6函数的极值与导数讲义

合集下载

函数的导数与函数的极值

函数的导数与函数的极值

函数的导数与函数的极值函数的导数是微积分中非常重要的概念,它可以帮助我们研究函数的性质以及函数在某一点的变化趋势。

而函数的极值则是指函数在某一点或某一区间内达到的最大值或最小值。

本文将探讨函数的导数与函数的极值之间的关系,并给出相关的例子来帮助读者理解。

一、函数的导数函数的导数是指函数在某一点的变化率,反映了函数在该点附近的趋势。

导数的定义可以简单地理解为函数曲线在某一点上的切线斜率。

给定一个函数 f(x),若该函数在某一点 x 处的导数存在,记为 f'(x)或 dy/dx。

导数的计算方法有很多,其中最基础的是使用极限的定义:f'(x) = lim (h → 0) [f(x+h) - f(x)] / h此外,还存在一些特殊函数的导数公式,如常数函数、幂函数、指数函数、对数函数等。

通过计算函数的导数,我们可以得到函数在每个点的变化率。

二、函数的极值函数的极值包括极大值和极小值,也称为局部最大值和局部最小值。

在函数的图像上,极大值对应着函数曲线上的峰点,而极小值对应着函数曲线上的谷底。

若一个函数在某点 x 处的导数 f'(x) = 0,那么这个点就是函数的驻点。

而函数的极值往往出现在驻点处,同时需要满足附加的条件。

根据导数与函数的变化率之间的关系,我们可以得出函数极值的判定条件:1. 在极大值点,函数的导数由正变负;2. 在极小值点,函数的导数由负变正。

简而言之,函数在极值点附近的导数由正变负或由负变正。

三、函数导数与极值的关系通过求导数,我们可以找到函数的驻点,进而判断函数的极值。

首先,我们需要将导数为零的驻点与函数的极值进行关联。

1. 当驻点 x0 处的导数 f'(x0) = 0 时,可能存在以下情况:a) 若 f''(x0) > 0,那么 x0 是函数的局部极小值点;b) 若 f''(x0) < 0,那么 x0 是函数的局部极大值点;c) 若 f''(x0) = 0,那么 x0 处可能是函数的极值点,但需要进一步分析。

导数与函数的极值解析与归纳

导数与函数的极值解析与归纳

导数与函数的极值解析与归纳导数和函数的极值是微积分中的重要概念,对于函数的研究和应用都有着重要的意义。

在这篇文章中,我们将探讨导数与函数的极值,并对其进行解析与归纳。

一、导数的定义与性质导数可以看作是函数变化率的极限,它的定义可以用以下公式表示:\[f'(x) = \lim_{h \to 0}\frac{f(x + h) - f(x)}{h}\]其中,\(f'(x)\) 表示函数 \(f(x)\) 在点 \(x\) 处的导数。

导数具有以下性质:1. 导数存在性:当函数在某点可导时,该点的导数存在;2. 导数与函数图像:导数的值可以用来描述函数图像在某点的切线斜率;3. 导数与函数极值:导数为零的点可能是函数的极值点。

二、函数的极值与导数函数的极值可以分为最大值与最小值,即函数在某个区间内取得的最大值和最小值。

在寻找函数的极值时,我们可以利用导数的性质。

1. 极值的必要条件若函数在某点 \(x_0\) 处取得极值,则导数在该点的值为零或不存在。

2. 求导数与解析表达式要求得函数的导数,我们可以先找到函数的解析表达式,然后对其求导。

例如,对于多项式函数:\[f(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0\]我们可以通过幂函数的求导法则得到:\[f'(x) = na_nx^{n-1} + (n-1)a_{n-1}x^{n-2} + ... + a_1\]3. 导数与极值的关系当函数在某点的导数为零时,该点可能是函数的一个极值点。

根据导数的定义,我们可以得到极值点的关键条件为:\[f'(x) = 0\]我们称满足该条件的点为驻点。

4. 极值点的判断在驻点中,根据导数的一阶导数或二阶导数的正负确定极值类型:(1)一阶导数判定法:若驻点处的导数符号改变,即从正变负或从负变正,则该点为函数的极值点;(2)二阶导数判定法:当驻点处的二阶导数大于零时,该点为函数的极小值;当二阶导数小于零时,该点为函数的极大值。

函数的极值与导数 课件

函数的极值与导数    课件

[典例] 已知 f(x)=ax3+bx2+cx(a≠0)在 x=±1 处取得 极值,且 f(1)=-1.
(1)试求常数 a,b,c 的值; (2)试判断 x=±1 是函数的极大值点还是极小值点, 并说明理由.
[解] (1)f′(x)=3ax2+2bx+c(a≠0), ∵x=±1 是函数的极值点. ∴x=±1 是方程 3ax2+2bx+c=0 的两根.
函数的极值与导数
1.函数极值的概念
(1)函数的极大值 一般地,设函数 y=f(x)在点 x0 及附近有定义,如果对 x0 附近的所有的点,都有 f(x)<f(x0) ,就说 f(x0)是函数 y=f(x)的 一个极大值,记作 y 极大值=f(x0),x0 是极大值点. (2)函数的极小值
一般地,设函数 y=f(x)在点 x0 及附近有定义,如果对 x0 附近的所有的点,都有 f(x)>f(x0),就说 f(x0)是函数 y=f(x)的一 个极小值,记作 y 极小值=f(x0),x0 是极小值点.极大值与极小值 统称为 极值 .
已知函数极值点或极值求参数的两个要领 (1)列式:根据极值点处导数为 0 和极值这两个条件列 方程组,利用待定系数法求解. (2)验证:因为某点处的导数值等于 0 不是此点为极值 点的充要条件,所以利用待定系数法求解后必须验证根的 合理性.
[典例] 已知函数 f(x)=x3-3ax-1(a≠0).若函数 f(x) 在 x=-1 处取得极值,直线 y=m 与 y=f(x)的图象有三个 不同的交点,求 m 的取值范围.
当 x 变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,0) 0 (0,2) 2 (2,+∞)
f′(x)

0+ 此当 x=0 时,f(x)有极小值,并且极小值为 f(0)=0; 当 x=2 时,f(x)有极大值,并且极大值为 f(2)=4e-2=e42.

函数的极值与导数 课件

函数的极值与导数    课件
【例2】 已知f(x)=x3+3ax2+bx+a2在x=-1处取极值0,求常数a,b的值.
分析:求f'(x)→建立关于a,b的方程组→求解a,b→将a,b代入原函
数验证极值情况→根的取舍
解:因为f(x)在x=-1时有极值0,
'(-1) = 0,
且 f'(x)=3x +6ax+b,所以
(-1) = 0,
(7)如果函数f(x)在[a,b]上有极值,那么它的极值点的分布是有规
律的.相邻两个极大值点之间必有一个极小值点,同样,相邻两个极
小值点之间必有一个极大值点.一般地,当函数f(x)在[a,b]上连续且
有有限个极值点时,函数f(x)在[a,b]上的极大值点、极小值点是交
替出现的.
2.如何求f(x)的极值?
f'(x)
+
0
f(x)


1
e
故当 x=e 时函数取得极大值,且极大值为 f(e)= , 函数无极小值.
反思求函数的极值应注意以下几点:
(1)在讨论可导函数f(x)在定义域内的极值时,若方程f'(x)=0的实
根较多时,应注意使用表格,使极值点一目了然.
(2)讨论函数的性质要遵循定义域优先的原则.
已知极值求参数
所以当x∈(-∞,-3)时,f(x)为增函数;
当x∈(-3,-1)时,f(x)为减函数;
当x∈(-1,+∞)时,f(x)为增函数.
所以f(x)在x=-1时取得极小值,
因此a=2,b=9.
极值的综合运用
【例3】 求函数f(x)=x3-3x2-a(a∈R)的极值,并讨论a为何值时函数
f(x)恰有一个零点.

