2020人教版八年级下册数学《期末考试题》含答案

合集下载

2020年八年级数学下期末试卷(含答案)

2020年八年级数学下期末试卷(含答案)

2020年八年级数学下期末试卷(含答案)一、选择题1.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥2.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是( )A .b 2﹣c 2=a 2B .a :b :c =3:4:5C .∠A :∠B :∠C =9:12:15D .∠C =∠A ﹣∠B3.要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( )A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =0 4.如图,在四边形ABCD 中,AB ∥CD ,要使得四边形ABCD 是平行四边形,可添加的条件不正确的是 ( )A .AB=CDB .BC ∥AD C .BC=AD D .∠A=∠C5.计算12(75+313﹣48)的结果是( ) A .6 B .43C .23+6D .12 6.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A .B .C.D.7.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.当x值增大时,y的值随着x增大而减小B.函数图象与y轴的交点坐标为(0,2)C.函数图象经过第一、二、四象限D.图象经过点(1,5)8.对于函数y=2x+1下列结论不正确是()A.它的图象必过点(1,3)B.它的图象经过一、二、三象限C.当x>12时,y>0D.y值随x值的增大而增大9.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为()A.1B.2C.3D.410.若一个直角三角形的两边长为12、13,则第三边长为()A.5B.17C.5或17D.5或11.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法不一定成立的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD12.如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处.若AFD的周长为18,ECF的周长为6,四边形纸片ABCD的周长为()A.20B.24C.32D.48二、填空题13.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1_____S 2;(填“>”或“<”或“=”)14.已知一次函数y =kx +b(k≠0)经过(2,-1),(-3,4)两点,则其图象不经过第________象限.15.已知20n 是整数,则正整数n 的最小值为___16.已知()()1,32,1A B -、,点P 在y 轴上,则当y 轴平分APB ∠时,点P 的坐标为______.17.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路s 关于行走的时间t 和函数图象,则两图象交点P 的坐标是_____.18.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 19.若二次根式2019x -在实数范围内有意义,则x 的取值范围是_____.20.若一个多边形的内角和是900º,则这个多边形是 边形.三、解答题21.如图,在平行四边形ABCD 中,点E 为AD 的中点,延长CE 交BA 的延长线于点F .(1)求证:AB =AF ;(2)若BC =2AB ,∠BCD =100°,求∠ABE 的度数.22.计算:(.23.已知正方形 ABCD 的对角线 AC ,BD 相交于点 O .(1)如图 1,E ,G 分别是 OB ,OC 上的点,CE 与 DG 的延长线相交于点 F . 若 DF ⊥CE ,求证:OE =OG ;(2)如图 2,H 是BC 上的点,过点H 作EH⊥BC,交线段OB 于点E,连结DH 交CE 于点F,交OC 于点G.若OE=OG,①求证:∠ODG=∠OCE;②当AB=1 时,求HC 的长.24.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x 轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.25.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF求证:四边形BECF是平行四边形.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】观察函数图象结合点P的坐标,即可得出不等式的解集.解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.2.C解析:C【解析】【分析】根据勾股定理逆定理可判断出A 、B 是否是直角三角形;根据三角形内角和定理可得C 、D 是否是直角三角形.【详解】A 、∵b 2-c 2=a 2,∴b 2=c 2+a 2,故△ABC 为直角三角形;B 、∵32+42=52,∴△ABC 为直角三角形;C 、∵∠A :∠B :∠C=9:12:15,151807591215C ︒︒∠=⨯=++,故不能判定△ABC 是直角三角形;D 、∵∠C=∠A-∠B ,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC 为直角三角形; 故选C .【点睛】考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断. 3.C解析:C【解析】【分析】根据y=kx+b (k 、b 是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m ﹣2)x n ﹣1+n 是一次函数,∴m ﹣2≠0,n ﹣1=1,∴m≠2,n=2,故选C .【点睛】本题考查了一次函数,y=kx+b ,k 、b 是常数,k≠0,x 的次数等于1是解题关键.4.C解析:C【解析】根据平行四边形的判定方法,逐项判断即可.【详解】∵AB∥CD,∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;当BC∥AD时,由两组对边分别平行的四边形为平行四边形可知该条件正确;当∠A=∠C时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件正确;当BC=AD时,该四边形可能为等腰梯形,故该条件不正确;故选:C.【点睛】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.5.D解析:D【解析】【分析】【详解】===.12故选:D.6.D解析:D【解析】【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s最大,到家,s为0,据此可判断.【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF符合要求.故选D.【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.7.D解析:D【解析】【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【详解】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:D.【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.8.C解析:C【解析】【分析】利用k、b的值依据函数的性质解答即可.【详解】解:当x=1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,∴B、D正确,∵y>0,∴2x+1>0,∴x>﹣12,∴C选项错误,故选:C.【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键. 9.C解析:C【分析】由O是矩形ABCD对角线AC的中点,可求得AC的长,然后运用勾股定理求得AB、CD 的长,又由M是AD的中点,可得OM是△ACD的中位线,即可解答.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB=22AC BC-=22108-=6,∵M是AD的中点,∴OM=12CD=3.故答案为C.【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.10.D解析:D【解析】【分析】根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当12,13为两条直角边时,第三边==,当13,12分别是斜边和一直角边时,第三边==5.故选D.【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.11.D解析:D【解析】【分析】根据矩形性质可判定选项A、B、C正确,选项D错误.【详解】∵四边形ABCD为矩形,∴∠ABC=90°,AC=BD,OA=OB ,故选D本题考查了矩形的性质,熟练运用矩形的性质是解决问题的关键.12.B解析:B【解析】【分析】根据折叠的性质易知矩形ABCD的周长等于△AFD和△CFE的周长的和.【详解】由折叠的性质知,AF=AB,EF=BE.所以矩形的周长等于△AFD和△CFE的周长的和为18+6=24cm.故矩形ABCD的周长为24cm.故答案为:B.【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.二、填空题13.=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积△MBK 的面积=△QKB的面积△PKD的面积=△NDK的面积进而求出答案【详解】解:∵四边形ABCD是矩形四边形MBQK是矩形四边形解析:=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,进而求出答案.【详解】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S2.故答案为:=.【点睛】本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.14.三【解析】设y=kx+b得方程组-1=2k+b4=-3k+b解得:k=-1b=1故一次函数为y=-x+1根据一次函数的性质易得图象经过一二四象限故不经过第三象限故答案:三【解析】设y=kx+b ,得方程组 解得:k=-1,b=1,故一次函数为y=-x+1,根据一次函数的性质,易得,图象经过一、二、四象限,故不经过第三象限.故答案:三.15.5【解析】【分析】因为是整数且则5n 是完全平方数满足条件的最小正整数n 为5【详解】∵且是整数∴是整数即5n 是完全平方数;∴n 的最小正整数值为5故答案为:5【点睛】主要考查了二次根式的定义关键是根据乘解析:5【解析】【分析】 20n 20=25n n ,则5n 是完全平方数,满足条件的最小正整数n 为5.【详解】 20=25n n 20n ∴5n 5n 是完全平方数;∴n 的最小正整数值为5.故答案为:5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.16.【解析】【分析】作点A 关于y 轴对称的对称点求出点的坐标再求出直线的解析式将代入直线解析式中即可求出点P 的坐标【详解】如图作点A 关于y 轴对称的对称点∵点A 关于y 轴对称的对称点∴设直线的解析式为将点和点 解析:()0,5【解析】【分析】作点A 关于y 轴对称的对称点A ',求出点A '的坐标,再求出直线BA '的解析式,将0x =代入直线解析式中,即可求出点P 的坐标.【详解】如图,作点A 关于y 轴对称的对称点A '∵()1,3A ,点A 关于y 轴对称的对称点A '∴()1,3A '-设直线BA '的解析式为y kx b =+将点()1,3A '-和点()2,1B -代入直线解析式中312k b k b =-+⎧⎨=-+⎩解得2,5k b ==∴直线BA '的解析式为25y x =+将0x =代入25y x =+中解得5y =∴()0,5P故答案为:()0,5.【点睛】本题考查了坐标点的问题,掌握角平分线的性质、轴对称的性质、一次函数的性质是解题的关键.17.(324800)【解析】【分析】根据题意可以得到关于t 的方程从而可以求得点P 的坐标本题得以解决【详解】由题意可得150t =240(t ﹣12)解得t =32则150t =150×32=4800∴点P 的坐标解析:(32,4800)【解析】【分析】根据题意可以得到关于t 的方程,从而可以求得点P 的坐标,本题得以解决.【详解】由题意可得,150t =240(t ﹣12),解得,t =32,则150t =150×32=4800,∴点P 的坐标为(32,4800),故答案为:(32,4800).【点睛】本题考查了一次函数的应用,根据题意列出方程150t =240(t ﹣12)是解决问题的关键. 18.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB 边的高即可得到答案【详解】如图作出AB 边上的高CD∵AC=BC=13AB=10∴△ABC 是等腰三角形∴AD=BD=5根据勾股定理C 解析:60【解析】【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2, 22135-,12ABC SCD AB =⋅=112102⨯⨯=60, 故答案为:60.【点睛】 此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.19.x >2019【解析】【分析】根据二次根式的定义进行解答【详解】在实数范围内有意义即x-20190所以x 的取值范围是x2019【点睛】本题考查了二次根式的定义熟练掌握二次根式的定义是本题解题关键解析:x >2019【解析】【分析】根据二次根式的定义进行解答.【详解】2019x -x-2019≥ 0,所以x 的取值范围是x ≥ 2019.【点睛】本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.20.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键解析:七【解析】【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.三、解答题21.(1)证明见解析;(2)∠ABE =40°.【解析】【分析】(1)由四边形ABCD 是平行四边形,点E 为AD 的中点,易证得△DEC ≌△AEF (AAS ),继而可证得DC =AF ,又由DC =AB ,证得结论;(2)由(1)可知BF =2AB ,EF =EC ,然后由∠BCD =100°求得BE 平分∠CBF ,继而求得答案.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB ,∴∠DCE =∠F ,∠FBC+∠BCD =180°,∵E 为AD 的中点,∴DE =AE .在△DEC 和△AEF 中,DCE F DEC AEF DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEC ≌△AEF (AAS ).∴DC =AF .∴AB =AF ;(2)由(1)可知BF =2AB ,EF =EC ,∵∠BCD =100°,∴∠FBC =180°﹣100°=80°,∵BC =2AB ,∴BF=BC,∴BE平分∠CBF,∴∠ABE=12∠FBC=12×80°=40°【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC≌△AEF和△BCF是等腰三角形是关键.22.7-2【解析】【分析】利用平方差公式和完全平方公式计算即可.【详解】原式==7﹣2.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.23.(1)证明见解析;(2)①证明见解析;②5-1 2.【解析】【分析】(1)欲证明OE=OG,只要证明△DOG≌△COE(ASA)即可;(2)①欲证明∠ODG=∠OCE,只要证明△ODG≌△OCE即可;②设CH=x,由△CHE∽△DCH,可得EH HCHC CD,即HC2=EH•CD,由此构建方程即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是正方形,∴AC⊥BD,OD=OC,∴∠DOG=∠COE=90°,∴∠OEC+∠OCE=90°,∵DF⊥CE,∴∠OEC+∠ODG=90°,∴∠ODG=∠OCE,∴△DOG≌△COE(ASA),∴OE=OG.(2)①证明:如图2中,∵OG=OE,∠DOG=∠COE=90°OD=OC,∴△ODG≌△OCE,∴∠ODG=∠OCE.②解:设CH=x,∵四边形ABCD是正方形,AB=1,∴BH=1﹣x,∠DBC=∠BDC=∠ACB=45°,∵EH⊥BC,∴∠BEH=∠EBH=45°,∴EH=BH=1﹣x,∵∠ODG=∠OCE,∴∠BDC﹣∠ODG=∠ACB﹣∠OCE,∴∠HDC=∠ECH,∵EH⊥BC,∴∠EHC=∠HCD=90°,∴△CHE∽△DCH,∴EH HCHC CD=,∴HC2=EH•CD,∴x2=(1﹣x)•1,解得x=512-或512--(舍弃),∴HC=512-.24.(1) y=43x+53;(2)52.【解析】【分析】(1)求经过已知两点坐标的直线解析式,一般是按待定系数法步骤求得;(2)△AOB的面积=S△AOD+S△BOD,因为点D 是在y轴上,据其坐标特点可求出DO的长,又因为已知A、B点的坐标则可分别求三角形S△AOD与S△BOD的面积.【详解】解:(1)把A(﹣2,﹣1),B(1,3)代入y=kx+b得213k bk b-+=-⎧⎨+=⎩,解得4353kb⎧=⎪⎪⎨⎪=⎪⎩.所以一次函数解析式为y=43x+53;(2)把x=0代入y=43x+53得y=53,所以D点坐标为(0,53),所以△AOB的面积=S△AOD+S△BOD=12×y=43x+53;×2+12×y=43x+53×1=52.【点睛】本题考查了待定系数法求一次函数解析式.用待定系数法求一次函数的步骤:(1)设出函数关系式;(2)把已知条件(自变量与函数的对应值)代入函数关系式中,得到关于待定系数的方程(组).25.证明见解析.【解析】【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC,设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OD,OB=OC.∵AE=DF,OA﹣AE=OD﹣DF,∴OE=OF.∴四边形BEDF是平行四边形.。

2020人教版八年级下册数学《期末检测试卷》(附答案解析)

2020人教版八年级下册数学《期末检测试卷》(附答案解析)

