(整理)CC复合材料的制备及方法.
复合材料的制备方法与工艺(1-1)
预成形体的制造技术
(1)缝合技术
采用高性能纤维和工业用缝合机将多层二维纤维 织物缝合在一起, 织物缝合在一起,经复合固化而成的纺织复合材 料。 美国的NASA。 美国的NASA。 复合材料机翼,28m长的蒙皮复合材料预成形体 长的蒙皮复合材料预成形体。 复合材料机翼,28m长的蒙皮复合材料预成形体。 缝合超过25mm厚的碳纤维层,缝合速度3000针 缝合超过25mm厚的碳纤维层,缝合速度3000针/ 厚的碳纤维层 分。 相对于同样的铝合金零件重量减少25%, 相对于同样的铝合金零件重量减少25%,成本降 20%。 低20%。
(5) 自动铺放技术
该技术在现代飞机上已经获得广泛应用,并 该技术在现代飞机上已经获得广泛应用, 取得了巨大进展。现有的自动铺叠技术已经 取得了巨大进展。 在速度和准确度上有很大增长,而且计算机 在速度和准确度上有很大增长, 技术对它产生了很大影响,铺叠面积也有所 技术对它产生了很大影响, 增长透用) 长纤维的编织(树脂基复合材料的压挤渗透用)
汽车储气罐
门型纤维编织成形机
碳纤维强化网球拍的成形装置
Beech Starship飞机 飞机 翅膀的成型中使用 高压) 的autoclave (高压 高压 成形
(3) 三维机织
是一种高级纺织复合材料。 是一种高级纺织复合材料。 纺织异型整体织物,如T形、U形、工形、 工形、 纺织异型整体织物, 十字形等型材和圆管等, 十字形等型材和圆管等,还可以创造出许多 新的复杂形状织物。 新的复杂形状织物。
(4) 编织
编织是一种基本的纺织工艺, 编织是一种基本的纺织工艺,能够使两条以 上纱线在斜向或纵向互相交织形成整体结构 的预成形体。这种工艺通常能够制造出复杂 的预成形体。 形状的预成形体,但其尺寸受设备和纱线尺 形状的预成形体, 寸的限制。该工艺技术一般分为两类, 寸的限制。该工艺技术一般分为两类,一类 的二维编织工艺,另一类是三维编织工艺。 的二维编织工艺,另一类是三维编织工艺。
复合材料的制备方法
树脂传递模塑成型—优缺点
• 优点 • 1) 制品纤维含量可较高,未被树脂浸的部分非常少; • 2) 闭模成型,生产环境好; • 3) 劳动强度较低,对工人技术熟练程度的要求也比手糊与喷射成
型低; • 4) 制品两面光,可作有表面胶衣的制品,精度也比较高; • 5) 成型周期较短; • 6) 产品可大型化; • 7) 强度可按设计要求具有方向性; • 8) 可与芯材、嵌件一体成型 • 9) 相对注射设备与模具成本较低。 • 缺点 • 1) 不宜制作较小产品 • 2) 因要承压,故模具较手糊与喷射工艺用的模具要重和复杂,价
聚酯树脂 加热
固化
切
喷
引发剂 静态混合
割 喷
射 成
辊压
枪
型
促进剂
喷射成型工艺流程图
喷射工艺参数选择
• ①树脂含量 喷射成型的制品中,树脂含量 控制在60%左右。
• ②喷雾压力当树脂粘度为0.2Pa·s,树脂罐 压力为~时,雾化压力为~,方能保证组 分混合均匀
• ③喷枪夹角不同夹角喷出来的树脂混合交 距不同,一般选用20°夹角,喷枪与模具 的距离为350~400mm。改变距离,要高 速喷枪夹角,保证各组分在靠近模具表面 处交集混合,防止胶液飞失。
第二阶段-中间保温阶段
• 这一阶段的作用是使胶布在较低的反应速 度下进行固化。保温过程中应密切注意树 脂的流胶情况。当流出的树脂已经凝胶, 不能拉成细丝时,应立即加全压。
第三阶段-升温阶段
目的在于提高反应温度,加快固化速度。 此时,升温速度不能过快,否则会引起 暴聚,使固化反应放热过于集中,导致 材料层间分层。
cc复合材料
(3)涂层与基体碳之间要能良好结合,形 成较高的结合强度,对多层涂层来说, 各层之间也要有良好的结合强度,以免 分层或脱落;
(4)涂层与基体、涂层的各层之间的热膨 胀系数要尽可能接近,避免在较大的热 应力作用下涂层出现裂纹或剥落;