《导数和极值》课件

《导数和极值》课件

反函数的导数
若$f'(x) neq 0$,则反 函数在相应点的导数为
$frac{1}{f'(x)}$。
高阶导数
二阶导数
二阶导数表示函数图像的弯曲程度, 即函数在某点的切线斜率的斜率。
三阶导数
高阶导数的计算方法
通过连续求导,直到得到所需的高阶 导数。高阶导数的计算在研究函数的 极值、拐点、曲率等方面具有重要意 义。
导数的几何意义
总结词
导数的几何意义是切线的斜率,即函数图像上某一点处切线 的斜率。
详细描述
导数的几何意义是切线的斜率。在函数图像上,任意一点的 切线斜率即为该点的导数值。导数越大,表示函数在该点附 近上升或下降得越快;导数越小,表示函数在该点附近变化 得越慢。
导数的物理意义
总结词
导数的物理意义是速度和加速度,可以用于描述物理量随时间的变化率。
05 导数和极值的应用
导数在几何中的应用
切线斜率
导数在几何中常用于求曲 线的切线斜率,从而研究 曲线的形状和变化趋势。
函数单调性
通过导数可以判断函数的 单调性,对于研究函数的 极值和最值问题具有重要 意义。
极值判定
导数在几何中还可以用于 判定函数的极值点,从而 确定函数的最值。
导数在物理中的应用
详细描述
导数在物理中有重要的应用,它可以描述物理量随时间的变化率。例如,速度是 位移对时间的导数,加速度是速度对时间的导数。通过导数,可以分析物理现象 的变化规律和动态特性。
02 导数的计算
导数的基本公式
01
02
03
04
ቤተ መጻሕፍቲ ባይዱ
一次函数导数
对于函数$f(x) = ax + b$, 其导数为$f'(x) = a$。

《函数的极值和导数》课件

《函数的极值和导数》课件

Part
05
导数的计算方法
导数的四则运算规则
01
加法法则
$(uv)' = u'v + uv'$
02
减法法则
$(u-v)' = u'-v'$
03
乘法法则
$(uv)' = u'v + uv'$
04
除法法则
$left(frac{u}{v}right)' = frac{u'v-uv'}{v^2}$
复合函数的导数计算
最小成本问题
总结词
利用极值理论寻找最小成本
详细描述
在生产和经营活动中,也常常需要寻求最小成本。通过建立数学模型,利用函数的极值和 导数,可以找到使得成本最小的生产量、原材料采购量等决策变量。
实例
某公司需要采购原材料,每次采购的成本包括固定成本5万元和变动成本与采购量的比例 系数0.1万元/单位。求该公司的最小总成本。通过建立函数并求导,可以找到使得总成本 最小的采购量。
Part
03
极值在实际问题中的应用
最大利润问题
01
总结词
利用极值理论寻找最大利润
02 03
详细描述
在生产和经营活动中,常常需要寻求最大利润。通过建立数学模型,利 用函数的极值和导数,可以找到使得利润最大的生产量、价格等决策变 量。
实例
某公司生产一种产品,其固定成本为100万元,每生产一个单位的产品 ,成本为2万元,售价为5万元。求该公司的最大利润。通过建立函数并 求导,可以找到使得利润最大的产量。
Part
04
导数的几何意义
导数在平面上的表示
切线斜率

《函数的极值》 讲义

《函数的极值》 讲义

《函数的极值》讲义在数学的广袤天地中,函数是一个极其重要的概念,而函数的极值问题则是其中一个关键且富有魅力的部分。

一、函数极值的定义首先,咱们得搞清楚啥是函数的极值。

简单来说,对于一个给定的函数,如果在某个点的附近,函数值比这个点的函数值都大(或者都小),那这个点对应的函数值就是函数的一个极值。

极大值就是在这点附近函数值最大,极小值就是在这点附近函数值最小。

比如说,有个函数 f(x),在 x = a 这点,它左边的函数值都比 f(a) 小,右边的函数值也都比 f(a) 小,那 f(a) 就是一个极小值。

要是左边右边的函数值都比 f(a) 大,那 f(a) 就是极大值。

二、如何判断函数的极值那怎么知道一个函数在某个点是不是有极值呢?这就得靠导数啦。

如果函数在某点的导数为 0,并且在这点的左侧导数为正,右侧导数为负,那这点就是极大值点;反过来,如果左侧导数为负,右侧导数为正,那这点就是极小值点。

为啥是这样呢?咱们可以这么想,导数为正的时候,函数是上升的;导数为负的时候,函数是下降的。

所以从上升到下降的转折点就是极大值点,从下降到上升的转折点就是极小值点。

举个例子,函数 f(x) = x²,它的导数是 f'(x) = 2x。

当 x = 0 时,导数为 0。

在 x < 0 时,导数为负,函数下降;在 x > 0 时,导数为正,函数上升。

所以 x = 0 就是极小值点,极小值是 f(0) = 0。

但是要注意哦,导数为 0 的点不一定都是极值点。

比如说函数 f(x)= x³,它的导数 f'(x) = 3x²,当 x = 0 时,导数为 0,但是在 x = 0的两侧,导数的符号是一样的,都是正的,所以 x = 0 不是极值点。

三、函数极值的求法知道了怎么判断极值,那咱们来看看怎么求函数的极值。

第一步,先求出函数的导数。

第二步,令导数等于 0,解出这些方程的根。

第三步,根据上面说的判断方法,判断这些根是不是极值点。

函数的导数与极值问题知识点总结

函数的导数与极值问题知识点总结

函数的导数与极值问题知识点总结函数的导数与极值问题是数学中的重要概念,涉及到数学分析的基本思想和方法。

在本文中,我们将对函数的导数与极值问题进行总结和讨论。

一、导数的定义与性质在微积分中,导数是描述函数变化率的重要工具。

导数的定义如下:对于函数y = f(x),如果极限$$\lim_{{\Delta x \to 0}} \frac{{\Delta y}}{{\Delta x}}$$存在,则称该极限为函数f(x)在点x处的导数,记作f'(x),即$$f'(x) = \lim_{{\Delta x \to 0}} \frac{{\Delta y}}{{\Delta x}}$$。

函数的导数具有以下基本性质:1. 导数存在的条件是函数在该点可导;2. 导数反映了函数在每一点的斜率,可以用来描述函数的变化趋势;3. 导数可以通过求导法则来求取,包括常数倍法则、和差法则、乘积法则、商法则等。

二、函数导数的计算方法1. 基本函数的导数计算:- 常数函数的导数为零;- 幂函数的导数可通过幂函数求导法则来求取;- 指数函数的导数等于指数函数本身与自然对数的乘积;- 对数函数的导数为其自变量的倒数;- 三角函数的导数可根据三角函数的导数公式求取。

2. 复合函数的导数计算:- 复合函数的导数可通过链式法则来求取,即将复合函数视为两个函数的复合,然后分别求导并相乘。

三、极值问题的判断与求解函数的极值问题是导数与函数的关系密切相关的。

通过分析函数的导数的性质,我们可以判断函数的极值类型,并进一步求解极值点。

1. 极值的判断:- 首先,对于导数存在的点,导数为零或不存在的点称为临界点;- 其次,导数的正负性可以反映函数的增减性,若导数在某一临界点附近由负变正,则该临界点为函数的极小值点;若导数在某一临界点附近由正变负,则该临界点为函数的极大值点;- 此外,导数的零点和极值点还可能存在于函数的开区间内的非临界点上。

专题06 导数 6.3导数与函数的极值、最值 题型归纳讲义-2022届高三数学一轮复习(原卷版)

专题06 导数 6.3导数与函数的极值、最值 题型归纳讲义-2022届高三数学一轮复习(原卷版)