人教版数学八年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8B. x <8C. x≤8D. x >0且x≠82.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 34.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个) 35 38 42 44 40 47 45 45 则这组数据的中位数、平均数分别是( ) A. 42、42B. 43、42C. 43、43D. 44、435.在实验课上,小亮利用同一块木板测得小车从不同高度()h 与下滑的时间()t 的关系如下表:下列结论错误的是( ) A. 当40h =时,t 约2.66秒 B. 随高度增加,下滑时间越来越短 C. 估计当80h cm =时,t 一定小于2.56秒 D. 高度每增加了10cm ,时间就会减少0.24秒 6.如果点A (﹣2,a )在函数y 12=-x +3的图象上,那么a 的值等于( ) A. ﹣7B. 3C. ﹣1D. 4Y的周长为( 7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD)A. 20B. 16C. 12D. 88.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差11.对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是()A. 1B. 2C. 3D. 412.如图,点E,F 是▱ABCD 对角线上两点,在条件①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AEB( )=∠CFD 中,添加一个条件,使四边形DEBF 是平行四边形,可添加的条件是A. ①②③B. ①②④C. ①③④D. ②③④13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.三、解答题(本大题共7小题,共63分)20.计算:12 (27246)12 33+-⋅21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A,B,C是小正方形的顶点,求∠ABC的度数.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:分析数据:应用数据;(1)计算甲车间样品合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.答案与解析一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8 B. x <8C. x≤8D. x >0且x≠8【答案】C 【解析】根据二次根式的性质,被开方数大于等于0可得: 80x -≥,解得: 8x ≤,故选C. 2.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 【答案】B 【解析】 【分析】直接利用二次根式的性质分别化简的得出答案. 【详解】A .(5-)2=5,正确,不合题意; B .ab a b =(a ≥0,b ≥0),故此选项错误,符合题意; C .23π-=()π﹣3,正确,不合题意;D .82233=,正确,不合题意. 故选B .【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 3【答案】C【解析】分析:根据等腰三角形三线合一的性质可得BD=CD,然后根据勾股定理求出AD的长即可.详解:∵AB=AC=5,AD平分∠BAC,BC=6∴BD=CD=3,∠ADB=90°∴AD=22AB BD-=4.故选C.点睛:本题考查了等腰三角形三线合一的性质和勾股定理,熟记性质并准确识图是解题的关键.4.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:42442+=43,x=18(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.5.在实验课上,小亮利用同一块木板测得小车从不同高度()h与下滑的时间()t的关系如下表:下列结论错误的是()A. 当40h=时,t约2.66秒B.随高度增加,下滑时间越来越短C. 估计当80h cm=时,t一定小于2.56秒D. 高度每增加了10cm,时间就会减少0.24秒【答案】D 【解析】【分析】一个用图表表示的函数,根据给出的信息,对四个选项逐一分析,即可解答.【详解】A选项:当h=40时,t约2.66秒;B选项:高度从10cm增加到50cm,而时间却从3.25减少到2.56;C选项:根据B中的估计,当h=80cm时,t一定小于2.56秒;D选项:错误,因为时间的减少是不均匀的;故选D.【点睛】考查了函数的概念,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).6.如果点A(﹣2,a)在函数y12=-x+3的图象上,那么a的值等于()A. ﹣7B. 3C. ﹣1D. 4 【答案】D【解析】【分析】把点A的坐标代入函数解析式,即可得a的值.【详解】根据题意,把点A的坐标代入函数解析式,得:a12=-⨯(﹣2)+3=4.故选D.【点睛】本题考查了一次函数图象上点的坐标特征,是基础题型.7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCDY的周长为( )A. 20B. 16C. 12D. 8【答案】B【解析】【分析】首先证明:OE=12BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=12 BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.【答案】A【解析】试题解析:当k>0,b>0时,函数y=kx+b的图象过第一、二、三象限;当k<0,b<0时,函数y=kx+b的图象过第一、二、四象限.由此可知选项A是正确的.故选A.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形【答案】D【解析】【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】A. 根据邻边相等的平行四边形是菱形可知:四边形ABCD 是平行四边形,当AB=BC 时,它是菱形,故本选项不符合题意;B. 根据对角线互相垂直的平行四边形是菱形知:当AC ⊥BD 时,四边形ABCD 是菱形,故本选项不符合题意;C. 根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项不符合题意;D. 根据对角线相等的平行四边形是矩形可知:当AC=BD 时,它是矩形,不是正方形,故本选项符合题意; 故选D.【点睛】此题考查平行四边形的性质,菱形的判定,矩形的判定,正方形的判定,解题关键在于掌握判定定理.10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( )A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差 【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7, 26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 11.对于函数y=﹣2x+2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y 的值随x 的增大而增大,其中正确结论的个数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据一次函数的系数,结合一次函数的性质,逐个分析即可得.【详解】①∵k=﹣2<0, ∴一次函数中y 随x 的增大而减小.∵令y=﹣2x+2中x=1,则y=0,∴当x >1时,y <0成立,即①正确;②∵k=﹣2<0,b=2>0,∴一次函数的图象经过第一、二、四象限,即②正确;③令y=﹣2x+2中x=﹣1,则y=4,∴一次函数的图象不过点(﹣1,2),即③不正确;④∵k=﹣2<0,∴一次函数中y 随x 的增大而减小,④不正确.故选B【点睛】本题考核知识点:一次函数性质. 解题关键点:熟记一次函数基本性质.12.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④【答案】D【解析】分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.详解:添加条件①,不能得到四边形DEBF是平行四边形,故①错误;添加条件②∠ADE=∠CBF.∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∴△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴DEBF是平行四边形,故②正确;添加条件③AF=CE.易得AD=BC,∠DAC=∠BCA,∴△ADF≌△CBE,∴DF=BE,∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故③正确;添加条件④∠AEB=∠CFD.∵ABCD是平行四边形,DC=AB,DC∥AB,∴∠DCF=∠BAE.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴DF=BE.∵∠AEB=∠CFD,∴∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故④正确.综上所述:可添加的条件是:②③④.故选D.点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案【答案】B【解析】【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2mn即四个直角三角形的面积和,从而不难求得(m+n)2.【详解】(m+n)2=m2+n2+2mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣2)=24.故选B.【点睛】本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.【答案】C【解析】【分析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=12x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.【答案】8米.【解析】【分析】在Rt△ABC中,利用勾股定理即可求出BC的值.【详解】在Rt△ABC中,AB2=AC2+BC2.∵AB=10米,AC=6米,∴BC22=-=8米,即梯子的底端到墙的底端的距离为8米.AB AC故答案为8米.【点睛】本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.【答案】1【解析】这组数出现次数最多的是29;∴这组数的众数是29.∵共42人,∴中位数应是第21和第22人的平均数,位于最中间的数是28,28,∴这组数的中位数是28.∴该班中考英语口语考试成绩的众数比中位数多29﹣28=1分,故答案为1.【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.【答案】y=﹣2x+5【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+5.故答案为y=﹣2x+5.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.【答案】20【解析】【分析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得30030 90050k b k b=+⎧⎨=+⎩,解得,30600kb=⎧⎨=-⎩,则y=30x-600.当y=0时,30x-600=0,解得:x=20.故答案为20.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.【答案】13【解析】【分析】由AC ⊥BC ,AB =10,AD =BC=6,根据勾股定理求得AC 的长,得出OA 的长,然后再由勾股定理求得OB 即可.【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,OD=OB,OA=OC,∵AC ⊥BC ,∴=8,∴OC=4,∴∴【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.三、解答题(本大题共7小题,共63分)20.计算:【答案】6【解析】分析:先将二次根式化为最简,然后合并同类二次根式,根据二次根式的乘法进行运算即可.详解:原式1633⎛=⨯⨯⨯ ⎝⎭=⨯==6.点睛:考查二次根式混合运算,掌握运算顺序是解题的关键.21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠ABC 的度数.【答案】(1)见解析;(2)∠ABC =45°.【解析】【分析】(1)根据勾股定理作出边长为5的正方形即可得;(2)连接AC ,根据勾股定理逆定理可得△ABC 是以AC 、BC 为腰的等腰直角三角形,据此可得答案.【详解】(1)如图1所示:(2)如图2,连AC ,则22221251310BC AC AB ==+==+=,.∵2225510+=()()(),即BC 2+AC 2=AB 2,∴△ABC 为直角三角形,∠ACB =90°,∴∠ABC =∠CAB =45°.【点睛】本题考查了作图﹣基本作图,解题的关键是掌握勾股定理及其逆定理和正方形的判定和性质.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:组别165.5~170.5 170.5~175.5 175.5~180.5 180.5~185.5 185.5~190.5 190.5~195.5频数甲车间 2 4 5 6 2 1乙车间 1 2 a b 2 0分析数据:车间平均数众数中位数方差甲车间180 185 180 43.1乙车间180 180 180 22.6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.【答案】(1)甲车间样品的合格率为55% (2)乙车间的合格产品数为750个;(3)乙车间生产的新产品更好,理由见解析.【解析】分析:(1)根据甲车间样品尺寸范围为176mm~185mm 的产品的频数即可得到结论;(2)用总数20减去乙车间不合格样品的频数得到乙车间样品的合格产品数,从而得到乙车间样品的合格率,用合格率乘以1000即可得到结论.(3)可以根据合格率或方差进行比较.详解:(1)甲车间样品的合格率为56100%55%20+⨯=; (2)∵乙车间样品的合格产品数为()2012215-++=(个), ∴乙车间样品的合格率为15100%75%20⨯=, ∴乙车间的合格产品数为100075%750⨯=(个).(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好.②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.点睛:本题考查了频数分布表和方差.解题的关键是求出合格率,用样本估计总体.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.【答案】(1) y=2x+1;(2)不;(3)0.25. 【解析】【分析】(1)用待定系数法求解函数解析式;(2)将点P 坐标代入即可判断;(3)求出函数与x 轴、y 轴的交点坐标,后根据三角形的面积公式即可求解.【详解】解答:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P(-1,1)代入函数解析式,1≠-2+1,∴点P不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12 -,此函数与x轴、y轴围成的三角形的面积为:11110.25 224⨯⨯-==24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.【答案】见解析;【解析】【分析】连接BD交AC于点O,根据平行四边形的性质证明即可.【详解】连接BD交AC于点O.∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.【点睛】本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?【答案】(1) y=0.8x+50;(2)见解析.【解析】分析:(1)普通会员分当0<x≤300时和当x>300时两种情况求解,根据总费用=购物费+运费写出解析式;VIP会员根据总费用=购物费+会员费写出解析式;(2)把0.9x与0.8x+50分三种情况比较大小,从而得出答案.详解:(1)普通会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:当0<x≤300时,y=x+30;当x>300时,y=0.9x;VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:y=0.8x+50;(2)当0.9x<0.8x+50时,解得:x<500;当0.9x=0.8x+50时,x=500;当0.9x>0.8x+50时,x>500;∴当购买的商品金额300<x<500时,按普通会员购买合算;当购买的商品金额x>500时,按VIP会员购买合算;当购买商品金额x=500时,两种方式购买一样合算.点睛:本题考查了一次函数的实际应用,一元一次不等式的实际应用及分类讨论的数学思想,分三种情况讨论,从而得出比较合算的购买方式是解答(2)的关键.26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【答案】见解析【解析】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.【点评】此题考查了菱形的判定与性质以及全等三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.。

初二数学期末考试题,2020年八年级下学期数学下册期末试卷及答案(人教版)

初二数学期末考试题,2020年八年级下学期数学下册期末试卷及答案(人教版)
试题,包含选择题、填空题、计算题等多个题型,全面覆盖了本学期所学的数学知识点。试题难度适中,既有基础题也有拓展题,能够很好地检验学生对本学期数学知识的掌握情况。同时,本试卷还配备了详细的答案解析,方便学生进行自我检测和订正。然而,需要注意的是,本试卷并非用户所搜索的2024年秋季初二下册期中考试数学试卷,因此可能无法完全满足用户的当前需求。建议用户在备考时结合其他相关资料进行练习,以更全面地掌握所学知识点。