碳/碳复合材料
碳/碳复合材料的端头帽 碳/碳复合材料加工件
1.碳碳复合材料特性及性能
1.1碳碳复合材料特性 C/C复合材料是新材料领域中重点研究和开发 的一种新型超高温材料,它具有以下显著特 点:
(1)密度小(<2.0 g/cm ),仅为镍基高温合金的 1/4,陶瓷材料的1/2,这一许多结构或装备 要求轻型化至关重要。
3.1内部抗氧化技术 该化技术是从两方面来解决C/C 复合材料的
抗氧化问题。 (1)改进纤维的抗氧化问题。纤维抗氧化性能 的提高手段有两种,一是提高纤维的石墨化度, 从而提高纤维的抗氧化性;另一种方法是在纤 维的表面进行涂层,使纤维得到保护。
(2)提高C/C 材料基体的抗氧化性。可以通过 加入氧化抑制剂的方法来提高C/C 材料基体的 抗氧化性,如加入含磷化合物等,通过磷与氧 的作用,使氧失去氧化活性,从而达到抗氧化 的目的,但效果并不理想。另外一种方法是在 基体中加入抗氧化组分,如重金属、陶瓷等可 以提高C/C 复合材料的抗氧化性;还可以在基 体中加入有机硅、有机钛等,使基体C被SiC和 TiC取代,也可达到抗氧化的目的。
2.1.2 热梯度式(差温式)CVD技术 将热梯度式CVD技术应用于碳刹车盘的制备, 其基本思路是在碳盘工件的径向(而不是厚度
方向)形成温度梯度,并通过压差使碳源气逆 温度梯度定向流动,从而提高了增密速度。并 研究了温度、气氛压力及其流量等参数对CVD 增密过程的影响。发现当温度、气氛压力搭配 合理时,热梯度式CVD增密效果大大优于均温 式,总致密时间仅为相应均温式的1/3。若在差 温式CVD基础上实现差温-差压式CVD可进一步 改善CVD增密效果。
C-C复合材料
2)温度梯度法
工艺方法:将感应线圈和感应器的几何形 状做得与预制体相同。接近感应器的预制 体外表面是温度最高的区域,碳的沉积由 此开始,向径向发展。
特点:与等温法相比,沉积速度快,但一 炉只能处理一件,不同温度得到的沉积物 的微观结构有差别。
精品课件
3)差压法
工艺方法:通过在织物厚度方向上形成的 压力梯度促使气体通过植物间隙。将预制 体的底部密封后放入感应炉中等温加热, 碳氢化合物以一定的正压导入预制体内, 在预制体壁两边造成压差,迫使气体流过 空隙,加快沉积速度。
低压浸渍很难得到高致密度的C/C,其密度 一般为1.6~1.85,空隙率约为8~10%。
精品课件
3)高压浸渍
PIC工艺:浸渍和碳化都在高压下进行,利 用等静压技术使浸渍和碳化都在热等静压 炉内进行。可提高产碳率降低空隙率。
表6-5 PIC工艺压力对致密化的影响,当外 压增加到6.9MPa时产碳率显著增加,高密 度C/C复合材料需要51.7~103.4MPa的外压。
增强的预制体,使其接近各向同性。
精品课件
6.4.2 预制体和碳基体的复合
碳纤维编织预制体是空虚的,需向内渗碳 使其致密化,以实现预制体和碳基体的复 合。
渗碳方法:液态浸渍热分解法、化学气相 沉积法。
基本要求:基体的先驱体与预制体的特性 相一致,以确保得到高致密和高强度的C/C 复合材料。
精品课件
精品课件
二、气相沉积法
气相沉积法(CVD法):将碳氢化合物,如 甲烷、丙烷、天然气等通入预制体,并使 其分解,析出的碳沉积在预制体中。
技术关键:热分解的碳均匀沉积到预制体 中。
影响因素:预制体的性质、气源和载气、 温度和压力都将影响过程的效率、沉积碳 基体的性能及均匀性。
CC复合材料(1)(详细分析:复合材料)共5张PPT
树脂浸渍碳是经高温生成的,通常产碳率较高,但难以石墨化,且电阻率高,热导率差,最终生成的石墨为各向异性的。 碳/碳复合材料是由各种碳纤维或各种碳织物增强碳,或石墨化的树脂碳(或沥青)以及化学气相沉积(CVD)碳所形成的复合材料。 热解碳原料来源丰富,质量可靠,品种多,且成本低,选材范围广。 C/C复合材料且质量小、刚性好,并且是极耐高温的材料,其强度随温度升高而增加,在2500℃达到最大值,同时它有良好的抗烧蚀性能和