专题六《导数》讲义6.3导数与函数的极值、最值知识梳理.极值与最值1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.题型一. 极值、最值的概念1.函数y=x sin x+cos x的一个极小值点为()A.x=−π2B.x=π2C.x=πD.x=3π22.(2017·全国2)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.1 3.(2013·全国2)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(﹣∞,x 0)上单调递减D .若x 0是f (x )的极值点,则f ′(x 0 )=04.已知函数f (x )=x 3+ax 2﹣4x +5在x =﹣2处取极值(a ∈R ). (1)求f (x )的解析式;(2)求函数f (x )在[﹣3,3]上的最大值.题型二.已知极值、最值求参 考点1.利用二次函数根的分布1.若函数f (x )=x 3﹣3bx +b 在区间(0,1)内有极小值,则b 的取值范围是( ) A .(﹣∞,1)B .(0,1)C .(1,+∞)D .(﹣1,0)2.已知函数f (x )=13x 3−12ax 2+x 在区间(12,3)上既有极大值又有极小值,则实数a 的取值范围是( ) A .(2,+∞) B .[2,+∞)C .(2,52)D .(2,103)考点2.参变分离3.若函数f (x )=x 33−a 2x 2+x +1在区间(12,3)上有极值点,则实数a 的取值范围是( ) A .(2,52)B .[2,52)C .(2,103) D .[2,103)4.已知函数f(x)=e xx 2+2klnx −kx ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围是( ) A .(−∞,e 24] B .(−∞,e 2]C .(0,2]D .[2,+∞)考点3.分类讨论5.已知函数f (x )=ax −1x −(a +1)lnx +1在(0,1]上的最大值为3,则实数a = . 6.已知函数f(x)=(12x 2−ax)lnx −12x 2+32ax .(1)讨论函数f (x )的极值点;(2)若f (x )极大值大于1,求a 的取值范围.7.已知函数f (x )=lnx −a x(a ∈R ) (1)求函数f (x )的单调增区间;(2)若函数f (x )在[1,e ]上的最小值为32,求a 的值.考点4.初探隐零点——设而不求,虚设零点8.(2013·湖北)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2)()A.f(x1)>0,f(x2)>−12B.f(x1)<0,f(x2)<−12C.f(x1)>0,f(x2)<−12D.f(x1)<0,f(x2)>−129.已知f(x)=(x﹣1)2+alnx在(14,+∞)上恰有两个极值点x1,x2,且x1<x2,则f(x1)x2的取值范围为()A.(−3,12−ln2)B.(12−ln2,1)C.(−∞,12−ln2)D.(12−ln2,34−ln2)10.(2017·全国2)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.课后作业.极值、最值1.若函数f (x )=(x 2+ax +3)e x 在(0,+∞)内有且仅有一个极值点,则实数a 的取值范围是( ) A .(﹣∞,﹣2)B .(﹣∞,﹣2]C .(﹣∞,﹣3)D .(﹣∞,﹣3]2.已知函数f(x)=xe x −13ax 3−12ax 2有三个极值点,则a 的取值范围是( ) A .(0,e )B .(0,1e)C .(e ,+∞)D .(1e,+∞)3.已知f (x )=e x ,g (x )=lnx ,若f (t )=g (s ),则当s ﹣t 取得最小值时,f (t )所在区间是( ) A .(ln 2,1)B .(12,ln 2)C .(13,1e)D .(1e,12)4.已知函数f (x )=lnx +x 2﹣ax +a (a >0)有两个极值点x 1、x 2(x 1<x 2),则f (x 1)+f (x 2)的最大值为( ) A .﹣1﹣ln 2B .1﹣ln 2C .2﹣ln 2D .3﹣ln 25.已知函数f(x)=lnx +12ax 2+x ,a ∈R . (1)求函数f (x )的单调区间;(2)是否存在实数a ,使得函数f (x )的极值大于0?若存在,求a 的取值范围;若不存在,请说明理由.。