人教版数学八年级下学期《期末考试卷》附答案

人教版数学八年级下学期《期末考试卷》附答案

2020-2021学年第二学期期末测试人教版数学八年级试题学校________ 班级________ 姓名________ 成绩________本试卷满分120分,考试时间90分钟,一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列二次根式中,无论x取什么值都有意义的是()A.√x2−5B.√−x−5C.√x D.√x2+12.一次函数y=7x﹣6的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°4.在下列各式中,化简正确的是()A.√53=3√15B.√12=±12√2C.√a4b=a2√b D.√x3−x2=−x√x−15.党的十八大报告中对教育明确提出“减负提质”要求.为了解我校九年级学生平均每周课后作业时量,某校园小记者随机抽查了50名九年级学生,得到如下统计表:周作业时量/小时 4 6 8 10 12 人数 2 23 21 3 1 则这次调查中的众数、中位数是()A.6,8 B.6,7 C.8,7 D.8,86.为备战奥运会,甲、乙、丙、丁四位优秀短跑选手参加训练,近期的10次百米测试平均成绩都是10.3秒,但他们成绩的方差分别是0.020、0.019、0.021、0.022(单位:秒2).则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁7.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形8.如图,分别以Rt△ABC的三条边为边向外作正方形,面积分别记为S1,S2,S3.若S1=36,S2=64,则S3=()A.8 B.10 C.80 D.1009.如图,在△ABC中,∠C=90°,点D在斜边AB上,且AD=CD,则下列结论中错误的结论是()A.∠DCB=∠B B.BC=BDC.AD=BD D.∠ACD=12∠BDC10.如图,直线y=kx+b与直线y=−12x+52交于点A(m,2),则关于x的不等式kx+b≤−12x+52的解集是()A.x≤2 B.x≥1 C.x≤1 D.x≥211.如图,一艘船以40km/h的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km/h的速度由南向北移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离BA=300km,如果这艘轮船会受到台风影响,那么从接到警报开始,经过()小时它就会进入台风影响区.A.10 B.7 C.6 D.1212.如图,矩形ABCD的对角线AC,BD相交于点O,点P是AD边上的一个动点,过点P分别作PE⊥AC于点E,PF⊥BD于点F.若AB=6,BC=8,则PE+PF的值为()A.10 B.9.6 C.4.8 D.2.4二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.某一次函数的图象经过点(﹣1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式.14.等腰直角三角形斜边上的高为1cm,则这个三角形的周长为cm.15.新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示.根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么(填“李老师”或“王老师”)将被录用.测试项目测试成绩李老师王老师笔试90 95面试85 8016.观察计算结果:①3=1;②√13+23=3;③√13+23+33=6;④√13+23+33+43=10,用你发现的规律写出式子的值√13+23+33+⋯+103=17.如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =8,E 是BC 的中点,点P 以每秒1个单位长度的速度从A 点出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动,点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.18.如图,以等腰直角三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,…,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的斜边长为 .三、解答题(本大题共8小题,共66分.请在试题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算下列各题:(1)√12−(π+√2)0+(12)﹣1+|1−√3|;(2)8√12−√6×2√3+(√2+1)2.20.如图,为迎接中国共产党建党100周年,武汉市磨山景区拟对园中的一块空地进行美化施工,已知AB =3米,BC =4米,∠ABC =90°,AD =12米,CD =13米,欲在此空地上种植盆景造型,已知盆景每平方米500元,试问用该盆景铺满这块空地共需花费多少元?21.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆,标志着我国首次地外采样返回任务圆满完成.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.知识竞赛演讲比赛版面创作项目班次甲85 91 8887乙90 8422.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F (1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求EF的长23.如图,在平面直角坐标系中,过点B(4,0)的直线AB与直线OA相交于点A(3,1),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式;(2)直线AB交y轴于点C,求△OAC的面积;(3)当△OAC的面积是△OMC面积的3倍时,求出这时点M的坐标.24.在一条公路上依次有A,B,C三地,甲车从A地出发,驶向C地,同时乙车从C地出发驶向B地,到达B地停留0.5小时后,按原路原速返回C地,两车匀速行驶,甲车比乙车晚1.5小时到达C地.两车距各自出发地的路程y(千米)与时间x(小时)之间的函数关系如图所示.请结合图象信息解答下列问题:(1)甲车行驶速度是千米/时,B,C两地的路程为千米;(2)求乙车从B地返回C地的过程中,y(千米)与x(小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.25.如图,矩形OABC的顶点与坐标原点O重合,将△OAB沿对角线OB所在的直线翻折,点A落在点D处,OD 与BC相交于点E,已知OA=8,AB=4(1)求证:△OBE是等腰三角形;(2)求E点的坐标;(3)坐标平面内是否存在一点F,使得以B,D,E,P为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.26.如图,已知四边形ABCD是正方形,对角线AC、BD相交于O.(1)如图1,设E、F分别是AD、AB上的点,且∠EOF=90°,线段AF、BF和EF之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E、F分别是AB上不同的两个点,且∠EOF=45°,请你用等式表示线段AE、BF和EF之间的数量关系,并证明.参考答案本试卷满分120分,考试时间90分钟一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列二次根式中,无论x取什么值都有意义的是()A.√x2−5B.√−x−5C.√x D.√x2+1【分析】根据二次根式中的被开方数是非负数进行分析即可.【解析】A、当x=1时,√x2−5无意义,故此选项错误;B、当x=1时,√−x−5无意义,故此选项错误;C、当x<0时,√x无意义,故此选项错误;D、无论x取什么值,√x2+1都有意义,故此选项正确;故选:D.2.一次函数y=7x﹣6的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数图象不经过哪个象限.【解析】∵一次函数y=7x﹣6,k=7,b=﹣6,∴该函数经过第一、三、四象限,不经过第二象限,故选:B.3.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°【分析】直接利用菱形的性质得出DC∥AB,∠DAC=∠1,进而结合平行四边形的性质得出答案.【解析】∵四边形ABCD是菱形,∴DC∥AB,∠DAC=∠1,∵∠D=130°,∴∠DAB=180°﹣130°=50°,∴∠1=12∠DAB=25°.4.在下列各式中,化简正确的是( ) A .√53=3√15 B .√12=±12√2C .√a 4b =a 2√bD .√x 3−x 2=−x √x −1【分析】根据二次根式的性质求出每个式子的值,再根据求出的结果进行判断即可. 【解析】A 、结果是13√15,故本选项错误;B 、结果是12√2,故本选项错误;C 、√a 4b =a 2√b ,故本选项正确;D 、当x ≥1时,√x 3−x 2=√x 2(x −1)=|x |√x −1=x √x −1,故本选项错误; 故选:C .5.党的十八大报告中对教育明确提出“减负提质”要求.为了解我校九年级学生平均每周课后作业时量,某校园小记者随机抽查了50名九年级学生,得到如下统计表: 周作业时量/小时4 6 8 10 12 人数2232131则这次调查中的众数、中位数是( ) A .6,8B .6,7C .8,7D .8,8【分析】根据众数、中位数的定义求解即可.【解析】由统计表可知,学生平均每周课后作业时量为6小时的有23人,人数最多,故众数是6; 因表格中数据是按从小到大的顺序排列的,一共50个人,中位数为第25位和第26位的平均数,它们分别是6,8,故中位数是6+82=7.故选:B .6.为备战奥运会,甲、乙、丙、丁四位优秀短跑选手参加训练,近期的10次百米测试平均成绩都是10.3秒,但他们成绩的方差分别是0.020、0.019、0.021、0.022(单位:秒2).则这四人中发挥最稳定的是( ) A .甲B .乙C .丙D .丁【分析】平均数相同,比较方差,谁的方差最小,谁发挥的就最稳定. 【解析】∵四个人的平均成绩都是10.3秒,而0.019<0.020<0.021<0.022, ∴乙发挥最稳定,7.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形【分析】根据平行四边形、菱形、矩形、正方形的判定分别进行分析即可.【解析】A、一组对边平行且相等的四边形是平行四边形,说法正确;B、四条边都相等的四边形是菱形,说法正确;C、对角线互相垂直的平行四边形是正方形,说法错误;D、四个角都相等的四边形是矩形,说法正确;故选:C.8.如图,分别以Rt△ABC的三条边为边向外作正方形,面积分别记为S1,S2,S3.若S1=36,S2=64,则S3=()A.8 B.10 C.80 D.100【分析】由正方形的面积公式可知S1=AB2,S2=AC2,S3=BC2,在Rt△ABC中,由勾股定理得AC2+AB2=BC2,即S1+S2=S3,由此可求S3.【解析】∵在Rt△ABC中,AC2+AB2=BC2,又由正方形面积公式得S1=AB2,S2=AC2,S3=BC2,∴S3=S1+S2=36+64=100.故选:D.9.如图,在△ABC中,∠C=90°,点D在斜边AB上,且AD=CD,则下列结论中错误的结论是()A.∠DCB=∠B B.BC=BDC.AD=BD D.∠ACD=12∠BDC【分析】根据同角的余角相等判断A;根据题意判断B;根据等腰三角形的性质判断C;根据三角形的外角性质判断D.【解析】∵∠C=90°,∴∠A+∠B=90°,∠ACD+∠BCD=90°,∵AD=CD,∴∠A=∠ACD,∴∠B=∠BCD,A选项结论正确,不符合题意;BC与BD不一定相等,B选项结论错误,符合题意;∵∠B=∠BCD,∴BD=CD,∵AD=CD,∴AD=BD,C选项结论正确,不符合题意;∵∠A=∠ACD,∴∠BDC=∠A+∠ACD=2∠ACD,∴∠ACD=12∠BDC,D选项结论正确,不符合题意;故选:B.10.如图,直线y=kx+b与直线y=−12x+52交于点A(m,2),则关于x的不等式kx+b≤−12x+52的解集是()A.x≤2 B.x≥1 C.x≤1 D.x≥2【分析】关于x的不等式kx+b≤−12x+52的解集,直线y=kx+b的图象在y=−12x+52的图象的下边的部分,对应的自变量x的取值范围.【解析】把A(m,2)代入y=−12x+52,得2=−12m+52.解得m=1.则A(1,2).根据图象可得关于x的不等式kx+b≤−12x+52的解集是x≤1.故选:C.11.如图,一艘船以40km/h的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km/h的速度由南向北移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离BA=300km,如果这艘轮船会受到台风影响,那么从接到警报开始,经过()小时它就会进入台风影响区.A.10 B.7 C.6 D.12【分析】首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.【解析】如图所示:设x小时后,就进入台风影响区,根据题意得出:CE=40x千米,BB′=20x千米,∵BC=500km,AB=300km,∴AC=400(km),∴AE=400﹣40x,AB′=300﹣20x,∴AE2+AB′2=EB′2,即(400﹣40x)2+(300﹣20x)2=2002,解得:x1=15,x2=7,∴轮船经7小时就进入台风影响区.故选:B.12.如图,矩形ABCD的对角线AC,BD相交于点O,点P是AD边上的一个动点,过点P分别作PE⊥AC于点E,PF⊥BD于点F.若AB=6,BC=8,则PE+PF的值为()A.10 B.9.6 C.4.8 D.2.4【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OA=OD=5,然后由S△AOD=S△AOP+S △DOP求得答案.【解析】连接OP,∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD,AC=√AB2+BC2=10,∴S△AOD=14S矩形ABCD=12,OA=OD=5,∴S△AOD=S△AOP+S△DOP=12OA•PE+12OD•PF=12OA(PE+PF)=12×5×(PE+PF)=12,∴PE+PF=245=4.8.故选:C.二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.某一次函数的图象经过点(﹣1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式y =﹣x+2(答案不唯一).【分析】设该一次函数的解析式为y=kx+b(k<0),再把(﹣1,3)代入即可得出k+b的值,写出符合条件的函数解析式即可.【解析】该一次函数的解析式为y=kx+b(k<0),∵一次函数的图象经过点(﹣1,3),∴﹣k+b=3,∴当k=﹣1时,b=2,∴符合条件的函数关系式可以是:y=﹣x+2(答案不唯一).14.等腰直角三角形斜边上的高为1cm,则这个三角形的周长为(2+2√2)cm.【分析】由等腰直角三角形的性质求出斜边长和直角边长,即可得出答案.【解析】∵等腰直角三角形斜边上的高为1cm,也是斜边上的中线,∴等腰直角三角形的斜边长=2cm,∴等腰直角三角形的直角边长=√22×2=√2(cm),∴这个等腰直角三角形的周长为2+2√2(cm),故答案为:(2+2√2).15.新学期,某校欲招聘数学教师一名,对两名候选老师进行了两项基本素质的测试,他们的测试成绩如表所示.根据教学能力的实际需要,学校将笔试、面试的得分按2:3的比例计算两人的总成绩,那么李老师 (填“李老师”或“王老师”)将被录用.测试项目测试成绩 李老师王老师 笔试90 95 面试 85 80【分析】利用加权平均数的计算方法求出李老师、王老师的最后总成绩,比较得出答案.【解析】李老师总成绩为:90×25+85×35=87,王老师的成绩为:95×25+80×35=86, ∵87>86,∴李老师成绩较好,故答案为:李老师.16.观察计算结果:①√13=1;②√13+23=3;③√13+23+33=6;④√13+23+33+43=10,用你发现的规律写出式子的值√13+23+33+⋯+103= 55【分析】根据前四个式子得到规律,根据规律计算得到答案.【解析】√13=1;√13+23=3=1+2;√13+23+33=6=1+2+3;√13+23+33+43=10=1+2+3+4;则√13+23+33+⋯+103=1+2+3+4+5+6+7+8+9+10=55,故答案为:55.17.如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =8,E 是BC 的中点,点P 以每秒1个单位长度的速度从A 点出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动,点P 停止运动时,点Q 也随之停止运动.当运动时间t = 1或73 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.【分析】由已知以点P ,Q ,E ,D 为顶点的四边形是平行四边形有两种情况,(1)当Q 运动到E 和B 之间,(2)当Q 运动到E 和C 之间,根据平行四边形的判定,由AD ∥BC ,所以当PD =QE 时为平行四边形.根据此设运动时间为t ,列出关于t 的方程求解.【解析】由已知梯形,当Q 运动到E 和B 之间,设运动时间为t ,则得:2t −82=3﹣t ,解得:t =73,当Q 运动到E 和C 之间,设运动时间为t ,则得:82−2t =3﹣t , 解得:t =1,故当运动时间t 为1或73秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形. 故答案为:1或73. 18.如图,以等腰直角三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,…,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的斜边长为 (√2)n .【分析】本题要先根据已知的条件求出第一个、第二个斜边的值,然后通过这两个斜边的求解过程得出一般化规律,进而可得出第n 个等腰直角三角形的斜边长.【解析】第一个斜边AB =√2,第二个斜边A 1B 1=(√2)2,所以第n 个等腰直角三角形的斜边长为:(√2)n ,故答案为:(√2)n .三、解答题(本大题共8小题,共66分.请在试题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算下列各题:(1)√12−(π+√2)0+(12)﹣1+|1−√3|;(2)8√12−√6×2√3+(√2+1)2.【分析】(1)根据算术平方根、零指数幂、负整数指数幂和绝对值可以解答本题;(2)根据二次根式的乘法和完全平方公式可以解答本题.【解析】(1)√12−(π+√2)0+(12)﹣1+|1−√3| =2√3−1+2+√3−1=3√3;(2)8√12−√6×2√3+(√2+1)2 =4√2−6√2+2+2√2+1=3.20.如图,为迎接中国共产党建党100周年,武汉市磨山景区拟对园中的一块空地进行美化施工,已知AB =3米,BC =4米,∠ABC =90°,AD =12米,CD =13米,欲在此空地上种植盆景造型,已知盆景每平方米500元,试问用该盆景铺满这块空地共需花费多少元?【分析】连接AC ,在Rt △ACD 中利用勾股定理计算出AC 长,再利用勾股定理逆定理证明∠ACB =90°,再利用S △ACD ﹣S △ABC 可得空地面积,然后再计算花费即可.【解析】连接AC ,在Rt △ABC 中,AB =3米,BC =4米,∵AC 2=AB 2+BC 2=32+42=25,∴AC =5,∵AC 2+AD 2=52+122=169,CD 2=132=169,∴AC 2+AD 2=CD 2,∴∠DAC =90°,该区域面积=S △ACD ﹣S △ABC =30﹣6=24(平方米),铺满这块空地共需花费=24×500=12000(元).答:用该盆景铺满这块空地共需花费12000元.21.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆,标志着我国首次地外采样返回任务圆满完成.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛 演讲比赛 版面创作甲85 91 88 乙 90 84 87【分析】(1)根据加权平均数的计算公式列出算式,再进行计算即可得出答案.(2)将甲、乙两人的总成绩按比例求出最后成绩,再进行比较,即可得出结果.【解析】(1)甲班的平均成绩是:13(85+91+88)=88(分), 乙班的平均成绩是:13(90+84+87)=87(分), ∵87<88,∴甲班将获胜.(2)甲班的平均成绩是85×5+91×3+88×25+3+2=87.4(分), 乙班的平均成绩是90×5+84×3+87×25+3+2=87.6(分),∵87.6>87.4,∴乙班将获胜.22.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F (1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求EF的长【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理解答即可.【解答】证明:(1)∵DE∥BC,DF∥AB,∴四边形BFDE是平行四边形,∵BD是△ABC的角平分线,∴∠EBD=∠DBF,∵DE∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB,∴BE=ED,∴平行四边形BFDE是菱形;解:(2)连接EF,交BD于O,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠EBD=30°.由(1)知,平行四边形BFDE是菱形,则EF⊥BD,BO=OD=6.∴EO=12BE.由勾股定理得到:BE 2=62+EO 2,即4EO 2=62+EO 2.解得:EO =2√3.所以EF =4√3.23.如图,在平面直角坐标系中,过点B (4,0)的直线AB 与直线OA 相交于点A (3,1),动点M 在线段OA 和射线AC 上运动.(1)求直线AB 的解析式;(2)直线AB 交y 轴于点C ,求△OAC 的面积;(3)当△OAC 的面积是△OMC 面积的3倍时,求出这时点M 的坐标.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C 的坐标,即OC 的长,利用三角形的面积公式即可求解;(3)当△OAC 的面积是△OMC 面积的3倍时,根据面积公式即可求得M 的横坐标,然后代入解析式即可求得M 的坐标.【解析】(1)设直线AB 的解析式是y =kx +b ,根据题意得:{4k +b =03k +b =1, 解得:{k =−1b =4, 则直线的解析式是:y =﹣x +4;(2)在y =﹣x +4中,令x =0,解得:y =4,S △OAC =12×4×3=6;(3)当M 在线段OA 时,设OA 的解析式是y =mx ,把A (3,1)代入得:3m =1,解得:m =13,则直线的解析式是:y =13x ,∵△OAC 的面积是△OMC 面积的3倍时, ∴当M 的横坐标是13×3=1,在y =13x 中,当x =1时,y =13, 则M 的坐标是(1,13);当M 在射线AC 上时, 在y =﹣x +4中,x =1时, 则y =3,则M 的坐标是(1,3); 当M 的横坐标是﹣1时,在y =﹣x +4中,当x =﹣1时,y =5, 则M 的坐标是(﹣1,5);综上所述:M 的坐标是:M 1(1,13)或M 2(1,3)或M 3(﹣1,5).24.在一条公路上依次有A ,B ,C 三地,甲车从A 地出发,驶向C 地,同时乙车从C 地出发驶向B 地,到达B 地停留0.5小时后,按原路原速返回C 地,两车匀速行驶,甲车比乙车晚1.5小时到达C 地.两车距各自出发地的路程y (千米)与时间x (小时)之间的函数关系如图所示.请结合图象信息解答下列问题: (1)甲车行驶速度是 60 千米/时,B ,C 两地的路程为 360 千米;(2)求乙车从B 地返回C 地的过程中,y (千米)与x (小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.【分析】(1)根据F 点坐标可求出甲车速度,根据M 纵坐标可得B ,C 两地之间距离;(2)根据甲车比乙车晚1.5小时到达C 地得出点E 坐标,再求出点N 坐标,利用待定系数法求解即可; (3)根据运动过程,分3种情况讨论,由路程=速度×时间,可求解. 【解析】(1)由题意可得: F (10,600),∴甲车的行驶速度是:600÷10=60千米/时, M 的纵坐标为360,∴B ,C 两地之间的距离为360千米, 故答案为:60;360;(2)∵甲车比乙车晚1.5小时到达C 地, ∴点E (8.5,0),乙的速度为360×2÷(10﹣0.5﹣1.5)=90千米/小时, 则360÷90=4,∴M (4,360),N (4.5,360),设NE 表达式为y =kx +b ,将N 和E 代入, {0=8.5k +b 360=4.5k +b ,解得:{k =−90b =765, ∴y (千米)与x (小时)之间的函数关系式为:y =﹣90x +765; (3)设出发x 小时,行驶中的两车之间的路程是15千米, ①在乙车到B 地之前时,600﹣S 甲﹣S 乙=15,即600﹣60x ﹣90x =15, 解得:x =3910,②当乙车从B 地开始往回走,追上甲车之前,15÷(90﹣60)+4.5=5小时; ③当乙车追上甲车并超过15km 时, (30+15)÷(90﹣60)+4.5=6小时;④乙到达B 地停留时,15÷60+4=174(小时)(不符合题意行驶中舍弃,) ⑤乙到达C 地时,(600﹣15)÷60=394小时(不符合题意行驶中舍弃) 综上:行驶中的两车之间的路程是15千米时,出发时间为3910小时或5小时或6小时.25.如图,矩形OABC 的顶点与坐标原点O 重合,将△OAB 沿对角线OB 所在的直线翻折,点A 落在点D 处,OD 与BC 相交于点E ,已知OA =8,AB =4 (1)求证:△OBE 是等腰三角形; (2)求E 点的坐标;(3)坐标平面内是否存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.【分析】(1)由矩形的性质得出OC =AB =4,BC =OA =8,∠OCB =90°,OA ∥BC ,得出B (8,4),∠AOB =∠OBC ,由折叠的性质得:∠AOB =∠DOB ,OD =OA =BC =8,得出∠OBC =∠DOB ,证出OE =BE 即可; (2)设OE =BE =x ,则CE =8﹣x ,在Rt △OCE 中,由勾股定理得出方程,解方程即可; (3)作DF ⊥y 轴于F ,则DF ∥BC ,由平行线得出△ODF ∽△OEC ,得出DF CE=OF OC=ODOE,求出DF =245,OF =325,得出D (245,325);分三种情况,由平行四边形的性质即可得出结果. 【解答】(1)证明:∵四边形OABC 是矩形, ∴OC =AB =4,BC =OA =8,∠OCB =90°,OA ∥BC , ∴B (8,4),∠AOB =∠OBC ,由折叠的性质得:∠AOB =∠DOB ,OD =OA =BC =8, ∴∠OBC =∠DOB ,∴OE =BE ,∴△OBE 是等腰三角形;(2)解:设OE =BE =x ,则CE =8﹣x ,在Rt △OCE 中,由勾股定理得:42+(8﹣x )2=x 2, 解得:x =5,∴OE =5,CE =8﹣x =3, ∵OC =4,∴E 点的坐标为(3,4);(3)解:坐标平面内存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形;理由如下: 作DF ⊥y 轴于F ,如图所示: 则DF ∥BC , ∴△ODF ∽△OEC , ∴DF CE=OF OC=OD OE,即DF 3=OF 4=85,解得:DF =245,OF =325, ∴D (245,325);当BE 为平行四边形的对角线时,点P 的坐标为(315,85); 当BD 为平行四边形的对角线时,点P 的坐标为(495,325);当DE 为平行四边形的对角线时,点P 的坐标为(−15,325);综上所述,坐标平面内存在一点F ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形,P 点坐标为(315,85)或(495,325)或(−15,325).26.如图,已知四边形ABCD 是正方形,对角线AC 、BD 相交于O .(1)如图1,设E 、F 分别是AD 、AB 上的点,且∠EOF =90°,线段AF 、BF 和EF 之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E 、F 分别是AB 上不同的两个点,且∠EOF =45°,请你用等式表示线段AE 、BF 和EF 之间的数量关系,并证明.【分析】(1)首先证明△EOA ≌△FOB ,推出AE =BF ,从而得出结论;(2)在BC 上取一点H ,使得BH =AE .由△OAE ≌△OBH ,推出AE =BH ,∠AOE =∠BOH ,OE =OH ,由△FOE ≌△FOH ,推出EF =FH ,由∠FBH =90°,推出FH 2=BF 2+BH 2,由此即可解答. 【解析】(1)EF 2=AF 2+BF 2. 理由:如图1,∵四边形ABCD 是正方形, ∴OA =OB ,∠OAE =∠OBF =45°,AC ⊥BD , ∴∠EOF =∠AOB =90°, ∴∠EOA =∠FOB , 在△EOA 和△FOB 中, {∠EOA =∠FOBOA =OB ∠OAE =∠OBF, ∴△EOA ≌△FOB (ASA ), ∴AE =BF ,在Rt △EAF 中,EF 2=AE 2+AF 2=AF 2+BF 2; (2)在BC 上取一点H ,使得BH =AE .∵四边形ABCD 是正方形,∴OA =OB ,∠OAE =∠OBH ,∠AOB =90°, 在△OAE 和△OBH 中,{OA =OB∠OAE =∠OBH AE =BH∴△OAE ≌△OBH (SAS ),∴AE =BH ,∠AOE =∠BOH ,OE =OH , ∵∠EOF =45°, ∴∠AOE +∠BOF =45°, ∴∠BOF +∠BOH =45°, ∴∠FOE =∠FOH =45°, 在△FOE 和△FOH 中•, {OF =OF∠FOE =∠FOH OE =OH, ∴△FOE ≌△FOH (SAS ), ∴EF =FH , ∵∠FBH =90°, ∴FH 2=BF 2+BH 2, ∴EF 2=BF 2+AE 2,。