抗沥热青震 浸性渍能碳,通是常宇于纤航低维中压非或与常常树重压要下脂的残预材余料碳浸,,料例因如而作产为碳导率弹较的低鼻,锥但体易热。于石压墨制化坯,最终生成的石墨为各向同碳性化的,其电阻率低,C热/导C性复好合,材模料量高
。 2 C/C复合材料的制备
短纤维与沥青或
树脂混合物
喷射制坯
石墨化
石墨化C/C复合材料
基体材料分为热解碳与浸渍碳两种,热解碳主要是甲烷、乙烷、丙烷和乙烯以及低分子芳烃等组成,经高温裂解生成碳,浸渍碳是树脂或沥 青经碳化或石墨化制得。
热解碳原料来源丰富,质量可靠,品种多,且成本低,选材 基体材料分为热解碳与浸渍碳两种,热解碳主要是甲烷、乙烷、丙烷和乙烯以及低分子芳烃等组成,经高温裂解生成碳,浸渍碳是树脂或沥
碳/碳复合材料
9.1 概述
碳/碳复合材料是由各种碳纤维或各种碳织物增强碳,或石 墨化的树脂碳(或沥青)以及化学气相沉积(CVD)碳所形 成的复合材料。
C/C复合材料且质量小、刚性好,并且是极耐高温的材料,其强 度随温度升高而增加,在2500℃达到最大值,同时它有良好的 抗烧蚀性能和抗热震性能,是宇航中非常重要的材料,例如作 为导弹的鼻锥体。C/C复合材料还具有优异的耐摩擦性能和高 的热导率,使其在飞机、汽车刹车片和轴承等方面得到应用。 但是C/C复合材料不能在氧化性气氛中耐受高温,因此关于C/C 复合材料的抗氧化研究是一个重点内容。
CC-SiC复合材料的制备及力学与摩擦性能研究的开题报告
CC-SiC复合材料的制备及力学与摩擦性能研究的开
题报告
一、课题背景
CC-SiC复合材料是由连续碳纤维增强的硅化碳基质材料,具有高温、高强、高刚度、高耐磨、耐腐蚀、抗热震等优良力学性能,被广泛应用
于航空、航天、能源、冶金等领域。
然而,CC-SiC复合材料的制备过程复杂,性能稳定性较差,还需要
进一步研究材料的力学性能和摩擦性能,以提高其综合应用性能。
二、研究内容和方法
1.制备方法:采用化学气相渗透(CVD)法制备CC-SiC复合材料,
对制备工艺进行优化和改进,提高材料性能和稳定性。
2.力学性能:采用拉伸、弯曲、冲击实验及显微硬度测试,研究CC-SiC复合材料的力学性能,分析影响力学性能的因素。
3.摩擦性能:采用摩擦磨损实验,研究CC-SiC复合材料在不同条件
下的摩擦性能,探究其摩擦学性质及磨损机理。
4.分析方法:采用扫描电子显微镜、透射电子显微镜等显微结构分
析方法,分析材料组织和微观结构,探究材料制备过程中的影响因素。
三、研究意义和预期结果
CC-SiC复合材料具有广泛的应用前景,但其制备和性能研究仍存在
不足,本研究旨在探究CC-SiC复合材料的制备工艺、力学性能和摩擦性能,为其应用提供新的思路和技术支持,有助于扩大其在高技术领域的
应用范围。
预期结果为:优化CC-SiC复合材料制备工艺,提高材料力学性能和稳定性;分析材料组织和微观结构,揭示制备过程中的影响因素;探究CC-SiC复合材料的摩擦学性质和磨损机理,为实际应用提供参考和指导。
复合材料的制备方法与工艺概述
复合材料的制备方法与工艺概述复合材料(composite material)是由两种或两种以上不同类型的材料组合而成的材料,具有比单一材料更优异的性能。
复合材料的制备方法与工艺可以分为以下几个步骤:首先,确定复合材料的纤维类型。
常用的纤维类型包括玻璃纤维、碳纤维、草木纤维等。
选择合适的纤维类型取决于复合材料所需的性能和应用场景。
其次,对纤维进行表面处理。
表面处理的目的是增加纤维与基体之间的粘合力,提高复合材料的强度和韧性。
常用的表面处理方法包括喷涂处理剂、化学处理等。
接下来,制备复合材料的基体。
基体通常由树脂或者金属制成。
树脂基体常用的有环氧树脂、聚酯树脂等,金属基体常用的有铝合金、钛合金等。
然后,将纤维与基体进行组合。
组合方法有多种,常用的有手工层叠法和机械叠放法。
手工层叠法是指将纤维一层层地放置在基体上,然后通过刷涂、挤压等方法使其充分浸润基体。