高中数学《函数的极值》知识点讲解及重点练习

高中数学《函数的极值》知识点讲解及重点练习

5.3.2 函数的极值与最大(小)值第1课时 函数的极值学习目标 1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.知识点一 函数极值的定义1.极小值点与极小值若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,就把a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.2.极大值点与极大值若函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,就把b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.3.极大值点、极小值点统称为极值点;极大值、极小值统称为极值.知识点二 函数极值的求法与步骤1.求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时,(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.2.求可导函数f(x)的极值的步骤(1)确定函数的定义域,求导数f′(x);(2)求方程f′(x)=0的根;(3)列表;(4)利用f′(x)与f(x)随x的变化情况表,根据极值点左右两侧单调性的变化情况求极值.1.导数为0的点一定是极值点.( × )2.函数的极大值一定大于极小值.( × )3.函数y=f(x)一定有极大值和极小值.( × )4.函数的极值点是自变量的值,极值是函数值.( √ )一、求函数的极值例1 求下列函数的极值:(1)f (x )=x 3-3x 2-9x +5;(2)f (x )=x -a ln x (a ∈R ).解 (1)f ′(x )=3x 2-6x -9,令f ′(x )=0,即3x 2-6x -9=0,解得x 1=-1,x 2=3.当x 变化时,f (x ),f ′(x )的变化情况如下表:x (-∞,-1)-1(-1,3)3(3,+∞)f ′(x )+0-0+f (x )↗极大值↘极小值↗∴当x =-1时,函数y =f (x )有极大值,且f (-1)=10;当x =3时,函数y =f (x )有极小值,且f (3)=-22.(2) f (x )=x -a ln x 的定义域为(0,+∞),由f ′(x )=1-a x =x -ax,x >0,知①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;②当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0,当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.反思感悟 函数极值和极值点的求解步骤(1)确定函数的定义域.(2)求方程f ′(x )=0的根.(3)用方程f ′(x )=0的根顺次将函数的定义域分成若干个小开区间,并列成表格.(4)由f ′(x )在方程f ′(x )=0的根左右的符号,来判断f (x )在这个根处取极值的情况.跟踪训练1 (1)求函数f (x )=2xx 2+1-2的极值.解 函数f (x )的定义域为R .f ′(x )=2(x 2+1)-4x 2(x 2+1)2=-2(x -1)(x +1)(x 2+1)2.令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-1)-1(-1,1)1(1,+∞)f ′(x )-0+0-f (x )↘极小值↗极大值↘由上表可以看出,当x =-1时,函数有极小值,且极小值为f (-1)=-3;当x =1时,函数有极大值,且极大值为f (1)=-1.(2)已知函数f (x )=x +ax +1,a ∈R .求此函数的极值.解 函数的定义域为{x |x ≠0},f ′(x )=1-ax 2=x 2-ax2.当a ≤0时,显然f ′(x )>0,这时函数f (x )在区间(-∞,0),(0,+∞)上均单调递增,此时函数无极值.当a >0时,令f ′(x )=0,解得x =±a .当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-a )-a (-a ,0)(0,a )a (a ,+∞)f ′(x )+0--0+f (x )↗极大值↘↘极小值↗由上表可知,当x =-a 时,函数取得极大值f (-a )=-2a +1.当x =a 时,函数取得极小值f (a )=2a +1.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =-a 处取得极大值-2a +1,在x =a 处取得极小值2a +1.二、由极值求参数的值或取值范围例2 (1)若函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则a =________,b =________.答案 4 -11解析 f ′(x )=3x 2+2ax +b ,依题意得Error!即Error!解得Error!或Error!但由于当a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,故f (x )在R 上单调递增,不可能在x =1处取得极值,所以Error!不符合题意,应舍去.而当a =4,b =-11时,经检验知符合题意,故a ,b 的值分别为4,-11.(2)已知函数f (x )=13x 3-12(m +3)x 2+(m +6)x (x ∈R ,m 为常数),在区间(1,+∞)内有两个极值点,求实数m 的取值范围.解 f ′(x )=x 2-(m +3)x +m +6.因为函数f (x )在(1,+∞)内有两个极值点,所以f ′(x )=x 2-(m +3)x +m +6在(1,+∞)内与x 轴有两个不同的交点,如图所示.所以Error!解得m >3.故实数m 的取值范围是(3,+∞).反思感悟 已知函数的极值求参数的方法(1)对于已知可导函数的极值求参数的问题,解题的切入点是极值存在的条件:极值点处的导数值为0,极值点两侧的导数值异号.注意:求出参数后,一定要验证是否满足题目的条件.(2)对于函数无极值的问题,往往转化为其导函数的值非负或非正在某区间内恒成立的问题,即转化为f ′(x )≥0或f ′(x )≤0在某区间内恒成立的问题,此时需注意不等式中的等号是否成立.跟踪训练2 (1)若函数f (x )=ax -ln x 在x =22处取得极值,则实数a 的值为( )A.2B.22C .2 D.12答案 A解析 因为f ′(x )=a -1x ,所以f ′(22)=0,即a -122=0,解得a =2.(2)已知函数f (x )=13x 3-x 2+ax -1.①若函数的极大值点是-1,求a 的值;②若函数f (x )有一正一负两个极值点,求a 的取值范围.解 ①f ′(x )=x 2-2x +a ,由题意得,f ′(-1)=1+2+a =0,解得a =-3,则f ′(x )=x 2-2x -3,经验证可知,f (x )在x =-1处取得极大值,故a =-3.②由题意得,方程x 2-2x +a =0有一正一负两个根,设为x 1,x 2,则x 1x 2=a <0,故a 的取值范围是(-∞,0).三、利用函数极值解决函数零点(方程根)问题例3 已知函数f (x )=x 3-6x 2+9x +3,若函数y =f (x )的图象与y =13f ′(x )+5x +m 的图象有三个不同的交点,求实数m 的取值范围.解 由f (x )=x 3-6x 2+9x +3,可得f ′(x )=3x 2-12x +9,13 f ′(x )+5x +m =13(3x 2-12x +9)+5x +m =x 2+x +3+m .则由题意可得x 3-6x 2+9x +3=x 2+x +3+m 有三个不相等的实根,即g (x )=x 3-7x 2+8x -m 的图象与x 轴有三个不同的交点.∵g ′(x )=3x 2-14x +8=(3x -2)(x -4),∴令g ′(x )=0,得x =23或x =4.当x 变化时,g (x ),g ′(x )的变化情况如下表:x (-∞,23)23(23,4)4(4,+∞)g ′(x )+0-0+g (x )↗极大值↘极小值↗则函数g (x )的极大值为g (23)=6827-m ,极小值为g (4)=-16-m .由g (x )的图象与x 轴有三个不同的交点,得Error!解得-16<m <6827.∴实数m 的取值范围为(-16,6827).反思感悟 (1)利用导数可以判断函数的单调性,研究函数的极值情况,并能在此基础上画出函数的大致图象,从直观上判断函数图象与x 轴的交点或两个函数图象的交点的个数,从而为研究方程根的个数问题提供了方便.(2)解决这类问题,一个就是注意借助几何图形的直观性,另一个就是正确求导,正确计算极值.跟踪训练3 若函数f (x )=13x 3-4x +4的图象与直线y =a 恰有三个不同的交点,则实数a 的取值范围是________.答案 (-43,283)解析 ∵f (x )=13x 3-4x +4,∴f ′(x )=x 2-4=(x +2)(x -2).令f ′(x )=0,得x =2或x =-2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-2)-2(-2,2)2(2,+∞)f ′(x )+0-0+f (x )↗极大值↘极小值↗∴当x =-2时,函数取得极大值f (-2)=283;当x =2时,函数取得极小值f (2)=-43.且f (x )在(-∞,-2)上单调递增,在(-2,2)上单调递减,在(2,+∞)上单调递增.根据函数单调性、极值的情况,它的图象大致如图所示,结合图象知-43<a <283.1.(多选)函数f (x )的定义域为R ,它的导函数y =f ′(x )的部分图象如图所示,则下面结论正确的是( )A.在(1,2)上函数f(x)单调递增B.在(3,4)上函数f(x)单调递减C.在(1,3)上函数f(x)有极大值D.x=3是函数f(x)在区间[1,5]上的极小值点答案 ABC解析 由题图可知,当1<x<2时,f′(x)>0,函数f(x)单调递增;当2<x<4时,f′(x)<0,函数f(x)单调递减;当4<x<5时,f′(x)>0,函数f(x)单调递增,∴x=2是函数f(x)的极大值点,x=4是函数f(x)的极小值点,故A,B,C正确,D错误.2.(多选)已知函数f(x)=2x3+ax2+36x-24在x=2处有极值,则该函数的一个单调递增区间是( )A.(-∞,2) B.(3,+∞)C.(2,+∞) D.(-∞,3)答案 AB解析 ∵f′(x)=6x2+2ax+36,且在x=2处有极值,∴f′(2)=0,即24+4a+36=0,解得a=-15,∴f′(x)=6x2-30x+36=6(x-2)(x-3),由f′(x)>0得x<2或x>3.3.设函数f(x)=x e x,则( )A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点答案 D解析 令f′(x)=e x+x·e x=(1+x)e x=0,得x=-1.当x<-1时,f′(x)<0;当x>-1时,f′(x)>0.故x=-1为f(x)的极小值点.4.函数f(x)=x3-3x2+1的极小值点为________.答案 2解析 由f ′(x )=3x 2-6x =0,解得x =0或x =2.列表如下:x (-∞,0)0(0,2)2(2,+∞)f ′(x )+0-0+f (x )↗极大值↘极小值↗∴当x =2时,f (x )取得极小值.5.已知曲线f (x )=x 3+ax 2+bx +1在点(1,f (1))处的切线斜率为3,且x =23是y =f (x )的极值点,则a =___________,b =________.答案 2 -4解析 f ′(x )=3x 2+2ax +b ,由题意知Error!即Error!解得Error!经验证知符合题意.1.知识清单:(1)函数极值的定义.(2)函数极值的判定及求法.(3)函数极值的应用.2.方法归纳:方程思想、分类讨论.3.常见误区:导数值等于零不是此点为极值点的充要条件.1.下列函数中存在极值的是( )A .y =1xB .y =x -e xC .y =2D .y =x 3答案 B解析 对于y =x -e x ,y ′=1-e x ,令y ′=0,得x =0.在区间(-∞,0)上,y ′>0;在区间(0,+∞)上,y ′<0.故当x =0时,函数y =x -e x 取得极大值.2.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)答案 D解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.3.函数f (x )=ln x -x 在区间(0,e)上的极大值为( )A .-e B .-1C .1-e D .0答案 B解析 函数f (x )的定义域为(0,+∞),f ′(x )=1x -1.令f ′(x )=0,得x =1.当x ∈(0,1)时,f ′(x )>0,当x ∈(1,e)时,f ′(x )<0,故f (x )在x =1处取得极大值f (1)=ln 1-1=0-1=-1.4.已知a 是函数f (x )=x 3-12x 的极小值点,则a 等于( )A .-4 B .-2 C .4 D .2答案 D解析 ∵f (x )=x 3-12x ,∴f ′(x )=3x 2-12,令f ′(x )=0,则x 1=-2,x 2=2.当x ∈(-∞,-2),(2,+∞)时,f ′(x )>0,则f (x )单调递增;当x ∈(-2,2)时,f ′(x )<0,则f (x )单调递减,∴f (x )的极小值点为a =2.5.(多选)已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的值可以是( )A .-4 B .-3 C .6 D .8答案 AD解析 由题意知f ′(x )=3x 2+2ax +(a +6)=0有两个不相等的根,所以Δ=4a 2-12(a +6)>0,解得a >6或a <-3.6.f (x )=2x +1x 2+2的极小值为________.答案 -12解析 f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2.令f ′(x )<0,得x <-2或x >1;令f ′(x )>0,得-2<x <1.所以f (x )在(-∞,-2),(1,+∞)上单调递减,在(-2,1)上单调递增,所以f (x )极小值 =f (-2)=-12.7.设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点,则常数a =________.答案 -23解析 因为f ′(x )=ax +2bx +1,由题意得Error!所以a =-23.8.已知关于x 的函数f (x )=-13x 3+bx 2+cx +bc ,如果函数f (x )在x =1处取得极值-43,则b =________,c =________.答案 -1 3解析 f ′(x )=-x 2+2bx +c ,由Error!解得Error!或Error!若b =1,c =-1,则f ′(x )=-x 2+2x -1=-(x -1)2≤0,此时f (x )没有极值;若b =-1,c =3,则f ′(x )=-x 2-2x +3=-(x +3)(x -1),当-3<x <1时,f ′(x )>0,当x >1时,f ′(x )<0,所以当x =1时,f (x )有极大值-43.故b =-1,c =3即为所求.9.设函数f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.解 (1)f ′(x )=a x -12x 2+32(x >0).由题意知,曲线在x =1处的切线斜率为0,即f ′(1)=0,从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0),f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=(3x +1)(x -1)2x 2.令f ′(x )=0,解得x 1=1,x 2=-13(舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上单调递减;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上单调递增.故f (x )在x =1处取得极小值,极小值为f (1)=3,无极大值.10.设a 为实数,函数f (x )=x 3-x 2-x +a .(1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点?解 (1)f ′(x )=3x 2-2x -1.令f ′(x )=0,得x =-13或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-13)-13(-13,1)1(1,+∞)f′(x)+0-0+f(x)↗极大值↘极小值 ↗∴f(x)的极大值是f (-13)=527+a,极小值是f(1)=a-1.(2)函数f(x)=x3-x2-x+a=(x-1)2(x+1)+a-1,由此可知,x取足够大的正数时,有f(x)>0,x取足够小的负数时,有f(x)<0,∴曲线y=f(x)与x轴至少有一个交点.由(1)知f(x)极大值=f (-13)=527+a,f(x)极小值=f(1)=a-1.∵曲线y=f(x)与x轴仅有一个交点,∴f(x)极大值<0或f(x)极小值>0,即527+a<0或a-1>0,∴a<-527或a>1,∴当a∈(-∞,-527)∪(1,+∞)时,曲线y=f(x)与x轴仅有一个交点.11.设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是( )答案 C解析 因为f(x)在x=-2处取得极小值,所以当x<-2时,f(x)单调递减,即f ′(x )<0;当x >-2时,f (x )单调递增,即f ′(x )>0.所以当x <-2时,y =xf ′(x )>0;当x =-2时,y =xf ′(x )=0;当-2<x <0时,y =xf ′(x )<0;当x =0时,y =xf ′(x )=0;当x >0时,y =xf ′(x )>0.结合选项中的图象知选C.12.函数y =x e x 在其极值点处的切线方程为________.答案 y =-1e解析 由题意知y ′=e x +x e x ,令y ′=0,解得x =-1,代入函数解析式可得极值点的坐标为(-1,-1e ),又极值点处的切线为平行于x 轴的直线,故方程为y =-1e.13.若函数f (x )=x 3+x 2-ax -4在区间(-1,1)上恰有一个极值点,则实数a 的取值范围为________.答案 [1,5)解析 ∵f ′(x )=3x 2+2x -a ,函数f (x )在区间(-1,1)上恰有一个极值点,即f ′(x )=0在(-1,1)内恰有一个根.又函数f ′(x )=3x 2+2x -a 的对称轴为x =-13.∴应满足Error!∴Error!∴1≤a <5.14.若函数f (x )=x 3-3ax +1在区间(0,1)内有极小值,则a 的取值范围为________.答案 (0,1)解析 f ′(x )=3x 2-3a .当a ≤0时,在区间 (0,1)上无极值.当a >0时,令f ′(x )>0,解得x >a 或x <-a .令f ′(x )<0,解得-a <x <a .若f (x )在(0,1)内有极小值,则0<a <1.15.已知函数f (x )=ax 3+bx 2+cx 的图象如图所示,且f (x )在x =x 0与x =2处取得极值,则f (1)+f (-1)的值一定( )A .等于0B .大于0C .小于0D .小于或等于0答案 B解析 f ′(x )=3ax 2+2bx +c .令f ′(x )=0,则x 0和2是该方程的根.∴x 0+2=-2b 3a <0,即b a>0.由题图知,f ′(x )<0的解集为(x 0,2),∴3a >0,则b >0,∵f (1)+f (-1)=2b ,∴f (1)+f (-1)>0.16.设函数f (x )=x 33-(a +1)x 2+4ax +b ,其中a ,b ∈R .(1)若函数f (x )在x =3处取得极小值12,求a ,b 的值;(2)求函数f (x )的单调递增区间;(3)若函数f (x )在(-1,1)上只有一个极值点,求实数a 的取值范围.解 (1)因为f ′(x )=x 2-2(a +1)x +4a ,所以f ′(3)=9-6(a +1)+4a =0,得a =32.由f (3)=13×27-52×9+4×32×3+b =12,解得b =-4.(2)因为f ′(x )=x 2-2(a +1)x +4a =(x -2a )(x -2),令f ′(x )=0,得x =2a 或x =2.当a >1时,f (x )的单调递增区间为(-∞,2),(2a ,+∞);当a =1时,f (x )的单调递增区间为(-∞,+∞);当a <1时,f (x )的单调递增区间为(-∞,2a ),(2,+∞).(3)由题意可得Error!即Error!解得-12<a<12,所以实数a的取值范围是(-12,12).。