最新2020人教版八年级数学下册期末试卷

最新2020人教版八年级数学下册期末试卷

八年级数学下学期期末综合检测卷一、单选题(18分)1.(3分)下列图形中既是中心对称又是轴对称的图形的是()A.B.C. D.2.(3分)在四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种3.(3分)如图,点D、E、F分别是△ABC三边的中点,则下列判断错误的是()A.四边形AEDF一定是平行四边形B.若AD平分∠A,则四边形AEDF是正方形C.若AD⊥BC,则四边形AEDF是菱形D.若∠A=90°,则四边形AEDF是矩形4.(3分)若点M(-7,m)、N(-8,n)都在函数y=-(k2+2k+4)x+1(k为常数)的图象上,则m和n的大小关系是()A.m>nB.m<nC.m=nD.不能确定5.(3分)a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为06.(3分)如图,在矩形ABCD中,AB=6,BC=8,M是AD上任意一点,且ME⊥AC于E,MF⊥BD于F,则ME+MF为()A. B. C. D.不能确定二、填空题(18分)7.(3分)如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,且A(4,0)、B(6,2)、M(4,3).在平面内有一条过点M的直线将平行四边形OABC的面积分成相等的两部分,请写出该直线的函数表达式.8.(3分)如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为.9.(3分)如图,在正方形ABCD和正方形CEFG中,D在CG上,BC=1,CG=3,H是AF的中点,则CH的长是.10.(3分)在平面直角坐标系中,已知平行四边形ABCD的点A(0,-2)、点B(3m,4m+1)(m≠-1),点C(6,2),则对角线BD的最小值是.11.(3分)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为.12.(3分)如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出个平行四边形.三、解答题(84分)13.(6分)一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.(1)若将这种水果每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示).(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?14.(6分)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE 延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形.(2)若四边形ACEF是菱形,求∠B的度数.15.(6分)如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE.(1)求证:OE=CB.(2)如果OC:OB=1:2,CD=,求菱形的面积.16.(6分)如图,直线AB与轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式.(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.17.(6分)阅读下面材料:在数学课上,老师提出如下问题:已知:如图,四边形ABCD是平行四边形;求作:菱形AECF,使点E,F分别在BC,AD上.小凯的作法如下:(1)连接AC;(2)作AC的垂直平分线EF分别交BC,AD于E,F.(3)连接AE,CF,所以四边形AECF是菱形.老师说:“小凯的作法正确”.回答下列问题:根据小凯的做法,小明将题目改编为一道证明题,请你帮助小明完成下列步骤:(1)已知:在平行四边形ABCD中,点E、F分别在边BC、AD上,.(补全已知条件)求证:四边形AECF是菱形.(2)求证:四边形AECF是菱形.(写出证明过程)18.(8分)已知关于x的方程(a-1)x2+2x+a-1=0.(1)若该方程有一根为2,求a的值及方程的另一根.(2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.19.(8分)如图,平行四边形ABCD中,AE、DE分别平分∠BAD、∠ADC,E点在BC上.(1)求证:BC=2AB.(2)若AB=3 cm,∠B=60°,一动点F以1 cm/s的速度从A点出发,沿线段AD运动,CF交DE于G,当CF∥AE时:①求点F的运动时间t的值;②求线段AG的长度.20.(8分)如图,抛物线y=x2+bx+c与x轴交于A(1,0),B(-3,0),与y轴交于C.(1)求该抛物线的解析式,并写出抛物线的对称轴.(2)设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标.(3)若P是直线y=x+1上的一点,P点的横坐标为,M是第二象限抛物线上的一点,当∠MPD=∠ADC时,求M点的坐标.21.(9分)如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A 出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长.(2)当P、C两点的距离为时,求t的值.(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在时刻t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.22.(9分)已知在菱形ABCD中,∠ABC=60°,M、N分别是边BC,CD上的两个动点,∠MAN=60°,AM、AN分别交BD于E、F两点.(1)如图1,求证:CM+CN=BC.(2)如图2,过点E作EG∥AN交DC延长线于点G,求证:EG=EA.(3)如图3,若AB=1,∠AED=45°,直接写出EF的长.23.(12分)某超市店庆期间开展了促销活动,出售A,B两种商品,A种商品的标价为60元/件,B种商品的标价为40元/件,活动方案有如下两种,顾客购买商品时只能选择其中的一种方案:A B方案一按标价的“七折”优惠按标价的“八折”优惠方案二若所购商品达到或超过35件(不同商品可累计),均按标价的“七五折”优惠若某单位购买A种商品x件(x>15),购买B种商品的件数比A种商品件数多10件,求该单位选择哪种方案才能获得更多优惠?答案1^6:DBBBBA7.y=2x-58.9. 10. 6 11. -1 12. 1513.【答案】(1)解:将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x(斤).(2)解:根据题意得:(4-2-x)(100+200x)=300,解得:x1=,x2=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.答:水果店需将每斤的售价降低1元.14.【答案】(1)证明:∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠BED=∠CED,∵AF=AE,∴∠F=∠AEF,∵∠BED=∠AEF,∴∠CED=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形.(2)解:∵四边形ACEF是菱形,∴AC=CE,由(1)知,AE=CE,∴AC=CE=AE,∴△AEC是等边三角形,∴∠CAE=60°,在Rt△ABC中,∠B=90°-∠CAE=90°-60°=30°.15.【答案】(1)证明:∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD.∴四边形OCEB是矩形,∴OE=CB.(2)解:∵四边形ABCD是菱形,∴BC=CD=,∵AC⊥BD,OC:OB=1:2,∴在Rt△BOC中,由勾股定理得 BC2=OC2+OB2,∴CO=1,OB=2.∴AC=2,BD=4,∴菱形ABCD的面积=BD·AC=4.16.【答案】(1)解:设直线AB的解析式为.∵直线AB过点A(1,0)、B(0,-2),∴,解得,∴直线AB的解析式为.(2)解:设点C的坐标为.∵S△BOC=2,∴,解得.∵直线AB的解析式为,∴当时,y=2×2-2=2,∴点C的坐标是(2,2).17.【答案】(1)EF垂直平分AC(2)证明:∵EF垂直平分AC,∴EA=EC,FA=FC,AC⊥EF,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAC=∠ECA,∵EA=EC,∴∠ECA=∠EAC,∴∠EAC=∠DAC,∴AC平分EF,即AC与EF互相垂直平分,∴四边形AECF是菱形.18.【答案】(1)解:将x=2代入方程(a-1)x2+2x+a-1=0,解得:a=.将a=代入原方程得-x2+2x-=0,解得:x1=,x2=2.∴a=,方程的另一根为.(2)解:①当a=1时,方程为2x=0,解得:x=0;②当a≠1时,由b2-4ac=0得4-4(a-1)2=0,解得:a=2或0.当a=2时,原方程为:x2+2x+1=0,解得:x1=x2=-1;当a=0时,原方程为:-x2+2x-1=0,解得:x1=x2=1.综上,当a=1或0或2时,方程的根仅有唯一的值.当a=1时,此时方程的根x=0;当a=2时,此时方程的根x1=x2=-1;当a=0时,此时方程的根x1=x2=1.19.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∴∠DAE=∠AEB,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,同理:CE=CD,∴BE=CE=AB,∴BC=BE+CD=2AB.(2)解:①由(1)知,CE=CD=AB,∵AB=3 cm,∴CE=3 cm,∵四边形ABCD是平行四边形,∴AD∥BC∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE=3 cm,∴点F的运动时间t=3÷1=3(秒);②由(1)知AB=BE,∵∠B=60°,∴△ABE是等边三角形,∴∠AEB=60°,AE=AB=3 cm,∵四边形ABCD是平行四边形,∴∠B+∠BCD=180°,∵∠B=60°,∴∠BCD=120°,∵AE∥CF,∴∠ECF=∠AEB=60°,∴∠DCF=∠BCD-∠ECF=60°=∠ECF,由(1)知,CE=CD=AB=3 cm,∴CF⊥DE,∴∠CGE=90°,在Rt△CGE中,∠CEG=90°-∠ECF=30°,CG=CE=,∴EG=CG=,∵∠AEB=60°,∠CEG=30°,∴∠AEG=90°,在Rt△AEG中,AE=3,根据勾股定理得,AG=.20.【答案】(1)解:∵A(1,0),B(-3,0)关于直线x=-1对称,∴抛物线的对称轴为x=-1,抛物线的解析式为y=(x-1)(x+3)=x2+2x-3.(2)解:设点E(m,m2+2m-3).∵AD=2,OC=3,∴S△ACD=×AD·OC=3.∵S△ACE=,∴S△ACE=10.设直线AE的解析式为y=kx+t,把点A和点E的坐标代入得:,解得:.∴直线AE的解析式为y=(m+3)x-m-3.设直线AE交y轴于F,∴F(0,-m-3).∵C(0,-3),∴FC=-m-3+3=-m,∴S△EAC=×FC×(1-m)=10,即-m(1-m)=20,解得:m=-4或m=5(舍去),∴E(-4,5).(3)解:如图所示:过点D作DN⊥DP,交PM的延长线与点N,过点N作NL⊥x轴,垂足为L,过点P作PE⊥x轴,垂足为E.∵∠MPD=∠ADC,∠NDP=∠DOC,∴△NPD∽△CDO,∴=,∴==3.又∵△NLD∽△DEP,∴===3,∴NL=7,DL=7,∴N(-8,7),∴直线PN的解析式为y=-x-3.联立y=x2+2x-3与y=-x-3,解得:x=(舍去)或x=-4,∴M(-4,5).21.【答案】(1)解:∵AB=AC=13,AD⊥BC,∴BD=CD=5 cm,且∠ADB=90°,∴AD2=AC2-CD2,∴AD=12 cm.(2)解:∵AP=t,∴PD=12-t,在Rt△PDC中,,CD=5,根据勾股定理得,PC2=CD2+PD2,∴29=52+(12-t)2,∴t=10或t=14(舍),即t的值为10 s.(3)解:假设存在t,使得S△PMD=S△ABC.∵BC=10,AD=12,∴S△ABC=BC×AD=60.①若点M在线段CD上,即时,PD=12-t,DM=5-2t,由S△PMD=S△ABC,即(12-t)(5-2t),2t2-29t+43=0,解得(舍去),.②若点M在射线DB上,即.由S△PMD=S△ABC,得(12-t)(2t-5)=,2t2-29t+77=0,解得 t=11或,综上,存在t的值为s或 11 s或s,使得S△PMD=S△ABC.22.【答案】(1)证明:∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∴∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵AB=AC,∠B=∠ACN=60°,∴△BAM≌△CAN,∴BM=CN,∴CM+CN=CM+BM=BC.(2)证明:如图2中,连接EC.∵BA=BC,∠ABE=∠CBE,BE=BE,∴△ABE≌△CBE,∴EA=EC,∠BAE=∠BCE,∵EG∥AN,∴∠G=∠AND,∵∠AND=∠CAN+∠ACN=60°+∠CAN,∠ECG=60°+∠ECB,∵∠ECB=∠BAE=∠CAN,∴∠ECG=∠AND=∠G,∴EC=EG,∴EA=EG.(3)解:如图3中,将△ABE绕点A逆时针旋转120°得到△ADQ,易证△AFE≌△AFQ,∴∠AEF=∠AQF=45°,∵∠AEB=∠AQD=135°,∴∠FQD=90°,∴在四边形AEDQ中,∠QDF=360°-120°-45°-135°=60°,设DQ=BE=x,则DF=2x,EF=FQ=x,∵AB=AD=1,∠ABD=30°,∴BD=,∴x+2x+x=,∴x=,∴EF=x=.23.【答案】解:根据题意得:某单位购买A种商品x件,则购买B种商品(x+10)件,按方案一购买花费为:y1=60×0.7x+40×0.8(x+10),按方案二购买花费为:y2=60×0.75x+40×0.75(x+10),y1-y2=-x+20,∵x>15,∴-x<-15,∴-x+20<5,若y1<y2,则-x+20<0,即x>20时,方案一的花费少于方案二,若y1=y2,则-x+20=0,即x=20时,方案一的花费等于方案二,若y1>y2,则-x+20>0,即15<x<20时,方案二的花费少于方案一,答:当购买A商品的数量多于20件时,选择方案一,当购买A商品的数量为20件时,选择方案一或方案二都可以,当购买A商品的数量多于15件少于20件时,选择方案二,这样才能获得更多优惠.。

2020年人教版八年级下学期数学期末测试卷 (含答案)

2020年人教版八年级下学期数学期末测试卷 (含答案)

人教版八年级下册数学期末测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________ 注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 12 小题,每题 3 分,共计36分)1. 下列计算正确的是()=1 B.√4−√3=1 C.√6÷√3=2 D.√4=±2A.√2√22. 函数y=√x−3中,自变量x的取值范围是()A.x<0B.x≥0C.x≥3D.x<33. 关于一次函数y=−2x+3,下列结论正确的是()A.图象过点(1, −1)B.图象经过一、二、三象限时,y<0C.y随x的增大而增大D.当x>324. 下列说法不正确的有()①三内角之比是1:2:3的三角形是直角三角形;②三内角之比为3:4:5的三角形是直角三角形;③三边之比是3:4:5的三角形是直角三角形;④三边a,b,c满足关系式a2−b2=c2的三角形是直角三角形.A.1个B.2个C.3个D.4个5. 如图,菱形ABCD的对角线AC,BD的长分别为6和8,则这个菱形的周长是( )A.20B.24C.40D.486. 已知一次函数y=kx−m−2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<07. 已知△ABC的三边之长分别为a,1,3,则化简|9−2a|−√9−12a+4a2的结果是( )A.12−4aB.4a−12C.12D.−128. 某校给足球队的十一位运动员每人购买了一双运动鞋.尺码及购买数量如下表:则这十一双运动鞋尺码的众数和中位数分别为()A.40,41B.41,41C.41,42D.42,439. 某班同学在探究弹簧长度跟外力的关系变化时,实验记录得到的数据如表:则y关于x的函数图象是()A. B.C. D.10. 下列命题中:①对角线互相平分的四边形是平行四边形;②对角线相等的四边形是矩形;③一组对角相等,一组对边平行的四边形是平行四边形;④对角线平分一组对角的平行四边形是菱形;⑤对角线相等且互相垂直的四边形是正方形.其中正确的命题有()个A.1B.2C.3D.411. 如图,把直线y=−2x向上平移后得到直线AB,直线AB经过点(m, n),且2m+n=6,则直线AB的解析式是()A.y=−2x−3B.y=−2x−6C.y=−2x+3D.y=−2x+612. 如图,已知在△ABC中,∠BAC=90∘,D,E,F分别是△ABC三边的中点,AB=4√5,AC=2√5,则下列判断中不正确的是()A.AE=DFB.S△ADE=10C.四边形ADEF是矩形D.CE=5卷II(非选择题)二、填空题(本题共计 6 小题,每题 3 分,共计18分)=________.13. 计算:2√8÷√1214. 如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影拼成一个正方形,那么新正方形的边长是________.,a⋆b=ab−b2.15. 规定a#b=√a⋅√b+√ab(1)3#5=________;(2)2⋆(√3−1)=________.16. 如图所示,在格点图中,以格点A、B、C、D、E、F为顶点,你能画出________个平行四边形.并在图中画出来________.17.如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则▱ABCD的面积是________,DC边上的高AF的长是________.的图象相交于A,C两点,AB⊥x 18.如图,正比例函数y=x与反比例函数y=1x轴于B,CD⊥x轴于D,则四边形ABCD的面积为________.三、解答题(本题共计 8 小题,共计66分)19.(6分) 计算下列各小题.(1)√27√3−√8×√23(2)√12−√6÷√2+(1−√3)2.20.(6分) 若a,b,c满足的关系是√2a−5b+5+c+√3a−3b−c=√5−a+b+√a−b−5.求:(1)a,b,c的值;(2)√a−b⋅√c的值.x+2与x轴交于点A,与y轴交于点B,直线l2:y=−2x+ 21.(8分) 已知直线l1:y=12b经过点B且与x轴交于点C.(1)b=________;(答案直接填写在答题卡的横线上)(2)画出直线l2的图象;(3)求△ABC的面积.22.(8分) 甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?23.(8分) 已知:如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AB=1,BC=√5.(1)求平行四边形ABCD的面积S;平行四边形ABCD(2)求对角线BD的长.24.(8分) 如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行。

【人教版】数学八年级下册《期末检测试题》含答案

【人教版】数学八年级下册《期末检测试题》含答案
三、作图题(本题满分4分)
17.用圆规和直尺作图,不写作法,保留作图痕迹
已知 及其边 上一点 .在 内部求作点 ,使点 到 两边的距离相等,且到点 , 的距离相等.
四、解答题(本题满分68分,共8道小题)
18.计算:
(1) ;
(2) ;
(3)先化简再求值 ,其中 , .
19.如图,一个可以自由转动的转盘,分成了四个扇形区域,共有三种不同的颜色,其中红色区域扇形的圆心角为 .小华对小明说:“我们用这个转盘来做一个游戏,指针指向蓝色区域你赢,指针指向红色区域我赢”.你认为这个游戏规则公平吗?请说明理由.
23.问题:将边长为 的正三角形的三条边分别 等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.
探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
3.下列事件中是必然事件是()
A. 明天太阳从西边升起
B. 篮球队员在罚球线投篮一次,未投中
C. 实心铁球投入水中会沉入水底
D. 抛出一枚硬币,落地后正面向上
【答案】C
【解析】
【分析】必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.
【详解】解:A、明天太阳从西边升起,是不可能事件,故不符合题意;
A、添加 可利用SAS定理判定 ,故此选项不合题意;
B、添加 可利用AAS定理判定 ,故此选项不合题意;
C、添加 可利用ASA定理判定△ABD≌△ACD,故此选项不合题意;
D、添加 不能判定 ,故此选项符合题意;