机械叠放法则是通过机器将纤维与基体进行叠放,并利用胶合剂将其固定在一起。
最后,进行固化和热处理。
固化是使树脂基体硬化的过程,可通过加热或加压等方式进行。
热处理则是将复合材料在高温下进行热处理,以提高其性能。
综上所述,复合材料的制备方法与工艺主要包括纤维的选择和表面处理、基体的制备、纤维与基体的组合、固化和热处理等步骤。
这些步骤的选择与操作将直接影响复合材料的性能和应用领域。
因此,在制备复合材料时需根据实际需求合理选择方法与工艺,以获得最佳的综合性能。
继续写相关内容,1500字:2.1 纤维的选择和表面处理在制备复合材料时,纤维的选择是非常重要的一步。
不同类型的纤维具有不同的性能特点和应用场景。
常用的纤维类型包括玻璃纤维、碳纤维、草木纤维等。
玻璃纤维是最常用的一种纤维,具有良好的抗拉强度和抗化学侵蚀性能。
它在电子、航空航天、建筑等领域得到广泛应用。
碳纤维具有良好的强度和刚度,同时具有重量轻、耐热性好等优点,主要用于航空航天、汽车和体育器材制造等领域。
草木纤维主要通过天然植物纤维,如棉花、麻、竹等,具有良好的生物降解性和可再生性,广泛应用于纺织和包装等领域。
CC复合材料的制备及方法
C/C复合材料的制备及方法地点:山西大同大学炭研究所时间:5.31——6.3学习内容:一、C/C复合材料简述C/C复合材料是以碳纤维及其织物为增强材料,以碳为基体,通过加工处理和碳化处理制成的全碳质复合材料。
优点:抗热冲击和抗热诱导能力极强,具有一定的化学惰性,高温形状稳定,升华温度高,烧蚀凹陷低,在高温条件下的强度和刚度可保持不变,抗辐射,易加工和制造,重量轻。
缺点:非轴向力学性能差,破坏应变低,空洞含量高,纤维与基体结合差,抗氧化性能差,制造加工周期长,设计方法复杂。
二、C/C复合材料的成型技术化学气相沉积法气相沉积法(CVD法):将碳氢化合物,如甲烷、丙烷、液化天然气等通入预制体,并使其分解,析出的碳沉积在预制体中。
技术关键:热分解的碳均匀沉积到预制体中。
影响因素:预制体的性质、气源和载气、温度和压力都将影响过程的效率、沉积碳基体的性能及均匀性。
工艺方法:温度梯度法温度梯度法工艺方法:将感应线圈和感应器的几何形状做得与预制体相同。
接近感应器的预制体外表面是温度最高的区域,碳的沉积由此开始,向径向发展。
温度梯度法的设备如下图:三、预制体的制备碳纤维预制体是根据结构工况和形状要求,编织而成的具有大量空隙的织物。
二维编织物:面内各向性能好,但层间和垂直面方向性能差;如制备的氧化石墨烯和石墨烯三维编织物:改善层间和垂直面方向性能;如热解炭四、C/C的基体的获得C/C的基体材料主要有热解碳和浸渍碳两种。
热解碳的前驱体:主要有甲烷、乙烷、丙烷、丙烯和乙烯以及低分子芳烃等;大同大学炭研究所使用的是液化天燃气。
浸渍碳的前驱体:主要有沥青和树脂五、预制体和碳基体的复合碳纤维编织预制体是空虚的,需向内渗碳使其致密化,以实现预制体和碳基体的复合。
渗碳方法:化学气相沉积法。
基本要求:基体的先驱体与预制体的特性相一致,以确保得到高致密和高强度的C/C复合材料。
化学气相沉积法制备工艺流程:碳纤维预制体→通入C、H化合物气体→加热分解、沉积→C/C复合材料。
复合材料的制备及其应用
复合材料的制备及其应用复合材料是由两种或多种不同材料组合而成的一种新型材料,其优点主要包括高强度、轻质化、耐腐蚀等特点。
随着科技的发展,复合材料已经广泛应用于航空航天、汽车、海洋工程等领域。
本文将介绍复合材料的制备方法以及常见的应用领域。
一、复合材料的制备方法1.浸渍法浸渍法是制备复合材料的最常见方法之一,其步骤如下:(1)将纤维材料浸泡在浸液中,使其充分湿润;(2)将浸渍后的纤维材料取出来,挤压去除多余的液体;(3)将浸渍后的纤维材料放入成型模具中,施加一定的压力;(4)加热硬化,使树脂固化成为复合材料。
2.层叠法层叠法是指将两种或多种材料按一定的顺序和方式层叠在一起,再进行压制和加热,使它们彼此结合成为一体。
