化为若干个小单元,分别求解单元的动力学特性,进而得到整个拱桥的动力学响应。
4. 下承式钢管混凝土拱桥地震响应分析4.1 模型建立:根据实际情况,确定下承式钢管混凝土拱桥的几何形状、材料性质与参数,并进行合理的离散化处理;4.2 荷载分析:根据地震动与桥梁相互作用的原理,对拱桥施加地震动加载,并考虑桥梁自重、交通荷载等额外荷载的作用;4.3 动力学分析:利用有限元软件对拱桥进行动力学分析,得出桥梁在地震加载下的动力响应结果,包括加速度、速度、位移等。
5. 结果与讨论通过动力学分析,得到下承式钢管混凝土拱桥在地震中的响应结果,可以对桥梁在不同地震动作用下的抗震性能进行评估。
通过对比分析不同参数下的结果,可以找到最优设计方案,并对拱桥进行相应的改进和加固,提高抗震能力。
地震对桥梁结构的影响与对策
地震对桥梁结构的影响与对策地震,这一自然界的强大力量,常常给人类社会带来巨大的破坏和损失。
桥梁作为交通基础设施的重要组成部分,在地震中面临着严峻的考验。
了解地震对桥梁结构的影响,并采取有效的对策,对于保障桥梁的安全和交通的畅通至关重要。
一、地震对桥梁结构的影响1、水平地震力地震产生的水平震动是对桥梁结构最主要的影响之一。
这种强大的水平力会使桥梁的墩柱、梁体等主要构件发生位移和变形。
如果水平力超过了桥梁结构的承载能力,就可能导致墩柱开裂、倾斜甚至倒塌,梁体滑落等严重破坏。
2、竖向地震力虽然竖向地震力相对水平地震力较小,但在某些情况下也不能忽视。
它可能会增加桥梁结构的竖向荷载,导致桥墩的受压破坏,或者使梁体与支座之间产生过大的压力,影响结构的稳定性。
3、地基失效地震可能会引起地基的液化、不均匀沉降等问题。
地基的不稳定会削弱桥梁基础对上部结构的支撑作用,使桥梁整体发生倾斜、下沉甚至垮塌。
4、结构共振桥梁结构具有自身的固有频率,如果地震波的频率与桥梁的固有频率接近,就会发生共振现象。
共振会使结构的振动幅度急剧增大,从而加重结构的破坏程度。
5、构件破坏地震作用下,桥梁的各个构件,如桥墩的混凝土开裂、钢筋屈服,桥梁支座的损坏,伸缩缝的破坏等,都会影响桥梁的正常使用功能。
二、桥梁结构在地震中的破坏形式1、墩柱破坏墩柱是桥梁的主要竖向支撑构件,在地震中容易出现弯曲破坏、剪切破坏和受压破坏。
弯曲破坏表现为墩柱的混凝土开裂、钢筋屈服,墩柱发生较大的弯曲变形;剪切破坏则是墩柱在水平剪力作用下混凝土破碎、钢筋剪断;受压破坏通常是由于竖向荷载过大导致墩柱混凝土被压碎。
2、梁体破坏梁体可能会因为与墩柱的连接失效而发生滑落,或者由于自身的弯曲、剪切变形过大而出现裂缝甚至断裂。
3、支座破坏支座在地震中起到传递荷载和缓冲震动的作用,但其往往容易受到损坏。
常见的支座破坏形式包括支座的移位、剪断、脱落等。
4、基础破坏基础的破坏主要包括桩基础的断裂、承台的开裂以及地基的液化和不均匀沉降等。
简析桥梁震害成因与抗震设计
简析桥梁震害成因与抗震设计桥梁设计时需保证其可靠安全性,防止桥梁受到地震的影响而遭到破坏,出现严重破坏。
所以,在地震多发区域架设桥梁时,须保证其具备一定的抗震性。
力求保证桥梁在经历地震之后,还能保持其基本功能,尽量减少地震所带来的危害,以便日后修复。
本文主要对桥梁结构震害成因与抗震设计措施进行分析研究。
标签:桥梁工程;结构;抗震;设计1、桥梁震害分析根据大量研究与调查我国震例以及桥梁结构抗震性能可发现,我国桥梁震害主要有如下几种:(1)地基基础破坏。
导致地基破坏原因通常是因为稳定性差、不均匀沉降等,而这都有可能会导致出现地层下沉、断裂以及水平滑移等现象进而对结构物造成破坏。
地基破坏以及基础破坏息息相关,如若地震影响到结构周围地基,则会降低结构强度,极易导致基础滑移或沉降情况发生,还可能致使倾斜或是剪断等情况出现,严重的还会导致墩台折断、倾斜或是倒塌。
(2)桥台沉陷。
地震出现时,如无完全固结桥台及其后填土,则纵向压力及被动土压力会变大,并逐步由桥台移动至桥跨方向。
(3)墩柱破坏。
该现象往往是因为弯曲强度小、剪切强度小以及弯曲延性差等原因导致,而其往往会引发连锁反应。
(4)支座破坏。
受到地震作用力影响,支座锚固螺栓可能会出现剪断、拔出等情况,从而改变了结构力传递方式。
2、地震对桥梁的破坏性分析地震所引起的地面振动是一种复杂的运动,它是由纵波和横波共同作用的结果。
在震中区,纵波使地面上下颠动,横波使地面水平晃动。
地震是自然界中一种突发性的严重灾害,具有典型的偶然性和短暂性。
(1)场地和地基的破坏作用当地震发生时,首先是场地和地基破坏,从而产生桥梁破损并引起其他灾害。