数学八年级下学期《期末测试卷》附答案

数学八年级下学期《期末测试卷》附答案

人教版数学八年级下学期期末测试卷学校________ 班级________ 姓名________ 成绩________本试卷满分120分,考试时间90分钟一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.代数式√2−x+1x−3中自变量x的取值范围是()A .x≤2B .x=3C .x<2且x≠3D .x≤2且x≠3 2.以A 、B 、C 三边长能构成直角三角形的是()A .A =1,B =2,C =3 B .A =32,B =42,C =52C .A =√2,B =√3,C =√5D .A =5,B =6,C =73.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表: 成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分4.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A .4B .3C .2D .15.若直线y =kx +B 经过一、二、四象限,则直线y =B x ﹣k 的图象只能是图中的( )A .B .C .D .6.如图,菱形A B C D 中,∠B =60°,A B =4,则以A C 为边长的正方形A C EF 的周长为( )A .14B .15C .16D .177.已知一等腰三角形的底边长为10C m ,腰长为13C m ,则底边上的高为( ) A .12C mB .5C mC .1203C mD .1013C m8.如图所示的”赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为A ,较短直角边长为B .若A B =8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .39.对于函数y =﹣2x +2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、三象限;③它的图象必经过点(﹣2,2);④y 的值随x 的增大而增大,其中正确结论的个数是( ) A .1B .2C .3D .410.如图,点E ,F 是▱A B C D 对角线上两点,在条件①D E =B F ;②∠A D E =∠C B F ;③A F =C E ; ④∠A EB =∠C FD 中,添加一个条件,使四边形D EB F 是平行四边形,可添加的条件是( )A .①②③B .①②④C .①③④D .②③④11.如图,矩形A B C D 中,A B =1,B C =2,点P 从点B 出发,沿B →C →D 向终点D 匀速运动,设点P走过的路程为x,△A B P的面积为S,能正确反映S与x之间函数关系的图象是()A .B .C .D .12.如图,直线y=23x+4与x轴、y轴分别交于点A 和点B ,点C 、D 分别为线段A B 、OB 的中点,点P为OA 上一动点,当PC +PD 最小时,点P的坐标为()A .(﹣3,0)B .(﹣6,0)C .(−32,0) D .(−52,0)二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.已知一组数据4,3,2,m,n的众数为3,平均数为2,则m的值可能为,对应的n值为,该组数据的中位数是.14.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为.15.在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(B C )有5米.则旗杆的高度.16.甲和乙同时加工一种产品,他们的工作量与工作时间的关系如图所示,则当甲加工了这种产品70件时,乙加工了 件.17.如图,在矩形A B C D 中,B C =20C m ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形A B C D 的边运动,点P 和点Q 的速度分别为3C m /s 和2C m /s ,则最快 s 后,四边形A B PQ 成为矩形.18.在▱A B C D 中,∠A =30°,A D =4√3,连接B D ,若B D =4,则线段C D 的长为 . 三.解答题(共7小题)19.计算:√12−(2+√3)(2−√3)+√27÷√12.20.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点. (1)在图1中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠A B C 的度数.21.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整.收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77九年级93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 成绩人数x部门八年级0 0 1 11 1九年级 1 0 0 7(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级78 80.5 52.1 请将以上两个表格补充完整;得出结论(1)估计九年级体质健康优秀的学生人数为;(2)可以推断出年级学生的体质健康情况更好一些,理由为.(至少从两个不同的角度说明推断的合理性).22.如图,在▱A B C D 中,E、F分别为边A B C D 的中点,B D 是对角线,过A 点作A G∥D B 交C B 的延长线于点G.(1)求证:D E∥B F;(2)若∠G=90,求证:四边形D EB F是菱形.23.如图,直线l与x轴交于点A ,与y轴交于点B (0,2).已知点C (﹣1,3)在直线l上,连接OC .(1)求直线l的解析式;(2)P为x轴上一动点,若△A C P的面积是△B OC 的面积的2倍,求点P的坐标.24.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表: x/元…15 20 25 …y/件…25 20 15 …已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?25.(1)如图1,在正方形A B C D 中,E是A B 上一点,F是A D 延长线上一点,且D F=B E.求证:C E =C F;(2)如图2,在正方形A B C D 中,E是A B 上一点,G是A D 上一点,如果∠GC E=45°,请你利用(1)的结论证明:GE=B E+GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:①如图3,在四边形A B C D 中,A D ∥B C (B C >A D ),∠B =90°,A B =B C =12,E是A B上一点,且∠D C E=45°,B E=4,则D E=.②如图4,在△A B C 中,∠B A C =45°,A D ⊥B C ,且B D =2,A D =6,求△A B C 的面积.参考答案本试卷满分120分,考试时间90分钟一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.代数式√2−x+1x−3中自变量x的取值范围是()A .x≤2B .x=3C .x<2且x≠3D .x≤2且x≠3【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解析】由题意得,2﹣x≥0且x﹣3≠0,解答x≤2且x≠3,所以,自变量x的取值范围是x≤2.故选:A .2.以A 、B 、C 三边长能构成直角三角形的是()A .A =1,B =2,C =3 B .A =32,B =42,C =52C .A =√2,B =√3,C =√5D .A =5,B =6,C =7【分析】根据勾股定理的逆定理对各个选项逐一代入计算,看是否符合A 2+B 2=C 2即可.【解析】A 、∵12+22≠32,∴不符合A 2+B 2=C 2.∴不能构成直角三角形.B 、∵A =32,B =42,C =52,∴A =9,B =16.C =25,∵92+162≠252,不符合A 2+B 2=C 2,∴不能构成直角三角形.C 、√22+√32=√52,符合A 2+B 2=C 2,∴能构成直角三角形.D 、52+62≠72,不符合A 2+B 2=C 2,∴不能构成直角三角形.故选:C .3.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数(人)2566876根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解. 【解析】该班人数为:2+5+6+6+8+7+6=40, 得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:45+452=45,平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425.故错误的为D . 故选:D . 4.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分 其中正确的有( )个. A .4B .3C .2D .1【分析】根据三角形的中位线性质、平行四边形的性质、矩形的判定、菱形的判定、正方形的判定逐个判断即可.【解析】∵四边相等的四边形一定是菱形,∴①正确; ∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误; ∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确; 其中正确的有2个.故选:C .5.若直线y =kx +B 经过一、二、四象限,则直线y =B x ﹣k 的图象只能是图中的( )A .B .C .D .【分析】由直线经过的象限结合四个选项中的图象,即可得出结论. 【解析】∵直线y =kx +B 经过一、二、四象限, ∴k <0,B >0, ∴﹣k >0,∴选项B 中图象符合题意. 故选:B .6.如图,菱形A B C D 中,∠B =60°,A B =4,则以A C 为边长的正方形A C EF 的周长为( )A .14B .15C .16D .17【分析】根据菱形得出A B =B C ,得出等边三角形A B C ,求出A C 的长,根据正方形的性质得出A F =EF =EC =A C =4,求出即可. 【解析】∵四边形A B C D 是菱形, ∴A B =B C , ∵∠B =60°,∴△A B C 是等边三角形, ∴A C =A B =4,∴正方形A C EF 的周长是A C +C E +EF +A F =4×4=16, 故选:C .7.已知一等腰三角形的底边长为10C m ,腰长为13C m ,则底边上的高为( ) A .12C mB .5C mC .1203C mD .1013C m【分析】在等腰三角形的腰和底边高线所构成的直角三角形中,根据勾股定理即可求得底边上高线的长度.【解析】如图:A B =A C =13C m ,B C =10C m . △A B C 中,A B =A C ,A D ⊥B C ; ∴B D =D C =12B C =5C m ;Rt △A B D 中,A B =13C m ,B D =5C m ; 由勾股定理,得:A D =√AB 2−BD 2=12C m . 故选:A .8.如图所示的”赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为A ,较短直角边长为B .若A B =8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3【分析】由题意可知:中间小正方形的边长为:A ﹣B ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解析】由题意可知:中间小正方形的边长为:A ﹣B , ∵每一个直角三角形的面积为:12A B =12×8=4, ∴4×12A B +(A ﹣B )2=25, ∴(A ﹣B )2=25﹣16=9, ∴A ﹣B =3, 故选:D .9.对于函数y =﹣2x +2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、三象限;③它的图象必经过点(﹣2,2);④y的值随x的增大而增大,其中正确结论的个数是()A .1B .2C .3D .4【分析】根据一次函数的性质对各小题进行逐一判断即可.【解析】因为函数y=﹣2x+2,所以①当x>1时,y<0,正确;②它的图象经过第二、一、四象限,错误;③它的图象必经过点(﹣2,﹣2),错误;④y的值随x的增大而减小,错误;故选:A .10.如图,点E,F是▱A B C D 对角线上两点,在条件①D E=B F;②∠A D E=∠C B F;③A F=C E; ④∠A EB =∠C FD 中,添加一个条件,使四边形D EB F是平行四边形,可添加的条件是()A .①②③B .①②④C .①③④D .②③④【分析】若是四边形的对边平行且相等,可证明这个四边形是平行四边形,①不能证明对边平行且相等,只有②③④可以.【解析】由平行四边形的判定方法可知:若是四边形的对边平行且相等,可证明这个四边形是平行四边形,①不能证明对边平行且相等,只有②③④可以,故选:D .11.如图,矩形A B C D 中,A B =1,B C =2,点P从点B 出发,沿B →C →D 向终点D 匀速运动,设点P走过的路程为x,△A B P的面积为S,能正确反映S与x之间函数关系的图象是()A .B .C .D .【分析】要找出准确反映s与x之间对应关系的图象,需分析在不同阶段中s随x变化的情况.【解析】由题意知,点P从点B 出发,沿B →C →D 向终点D 匀速运动,则当0<x≤2,s=12 x,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始是直线一部分,最后为水平直线的一部分.故选:C .12.如图,直线y=23x+4与x轴、y轴分别交于点A 和点B ,点C 、D 分别为线段A B 、OB 的中点,点P为OA 上一动点,当PC +PD 最小时,点P的坐标为()A .(﹣3,0)B .(﹣6,0)C .(−32,0) D .(−52,0)【分析】(方法一)根据一次函数解析式求出点A 、B 的坐标,再由中点坐标公式求出点C 、D 的坐标,根据对称的性质找出点D 关于x轴的对称点D ′的坐标,结合点C 、D ′的坐标求出直线C D ′的解析式,令y=0即可求出x的值,从而得出点P的坐标.(方法二)根据一次函数解析式求出点A 、B 的坐标,再由中点坐标公式求出点C 、D 的坐标,根据对称的性质找出点D 关于x轴的对称点D ′的坐标,根据三角形中位线定理即可得出点P为线段C D ′的中点,由此即可得出点P的坐标.【解析】(方法一)作点D 关于x轴的对称点D ′,连接C D ′交x轴于点P,此时PC +PD 值最小,如图所示.令y =23x +4中x =0,则y =4, ∴点B 的坐标为(0,4);令y =23x +4中y =0,则23x +4=0,解得:x =﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段A B 、OB 的中点, ∴点C (﹣3,2),点D (0,2). ∵点D ′和点D 关于x 轴对称, ∴点D ′的坐标为(0,﹣2). 设直线C D ′的解析式为y =kx +B ,∵直线C D ′过点C (﹣3,2),D ′(0,﹣2), ∴有{2=−3k +b −2=b ,解得:{k =−43b =−2,∴直线C D ′的解析式为y =−43x ﹣2.令y =−43x ﹣2中y =0,则0=−43x ﹣2,解得:x =−32, ∴点P 的坐标为(−32,0). 故选C .(方法二)连接C D ,作点D 关于x 轴的对称点D ′,连接C D ′交x 轴于点P ,此时PC +PD 值最小,如图所示.令y =23x +4中x =0,则y =4, ∴点B 的坐标为(0,4);令y =23x +4中y =0,则23x +4=0,解得:x =﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段A B 、OB 的中点,∴点C (﹣3,2),点D (0,2),C D ∥x轴,∵点D ′和点D 关于x轴对称,∴点D ′的坐标为(0,﹣2),点O为线段D D ′的中点.又∵OP∥C D ,∴点P为线段C D ′的中点,∴点P的坐标为(−32,0).故选:C .二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.已知一组数据4,3,2,m,n的众数为3,平均数为2,则m的值可能为3或﹣2,对应的n值为﹣2或3,该组数据的中位数是3.【分析】利用平均数和众数的定义得出m的值,进而利用平均数的定义求出n的值,从而求得中位数即可.【解析】∵一组数据4,3,2,m,n的众数为3,平均数为2,∴m的值可能为3,∴4+3+2+3+n=2×5,解得n=﹣2.同理m可能是﹣2,n可能是3,所以该组数据排序为:﹣2,2,3,3,4,所以中位数为3,故答案为:3或﹣2,﹣2或3,3.14.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为y=﹣2x+5.【分析】直接根据”上加下减,左加右减”的原则进行解答.【解析】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)x﹣1=﹣2x+5.故答案为:y=﹣2x+515.在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(B C )有5米.则旗杆的高度12米.【分析】设旗杆的高度是x米,绳子长为(x+1)米,旗杆,拉直的绳子和B C 构成直角三角形,根据勾股定理可求出x的值,从而求出旗杆的高度.【解析】设旗杆的高度为x米,根据题意可得:(x+1)2=x2+52,解得:x=12,答:旗杆的高度为12米.故答案为:12米.16.甲和乙同时加工一种产品,他们的工作量与工作时间的关系如图所示,则当甲加工了这种产品70件时,乙加工了280件.【分析】根据图象可以求出甲、乙的工作效率,乙的用时与甲加工70件所用的时间相等,再根据工作量=工作效率×工作时间,求出答案.【解析】甲的工作效率为:50÷5=10件/分,乙的工作效率为:80÷2=40件/分因此:40×(70÷10)=280件,故答案为:28017.如图,在矩形A B C D 中,B C =20C m,点P和点Q分别从点B 和点D 出发,按逆时针方向沿矩形A B C D 的边运动,点P和点Q的速度分别为3C m/s和2C m/s,则最快4s后,四边形A B PQ成为矩形.【分析】根据矩形的性质,可得B C 与A D 的关系,根据矩形的判定定理,可得B P=A Q,构建一元一次方程,可得答案.【解答】解;设最快x秒,四边形A B PQ成为矩形,由B P=A Q得3x=20﹣2x.解得x=4,故答案为:4.18.在▱A B C D 中,∠A =30°,A D =4√3,连接B D ,若B D =4,则线段C D 的长为4或8.【分析】作D E⊥A B 于E,由直角三角形的性质得出D E=12A D =2√3,由勾股定理得出A E=√3D E=6,B E=√BD2−DE2=2,得出A B =A E﹣B E=4,或A B =A E+B E=8,即可得出答案.【解析】作D E⊥A B 于E,如图所示:∵∠A =30°,∴D E=12A D =2√3,∴A E=√3D E=6,B E=√BD2−DE2=√42−(2√3)2=2,∴A B =A E﹣B E=4,或A B =A E+B E=8,∵四边形A B C D 是平行四边形,∴C D =A B =4或8;故答案为:4或8.三.解答题(共7小题)19.计算:√12−(2+√3)(2−√3)+√27÷√12.【分析】原式利用二次根式性质,二次根式除法法则,以及平方差公式计算即可求出值. 【解析】原式=√22−(4﹣3)+√94=√22−1+32=√2+12.20.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点. (1)在图1中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠A B C 的度数.【分析】(1)根据勾股定理作出边长为√5的正方形即可得;(2)连接A C ,根据勾股定理逆定理可得△A B C 是以A C 、B C 为腰的等腰直角三角形,据此可得答案.【解析】(1)如图1所示:(2)如图2,连A C ,则BC=AC=√12+22=√5,AB=√12+32=√10,∵(√5)2+(√5)2=(√10)2,即B C 2+A C 2=A B 2,∴△A B C 为直角三角形,∠A C B =90°,∴∠A B C =∠C A B =45°.21.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整.收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77九年级93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 人数x部门八年级0 0 1 11 7 1九年级 1 0 0 7 10(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级78 80.5 8152.1请将以上两个表格补充完整;得出结论(1)估计九年级体质健康优秀的学生人数为108;(2)可以推断出九年级学生的体质健康情况更好一些,理由为两年级学生的平均数基本相同,而九年级的中位数以及众数均高于八年级,说明九年级学生的体质健康情况更好一些.(至少从两个不同的角度说明推断的合理性).【分析】整理、描述数据:根据八、九年级各的20名学生的成绩即可补全表格;分析数据:根据众数的定义即可得;(1)总人数乘以样本中九年级体质优秀人数占九年级人数的比例即可得;(2)从平均数、中位数以及众数的角度分析,即可得到哪个年级学生的体质健康情况更好一些.【解析】整理、描述数据:40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 八年级0 0 1 11 7 1九年级 1 0 0 7 10 2分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级78 80.5 81 52.1(1)估计九年级体质健康优秀的学生人数为180×10+220=108人,故答案为:108;(2)可以推断出九年级学生的体质健康情况更好一些,理由为两年级学生的平均数基本相同,而九年级的中位数以及众数均高于八年级,说明九年级学生的体质健康情况更好一些.故答案为:九年级;两年级学生的平均数基本相同,而九年级的中位数以及众数均高于八年级,说明九年级学生的体质健康情况更好一些.22.如图,在▱A B C D 中,E、F分别为边A B C D 的中点,B D 是对角线,过A 点作A G∥D B 交C B 的延长线于点G.(1)求证:D E∥B F;(2)若∠G=90,求证:四边形D EB F是菱形.【分析】(1)根据平行四边形的性质得到D F=B E,A B ∥C D ,根据平行四边形的判定定理证明四边形D EB F是平行四边形,根据平行四边形的性质证明结论;(2)根据矩形的判定定理得到四边形A GB D 是矩形,根据直角三角形的性质得到ED =EB ,证明结论.【解答】(1)证明:∵四边形A B C D 是平行四边形,∴A B =C D ,A B ∥C D ,∵E、F分别为边A B 、C D 的中点,∴D F=B E,又A B ∥C D ,∴四边形D EB F是平行四边形,∴D E∥B F;(2)∵A G∥D B ,A D ∥C G,∴四边形A GB D 是平行四边形,∵∠G=90°,∴平行四边形A GB D 是矩形,∴∠A D B =90°,又E为边A B 的中点,∴ED =EB ,又四边形D EB F是平行四边形,∴四边形D EB F是菱形.23.如图,直线l 与x 轴交于点A ,与y 轴交于点B (0,2).已知点C (﹣1,3)在直线l 上,连接OC .(1)求直线l 的解析式;(2)P 为x 轴上一动点,若△A C P 的面积是△B OC 的面积的2倍,求点P 的坐标.【分析】(1)利用待定系数法求直线l 的解析式;(2)利用直线l 的解析式确定A 点坐标,再计算出S △A C P =2S △B OC =2,设P (t ,0),根据三角形面积公式得到12•|t ﹣2|×3=4,然后解方程求出即可的P 点坐标. 【解析】(1)设直线l 的解析式y =kx +B ,把点C (﹣1,3),B (0,2)代入解析式得,{b =2−k +b =3, 解得k =﹣1,B =2,∴直线l 的解析式:y =﹣x +2;(2)把 y =0代入y =﹣x +2得﹣x +2=0,解得:x =2,则点A 的坐标为(2,0),∵S △B OC =12×2×1=1,∴S △A C P =2S △B OC =2,设P (t ,0),则A P =|t ﹣2|,∵12•|t ﹣2|×3=2,解得t =103或t =23, ∴P (103,0)或(23,0).24.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表:x /元… 15 20 25 … y /件 … 25 20 15 …已知日销售量y 是销售价x 的一次函数.(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【分析】(1)根据题意可以设出y 与x 的函数关系式,然后根据表格中的数据,即可求出日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.【解析】(1)设日销售量y (件)与每件产品的销售价x (元)之间的函数表达式是y =kx +B , {15k +b =2520k +b =20, 解得,{k =−1b =40, 即日销售量y (件)与每件产品的销售价x (元)之间的函数表达式是y =﹣x +40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元), 即当每件产品的销售价定为35元时,此时每日的销售利润是125元.25.(1)如图1,在正方形A B C D 中,E 是A B 上一点,F 是A D 延长线上一点,且D F =B E .求证:C E =C F ;(2)如图2,在正方形A B C D 中,E 是A B 上一点,G 是A D 上一点,如果∠GC E =45°,请你利用(1)的结论证明:GE =B E +GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:①如图3,在四边形A B C D 中,A D ∥B C (B C >A D ),∠B =90°,A B =B C =12,E 是A B 上一点,且∠D C E =45°,B E =4,则D E = 10 .②如图4,在△A B C 中,∠B A C =45°,A D ⊥B C ,且B D =2,A D =6,求△A B C 的面积.【分析】(1)根据正方形的性质,可直接证明△C B E≌△C D F,从而得出C E=C F;(2)延长A D 至F,使D F=B E,连接C F,根据(1)知∠B C E=∠D C F,即可证明∠EC F=∠B C D =90°,根据∠GC E=45°,得∠GC F=∠GC E=45°,利用全等三角形的判定方法得出△EC G≌△FC G,即GE=GF,即可得出答案GE=D F+GD =B E+GD ;(3)①过C 作C F⊥A D 的延长线于点F.则四边形A B C F是正方形,设D F=x,则A D =12﹣x,根据(2)可得:D E=B E+D F=4+x,在直角△A D E中利用勾股定理即可求解;②作∠EA B =∠B A D ,∠GA C =∠D A C ,过B 作A E的垂线,垂足是E,过C 作A G的垂线,垂足是G,B E和GC 相交于点F,B F=6﹣2=4,设GC =x,则C D =GC =x,FC =6﹣x,B C =2+x.在直角△B C F中利用勾股定理求得C D 的长,则三角形的面积即可求解.【解析】(1)证明:如图1,在正方形A B C D 中,∵B C =C D ,∠B =∠C D F,B E=D F,∴△C B E≌△C D F,∴C E=C F;(2)证明:如图2,延长A D 至F,使D F=B E,连接C F,由(1)知△C B E≌△C D F,∴∠B C E=∠D C F.∴∠B C E+∠EC D =∠D C F+∠EC D即∠EC F=∠B C D =90°,又∵∠GC E=45°,∴∠GC F=∠GC E=45°,∵C E=C F,∠GC E=∠GC F,GC =GC ,∴△EC G≌△FC G,∴GE=GF,∴GE=D F+GD =B E+GD ;(3)①过C 作C F⊥A D 的延长线于点F.则四边形A B C F是正方形.A E=AB ﹣B E=12﹣4=8,设D F=x,则A D =12﹣x,根据(2)可得:D E=B E+D F=4+x,在直角△A D E中,A E2+A D 2=D E2,则82+(12﹣x)2=(4+x)2,解得:x=6.则D E =4+6=10.故答案是:10;②作∠EA B =∠B A D ,∠GA C =∠D A C ,过B 作A E 的垂线,垂足是E ,过C 作A G 的垂线,垂足是G ,B E 和GC 相交于点F ,则四边形A EFG 是正方形,且边长=A D =6,B E =B D =2,则B F =6﹣2=4,设GC =x ,则C D =GC =x ,FC =6﹣x ,B C =2+x .在直角△B C F 中,B C 2=B F 2+FC 2,则(2+x )2=42+x 2,解得:x =3.则B C =2+3=5,则△A B C 的面积是:12A D •B C =12×6×5=15.。