这种方法最常用的材料是玻璃纤维布和环氧树脂,可以制备出高强度、轻质化的复合材料。
3.旋转成型法旋转成型法是将涂有树脂的毡带放置在旋转模具上,随后开始旋转,使树脂均匀地填充在毡带上,形成预定的形状。
该工艺主要适用于制备大小和形状相对简单的零件。
4.自动化生产随着科技的飞速发展,自动化制造已成为制备复合材料的一种常用方法。
自动化生产具有高效、精确的优点,能够大大节省人力资源,提高生产效率。
二、复合材料的应用领域1.航空航天航空航天领域是复合材料最广泛的应用领域之一。
复合材料的轻质化和高强度特点使其可以应用于制作飞机的机身、翼面、尾部等部件,提高飞机的综合性能,节约燃油成本。
2.汽车复合材料也被广泛应用于汽车领域。
可用于车顶、车门、车身等部件,大大降低了汽车的重量和汽车的阻力,提高了汽车的燃油效率和安全性。
3.海洋工程复合材料还可用于海洋工程中,如制造船舶的螺旋桨、潜艇、海底电缆等部件。
复合材料的耐腐蚀性、耐海水腐蚀性和轻质化特点,增加了零部件的使用寿命。
4.建筑复合材料还可用于建筑领域中。
现今很多高档建筑物中使用了大量的异形铝塑板材和金属复合板材,大大降低了建筑物的重量和提高了建筑物的建筑效率。
[整理]CC复合材料的制备及方法.
C/C复合材料的制备及方法地点:山西大同大学炭研究所时间:5.31——6.3学习内容:一、C/C复合材料简述C/C复合材料是以碳纤维及其织物为增强材料,以碳为基体,通过加工处理和碳化处理制成的全碳质复合材料。
优点:抗热冲击和抗热诱导能力极强,具有一定的化学惰性,高温形状稳定,升华温度高,烧蚀凹陷低,在高温条件下的强度和刚度可保持不变,抗辐射,易加工和制造,重量轻。
缺点:非轴向力学性能差,破坏应变低,空洞含量高,纤维与基体结合差,抗氧化性能差,制造加工周期长,设计方法复杂。
二、C/C复合材料的成型技术化学气相沉积法气相沉积法(CVD法):将碳氢化合物,如甲烷、丙烷、液化天然气等通入预制体,并使其分解,析出的碳沉积在预制体中。
技术关键:热分解的碳均匀沉积到预制体中。
影响因素:预制体的性质、气源和载气、温度和压力都将影响过程的效率、沉积碳基体的性能及均匀性。
工艺方法:温度梯度法温度梯度法工艺方法:将感应线圈和感应器的几何形状做得与预制体相同。
接近感应器的预制体外表面是温度最高的区域,碳的沉积由此开始,向径向发展。
温度梯度法的设备如下图:三、预制体的制备碳纤维预制体是根据结构工况和形状要求,编织而成的具有大量空隙的织物。
二维编织物:面内各向性能好,但层间和垂直面方向性能差;如制备的氧化石墨烯和石墨烯三维编织物:改善层间和垂直面方向性能;如热解炭四、C/C的基体的获得C/C的基体材料主要有热解碳和浸渍碳两种。
热解碳的前驱体:主要有甲烷、乙烷、丙烷、丙烯和乙烯以及低分子芳烃等;大同大学炭研究所使用的是液化天燃气。
浸渍碳的前驱体:主要有沥青和树脂五、预制体和碳基体的复合碳纤维编织预制体是空虚的,需向内渗碳使其致密化,以实现预制体和碳基体的复合。
渗碳方法:化学气相沉积法。
基本要求:基体的先驱体与预制体的特性相一致,以确保得到高致密和高强度的C/C复合材料。
化学气相沉积法制备工艺流程:碳纤维预制体→通入C、H化合物气体→加热分解、沉积→C/C复合材料。
CC-SiC复合材料两种制备工艺及材料能
为了开发具备良好介电能和力学能的多功能吸波复合材料以涤纶针织物为基布以环氧树脂为基体在基布
CC-SiC复合材料两种制备工艺及材料*能
以碳纤维整体毡为预制体,采用化学气相渗透法(CVI)制备出低密度碳/碳复合材料,再分别采用液相硅渗透工艺(LSI)制备出密度为2.1g/cm3的碳/碳-碳化硅复合材料(C/C-SiC),及先驱体转化工艺(PIP)制备出密度为1.9g/cm3的C/C-SiC.对2种工艺制备的C/C-SiC力学*能进行了比较,结果表明:PIP工艺制备的C/C-SiC弯曲强度为287MPa,明显高于LSI工艺制备的弯曲强度155MPa.