地震发生后,桥梁的破坏形式一般表现为:桥台锥体、墩周铺护开裂,甚至滑移;墩台身位移,支座锚栓剪断,严重时产生落梁现象;砂土液化,桥墩下沉;墩台身开裂,严重时桥梁倒塌。
(2)场地的振动作用场地的振动作用是指由于强烈的地面运动引起桥梁的振动而产生的破坏作用。
公路桥梁工程设施的地震响应与抗震设计
公路桥梁工程设施的地震响应与抗震设计地震是一种灾害性极强的自然现象,对于公路桥梁工程设施的安全运行造成了严重挑战。
因此,在公路桥梁的设计和建设中,地震响应和抗震设计是至关重要的。
本文将探讨公路桥梁工程设施的地震响应特点,并介绍一些常用的抗震设计方法。
一、地震对公路桥梁工程设施的影响地震引起的地面运动是公路桥梁工程设施破坏的主要原因之一。
地震波的传播会导致桥梁受到水平和垂直方向的振动,对其结构产生影响。
另外,地震还会引起土体的液化、滑移、侧移等现象,使地基产生沉降或破坏,进而影响桥梁的稳定性和安全性。
二、公路桥梁工程设施的地震响应1. 结构动力响应地震波导致桥梁受到的动力荷载会引起其结构的动态响应。
在地震作用下,桥梁可能发生振动、位移、变形等现象,严重时还可能导致桥梁的破坏。
因此,进行桥梁的动力响应分析是非常重要的。
2. 液化现象在地震中,土壤可能发生液化现象,这是一种会引起土体流动的现象。
液化土壤的产生会导致桩基和软基的沉降,进而影响桥梁的稳定性和承载力。
3. 断层影响地震发生时,断层会发生断裂和滑动,引起地震表面破裂。
如果桥梁建在断层或断层活动区域上,地震断层的影响将对桥梁的安全性造成重大威胁。
三、公路桥梁工程设施的抗震设计1. 地震动参数的确定在进行公路桥梁工程设施的抗震设计时,首先需要确定设计地震动参数。
通过历史地震数据和地震监测仪器的观测数据,可以获得地震动的频谱特性,进而确定设计地震动参数,如设计地震烈度、设计地震加速度等。
2. 结构抗震设计结构抗震设计是为了确保桥梁在地震中具有足够的抗震能力,能够承受并适应地震作用。
在抗震设计中,需要考虑桥梁的结构形式、材料选择、桥梁基础、支座设计等因素。
同时,还需要进行动力响应分析,以评估桥梁的受力性能和变形情况。
3. 基础和地基处理地基的稳定性和安全性对于桥梁的抗震能力至关重要。
在进行抗震设计时,需要对桥梁的基础和地基进行处理,以增强桥梁的稳定性和承载力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Page 15
4.1 一般规定 在桥梁抗震设计中,引入隔震技术的目的就是利用隔 震置在满足正常使用功能要求的前提下,达到延长结构周 期,消耗地震能量、降低结构的响应。因此,对于桥梁的 隔震设计,最重要的因素就是设计合理、可靠的隔震装置 并使其在结构抗震中充分发挥作用。 隔震技术的应用并不是在任何情况下均适用。例如: 对于基础土层不稳定,易于发生液化的场地;下部结构刚 度小,桥梁结构本身的基本振动周期比较长;位于场地特 征周期比较长,延长周期可能引起地基与桥梁结构共振以 及支座中出现较大负反力等情况,不宜采用隔震技术。在 场地条件比较稳定的情况下使用隔震技术。
Page 2
结构抗震设计
结构抗震设计包括三个层次的内容与要求: 概念设计、抗震计算与构造设计。概念设计是在总体 上把握抗震设计的基本原则;抗震计算是利用理论的方法 为抗震设计提供定量手段;构造措施则可以保证结构的整 体性,加强局部薄弱环节等意义上保证抗震计算结果的有 效性。这三个层次的内容是一个不可割裂的整体,忽略任 何一个部分都可能造成抗震设计的失效。
桥梁结构地震响应 与抗震性能分析
ห้องสมุดไป่ตู้
由NordriDesign提供
1.地震(earthquake)
定义:又称地动、地振动,是地壳快速释放能量过程中造 成振动,期间会产生地震波的一种自然现象。 危害:地震常常造成严重人员伤亡,能引起火灾,水灾, 有毒气体泄漏,细菌及放射性物质扩散,还可能造成海啸 ,滑坡,崩塌,地裂缝等次生灾害。 中国的震区:主要分布在五个区域:台湾地区、西南地区 、西北地区、华北地区、东南沿海地区和23条大小地震 带上。
Page 10
4.抗震设计(桥梁减隔震设计)
4.2 减隔震装置 采用减隔震技术设计的桥梁是要通过在桥梁中安 装必要的装置而达到减隔震的目的。减隔震系统是由 减隔震支座、减隔震用伸缩装置、撞落结构和连梁装 置三大部分构成的。这三类装置的功能相互关联,不 可缺失。 常用的减隔震支座可分为整体式和分离式两类。
Page 5
3.生命之路
桥梁:搭起生命之桥 打通生命 之路 然而 我们的很多桥梁在地震面 前不堪一击,生命之路也就断 了......