2020人教版八年级下册数学《期末考试题》及答案

2020人教版八年级下册数学《期末考试题》及答案
12.如图,A、B两点分别位于一个池塘的两端,小聪想用绳子测量A、B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A、B的点C,找到AC、BC的中点D、E,并且测出DE的长为13m,则A、B间的距离为______m.
13.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.
18.已知y是x的一次函数,且当x=-4,y=9;当x=6时,y=-1.
(1)求这个一次函数 解析式和自变量x的取值范围;
(2)当x=- 时,函数y的值;
(3)当y=7时,自变量x的值.
19.阅读理解题:
定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.
(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;
(2)若△A2B2C2是由△ABC平移而得,且点A2的坐标为(-4,4),请写出B2和C2的坐标.
16.如图,点C为AD的中点,过点C的线段BE⊥AD,且AB=DE.求证:AB∥ED.
17.如图,点E是正方形ABCD的边AB上任意一点,过点D作DF⊥DE交BC的延长线于点F.求证:DE=DF.
A. 2,3,4B. 4,5,6C. 6,8,11D. 5,12,13
【答案】D
【解析】
【分析】
欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
【详解】解:A、22+32≠42,故不是直角三角形,故错误;
B、42+52≠62,故不是直角三角形,故错误;

人教版2020年八年级下数学期末考试卷(含答案)

人教版2020年八年级下数学期末考试卷(含答案)

人教版2020年八年级下数学期末考试卷(含答案)姓名:_____________。

总分:_____________一、选择题(每小题3分,共30分)1.要使式子有意义,则x的取值范围是()。

A。

x>0.B。

x≥-2.C。

x≥2.D。

x≤22.矩形具有而菱形不具有的性质是()。

A。

两组对边分别平行。

B。

对角线相等。

C。

对角线互相平分。

D。

两组对角分别相等3.下列计算正确的是()。

A。

4×2÷=4.B。

+=-15.C。

4-2×=2.D。

4÷2+=64.根据表中一次函数的自变量x与函数y的对应值,可得p的值为()。

A。

1.B。

-1.C。

3.D。

-3y 3 px -2 15.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()。

工资(元)。

2 000.2 200.2 400.2 600人数(人)。

1 3 4 2A。

2400元、2400元。

B。

2400元、2300元。

C。

2200元、2200元。

D。

2200元、2300元6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()。

A。

AB∥DC,AD∥BC。

B。

AB=DC,AD=BCC。

AO=CO,BO=DO。

D。

AB∥DC,AD=BC7.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()。

A。

24.B。

16.C。

4.D。

28.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD长()。

A。

2.B。

3.C。

4.D。

19.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()。

10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()。

A。

xm。

D。

x>3二、填空题(每小题3分,共24分)11.计算。

人教版数学八年级下册《期末考试题》带答案

人教版数学八年级下册《期末考试题》带答案
10.将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是( )
A. cm2B.8 cm2C. cm2D.16cm2
【答案】B
【解析】
【分析】
当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,面积为8cm2.
【详解】解:如图,当AC⊥AB时,三角形面积最小,
【答案】1
【解析】
【分析】
根据分式值为0的条件直接求解即可.
【详解】解:令 且

即 时,分式 的值为0.
故答案为:1.
【点睛】本题考查了分式的值,分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.
13.不等式组 的整数解是_____.
【答案】2
【解析】
【分析】
分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解.
2020-2021学年第二学期期末测试
人教版数学八年级试题
学校________班级________姓名________成绩________
一、精心选-选,慧眼识金:(每小题3分,共30分)
1.如果a>b,那么下列结论中,错误的是( )
A.a﹣3>b﹣3B.3a>3bC. D.﹣a>﹣b
2.多项式3x3﹣12x2的公因式是( )
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】第一个图形是轴对称图形,也是中心对称图形;
第二个图形是轴对称图形,不是中心对称图形;
第三个图形是轴对称图形,也是中心对称图形;
第四个图形是轴对称图形,也是中心对称图形.

人教版数学八年级下学期《期末考试卷》附答案解析

人教版数学八年级下学期《期末考试卷》附答案解析
根据中心对称图形的概念求解.
【详解】A.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;
B.是中心对称图形,故此选项正确;
C.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;
(2)若AC=4,∠ABC=60°,求矩形AEFD 面积.
23.如图,在平面直角坐标系xOy中,一次函数y=-x+b的图象与反比例函数y=- 的图象交于点A(-4,a)和B(1,m).
(1)求b的值和点B的坐标;
(2)如果P(n,0)是x轴上一点,过点P作x轴垂线,交一次函数于点M,交反比例函数于点N,当点M在点N上方时,直接写出n的取值范围.
27.已知:在正方形ABCD中,点H在对角线BD上运动(不与B,D重合)连接AH,过H点作HP⊥AH于H交直线CD于点P,作HQ⊥BD于H交直线CD于点Q.
(1)当点H在对角线BD上运动到图1位置时,则CQ与PD的数量关系是______.
(2)当H点运动到图2所示位置时
①依据题意补全图形.
②上述结论还成立吗?若成立,请证明.若不成立,请说明理由.
证明:连接CD.
∵AD=CD=__________=__________,
∴四边形ABCD是().
∴AD∥l().
19.如图,▱ABCD中,E是AB的中点,连结CE并延长交DA的延长线于点F.求证:AF AD.
20.关于x的一元二次方程 .
(1) 求证:方程总有两个实数根;
(2).若方程的两个实数根都是正整数,求m的最小值.
③小华乘坐公共汽车后7:50与小明相遇;
④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.其中正确的个数是()

人教版八年级下册数学期末考试试题及答案

人教版八年级下册数学期末考试试题及答案

人教版八年级下册数学期末考试试卷一、单选题1.下列选项中,属于最简二次根式的是()A B C D2x的取值范围是()A .4x >B .4x <C .4x ≥D .4x ≤3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的众数是()A .6B .7C .8D .94.在ABC 中,D ,E 分别是AB ,AC 的中点,若10BC =,12AB =,则DE 的长为()A .4B .5C .6D .75.如图,每个小正方形的边长都是1,A ,B ,C 分别在格点上,则ABC ∠的度数为()A .30°B .45︒C .50︒D .60︒6.甲、乙、丙三人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是20.55s =甲,20.65s =乙,20.50s =丙,则成绩最稳定的是()A .甲B .乙C .丙D .无法确定7.小明向东走80m 后,沿方向A 又走了60m ,再沿方向B 走了100m 回到原地,则方向A 是A .南向或北向B .东向或西向C .南向D .北向8.若函数3y x m =-+的图象如图所示,则函数1y mx =+的大致图象是()A .B .C .D .9.如图,将边长分别是4,8的矩形纸片ABCD 折叠,使点C 与点A 重合,则BF 的长是()A .2B .3CD .410.已知矩形的对角线为1,面积为m ,则矩形的周长为()A .212m -B .212m +C .D .二、填空题11.在ABCD 中,50A ∠=︒,则C ∠=______.12.若0a >,0b >,则0ab >.的逆命题为______(填“真”或“假”)命题.13.如图,在ABC 中,90ABC ∠=︒,AD DC =,4BD =,则AC =______.14.如图,已知直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,若12y y <,则x 的取值范围为______.15.一组数据4,2,x ,6,3的平均数是4,则这组数据的中位数是______.16.观察311111122=+-=11111236=+-=,111113412=+-==_____;依此类推,按照每个等式反映的规律,第n 个二次根式的计算结果是______.17.计算:三、解答题18.在Rt ABC 中,90C ∠=︒,30A ∠=︒,3AC =,求AB 的长.19.如图,在ABCD 中,点E ,F 分别在AB ,DC 上,且AE CF =.求证:四边形DEBF 是平行四边形.20.某公司有15名员工,他们所在部门及相应每人所创年利润如表所示.部门人数每人所创年利润/万元A53B28C17D44E39(1)这个公司平均每人所创年利润是多少?(2)公司规定,个人所创年利润由高到低前40%的人可以获奖.试判断D部门的员工能否获奖,并说明理由.21.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的中线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB为邻余线,E,F在格点上.22.A、B两家物流公司为了吸引顾客,推出不同的优惠方案,其中A公司原运费是5元/千克,现按8折计费.B公司原运费是6元/千克,优惠方案为:10千克以内不优惠,超过10千克部分按5折计费.(1)以x(单位:千克)表示商品重量,y(单位:元)表示运费,分别就两家公司的优惠方案写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中两个函数的大致图象.23.如图,直线6y ax =+与直线2y x =相交于点(),4A m ,且与x 轴相交于点B .(1)求a 和m 值;(2)求AOB 的边AB 上的高.24.已知在平面直角坐标系中,直线28y x =-与x 轴交于点A ,与y 轴交于点B .(1)求A 、B 的坐标;(2)平移线段AB ,使得点A 、B 的对应点M ,N 分别落在直线1l :36y x =+和直线2l :4y x =+上,求M ,N 的坐标;(3)试证明直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.25.正方形ABCD 的CD 边长作等边△DCE,AC 和BE 相交于点F ,连接DF.求AFD 的度数.26.下图是交警在某个路口统计的某时段来往车辆的车速情况.(单位:千米/时)(1)车速的众数是多少?(2)计算这些车辆的平均数度;(3)车速的中位数是多少?参考答案1.A【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A,是最简二次根式,符合题意;B==C=能化简,不是最简二次根式,不符合题意;D=故选A.【点睛】本题考查了最简二次根式的定义,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.C【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】由题意得,40x-≥,解得,4x≥,故选:C.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.3.D【解析】【分析】根据众数的定义:一组数据中出现次数最多的数,进行求解即可.【详解】解:∵6,7,9,8,9这5个数中9出现了两次,出现的次数最多,∴这组数据的众数为9,故选D.【点睛】本题主要考查了众数的定义,解题的关键在于能够熟练掌握众数的定义.4.B【解析】【分析】由于DE分别是AB、AC的中点,根据中位线性质可知中位线是底边长度的一半.【详解】∵DE分别是AB、AC的中点∴DE为△ABC的中位线∴DE=12BC=1102⨯=5故选B【点睛】本题考查中位线的判定和性质,掌握这两点是解体的关键.5.B 【解析】【分析】利用勾股定理的逆定理证明△ACB 为等腰直角三角形即可得到∠ABC 的度数.【详解】解:连接AC ,由勾股定理得:AC =BC AB =∵AC 2+BC 2=AB 2=10,∴△ABC 为等腰直角三角形,∴∠ABC =45°,故选B .【点睛】本题考查了勾股定理的逆定理,解答本题的关键是根据正方形的性质求出边长,由勾股定理的逆定理判断出等腰直角三角形.6.C 【解析】【分析】根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙的方差可作出判断.【详解】解:由于222=0.50=0.55=0.65SS S <<甲乙丙,∴成绩较稳定的是丙.故选C .【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.A 【解析】【分析】设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,由题意得OC =80m ,CD =60m ,OD =100m ,然后利用勾股定理的逆定理得到∠OCD =90°即可求解.【详解】解:设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,∴由题意得OC =80m ,CD =60m ,OD =100m ,∴2222226080100OC CD OD +=+==,∴∠OCD =90°,∵OC 的方向为东,∴CD 的方向为南或北,即A 的方向为南或北,故选A .【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解.8.D 【解析】【分析】根据一次函数的图象的性质确定m 的符号,进而解答即可.【详解】解:由函数3y x m =-+的图象可得:0m <,所以函数1y mx =+的大致图象经过第一、二、四象限,故选:D .【点睛】本题考查了一次函数的图象和性质,关键是根据一次函数的图象的性质确定m 的符号.9.B 【解析】【分析】由折叠的性质可得出AF =CF ,设BF =m ,则AF =8−m ,在Rt △ABF 中,利用勾股定理可得出关于m 的方程,解之即可得出结论.【详解】解:由折叠的性质可知:AF =CF .设BF =m ,则AF =CF =8−m ,在Rt △ABF 中,∠ABF =90°,AB =4,BF =m ,AF =8−m ,∴222AF AB BF =+,即()22284m m -=+,∴m =3.故选:B .【点睛】本题考查了翻转变换、矩形的性质以及勾股定理,在Rt △ABF 中,利用勾股定理找出m (AF 的长)的方程是解题的关键.10.C 【解析】【分析】设矩形的长、宽分别为a 、b ,根据矩形的性质和面积、周长公式计算即可.【详解】解:设矩形的长、宽分别为a 、b ,∵矩形的对角线为1,面积为m ,∴221a b +=,ab m =,∴a b +=∴矩形的周长为()2a b +=故选:C .【点睛】本题考查矩形的性质,关键是用22a b +和ab 表示出a b +.11.50°【解析】【分析】利用平行四边形的对角相等,进而求出即可.【详解】解:∵四边形ABCD 是平行四边形,∴∠A =∠C =50°.故答案为:50°.【点睛】考查平行四边形的性质,掌握平行四边形的对角相等是解题的关键.12.假【解析】【分析】根据逆命题的定义:把原命题的结论作为命题的条件,把原命题的条件作为命题的结论,所组成的命题叫做原命题的逆命题,进行求解即可.【详解】解:若0a >,0b >,则0ab >的逆命题为:若0ab >,则0a >,0b >,这是一个假命题,故答案为:假.【点睛】本题主要考查了判定命题的真假和命题的逆命题,解题的关键在于能够熟练掌握逆命题的定义.13.8【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半求解即可.【详解】解:∵∠ABC =90°,AD =DC ,BD =4,∴AC =2BD =8.故答案为:8.【点睛】本题主要考查了直角三角形斜边上的中线,解题的关键在于能够熟练掌握直角三角形斜边上的中线等于斜边的一半.14.1x <【解析】【分析】根据函数图像,写出直线111y k x b =+的图像在直线222y k x b =+的下方所对应的自变量的范围即可.【详解】由题意知,直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,当12y y <时,1x <,故答案为:1x <.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.4【解析】【分析】根据平均数的定义可以先求出x 的值,再根据中位数的定义求出这组数的中位数即可.【详解】解:利用平均数的计算公式,得(4+2+x +6+3)=4×5,解得x =5,这组数据为2,3,4,5,6,中位数为4.故答案为:4.【点睛】本题考查了中位数、平均数,将数据从小到大依次排列是解题的关键.16.1120()211n nn n+++【解析】【分析】利用题中的等式可得第四个式子的结果为11145+-,第n个二次根式的结果为1111n n+-+,然后进行分式的加减运算即可.【详解】111111112122+-=+=⨯;111111123236+-=+=⨯;1111111343412+-=+=⨯;1111111454520=+-=+=⨯;第n()()()()2111111111n n n n n nn n n n n n+++-+++-==+++.故答案为1120;()211n nn n+++.【点睛】本题考查了二次根式的加减混合运算,列代数式.找出结果与序号之间的关系是解题的关键.17.【解析】【分析】根据实数的计算规则与顺序按步骤计算即可,注意结果能开出来的要开出来.【详解】解:原式===+故答案为4362+【点睛】本题考查实数的混合运算,掌握运算定律和顺序是解题关键.18.23【解析】【分析】由30°角的直角三角形的性质可得12BC AB =,再根据勾股定理可求解.【详解】解:∵90C ∠=︒,30A ∠=︒∴12BC AB =在Rt ABC 中,3AC =22222132AB BC AC AB ⎛⎫=+=+ ⎪⎝⎭解得23AB =【点睛】本题主要考查含30°角的直角三角形的性质,勾股定理,由含30度角的直角三角形的性质得12BC AB =是解题的关键.19.见解析【解析】【分析】根据一组对边平行且相等判断四边形DEBF 是平行四边形即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB CD =,//EB DF .又AE CF =,∴AB AE CD CF-=-.即EB DF=.∴四边形DEBF是平行四边形.【点睛】本题主要考查了矩形的性质,平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定定理进行求解.20.(1)5.4万元;(2)不能,理由见解析【解析】【分析】(1)利用加权平均数,即可求解;(2)算出能获奖的人数,然后个人所创年利润由高到低进行排列,进而即可求解.【详解】解:(1)公司平均每人所创年利润=532817443981 5.41515⨯+⨯+⨯+⨯+⨯==(万元)答:这个公司平均每人所创年利润是5.4万元;(2)D部门员工不能获奖,理由如下:获奖人数为:1540%6⨯=(人)个人所创年利润由高到低分别为E部门3人,B部门2人,C部门1人,共6人,所以D部门不能获奖.【点睛】本题主要考查加权平均数以及统计表,准确找出表格中的相关数据是解题的关键.21.(1)见解析;(2)见解析【解析】【分析】(1)由等腰三角形的“三线合一“性质可得AD⊥BC,则可得∠DAB与∠DBA互余,即∠FAB 与∠EBA互余,从而可得答案;(2)根据邻余四边形的概念画出图形即可.【详解】(1)证明:∵AB=AC AD是△ABC的中线∴AD⊥BC∴∠ADB=90°∴∠FAB+∠B =90°∴四边形ABEF 是邻余四边形(2)如图所示,即为所求.【点睛】本题考查了四边形的新定义,综合考查了等腰三角形的“三线合一“性质,读懂定义并明确相关性质及定理是解题的关键.22.(1)A 公司:4y x =(0x ≥),B 公司:()()601033010x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)见解析【解析】【分析】(1)根据两个公式的优惠政策进行求解即可得到答案;(2)根据(1)求得的结果,在坐标系中描点连线画出函数图像即可【详解】解:(1)A 公司:4y x =(0x ≥),B 公司:()()601033010y x x y x x ⎧=≤≤⎪⎨=+>⎪⎩(2)如图所示,即为所求.【点睛】本题主要考查了画一次函数图像,求函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.23.(1)1a =-,2m =;(2)32【解析】【分析】(1)先把A 点坐标代入直线2y x =求出A 点的坐标,然后代入到6y ax =+求解即可;(2)过点A 作AC OB ⊥于点C ,然后求出B 点的坐标,即可得到AB 的长,设AOB 的边AB上的高为h ,根据1122AOB S OB AC AB h =⋅=⋅△求解即可.【详解】解:(1)把点(),4A m 代入2y x =得:42m =,∴2m =把点()2,4A 代入6y ax =+得426a =+,∴1a =-;(2)把1a =-代入6y ax =+得6y x =-+令0y =,得6x =∴()6,0B ,6OB =.过点A 作AC OB ⊥于点C ,∵()2,4A ∴4AC =,2OC =,4CB =在Rt ACB 中,224442AB =+=设AOB 的边AB 上的高为h ,∴1116412222AOB S OB AC AB h =⋅=⋅=⨯⨯=△116422h ⨯=⨯⨯,解得h =∴△AOB 的边AB 上的高为【点睛】本题主要考查了求一次函数解析式,两直线的交点问题,三角形的高,一次函数与坐标轴的交点问题,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)()4,0A ,()0,8B -;(2)()1,9M ,()3,1N -;(3)见解析【解析】【分析】(1)与x 相交时,y =0;与y 轴相交时,x =0;据此解出第一问;(2)设其中一个变化后的点的坐标为未知数,再根据平移的数量关系和一次函数等量关系建立等式,解出未知数从而求出M 、N 坐标.(3)根据直线的解析式,求出直线恒过的点的坐标,再证明这个坐标就是平行四边形对角线的交点,从而证明该直线横平分平行四边形面积.【详解】解:(1)在直线28y x =-中,令0y =得280x -=,4x =,∴()4,0A 令0x =,∴8y =-,∴()0,8B -(2)点N 在直线2l 上,可设(),4N t t +,又线段MN 是由线段AB 平移得到,由()0,8B -移动到点(),4N t t +,则()4,0A 相应移动到点()4,48M t t +++把()4,48M t t +++代入直线1l ,得()12346t t +=++解得3t =-∴()1,9M ,()3,1N -另解:设()4,0A 移动到点(),M m n ,则()0,8B -相应移动到点()4,8N m n --,分别代入直线解析式中,得方程组36448m n m n +=⎧⎨-+=-⎩解得19m n =⎧⎨=⎩,∴()1,9M ,()3,1N -(3)∵()11111122222y kx k kx k k x ⎛⎫=+-=+-=-+ ⎪⎝⎭当12x =时,12y =∴直线过定点11,22⎛⎫ ⎪⎝⎭∵线段AB 平移得到线段MN∴四边形ABNM 是平行四边形∵()4,0A ,()3,1N -ABNM 的对角线的交点为4301,22-+⎛⎫ ⎝⎭,即11,22⎛⎫ ⎪⎝⎭∴直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.【点睛】本题考查平面直角坐标系中的平移问题,一次函数的表达式,平行四边形的性质,掌握基础知识是解题关键.25.60°【解析】【详解】根据正方形及等边三角形的性质求得∠ABF ,∠BAF 的度数,再根据外角的性质即可求得答案解:∵∠CBA=90°,∠ABE=60°,∴∠CBE=150°,∵四边形ABCD为正方形,三角形ABE为等边三角形,∴BC=BE,∴∠BEC=∠BCF=15°,在△CBF和△ABF中,BF=BF,∠CBF=∠ABF,BC=BA,,∴△CBF≌△ABF(SAS),∴∠BAF=∠BCE=15°,又∠ABF=45°,且∠AFD为△AFB的外角,∴∠AFD=∠ABF+∠FAB=15°+45°=60°“点睛”本题考查了正方形的性质、等边三角形的性质、全等三角形的判定与性质、等腰三角形的判定与性质;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键. 26.(1)车速的众数是42千米/时;(2)这些车辆的平均数度是42.6千米/时;(3)车速的中位数是42.5千米/时.【解析】【详解】试题分析:(1)根据条形统计图所给出的数据求出出现的次数最多的数即可,(2)根据加权平均数的计算公式和条形统计图所给出的数据列出算式计算即可,(3)根据中位数的定义求出第10和11个数的平均数即可.解:(1)根据条形统计图所给出的数据得:42出现了6次,出现的次数最多,则车速的众数是42千米/时;(2)这些车辆的平均数度是:(40+41×3+42×6+43×5+44×3+45×2)÷20=42.6(千米/时),答:这些车辆的平均数度是42.6千米/时;(3)因为共有20辆车,中位数是第10和11个数的平均数,所以中位数是42和43的平均数,(42+43)÷2=42.5(千米/时),所以车速的中位数是42.5千米/时.考点:条形统计图;加权平均数;中位数;众数.21。