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版第一章:极值的概念与性质1.1 极值的定义引入极值的概念,解释函数在某一点的局部性质。

通过图形和实例直观展示极值的存在。

1.2 极值的判定条件介绍函数的导数与极值的关系,讲解导数为零的必要性和充分性。

分析导数为正和导数为负时函数的单调性,得出极值的判定条件。

1.3 极值的判定定理介绍罗尔定理、拉格朗日中值定理和柯西中值定理在极值判定中的应用。

证明极值的判定定理,并通过实例进行验证。

第二章:导数与函数的单调性2.1 导数的定义与计算引入导数的概念,解释导数表示函数在某一点的瞬时变化率。

讲解导数的计算规则,包括常数函数、幂函数、指数函数和三角函数的导数。

2.2 导数与函数的单调性分析导数正负与函数单调性的关系,得出单调递增和单调递减的定义。

通过实例和图形展示导数与函数单调性的联系。

2.3 单调性的应用讲解利用单调性解决函数极值问题的方法。

分析函数的单调区间和极值点,得出函数的单调性对极值的影响。

第三章:函数的极值点与导数3.1 极值点的定义与判定引入极值点的概念,解释极值点是函数导数为零或不存在的点。

讲解极值点的判定方法,包括导数为零和导数不存在的条件。

3.2 极值点的求解方法介绍求解极值点的方法,包括解析法和数值法。

讲解如何利用导数和图形求解函数的极值点。

3.3 极值点的应用分析极值点在实际问题中的应用,如最优化问题。

举例说明如何利用极值点解决实际问题。

第四章:函数的拐点与导数4.1 拐点的定义与判定引入拐点的概念,解释拐点是函数导数由正变负或由负变正的点。

讲解拐点的判定方法,包括导数的正负变化和二阶导数的符号。

4.2 拐点的求解方法介绍求解拐点的方法,包括解析法和数值法。

讲解如何利用导数和图形求解函数的拐点。

4.3 拐点的应用分析拐点在实际问题中的应用,如曲线拟合和物体的运动。

举例说明如何利用拐点解决实际问题。

第五章:函数的极值与图像5.1 极值与函数图像的关系分析极值点在函数图像中的位置和特征。

《函数的极值与导数》课件

《函数的极值与导数》课件
极大值和极小值是极值的 两种分类,取决于导数的 变化情况。
应用示例
求函数的极值
通过求导和分析导数的变化,可以确定函数的极值 点和对应的极值。
求解实际问题
将实际问题转化为数学模型,并通过求导求解极值 来得到最优解。
端点的极值
函数定义域的端点如果存在极值,则称为端点描述函数在某一点处 的变化率,即函数曲线在 该点的切线斜率。
2 导数的意义
导数可以帮助我们分析函 数的变化趋势和特征,以 及确定函数的极值。
3 导数的符号表示
通常用f'(x)、dy/dx或y'来 表示函数f(x)的导数。
2
得到一些常见函数的导数表达式。
利用导数的性质,可以对复杂函数进行
四则运算的求导。
3
导数的链式法则
对复合函数求导时,可以使用链式法则 进行求导。
极值的判定
1 极值的必要条件
函数在极值点处的导数为 零或不存在。
2 极值的充分条件
当函数在极值点的导数发 生变号时,即可判断该点 为极值的充分条件。
3 极值的分类
导数与函数的关系
导数刻画函数的变化 趋势
导数的正负性可以描述函数的 单调性和变化趋势。
导数判断函数的单调 性
函数在导数大于零的区间上单 调递增,在导数小于零的区间 上单调递减。
极值与导数的关系
极值出现的地方,导数为零或 不存在。
导数的计算
1
基本导数公式
根据函数的基本性质和求导法则,可以
导数的四则运算
《函数的极值与导数》 PPT课件
欢迎来到《函数的极值与导数》PPT课件!本课程将带你深入了解函数的极值 和导数的概念,以及它们之间的关系。准备好迎接这趟知识之旅了吗?让我 们开始吧!

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版第一章:极值的概念与定义1.1 极值的概念引入极值的概念,让学生了解函数在某一点取得局部最值的含义。

通过图像和实际例子来说明极值的存在和重要性。

1.2 极值的定义介绍极值的定义,包括局部极值和全局极值。

解释极值的必要条件和充分条件。

第二章:导数与极值的关系2.1 导数的定义与性质复习导数的定义和基本性质,包括导数的符号变化与函数单调性的关系。

2.2 导数与极值的关系引入导数与极值的关系,讲解导数为零的点可能是极值点的原理。

通过实例来说明导数在判断极值中的作用。

第三章:一元函数的极值判定3.1 判定极值的存在性介绍判定极值存在性的方法,包括罗尔定理和拉格朗日中值定理。

3.2 判定极值的具体方法讲解利用导数符号变化判断极值的方法,包括导数单调性和零点存在性定理。

第四章:多元函数的极值4.1 多元函数极值的概念引入多元函数极值的概念,让学生了解多元函数在不同维度上的极值问题。

4.2 多元函数极值的判定讲解多元函数极值的判定方法,包括拉格朗日乘数法和海森矩阵。

第五章:实际应用中的极值问题5.1 应用背景介绍通过实际例子介绍极值在各个领域中的应用,如优化问题、物理学、经济学等。

5.2 实际应用案例分析分析具体案例,让学生了解如何运用极值理论和方法解决问题。

第六章:利用极值解决实际问题6.1 优化问题概述介绍优化问题的概念,解释最小值和最大值在优化问题中的作用。

举例说明优化问题在工程、经济等领域的应用。

6.2 利用极值解决优化问题讲解如何利用函数的极值解决优化问题,包括确定最优解的方法和步骤。

通过实际案例分析,让学生掌握优化问题的解决技巧。

第七章:函数极值的存在性定理7.1 拉格朗日中值定理复习拉格朗日中值定理的内容,解释其在函数极值存在性判断中的应用。

利用拉格朗日中值定理证明函数极值的存在性。

7.2 罗尔定理与极值存在性讲解罗尔定理的内容及其在函数极值存在性判断中的应用。

结合罗尔定理和拉格朗日中值定理,证明函数极值的存在性。

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版第一章:极值的概念与性质1.1 极值的定义介绍函数极值的概念,解释局部极值和全局极值的区别。