Page 6
3.生命之路
Page 7
3.生命之路
Page 8
4.抗震设计(抗震设计流程图)
Page 9
4.抗震设计(桥梁减隔震设计)
Page 13
4.抗震设计(桥梁减隔震设计)
4.4 性能要求与抗震验算 隔震桥梁的抗震设计,一方面应满足设防水准地震 作用下的性能要求,同时,应对发生超过设防水准地震作 用下结构可能的破坏形式给予充分考虑,使其破坏方式朝 向损失最低的情况发生,且结构的整个反应特性是延性。 由于减隔震装置是减隔震桥梁中的重要组成部分, 必须具有设计要求的预期性能。因此,本细则要求在实际 采用减隔震装置前,必须对减隔震装置的性能和特性进行 严格的检测试验。
Page 12
4.抗震设计(桥梁减隔震设计)
4.3 减隔震桥梁建模原则与分析方法 反应谱法和功率谱法是线弹性分析方法,仍是减隔震 桥梁分析中十分重要的分析方法,能在初步设计阶段,可 帮助设计人员迅速把握结构的动力特性和响应值。 但是由于目前大多数减隔震装置的非线性特性,在分 析开始时,隔震装置的设计位移是未知的,因而其等效刚 度、等效阻尼比也是未知的,所以弹性反应谱分析过程是 一迭代过程。因此要求,在进行抗震性能校核时,宜采用 非线性动力时程分析法进行分析。
Page 14
5.结束语
以预防为主的方针,减轻公路桥梁的地震破坏,保 障人民生命财产的安全和减少经济损失,更好地发挥公路 运输及其在抗震救灾中的作用。 设防目标是: 当遭受桥梁设计基准期内发生概率较高的多遇地震影响 时,一般不受损坏或不需修理可继续使用,当遭受桥梁设 计基准期内发生概率较低的罕遇地震影响时,应保证不致 倒塌或产生严重结构损伤,经加固修复后仍可继续使用。 基本准则: 抗震设计规范趋向于以“小震不坏、中震可修、大震不倒” 作为工程结构抗震设计的基本准则。
Page 11
4.抗震设计(桥梁减隔震设计)
目前常用的整体型减隔震装置有: (1)铅芯橡胶支座 (2)高阻尼橡胶支座 (3)摩擦摆式减隔震支座; 目前常用的分离型减隔震装置有: (1)橡胶支座+金属阻尼器 (2)橡胶支座+摩擦阻尼器 (3)橡胶支座+粘性材料阻尼器。
Page 3
2. 中国地震烈度表
1度:无感-仅仪器能记录到 2度:微有感-特别敏感的人在完全静止中有感 3度:少有感-室内少数人在静止中有感,悬挂物轻 微摆动 4度:多有感-室内大多数人,室外少数人有感,悬 挂物摆动,不稳器皿作响 5度:惊醒-室外大多数人有感,家畜不宁,门窗作 响,墙壁表面出现裂纹 6度:惊慌-人站立不稳,家畜外逃,器皿翻落,简 陋棚舍损坏,陡坎滑坡 7度:房屋损坏-房屋轻微损坏,牌坊,烟囱损坏, 地表出现裂缝及喷沙冒水
Page 4
2. 中国地震烈度表
8度:建筑物破坏-房屋多有损坏,少数破坏路基塌 方,地下管道破裂 9度:建筑物普遍破坏-房屋大多数破坏,少数倾 倒,牌坊,烟囱等崩塌,铁轨弯曲 10度:建筑物普遍摧毁-房屋倾倒,道路毁坏,山 石大量崩塌,水面大浪扑岸 11度:毁灭-房屋大量倒塌,路基堤岸大段崩毁, 地表产生很大变化 12度:山川易景-一切建筑物普遍毁坏,地形剧烈 变化动植物遭毁灭。 例如,1976年唐山地震,震级为7.6级,震中烈度为 十一度;受唐山地震的影响,天津市地震烈度为八度,北 京市烈度为六度,再远到石家庄、太原等就只有四至五度 了。1920年海原地震,是我国历史上唯一被定为12度的 地震。