人教版八年级数学下册期末考试题及答案【完整】

人教版八年级数学下册期末考试题及答案【完整】

人教版八年级数学下册期末考试题及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-6 3.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5B .﹣8C .﹣2D .5 4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1,2C .6,8,11D .5,12,236.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .37.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°8.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°9.如图,五边形ABCDE 中有一正三角形ACD ,若AB=DE ,BC=AE ,∠E=115°,则∠BAE 的度数为何?( )A .115B .120C .125D .13010.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 满足(a ﹣1)22b +,则a+b=________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.4的平方根是 .4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= _________度。

(实用)2020人教版八年级下学期数学期末测试卷(附答案)

(实用)2020人教版八年级下学期数学期末测试卷(附答案)

2019—2020八年级下学期数学期末测试卷一、选择题(本大题共8个小题,每题3分,共24分,每个小题只有一个选项 正确) 1.下列计算中正确的是( )A =B 1=C .3+=D =2有意义的x 的取值范围( ) A .x >2B .x≥2C .x >3D .x≥2且x≠33.下列图象中,表示y 是x 的函数的是( )A .B .C .D .4.已知一组数据1a ,2a ,3a ,4a ,5a 的平均数为5,则另一组数据15a +,25a -,35a +,45a -,55a +的平均数为( ) A .4B .5C .6D .105.下列几个二次根式 ) A .2个B .3个C .4个D .5个6.下图是韩老师早晨出门散步时,离家的距离()y 与时间()x 之间的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是( )A .B .C .D .7.关于函数y=152x -,下列结论正确的是( )A .函数图象必经过点(1,4)B .函数图象经过二三四象限C .y 随x 的增大而增大D .y 随x 的增大而减小8.如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为 ( ) A .65B .52C .53D .54二、填空题(本题共8个小题;每个小题3分,共24分,把正确答案填在横线上) 9.在平面直角坐标系中,点P (1,2)关于y 轴的对称点Q 的坐标是________; 10.正比例函数y =mx 经过点P (m ,9),y 随x 的增大而减小,则m =__.11.如图,四边形ABCD 是矩形,对角线AC 、BD 相交于点O ,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是_________. 12.已知12,3A y ⎛⎫-⎪⎝⎭,21,5B y ⎛⎫- ⎪⎝⎭,()31,C y ,是一次函数3y x n =-+(n 为常数)的图像的三点,则1y ,2y ,3y 的大小关系为__________.13.如图所示,▱ABCD 的对角线AC ,BD 相交于点O ,AE EB =,3OE =,5AB =,▱ABCD 的周长__________.14.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的_____ (从“众数、方差、平均数、中位数”中填答案)15.如图,直线l 1:y=x+n–2与直线l 2:y=mx+n 相交于点P(1,2).则不等式mx+n<x+n–2的解集为______. 16.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A ,B 的坐标分别为(1,0) (4,0),将△ABC 沿x 轴向右平移,当C 点落在直线y =2x -6上时,线段BC 扫过的区域面积为________.8题 11题 13题 15题 16题三、解答题(本题共8道题,17-18每题6分,19题8分,20-23每题10分,24题12分,满分72分)17.计算:()(1)-(1)2.18.如图四边形ABCD 是一块草坪,量得四边长AB =3m ,BC =4m ,DC =12m ,AD =13m ,∠B =90°,求这块草坪的面积 .19.1号探测气球从海拔5m 处出发,以1m/min 的速度上升.与此同时,2号探测气球从海拔15m 处出发,以0.5m/min 的速度上升.两个气球都上升了1h 后停止.(1)分别表示两个气球所在位置的海拔y (m )关于上升时间x (min )的函数解析式,并直接写出x 的取值范围.(2)气球上升了多少分钟时,两个气球位于同一高度?20.如图,ABC ∆中,AB AC =,AD 是BC 边上的高.点O 是AC 中点,延长DO 到E ,使OE OD =,连接AE ,CE .若6BC =,60DOC ∠=︒. (1)求证:四边形ADCE 是矩形; (2)求四边形ADCE 的面积.21.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数请你根据统计图表中的信息,解答下列问题: (1)a=________, b = ________.(2)该调查统计数据的中位数是________,众数是________. (3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次的人数.22.如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. (1)四边形EFGH 是怎样的四边形?证明你的结论.(2)当四边形ABCD 的对角线AC 、BD满足条件 时,四边形EFGH 是矩形. (3)当四边形ABCD 的对角线AC 、BD 满足条件 时,四边形EFGH 是菱形.23.为加强校园文化建设,某校准备打造校园文化墙,需用甲、乙两种石材经市场调查,甲种石材的费用y (元)与使用面积x (m 2)间的函数关系如图所示,乙种石材的价格为每平方米50元. (1)求y 与x 间的函数解析式;(2)若校园文化墙总面积共600m 2,其中使用甲石材xm 2,设购买两种石材的总费用为w 元,请直接写出w 与x 间的函数解析式;(3)在(2)的前提下,若甲种石材使用面积多于300m 2,且不超过乙种石材面积的2倍,那么应该怎样分配甲、乙两种石材的面积才能使总费用最少?最少总费用为多少元?借阅图书的次数0次 1次 23次 4次及以上人数713a10324.如图,已知函数43y mx =+的图象为直线1l ,函数y kx b =+的图象为直线2l ,直线1l 、2l 分别交x 轴于点B 和点(3,0)C ,分别交y 轴于点D 和E ,1l 和2l 相交于点(2,2)A (1)填空:m = ;求直线2l 的解析式为 ;(2)若点M 是x 轴上一点,连接AM ,当ABM ∆的面积是ACM ∆面积的2倍时,请求出符合条件的点M 的坐标;(3)若函数6y nx =-的图象是直线3l ,且1l 、2l 、3l 不能围成三角形,直接写出n 的值.数学参考答案二、填空题9 (-1,2) 10 -3 11 AB=BC(答案不唯一) 12123y y y >>13 22 14 中位数 15 x >1 16 16三解答题17 【答案】1518【答案】这块草坪的面积是36m 219【答案】(1)1号气球:y=x+5,2号气球:y=0.5x+15,(0≤x≤60);(2)气球上升了20分钟时,两个气球位于同一高度.20【答案】(1)略;(2). 21解:(1)17;20(2)2次;2次(3)扇形统计图中“3次”所对应扇形的圆心角的度数为 360∘×20%=72∘ (4)估计该校学生在一周内借阅图书“4次及以上的人数为2000 ×350 =120人。