复合材料的制备方法与工艺
复合材料的制备方法与工艺复合材料是由两种或两种以上成分组成的材料,具有优于其各个组分的综合性能。
它通常由基材(Matrix)和增强材料(Reinforcement)两部分组成。
基材一般是塑料、金属或陶瓷等,而增强材料一般是纤维、颗粒、片状物等。
首先,手工叠层法是最简单而且最基础的制备方法之一、先将预先切割好的增强材料按照设计好的层数和方向进行堆叠,然后将堆叠好的组合件放入热压机中进行热压,从而将基材和增强材料黏合在一起。
这种方法适用于制备简单的平板材料。
其次,浸渍浸涂法适用于制备复杂形状的复合材料。
首先将增强材料放置于模具中,然后通过涂覆或浸泡等方法将基材涂覆或浸渍在增强材料上,最后用热压或固化工艺使材料硬化并黏结在一起。
再次,压模法适用于制备较大尺寸的复合材料。
该方法主要是通过将预先制备好的增强材料放置在模具中,然后将涂覆或浸渍过的基材放置在增强材料上,并施加压力使其黏合在一起。
这种方法是通过机械力来实现压合的。
第四,注射成型法主要是将预先制备好的增强材料放置于模具中,并通过注射机将熔化的基材注入模具中,待基材固化后,就得到了复合材料。
这种方法适用于制备较复杂的形状,但需要专用的注射设备。
第五,挤压法适用于制备中空或带有孔洞的复材。
首先将增强材料放置在挤压机的模型中,然后通过挤压机的作用使熔化的基材进入增强材料的孔隙中,形成复合材料。
挤压法可以制备出管道、管件等带有中空结构的复材。
最后,层压法是制备复合材料的常用方法之一,也是最常用的方法之一、将预先准备好的增强材料与基材层层叠放,然后将叠放好的组合件放入热压机中进行加热和压制。
加热可以使基材热软化,与增强材料更好地结合在一起,压制则可以使组合件中的孔隙被排除,从而提高复合材料的密度和强度。
综上所述,复合材料的制备方法和工艺有多种多样,每一种方法都有其适用的场合和条件。
通过选择合适的制备方法和工艺,可以获得具有理想性能的复合材料。
CC复合材料制备工艺简介
CC复合材料制备⼯艺简介沥青基碳材料本⽂来源:上海皓越精彩⽂章现在开始碳基复合材料碳/碳(C/C)复合材料是碳纤维增强碳基体的复合材料, 具有⾼强⾼模、⽐重轻、热膨胀系数⼩、抗腐蚀、抗热冲击、耐摩擦性能好、化学稳定性好等⼀系列优异性能, 是⼀种新型的超⾼温复合材料。
C/C复合材料作为优异的热结构-功能⼀体化⼯程材料。
它和其他⾼性能复合材料相同,是由纤维增强相和基本相组成的⼀种复合结构,不同之处是增强相和基本相均由具有特殊性能的纯碳组成。
碳/碳复合材料主要是由碳毡、碳布、碳纤维作为增强体,⽓相沉积碳做为基体经过复合⽽制成,但是它的组成元素只有⼀个就是碳这个元素。
为了增加密度,由碳化⽽⽣成的浸渍碳或浸渍在康铜树脂(或沥青),也就是说碳/碳复合材料是由三种碳材料复合⽽制成的。
碳碳复合材料的制造⼯艺⼀、碳碳/碳复合材料的制备过程包括增强纤维及其织物的选择、基体碳先驱体的选择、C/C预制坯体的成型、碳基体的致密化以及最终产品的加⼯检测等。
检测等1)碳纤维的选择纱束的排列取向、纱束间距、纱束体碳纤维束的选择和纤维织物的结构设计是制造C/C复合材料的基础,通过合理选择纤维种类和织物的编制参数,如纱束的排列取向、纱束间距、纱束体积含量等,可以决定C/C复合材料的⼒学性能和热物理性能。
积含量等2)碳纤维预制坯体的制备预成型结构件的加⼯⽅式主要有三种:软编、硬编和预制坯体是指按产品形状和性能要求先把纤维成型为所需结构形状的⽑坯,以便进⾏致密化⼯艺。
预成型结构件的加⼯⽅式主要有三种:软编、硬编和软硬混编。
编织⼯艺主要有:⼲纱编织、预浸渍维杆组排、细编穿刺、纤维缠绕以及三维多向整体编织等。