通过图形和实例来说明函数极值的存在性。

1.2 极值的判定条件介绍导数与极值的关系,讲解导数为零的必要性和充分性。

分析一阶导数和二阶导数在极值判定中的作用。

1.3 极值的性质探讨极值的单调性,解释局部极值和全局极值之间的相互关系。

研究极值点的稳定性,分析函数在极值点附近的behavior。

第二章:导数的基本概念与计算2.1 导数的定义引入导数的概念,解释导数表示函数在某一点的瞬时变化率。

通过图形和实例来说明导数的几何意义。

2.2 导数的计算介绍导数的计算规则,包括常数函数、幂函数、指数函数和三角函数的导数。

讲解和练习四则运算、链式法则和高阶导数的计算。

2.3 导数的应用探讨导数在函数图像上的应用,分析函数的单调性、凹凸性和拐点。

引入洛必达法则,讲解其在函数极限计算中的应用。

第三章:函数的单调性与凹凸性3.1 单调性的判定介绍单调性的概念,讲解单调递增和单调递减的定义。

分析导数与函数单调性的关系,给出单调性的判定条件。

3.2 凹凸性的定义与判定引入凹凸性的概念,解释函数凹凸性的几何意义。

讲解凹凸性的判定条件,分析函数图像的凹凸特征。

3.3 单调性与凹凸性的应用探讨单调性和凹凸性在实际问题中的应用,例如最优化问题。

通过实例讲解如何利用单调性和凹凸性来分析函数的性质。

第四章:函数的极值问题4.1 局部极值的判定与计算讲解局部极值的判定条件,分析一阶导数和二阶导数在局部极值问题中的应用。

通过实例来说明局部极值的计算方法。

4.2 全局极值的判定与计算介绍全局极值的概念,讲解全局极值的判定方法。

分析函数在不同区间上的单调性,确定全局极值的存在性和位置。

4.3 实际问题中的应用通过实际问题来探讨函数极值的应用,例如最值问题、优化问题等。

讲解如何利用函数极值来解决实际问题。

第五章:函数的拐点与曲线的凹凸性5.1 拐点的定义与判定引入拐点的概念,解释拐点表示函数图像的凹凸性变化。

第6讲 函数的极值与最值(教师版)

第6讲  函数的极值与最值(教师版)