⽬前C复合材料主要使⽤的编织⼯艺是软硬混编。
编织⼯艺主要有:⼲纱编织、预浸渍维杆组排、细编穿刺、纤维缠绕以及三维多向整体编织等。
三维整体多向编织,编织过程中所有编织纤维按照⼀定的⽅向排列,每根纤维沿着⾃⼰的⽅向偏移⼀定的⾓度互相交织构成织物,其特点是可以成型三维多向整体织物,可以有效的控制C/C复合材料各个⽅向上纤维的体积含量,使得C/C复合材料在各个⽅向发挥合理的⼒学性能。
cc复合材料
cc复合材料CC复合材料。
CC复合材料是一种由碳纤维和环氧树脂组成的高性能材料,具有轻质、高强度、耐腐蚀、耐磨损等优点,被广泛应用于航空航天、汽车、船舶、体育器材等领域。
本文将从材料特性、制备工艺、应用领域等方面对CC复合材料进行介绍。
首先,CC复合材料的材料特性非常突出。
碳纤维具有高强度、高模量、低密度的特点,使得CC复合材料具有重量轻、刚性高的特性,能够满足工程结构对材料强度和刚度的要求。
同时,环氧树脂具有优异的粘接性能和耐腐蚀性能,能够有效保护碳纤维,延长材料的使用寿命。
因此,CC复合材料在航空航天领域得到广泛应用,可以用于制造飞机机身、导弹外壳等部件。
其次,CC复合材料的制备工艺非常关键。
制备CC复合材料的工艺包括预浸法、浸渍法、热压成型等多种方法。
其中,预浸法是将碳纤维预先浸渍在环氧树脂中,然后经过固化成型而成。
而浸渍法则是将碳纤维放置在环氧树脂中浸渍,再进行固化成型。
热压成型则是在高温高压下将预浸的碳纤维与环氧树脂进行加热压制。
这些工艺的选择和控制对于CC复合材料的性能和质量具有重要影响。
最后,CC复合材料在汽车、船舶、体育器材等领域也有着广泛的应用。
在汽车领域,CC复合材料可以用于制造车身、底盘等部件,能够减轻汽车重量,提高燃油效率,同时具有良好的抗冲击性能。
在船舶领域,CC复合材料可以用于制造船体、桅杆等部件,能够减轻船体重量,提高船舶速度和稳定性。
在体育器材领域,CC复合材料可以用于制造高尔夫球杆、网球拍等器材,具有良好的强度和韧性,提高了运动员的比赛表现。
总之,CC复合材料具有优异的材料特性,制备工艺成熟,应用领域广泛。
随着科技的不断进步,相信CC复合材料将在更多领域展现出其独特的优势,为人类社会的发展做出更大的贡献。
碳陶复合材料的制备及应用
碳陶复合材料的制备及应用碳陶复合材料是一种由碳材料和陶瓷材料组成的复合材料,具有优异的特性和广泛的应用领域。
碳材料具有良好的导电性、高强度、低密度等特点,而陶瓷材料具有优秀的耐磨、耐腐蚀、高温稳定等特性。
将这两种材料组合在一起,可以充分发挥各自的优点,实现更多应用领域的需求。
碳陶复合材料制备的方法主要有热压法、徐变热压法、化学气相沉积法、溶胶凝胶法等。
下面将分别介绍这几种方法。
1. 热压法:将碳材料和陶瓷材料粉末混合均匀后放置在高温高压环境下进行热压,使两种材料结合在一起。
该方法制备的碳陶复合材料具有较高的密度和力学性能,适用于制备高强度和抗磨损性能要求的材料。
2. 徐变热压法:先在碳材料表面通过懒增量(徐变)热压形成碳纤维预制体,然后再进行陶化烧结得到碳陶复合材料。
该方法能够避免直接热压对碳材料的烧结效果,提高了材料的抗裂性能和强度。
3. 化学气相沉积法:通过化学反应将碳原子和陶瓷原子沉积在基体上,形成碳陶复合材料。
该方法可以实现材料的均匀沉积,且可以沉积出复杂形状的材料。
但是该方法的制备周期长,成本较高。
4. 溶胶凝胶法:通过胶体化学反应制备复合材料。
将碳材料和陶瓷材料的前驱体溶液混合,形成凝胶,经过干燥和烧结处理得到碳陶复合材料。
该方法制备的材料具有较高的比表面积和孔隙率,适用于制备具有吸附、催化等性能要求的材料。