第6讲 函数的极值与最值一.基础知识回顾1.极大值点与极大值:如图,在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于或等于x0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值.2.极小值点与极小值:如图,在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于或等于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.3.如果函数y =f (x )在区间(a ,x 0)上是增加的,在区间(x 0,b )上是减少的,则x 0是极大值点,f (x 0)是极大值;如果函数y =f (x )在区间(a ,x 0)上是减少的,在区间(x 0,b )上是增加的,则x 0是极小值点,f (x 0)是极小值.4.函数f (x )在闭区间[a ,b ]上的最值如图,函数f (x )在闭区间[a ,b ]上的图像是一条连续不断的曲线,则该函数在[a ,b ]上一定能够取得最大值与最小值,函数的最值必在端点处或极值点处取得.5.求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤(1)求函数y =f (x )在(a ,b )内的极值,(2)将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值. 二.问题探究探究点一:函数的极值与导数的关系例1:求函数f (x )=x 3-3x 2-9x +5的极值与极值点. 解:f ′(x )=3x 2-6x -9. 解方程3x 2-6x -9=0,得x 1=-1,x 2=3. 当x 变化时,f ′(x ),有极小值f (3)=-22,x =3是极小值点.跟踪训练1:求函数f (x )=3x+3ln x 的极值与极值点.解:函数f (x )=3x +3ln x 的定义域为(0,+≦),f ′(x )=-3x 2+3x=3x -1x 2.令f ′(x )因此当=1时,()有极小值(1)=3.=1是极小值点. 探究点二:利用函数极值确定参数的值例2:已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,求常数a ,b 的值.解:因为f (x )在x =-1时有极值0,且f ′(x )=3x 2+6ax +b ,所以⎩⎪⎨⎪⎧f ′-1=0,f -1=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0.解之得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,所以f (x )在R 上为增函数,无极值,故舍去.当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3).当x ∈(-3,-1)时,f (x )为减函数;当x ∈(-1,+≦)时,f (x )为增函数,所以f (x )在x =-1时取得极小值,因此a =2,b =9.跟踪训练2:设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极 值点.(1)试确定常数a 和b 的值;(2)判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由.解:(1)≧f (x )=a ln x +bx 2+x ,≨f ′(x )=ax+2bx +1. 由极值点的必要条件可知:f ′(1)=f ′(2)=0,≨a +2b +1=0且a 2+4b +1=0,解方程组得,a =-23,b =-16.(2)由(1)可知f (x )=-23ln x -16x 2+x . f ′(x )=-23x -1-13x +1=-x -1x -23x.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,2)时,f ′(x )>0;当x ∈(2,+≦)时,f ′(x )<0;所以x =1是函数f (x )的极小值点,x =2是函数f (x )的极大值点.探究点三:函数极值的综合应用例3 设函数f (x )=x 3-6x +5,x ∈R. (1)求函数f (x )的单调区间和极值;(2)若关于x 的方程f (x )=a 有三个不同的实根,求实数a 的取值范围.解:(1)f ′(x )=3x 2-6,令f ′(x )=0,解得x 1=-2,x 2= 2.因为当x >2或x <-2时,f ′(x )>0;当-2<x <2时,f ′(x )<0. 所以f (x )的单调递增区间为单调递减区间为(-2,2). (-≦,-2)和(2,+≦);当x =-2时,f (x )有极大值5+42;当x =2时,f (x )有极小值5-4 2.(2)由(1)的分析知y =f (x )的图像的大致形状及走向如图所示.所以,当5-42<a <5+42时,直线y =a 与y =f (x )的图像有三个不同的交点,即方程f (x )=a 有三个不同的实根.跟踪训练3:若函数f (x )=2x 3-6x +k 在R 上只有一个零点,求常数k 的取值范围.解:f (x )=2x 3-6x +k ,则f ′(x )=6x 2-6,令f ′(x )=0,得x =-1或x =1,可知f (x )在(-1,1)上是减函数,f (x )在(-≦,-1)和(1,+≦)上为增函数.f (x )的极大值为f (-1)=4+k ,f (x )的极小值为f (1)=-4+k . 要使函数f (x )只有一个零点,只需4+k <0或-4+k >0(如图所示)即k <-4或k >4. ≨k 的取值范围是(-≦,-4)∪(4,+≦). 探究点四:含参数的函数的最值问题例2 已知a 是实数,函数f (x )=x 2(x -a ).(1)若f ′(1)=3,求a 的值及曲线y =f (x )在点(1,f (1))处的切线方程. (2)求f (x )在区间[0,2]上的最大值.解:(1)f ′(x )=3x 2-2ax . 因为f ′(1)=3-2a =3,所以a =0.又当a =0时,f (1)=1,f ′(1)=3,所以曲线y =f (x )在点(1,f (1))处的切线方程为3x -y -2=0. (2)令f ′(x )=0,解得x 1=0,x 2=2a 3.当2a3≤0,即a ≤0时,f (x )在[0,2]上单调递增,从而f (x )max =f (2)=8-4a . 当2a 3≥2,即a ≥3时,f (x )在[0,2]上单调递减,从而f (x )max =f (0)=0. 当0<2a3<2,即0<a <3时,f (x )在⎣⎢⎡⎦⎥⎤0,2a 3上单调递减,在⎣⎢⎡⎦⎥⎤2a 3,2上单调递增,从而f (x )max =⎩⎪⎨⎪⎧8-4a 0<a ≤202<a <3,综上所述,f (x )max =⎩⎪⎨⎪⎧8-4a a ≤20a >2.跟踪训练4:已知函数f (x )=ax 3-6ax 2+b ,x ∈[-1,2]的最大值为3,最小值为-29,求a ,b 的值.解:f ′(x )=3ax 2-12ax =3ax (x -4),令f ′(x )=0,得x 1=0,x 2=4(舍去).(1)当a >0时,列表如下:由表可知,当x =0时,f (x )取极大值,也就是函数在[-1,2]上的最大值,≨f (0)=3,即b =3. 又f (-1)=-7a +3,f (2)=-16a +3<f (-1),≨f (2)=-16a +3=-29,≨a =2. (2)当a <0时,同理可得,当x =0时,f (x )取极小值,也就是函数在[-1,2]上的最小值,≨f (0)=-29,即b =-29. 又f (-1)=-7a -29,f (2)=-16a -29>f (-1),≨f (2)=-16a -29=3,≨a =-2. 综上可得,a =2,b =3或a =-2,b =-29.探究点五:函数最值的应用例3:已知函数f (x )=(x +1)ln x -x +1.若xf ′(x )≤x 2+ax +1恒成立,求a 的取值范围.解:f ′(x )=x +1x +ln x -1=ln x +1x,xf ′(x )=x ln x +1,而xf ′(x )≤x 2+ax +1(x >0)等价于ln x -x ≤a . 令g (x )=ln x -x ,则g ′(x )=1x-1. 当0<x <1时,g ′(x )>0;当x ≥1时,g ′(x )≤0,x =1是g (x )的最大值点,≨g (x )≤g (1)=-1. 综上可知,a 的取值范围是[)-1,+≦.跟踪训练5:设函数f (x )=2x 3-9x 2+12x +8c ,若对任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围.解:≧f ′(x )=6x 2-18x +12=6(x -1)(x -2).≨当x ∈(0,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,3)时,f ′(x )>0. ≨当x =1时,f (x )取极大值f (1)=5+8c . 又f (3)=9+8c >f (1),≨x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . ≧对任意的x ∈[0,3],有f (x )<c 2恒成立,≨9+8c <c 2,即c <-1或c >9. ≨c 的取值范围为(-≦,-1)∪(9,+≦).四.课时小结1.在极值的定义中,取得极值的点称为极值点,极值点指的是自变量的值,极值指的是函数值.2.函数的极值是函数的局部性质.可导函数f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0且在x 0两侧f ′(x )符号相反.3.利用函数的极值可以确定参数的值,解决一些方程的解和图像的交点问题. 4.求可导函数f (x )的极值的步骤:(1)确定函数的定义区间,求导数f ′(x );(2)求方程f ′(x )=0的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干个小开区间,并列成表格.检测f ′(x )在方程根左右两侧的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值5.求函数在闭区间上的最值,只需比较极值和端点处的函数值即可;函数在一个开区间内只有一个极值,这个极值就是最值.6..“恒成立”问题向最值问题转化是一种常见的题型,对于不能分离参数的恒成立问题,直接求含参函数的最值即可.一般地,可采用分离参数法.λ≥f (x )恒成立⇔λ≥[f (x )]max ;λ≤f (x )恒成立⇔λ≤[f (x )]min .7.函数最值:(1)求函数的最值,显然求极值是关键的一环.但仅仅是求最值,可用下面简化的方法求得.①求出导数为零的点.②比较这些点与端点处函数值的大小,就可求出函数的最大值和最小值.(2)若函数在闭区间[a ,b ]上连续单调,则最大、最小值在端点处取得. 五.作业设计1. 函数y =f (x )的定义域为(a ,b ),y =f ′(x )的图像如图,则函数y =f (x )在开区间(a ,b )内取得极小值的点有(A)A .1个B .2个C .3个D .4个 2. 下列关于函数的极值的说法正确的是(D)A .导数值为0的点一定是函数的极值点B .函数的极小值一定小于它的极大值C .函数在定义域内有一个极大值和一个极小值D .若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内不是单调函数 3. 函数y =x 3-3x 2-9x (-2<x <2)有(C)A .极大值5,极小值-27B .极大值5,极小值-11C .极大值5,无极小值D .极小值-27,无极大值 4. 已知函数f (x ),x ∈R ,且在x =1处,f (x )存在极小值,则(C)A .当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0B .当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )>0C .当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0D .当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )<08. 若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于(D)A .2B .3C .6D .99. 若函数y =x 3-3ax +a 在(1,2)内有极小值,则实数a 的取值范围是(B)A .1<a <2B .1<a <4C .2<a <4D .a >4或a <110. 设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图像分别交于点M ,N ,则当|MN |达到最小时t 的值为 (D)A .1 B.12 C.52 D.2211. 若函数f (x )=x 2+ax +1在x =1处取极值,则a =3 .12. 设函数f (x )=6x 3+3(a +2)x 2+2ax .若f (x )的两个极值点为x 1,x 2,且x 1x 2=1,则实数a的值为9.13. 如果函数y =f (x )的导函数的图像如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎫-3,-12内单调递增;②函数y =f (x )在区间⎝⎛⎭⎫-12,3内单调递减;③函数y =f (x )在区间(4,5)内单调递增;④当x =2时,函数y =f (x )有极小值;⑤当x =-12时,函数y =f (x )有极大值.则上述判断正确的是③.(填序号)14. 已知f (x )=-x 2+mx +1在区间[-2,-1]上最大值就是函数f (x )的极大值,则m 的取值范围是[-4,-2].15.已知函数f (x )=e x-2x +a 有零点,则a 的取值范围是(-∞,2ln 2-2].16.求下列函数的极值:(1)f (x )=x 3-2x 2+x +1;(2)f (x )=x 2e x .解:(1)函数的定义域为R ,f ′(x )=3x 2-4x +1=3(x -1)⎝ ⎛⎭⎪⎫x -13.令f ′(x )>0,可得x >1或x <13;令f ′(x )<0,可得13<x <1.≨函数f (x )=x 3-2x 2+x +1的单调递增区间为⎝ ⎛⎭⎪⎫-≦,13和(1,+≦),单调递减区间为⎝ ⎛⎭⎪⎫13,1.(2)函数的定义域为R ,f ′(x )=2x e-x+x 2·⎝ ⎛⎭⎪⎫1e x ′=2x e -x -x 2e -x =x (2-x )e -x ,令f ′(x )=0,得x =0或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可以看出,当x =0时,函数有极小值,且为f (0)=0;当x =2时,函数有极大值,且为f (2)=4e -2.17.已知f (x )=x 3+12mx 2-2m 2x -4(m 为常数,且m >0)有极大值-52,求m 的值.解:≧f ′(x )=3x 2+mx -2m 2=(x +m )(3x-2m ),令f ′(x )=0,则x =-m 或x =23m .当x 变化时,f ′(x ),f (x )的变化情况如下表:≨f (x )极大值=f (-m )=-m 3+12m 3+2m 3-4=-52≨m =1.18.设a 为实数,函数f (x )=x 3-x 2-x +a .(1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点?解:(1)f ′(x )=3x2-2x -1.令f ′(x )=0,则x =-13或x=1.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )的极大值是f (-13)=527+a ,极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1,由此可知,x 取足够大的正数时,有f (x )>0,x 取足够小的负数时,有f (x )<0,所以曲线y =f (x )与x 轴至少有一个交点.由(1)知f (x )极大值=f (-13)=527+a ,f (x )极小值=f (1)=a -1.≧曲线y =f (x )与x 轴仅有一个交点,≨f (x )极大值<0或f (x )极小值>0,即527+a <0或a -1>0,≨a <-527或a >1,≨当a ∈(-≦,-527)∪(1,+≦)时,曲线y =f (x )与x 轴仅有一个交点.19.已知函数f (x )=(x 2+ax -2a 2+3a )e x (x ∈R ),其中a ∈R .(1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线的斜率; (2)当a ≠23时,求函数f (x )的单调区间与极值.解:(1)当a =0时,f (x )=x 2e x,f ′(x )=(x 2+2x )e x ,故f ′(1)=3e.(2)f ′(x )=[x 2+(a +2)x -2a 2+4a ]e x.令f ′(x )=0,解得x =-2a 或x =a -2,由a ≠23知,-2a ≠a -2.以下分两种情况讨论:①若a >23,则-2a <a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:f (x )在x =-2a 处取得极大值f (-2a ),且f (-2a )=3a e -2a.函数f (x )在x =a -2处取得极小值f (a -2),且f (a -2)=(4-3a )ea -2.②若a <3,则-2a >a -2.当x 变化时,f ′(x ),f (x )的变化情况如上表:所以f (x )在(-≦,a -2),(-2a ,+≦)内是增函数,在(a -2,-2a )内是减函数.函数f (x )在x =a -2处取得极大值f (a -2),且f (a -2)=(4-3a )ea -2.函数f (x )在x =-2a 处取得极小值f (-2a ),且f (-2a )=3a e -2a .20.已知函数f (x )=x 3-ax 2+bx +c (a ,b ,c ∈R).(1)若函数f (x )在x =-1和x =3处取得极值,试求a ,b 的值;(2)在(1)的条件下,当x ∈[-2,6]时,f (x )<2|c |恒成立,求c 的取值范围.解:(1)f ′(x )=3x 2-2ax +b ,≧函数f (x )在x =-1和x =3处取得极值,≨-1,3是方程3x 2-2ax +b =0的两根.≨⎩⎪⎨⎪⎧-1+3=23a -1×3=b3,≨⎩⎪⎨⎪⎧a =3b =-9.(2)由(1)知f (x )=x 3-3x22|恒成立,只要c +54<2|c |即可,当c ≥0时,c +54<2c ,≨c >54;当c <0时,c +54<-2c ,≨c <-18.≨c ∈(-≦,-18)∪(54,+≦),此即为参数c 的取值范围.21.已知函数f (x )=(x -k )e x.(1)求f (x )的单调区间; (2)求f (x )在区间[0,1]上的最小值.解:(1)f ′(x所以f (.(2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ;当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1]上单调递减,在(k -1,1)上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1.当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.。