碳陶复合材料的应用非常广泛,以下是几个常见的应用领域:1. 航空航天领域:碳陶复合材料具有优异的耐高温、抗磨损和轻质化等特性,常用于飞机发动机叶片、航天器热结构件等部件。
2. 汽车工业:碳陶复合材料具有良好的热导率和抗磨损性能,可用于发动机零部件、刹车盘等。
3. 电子行业:碳陶复合材料具有良好的导电性和热导率,可用于制备电子封装材料、散热器等。
4. 医疗领域:碳陶复合材料具有低密度、机械性能和生物相容性,常用于人工关节、人工骨等医疗器械。
5. 纺织行业:碳陶复合材料可用于制备高性能的纤维材料,如碳纤维、复合材料纺丝等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C/C复合材料的制备及方法
地点:山西大同大学炭研究所
时间:5.31——6.3
学习内容:
一、C/C复合材料简述
C/C复合材料是以碳纤维及其织物为增强材料,以碳为基体,通过加工处理和碳化处理制成的全碳质复合材料。
优点:抗热冲击和抗热诱导能力极强,具有一定的化学惰性,高温形状稳定,升华温度高,烧蚀凹陷低,在高温条件下的强度和刚度可保持不变,抗辐射,易加工和制造,重量轻。
缺点:非轴向力学性能差,破坏应变低,空洞含量高,纤维与基体结合差,抗氧化性能差,制造加工周期长,设计方法复杂。
二、C/C复合材料的成型技术
化学气相沉积法
气相沉积法(CVD法):将碳氢化合物,如甲烷、丙烷、液化天然气等通入预制体,并使其分解,析出的碳沉积在预制体中。
技术关键:热分解的碳均匀沉积到预制体中。
影响因素:预制体的性质、气源和载气、温度和压力都将影响过程的效率、沉积碳基体的性能及均匀性。
工艺方法:温度梯度法
温度梯度法
工艺方法:将感应线圈和感应器的几何形状做得与预制体相同。
接近
感应器的预制体外表面是温度最高的区域,碳的沉积由此开始,向径向发展。
温度梯度法的设备如下图:
三、预制体的制备
碳纤维预制体是根据结构工况和形状要求,编织而成的具有大量空隙的织物。
二维编织物:面内各向性能好,但层间和垂直面方向性能差;如制备的氧化石墨烯和石墨烯
三维编织物:改善层间和垂直面方向性能;如热解炭
四、C/C的基体的获得
C/C的基体材料主要有热解碳和浸渍碳两种。
热解碳的前驱体:主要有甲烷、乙烷、丙烷、丙烯和乙烯以及低分子芳烃等;大同大学炭研究所使用的是液化天燃气。
浸渍碳的前驱体:主要有沥青和树脂
五、预制体和碳基体的复合
碳纤维编织预制体是空虚的,需向内渗碳使其致密化,以实现预制体和碳基体的复合。
渗碳方法:化学气相沉积法。
基本要求:基体的先驱体与预制体的特性相一致,以确保得到高致密和高强度的C/C复合材料。
化学气相沉积法制备工艺流程:
碳纤维预制体→通入C、H化合物气体→加热分解、沉积→C/C复合材料。
六、碳碳复合材料的机械加工和检测
可以用一般石墨材料的机械加工方法,对C/C制品进行加工。
对C/C
制成品的检测大同大学炭研究所没有介绍。
七、C/C复合材料的氧化保护
解决碳碳复合材料高温抗氧化的途径主要是,采用在碳碳复合材料表面施加抗氧化涂层,使C与O2隔开,保护C/C复合材料不被氧化。
大同大学炭研究所使用的方法是:抗氧化涂层法
抗氧涂层使用的试剂:高锰酸钾,磷酸二氢铝,甲醇
八、C/C复合材料的应用
刹车材料方面的应用
如C/C刹车片,用作飞机、汽车和高速火车的刹车材料等
其它方面的应用,如医疗工业等
碳纳米管制备及方法仪器:KTL1600管式炉
载体:瓷舟
保护气体:Ar气
原料:液化石油气(丙烷/丁烷)催化剂:二茂铁C10H10Fe,S粉尾气处理:H2O、H2SO4
通常加热600度左右。