06函数的极值与导数

06函数的极值与导数
极大值
y
y=f(x)
P(x1,f(x1))
o
概 念 说 明
x
极小值
a x1
Q(x2,f(x2)) x2 x3 x4 b
极值概念:
(1)极值是某一点附近的小区间而言 的,是函数的局部性质,不是整体的最值; (2)函数的极值不一定唯一,在整个定 义区间内可能有多个极大值和极小值; (3)极大值与极小值没有必然关系, 极大值可能比极小值还小.
1.求 函 数 f ( x ) xe 的 单 调 区 间 和 极 值 .
2 .求 函 数 f ( x )
2
x
2 3
x
x
1 2
的单调区间和极值
3 .函 数 f ( x )
x a x 1
在 x 1处 取 得 极 值 , 求 a 的 值
以及函数的极值
4.求 函 数 f ( x ) a ln x x ax ( a 0)的 单 调 区 间 和 极 值
3 2
取 得 极 值 .求 a , b的 值 以 及 函 数 的 极 值
例 4 .求 函 数 f ( x ) ln ( x 1)
1 4
x 的单调区间和极值
2
练习 求 函 数 f ( x ) e 2 x 2 a的 单 调 区 间 和 极 值
x
学习小结:
本节课主要学习了哪些内容?
注:1.用导数法讨论函数的单调性的步骤: ⑴求出函数的导函数; ⑵解不等式 f ( x ) 0 ,求得其解集,再根据解集写出增区间; ⑶解不等式 f ( x ) 0 ,求得其解集,再根据解集写出减区间;
2.已知函数的单调性求参数的取值范围问题时常利用下面 关系来求解: “若函数单调递增,则 f ( x ) ≥ 0 ;若函数单调递减,则 f ( x ) ≤ 0 ” . 注意此时公式中的等号不能省略,否则漏解,但同时也 要注意检验是否恒等于 0,否则也可能会增解.

导数与函数的极值问题

导数与函数的极值问题

导数与函数的极值问题在微积分中,导数与函数的极值问题是一个重要的研究方向。

通过研究函数的导数,我们可以确定函数的极大值和极小值,从而找到函数的极值点。

本文将讨论导数与函数的极值问题,介绍如何通过导数的性质和定理来解决相关的数学问题。

一、导数的定义和性质导数是描述函数变化率的重要工具,它与函数的斜率和切线有密切的关系。

对于函数f(x),在给定点x处的导数记作f'(x),它的定义可以表示为:f'(x) = lim┬(Δx→0)⁡〖(f(x+Δx)-f(x))/Δx〗其中,Δx表示自变量的增量。

导数的定义可以用来计算函数在特定点的斜率,从而揭示函数在该点的变化趋势。

导数具有一些基本的性质,包括线性性、乘积法则、商法则等。

这些性质对于求解函数的极值问题非常重要。

例如,利用导数的乘积法则,我们可以计算函数的极大值和极小值,找到函数的极值点。

二、函数极值的求解方法1. 导数为零的点对于函数f(x),如果存在x=a,使得f'(a)=0,那么我们可以得到一个关键的结论:在x=a处,函数f(x)可能存在一个极值点。

根据导数的定义和性质,我们可以通过求解f'(x)=0来找到函数f(x)的极值点。

首先,我们需要求出导数方程f'(x)=0的所有解x=a₁,a₂,...,an。

然后,我们将这些解代入原函数f(x)中,得到相应的函数值f(a₁),f(a₂),...,f(an)。

最后,比较所有的函数值,即可确定函数的极大值和极小值。

2. 导数的符号变化除了导数为零的点外,我们还可以通过导数的符号变化来确定函数的极值点。

具体而言,如果在某区间上导数大于零,那么函数在该区间上是递增的;如果导数小于零,函数在该区间上是递减的。

根据这个性质,我们可以通过绘制函数图像和导数图像,找到函数的极值点。

在绘制函数图像时,我们可以观察函数曲线的上升和下降趋势;在绘制导数图像时,我们可以观察导数曲线的正负变化。

高中数学讲义:函数的极值

高中数学讲义:函数的极值

函数的极值一、基础知识:1、函数极值的概念:(1)极大值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有()()0f x f x <,就说()0f x 是函数()f x 的一个极大值,记作()0y f x =极大值,其中0x 是极大值点(2)极小值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有()()0f x f x >,就说()0f x 是函数()f x 的一个极小值,记作()0y f x =极小值,其中0x 是极小值点极大值与极小值统称为极值2、在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。

请注意以下几点:(1)极值是一个局部概念:由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(2)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(3)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点3、极值点的作用:(1)极值点为单调区间的分界点(2)极值点是函数最值点的候选点4、费马引理:()f x 在0x x =处可导,那么0x x =为()f x 的一个极值点Þ()0'0f x =说明:①前提条件:()f x 在0x x =处可导②单向箭头:在可导的前提下,极值点Þ导数0=,但是导数0=不能推出0x x =为()f x 的一个极值点,例如:3y x =在()0,0处导数值为0,但0x =不是极值点③费马引理告诉我们,判断极值点可以通过导数来进行,但是极值点的定义与导数无关(例如:y x =在()0,0处不可导,但是0x =为函数的极小值点)5、求极值点的步骤:(1)筛选:令()'0f x =求出()'f x 的零点(此时求出的点有可能是极值点)(2)精选:判断函数通过()'f x 的零点时,其单调性是否发生变化,若发生变化,则该点为极值点,否则不是极值点(3)定性:通过函数单调性判断出是极大值点还是极小值点:先增后减→极大值点,先减后增→极小值点6、在综合题分析一个函数时,可致力于求出函数的单调区间,当求出单调区间时,极值点作为单调区间的分界点也自然体现出来,并且可根据单调性判断是极大值点还是极小指点,换言之,求极值的过程实质就是求函数单调区间的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的极值与导数讲义
:点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.
(2)极大值点与极大值:点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y
x 0)=0时:
(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是.
f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是.
一点附近的大小情况.
(2)由函数极值的定义知道,函数在一个区间的端点处一定不可能取得极值,即端点一定不是函数的极值点. (3)极大值不一定比极小值大,极小值也不一定比极大(1)可导函数的极值点一定是导数为0的点,但导数为0的点不一定是函数的极值点.
如y =x 3,y ′(0)=0,x =0不是极值点.
问题1如图观察,函数y =f (x )在d 、e 、f 、g 、h 、i 等点处的函数值与这些点附近的函数值有什
么关系?y =f (x )在这些点处的导数值是多少?在这些点附近,y =f (x )的导数的符号有什么规律?
思考函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有________个极小值点.
【例1】求下列函数的极值.
(1)f (x )=3x +3ln x ; (2)f (x )=2x
x 2+1
-2.
【例2】已知函数f (x )=ax 3+bx 2+cx (a ≠0)在x =±1处取得极值,且f (1)=-1. (1)求常数a ,b ,c 的值;(2)判断x =±1是函数的极大值点还是极小值点,试说明理由,并求出极值.
【变式】已知函数f (x )=x 3+ax 2+bx +c ,且知当x =-1时取得极大值7,当x =3时取得极小值,试求函数f (x )的极小值,并求a 、b 、c 的值.
【例3】 (12分)设a 为实数,函数f (x
)
=-x 3+3x +a .(1)求f (x )的极值;(2)是否存在实数a ,使得方程f (x )=0恰好有两个实数根?若存在,求出实数a 的值;若不存在,请说明理由.
练习1求函数f(x)=x3-3x2-9x+5的极值.
练习2 求函数y=x4-4x3+5的极值.
练习3已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,求常数a,b的值. 练习4 设x=1与x=2是函数f(x)=a ln x+bx2+x的两个极
值点.(1)试确定常数a和b的值;(2)判断x=1,x=2是
函数f(x)的极大值点还是极小值点,并说明理由.
练习5设函数f(x)=x3-6x+5,x∈R.
(1)求函数f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有三个不同的实根,求实数a
的取值范围.
练习6若函数f(x)=2x3-6x+k在R上只有一个零点,求常
数k的取值范围.。

相关文档
最新文档