【人教版】数学八年级下学期《期末检测题》附答案

【人教版】数学八年级下学期《期末检测题》附答案

2020-2021学年第二学期期末测试人教版数学八年级试题学校________ 班级________ 姓名________ 成绩________本试卷共25题.全卷满分120分.考试用时120分钟.一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若化成最简二次根式后,能与合并,则a的值不可以是()A.B.8 C.18 D.282.下列各组数中,是勾股数的是()A.0.3,0.4,0.5 B.6,8,10C.D.10,15,183.a=2019×2021﹣2019×2020,b=,c=,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图,在正方形ABCD中,以对角线BD为边作菱形BDFE,连接BF,则∠AFB=()A.30°B.25°C.22.5°D.不能确定6.如图,周长为20的菱形ABCD中,点E、F分别在边AB、AD上,AE=2,AF=3,P为BD上一动点,则线段EP+FP长度的最小值为()A.3 B.4 C.5 D.67.如图,直线y=kx+b与x轴,y轴分别相交于点A(﹣3,0),B(0,2),则不等式kx+b>2的解集是()A.x>﹣3 B.x<2 C.x>0 D.x<28.某中学八(1)班8个同学在课间进行一分钟跳绳比赛,成绩(单位:个)如下:115,138,126,143,134,126,157,118.这组数据的众数和中位数分别是()A.126,126 B.126,130 C.130,134 D.118,1349.某班同学从学校出发去秋游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要15分钟才能到达景点入口.A.1个B.2个C.3个D.4个10.如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,把y看作x的函数,函数的图象如图②所示,则图②中的a等于()A.3B.4C.14 D.18二、填空题:本题共7小题,每小题3分,共21分.11.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.12.若代数式有意义,则x的取值范围是13.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E,若PE=3,则两平行线AD与BC间的距离为.14.如图,△ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,连PC.(1)线段PC的最小值是.(2)当PC=5时,AP长是.15.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.16.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.17.如图,在直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,C为OB的中点,点D在第二象限,且四边形AOCD为矩形,P是CD上一个动点,过点P作PH⊥OA于H,Q是点B关于点A的对称点,则BP+PH+HQ的最小值为.三、解答题:共69分.解答应写出文字说明、证明过程或演算步骤.考生根据要求作答.18.计算:×﹣(+1)2.19.已知:a=+2,b=﹣2.(1)求ab.(2)求a2+b2﹣ab.20.已知函数y=kx+,当x=1时,y=7;当x=2时,y=8.(1)求y与x之间的函数关系式;(2)当x=4时,求y的值.21.如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.22.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?23.在平面直角坐标系xOy中,A(0,4),B(2,0),C(5,1),D(2,5).(1)AD=,AB=;(2)∠BAD是直角吗?请说出理由;(3)求点B到直线CD的距离.24.如图,在Rt△ABC中,∠ACB=90°,点D是AB上的一点,连接CD,CE∥AB,BE∥CD,且CE=AD.(1)求证:四边形BDCE是菱形;(2)过点E作EF⊥BD,垂足为点F,若点F是BD的中点,EB=6,求BC的长.25.如图,矩形ABCO中,点C在y轴上,点A在x轴上,点B的坐标是(﹣8,﹣6),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、y轴分别交于点D、F.(1)求线段BO的长;(2)求直线BF的解析式;(3)若点N是平面内任一点,在x轴上是否在点M,使得M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.参考答案一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若化成最简二次根式后,能与合并,则a的值不可以是()A.B.8 C.18 D.28【答案】D【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、=,能与合并,a的值可以是,本选项不符合题意;B、==2,能与合并,a的值可以是8,本选项不符合题意;C、==3,能与合并,a的值可以是18,本选项不符合题意;D、==2,不能与合并,a的值不可以是28,本选项符合题意;故选:D.【知识点】最简二次根式、同类二次根式、二次根式有意义的条件2.下列各组数中,是勾股数的是()A.0.3,0.4,0.5 B.6,8,10C.D.10,15,18【答案】B【分析】利用勾股数定义进行分析即可.【解答】解:A、0.3,0.4,0.5不是正整数,不是勾股数,故此选项不合题意;B、62+82=102,都是正整数,是勾股数,故此选项符合题意;C、,,不是正整数,不是勾股数,故此选项不合题意;D、102+152≠182,不是勾股数,故此选项不合题意;故选:B.【知识点】勾股数3.a=2019×2021﹣2019×2020,b=,c=,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a【答案】A【分析】利用平方差公式计算a,利用完全平方公式和二次根式的化简求出b,利用二次根式大小的比较办法,比较b、c得结论.【解答】解:a=2019×2021﹣2019×2020=(2020﹣1)(2020+1)﹣(2020﹣1)×2020=20202﹣1﹣20202+2020=2019;∵20222﹣4×2021=(2021+1)2﹣4×2021=20212+2×2021+1﹣4×2021=20212﹣2×2021+1=(2021﹣1)2=20202,∴b=2020;∵>,∴c>b>a.故选:A.【知识点】实数大小比较、二次根式的乘除法、二次根式的性质与化简4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【答案】D【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选:D.【知识点】勾股定理的应用5.如图,在正方形ABCD中,以对角线BD为边作菱形BDFE,连接BF,则∠AFB=()A.30°B.25°C.22.5°D.不能确定【答案】C【分析】根据正方形的对角线平分一组对角可得∠ADB=45°,再根据菱形的四条边都相等可得BD=DF,根据等边对等角可得∠DBF=∠DFB,然后根据三角形的一个外角等于与它不相邻的两个内角的和进行计算即可得解.【解答】解:在正方形ABCD中,∠ADB=∠ADC=×90°=45°,在菱形BDFE中,BD=DF,所以,∠DBF=∠AFB,在△BDF中,∠ADB=∠DBF+∠AFB=2∠AFB=45°,解得∠AFB=22.5°.故选:C.【知识点】正方形的性质、菱形的性质6.如图,周长为20的菱形ABCD中,点E、F分别在边AB、AD上,AE=2,AF=3,P为BD上一动点,则线段EP+FP长度的最小值为()A.3 B.4 C.5 D.6【答案】C【分析】在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.EG的长就是EP+FP的最小值,据此即可求解.【解答】解:∵四边形ABCD是菱形,周长为20,∴AD=20,在DC上截取DG=FD=AD﹣AF=5﹣3=2,连接EG,EG与BD交于点P′,连接P′F,此时P′E+P′F的值最小,最小值=EG的长,∵AE=DG=2,且AE∥DG,∴四边形ADGE是平行四边形,∴EG=AD=5.故选:C.【知识点】菱形的性质、轴对称-最短路线问题7.如图,直线y=kx+b与x轴,y轴分别相交于点A(﹣3,0),B(0,2),则不等式kx+b>2的解集是()A.x>﹣3 B.x<2 C.x>0 D.x<2【答案】C【分析】根据图象和B的坐标得出即可.【解答】解:∵直线y=kx+b和y轴的交点是B(0,2),∴不等式kx+b>2的解集是x>0,故选:C.【知识点】一次函数的性质、一次函数与一元一次不等式8.某中学八(1)班8个同学在课间进行一分钟跳绳比赛,成绩(单位:个)如下:115,138,126,143,134,126,157,118.这组数据的众数和中位数分别是()A.126,126 B.126,130 C.130,134 D.118,134【答案】B【分析】先将这组数据重新排列,再根据众数和中位数的概念求解即可.【解答】解:将这组数据重新排列为115,118,126,126,134,138,143,157,所以这组数据的众数为126,中位数为=130,故选:B.【知识点】中位数、众数9.某班同学从学校出发去秋游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要15分钟才能到达景点入口.A.1个B.2个C.3个D.4个【答案】C【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【解答】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车原来的速度为:15÷30=0.5km/min,后来的速度为:0.5×=(km/min),当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷﹣(40﹣15)÷1=10分钟才能达到景点入口,故④错误,故选:C.【知识点】一次函数的应用10.如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,把y看作x的函数,函数的图象如图②所示,则图②中的a等于()A.3B.4C.14 D.18【答案】A【分析】由图②知,BC=6,CD=14﹣6=8,BD=18﹣14=4,再通过解直角三角形,求出△CBD高,进而求解.【解答】解:由图②知,BC=6,CD=14﹣6=8,BD=18﹣14=4,过点B作BH⊥DC于点H,设CH=x,则DH=8﹣x,则BH2=BC2﹣CH2=BD2﹣DH2,即:BH2=42﹣(8﹣x)2=62﹣x2,解得:BH=,则a=y=S△ABP=DC×HB=×8×=3,故选:A.【知识点】动点问题的函数图象二、填空题:本题共7小题,每小题3分,共21分.11.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.【答案】39【分析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定这组数据中位数.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40,其中第四个数据为39,所以这组数据的中位数为39.故答案为39.【知识点】中位数12.若代数式有意义,则x的取值范围是【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0.【解答】解:若代数式有意义,必有解得﹣3≤x<且x≠﹣2.【知识点】二次根式有意义的条件13.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E,若PE=3,则两平行线AD与BC间的距离为.【答案】6【分析】作PF⊥AD于F,PG⊥BC于G,根据角平分线的性质得到PF=PE=3,PG=PE=3,根据平行线间的距离的求法计算即可.【解答】解:作PF⊥AD于F,PG⊥BC于G,∵AP是∠BAD的角平分线,PF⊥AD,PE⊥AB,∴PF=PE=3,∵BP是∠ABC的角平分线,PE⊥AB,PG⊥BC,∴PG=PE=3,∵AD∥BC,∴两平行线AD与BC间的距离为PF+PG=6,故答案为:6.【知识点】平行线之间的距离、角平分线的性质14.如图,△ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,连PC.(1)线段PC的最小值是.(2)当PC=5时,AP长是.【答案】【第1空】4.8【第2空】5或2.2【分析】(1)当PC⊥AB时,PC的值最小,利用面积法求解即可;(2)过C作CQ⊥BC于Q,同(1)得CQ=4.8,由勾股定理求出AQ=3.6,PQ=1.4,当P在线段BQ上时,AP=AQ+PQ=5;当P在线段AQ上时,AP=AQ﹣PQ=2.2.【解答】解:(1)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB===10,由垂线段最短得:当PC⊥AB时,PC的值最小,此时,△ABC的面积=•AB•PC=•AC•BC,∴AB•PC=AC•BC,∴PC===4.8,故答案为:4.8;(2)过C作CQ⊥BC于Q,如图所示:同(1)得:CQ=4.8,由勾股定理得:AQ===3.6,PQ===1.4,当P在线段BQ上时,AP=AQ+PQ=3.6+1.4=5;当P在线段AQ上时,AP=AQ﹣PQ=3.6﹣1.4=2.2;综上所述,AP的长为5或2.2,故答案为:5或2.2.【知识点】勾股定理、垂线段最短15.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.【分析】根据一次函数图象过定点A(2,3),即可得到OA=为最大距离.【解答】解:一次函数y=(x﹣2)k+3中,令x=2,则y=3,∴一次函数图象过定点A(2,3),∴OA=为最大距离.故答案为:.【知识点】一次函数的性质、一次函数的图象16.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.【答案】(4,160)【分析】根据点C与点D的坐标即可得出乙货车的速度,进而得出乙货车从B地到A地所用时间,据此即可得出点E的坐标.【解答】解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(km/h),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到达A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).【知识点】一次函数的应用17.如图,在直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,C为OB的中点,点D在第二象限,且四边形AOCD为矩形,P是CD上一个动点,过点P作PH⊥OA于H,Q是点B关于点A的对称点,则BP+PH+HQ的最小值为.【分析】根据直线y=x+4先确定OA和OB的长,证明四边形PHOC是矩形,得PH=OC=BC=2,再证明四边形PBCH是平行四边形,则BP=CH,在BP+PH+HQ中,PH=2是定值,所以只要CH+HQ 的值最小就可以,当C、H、Q在同一直线上时,CH+HQ的值最小,利用平行四边形的性质求出即可.【解答】解:如图,连接CH,∵直线y=x+4分别交x轴,y轴于A,B两点,∴OB=4,OA=3,∵C是OB的中点,∴BC=OC=2,∵∠PHO=∠COH=∠DCO=90°,∴四边形PHOC是矩形,∴PH=OC=BC=2,∵PH∥BC,∴四边形PBCH是平行四边形,∴BP=CH,∴BP+PH+HQ=CH+HQ+2,要使CH+HQ的值最小,只须C、H、Q三点共线即可,∵点Q是点B关于点A的对称点,∴Q(﹣6,﹣4),又∵点C(0,2),根据勾股定理可得CQ==6,此时,BP+PH+HQ=CH+HQ+PH=CQ+2=6+2,即BP+PH+HQ的最小值为6+2;故答案为:6+2.【知识点】一次函数综合题三、解答题:共69分.解答应写出文字说明、证明过程或演算步骤.考生根据要求作答.18.计算:×﹣(+1)2.【分析】根据根式的乘法和完全平方公式化成最简二次根式,再合并即可.【解答】解:×﹣(+1)2=﹣[()2+2+1]=﹣3﹣2﹣1=2﹣3﹣2﹣1=﹣4.【知识点】二次根式的混合运算19.已知:a=+2,b=﹣2.(1)求ab.(2)求a2+b2﹣ab.【分析】(1)根据平方差公式、二次根式的乘法法则计算;(2)根据二次根式的加法法则求出a+b,根据完全平方公式把原式变形,把a+b、ab的值代入计算即可.【解答】解:(1)ab=(+2)(﹣2)=()2﹣22=5﹣4=1;(2)∵a=+2,b=﹣2,∴a+b=(+2)+(﹣2)=2,∴a2+b2﹣ab=a2+2ab+b2﹣3ab=(a+b)2﹣3ab=(2)2﹣3×1=17.【知识点】二次根式的化简求值、分母有理化20.已知函数y=kx+,当x=1时,y=7;当x=2时,y=8.(1)求y与x之间的函数关系式;(2)当x=4时,求y的值.【分析】(1)直接把已知x,y的值代入解方程组得出答案;(2)利用(1)中所求把x的值代入求出答案.【解答】解:(1)∵函数y=kx+,当x=1时,y=7;当x=2时,y=8,∴,解得:,故y与x之间的函数关系式为:y=3x+;(2)当x=4时,y=3×4+=13.【知识点】函数值21.如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.【分析】连结BD,取BD的中点H,连结HE,HF,根据三角形的中位线的性质得到FH∥BM,FH=AB,EH∥CN,EH=CD,根据平行线的性质得到∠BME=∠HFE,∠CNE=∠HEF,根据等腰三角形的性质得到∠HFE=∠HEF,等量代换即可得到结论.【解答】证明:连结BD,取BD的中点H,连结HE,HF,∵E、F分别是BC、AD的中点,∴FH∥BM,FH=AB,EH∥CN,EH=CD,∴∠BME=∠HFE,∠CNE=∠HEF,∵AB=CD,∴FH=EH,∴∠HFE=∠HEF,∴∠BME=∠CNE.【知识点】三角形中位线定理22.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?【答案】【第1空】1.5【第2空】1.5【分析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,再用总人数减去学生劳动“0.5小时”、“1小时”、“2小时”的人数,得出学生劳动“1.5小时”的人数,从而补全条形图;(2)根据统计图中的数据确定出学生劳动时间的众数与中位数即可;(3)总人数乘以样本中参加义务劳动2小时的百分比即可得.【解答】解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时,故答案为:1.5,1.5;(3)1200×=216,答:估算该校学生参加义务劳动2小时的有216人.【知识点】中位数、全面调查与抽样调查、众数、条形统计图、用样本估计总体23.在平面直角坐标系xOy中,A(0,4),B(2,0),C(5,1),D(2,5).(1)AD=,AB=;(2)∠BAD是直角吗?请说出理由;(3)求点B到直线CD的距离.【分析】(1)直接根据两点间的距离公式可求出AD及AB的长即可;(2)连接BD,根据勾股定理的逆定理进行判断即可;(3)过点B作BE⊥CD于点E,作CG⊥x轴于点G,根据三角形的面积公式求出BE的长即可.【解答】解:(1)∵A(0,4),B(2,0),C(5,1),D(2,5).∴AD==;AB===2.故答案为:,2;(2)∠BAD是直角.理由:连接BD,∵B(2,0),D(2,5),∴BD=5﹣0=5.∵由(1)知AD=,AB=2,∴AD2=5,AB2=20,BD2=25,∴AD2+AB2=BD2,∴∠BAD是直角;(3)过点B作BE⊥CD于点E,作CG⊥x轴于点G,∵C(5,1),D(2,5),∴CD==5,∵B(2,0),D(2,5).∴BD⊥x轴,BG=5﹣2=3,CG=1,∴S△BCD=S梯形DBGC﹣S△BCG,即×5BE=(1+5)×3﹣×1×3,解得BE=3.答:点B到直线CD的距离为3.【知识点】勾股定理、勾股定理的逆定理、坐标与图形性质24.如图,在Rt△ABC中,∠ACB=90°,点D是AB上的一点,连接CD,CE∥AB,BE∥CD,且CE=AD.(1)求证:四边形BDCE是菱形;(2)过点E作EF⊥BD,垂足为点F,若点F是BD的中点,EB=6,求BC的长.【分析】(1)先证明四边形BDCE是平行四边形,得出CE=BD,证出BD=CD,由直角三角形斜边上的中线性质得出CD=AB=BD,即可得出四边形BDCE是菱形;(2)连接DE,由菱形的性质得出BC⊥DE,BD=BE,OB=OC,由线段垂直平分线的性质得出BE=DE,证出BE=DE=BD,由等边三角形和菱形的性质得出∠EBC=∠EBD=30°,求出OE=EB=3,由勾股定理求出OB,即可得出结果.【解答】(1)证明:∵CE∥AB,BE∥CD,∴四边形BDCE是平行四边形,∴CE=BD,∵CE=AD,∴BD=AD,又∵∠ACB=90°,∴CD=AB=BD,∴四边形BDCE是菱形;(2)解:连接DE,如图所示:由(1)得:四边形BDCE是菱形,∴BC⊥DE,BD=BE,OB=OC,∵EF⊥BD,点F是BD的中点,∴BE=DE,∴BE=DE=BD,∴∠DBE=60°,∠EBC=∠EBD=30°,∴OE=EB=3,∴OB===3,∴BC=2OB=6.【知识点】菱形的判定25.如图,矩形ABCO中,点C在y轴上,点A在x轴上,点B的坐标是(﹣8,﹣6),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、y轴分别交于点D、F.(1)求线段BO的长;(2)求直线BF的解析式;(3)若点N是平面内任一点,在x轴上是否在点M,使得M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.【分析】(1)由勾股定理求出BO即可;(2)由待定系数法求出直线BF的解析式即可;(3)分情况讨论:①当OM、OE都为菱形的边时,OM=OE=4,得出M的坐标为(4,0)或(﹣4,0);②当OM为菱形的对角线,OE为边时,同②得(﹣,0);③当OM为菱形的边,OE为对角线时,MN垂直平分OE,垂足为G,由勾股定理求出OM即可.【解答】解:(1)∵四边形ABCO是矩形,点B的坐标是(﹣8,﹣6),∴∠OAB=∠OCB=90°,OA=BC=8,AB=CO=6,∴BO===10;(2)由折叠的性质得:BE=AB=6,DE=DA,∠DEB=∠DAB=90°,∴∠DEO=90°,OE=BO﹣BE=10﹣6=4.设OD=a,则DA=DE=8﹣a,在Rt△EOD中,DE2+OE2=OD2,即(8﹣a)2+42=a2,解得:a=5,∴D(﹣5,0),设直线BF的解析式为y=kx+b,把B(﹣8,﹣6),D(﹣5,0)代入得:,解得:,∴直线BF的解析式为y=2x+10;(3)存在,理由如下:①当OM、OE都为菱形的边时,OM=OE=4,∴M的坐标为(4,0)或(﹣4,0);②当OE为菱形的边,OM为菱形的对角线时,如图1所示:设直线OB解析式为:y=kx,由点B(﹣8,﹣6)在图象上可知:﹣6=﹣8k,∴k=,则直线OB解析式为y=x,设点E(x,x),在Rt△EOG中,OG2+GE2=OE2,即:x2+(x)2=16,解得:x=±,∵点E在第三象限,∴x=﹣,∴点M(﹣,0);③当OM为菱形的边,OE为对角线时,MN垂直平分OE,垂足为G,作EP⊥OA于P,如图2所示:由②得:E(﹣,﹣),则OP=,EP=,在Rt△PEM中,由勾股定理得:(﹣OM)2+()2=EM2,∵OM=EM,∴(﹣OM)2+()2=OM2,解得:OM=,∴点M的坐标为(﹣,0);综上所述,在x轴上存在点M,使得M、N、E、O为顶点的四边形是菱形,点M的坐标为(4,0)或(﹣4,0)或(﹣,0)或(﹣,0).【知识点】一次函数综合题。

2020人教版八年级下册数学《期末考试试卷》含答案

2020人教版八年级下册数学《期末考试试卷》含答案

2020⼈教版⼋年级下册数学《期末考试试卷》含答案⼈教版数学⼋年级下学期期末测试卷⼀、选择题(本⼤题共 14 ⼩题,共 42 分)1. 为了解我市参加中考的15 000名学⽣的视⼒情况,抽查了1 000名学⽣的视⼒进⾏统计分析,下⾯四个判断正确的是()A. 15000名学⽣是总体B. 1000名学⽣的视⼒是总体的⼀个样本C. 每名学⽣是总体的⼀个个体D. 以上调查是普查2.若点P (a ,b )在第⼆象限内,则a ,b 的取值范围是()A. a <0,b >0B. a >0,b >0C. a >0,b <0D. a <0,b <0 3.函数3y x =-中⾃变量x 的取值范围是() A. 3x < B. 3x ≤ C. 3x > D. 3x ≥4.将⼀个n 边形变成(n +1)边形,内⾓和将( )A. 减少180°B. 增加90°C. 增加180°D. 增加360°5.设正⽐例函数y=mx 的图象经过点A(m ,4),且y 的值随x 的增⼤⽽增⼤,则m=( )A. 2B. -2C. 4D. -46.⼀次函数y =kx -(2-b)的图像如图所⽰,则k 和b 的取值范围是( )A. k>0,b>2B. k>0,b<2C. k<0,b>2D. k<0,b<27.在数学活动课上,⽼师让同学们判定⼀个四边形门框是否为矩形,下⾯是某合作⼩组的四位同学的拟订⽅案,其中正确的是( )A. 测量对⾓线是否互相平分B. 测量两组对边是否分别相等C. 测量⼀组对⾓是否为直⾓D. 测量两组对边是否相等,再测量对⾓线是否相等8.向最⼤容量为60升的热⽔器内注⽔,每分钟注⽔10升,注⽔2分钟后停⽌1分钟,然后继续注⽔,直⾄注满.则能反映注⽔量与注⽔时间函数关系的图象是( )A. B.C. D.9.如图,已知菱形ABCD的周长是24⽶,∠BAC=30°,则对⾓线BD的长等于()A. 63⽶B. 33⽶C. 6⽶D. 3⽶10.如图,将矩形纸⽚ABCD沿其对⾓线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A. 16B. 19C. 22D. 2511.如图,在平⾯直⾓坐标系中,正三⾓形OAB的顶点B的坐标为(2,0),点A在第⼀象限内,将△OAB 沿直线OB的⽅向平移⾄△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为()A. 3)B. 3)C. 3)D. 3)12.在平⾯直⾓坐标系中,⼀矩形上各点的纵坐标不变,横坐标变为原来的12,则该矩形发⽣的变化为( )A. 向左平移了12个单位长度 B. 向下平移了12个单位长度C. 横向压缩为原来的⼀半D. 纵向压缩为原来的⼀半13.某商店在节⽇期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款⾦额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所⽰,则超过500元的部分可以享受的优惠是()A. 打六折B. 打七折C. 打⼋折D. 打九折14. ⼩明在学习了正⽅形之后,给同桌⼩⽂出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使?ABCD为正⽅形(如图),现有下列四种选法,你认为其中错误的是()A. ①②B. ②③C. ①③D. ②④⼆、填空题(本⼤题共6 ⼩题,共18 分)15.当m=________时,函数y=-(m-2)2m3x-+(m-4)是关于x的⼀次函数.16.如图,在△ABC中,AB=5,BC=7,EF是△ABC的中位线,则EF的长度范围是________.17.⼀次函数y=k(x-1)的图象经过点M(-1,-2),则其图象与y轴的交点是__________.18.如图,在平⾯直⾓坐标系中,△ABC的顶点都在⽅格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为________.19.如图,四边形ABCD是菱形,O是两条对⾓线的交点,过O点的三条直线将菱形分成阴影和空⽩部分.当菱形的两条对⾓线的长分别为10和6时,则阴影部分的⾯积为_________.20.如图,已知菱形OABC 的顶点O(0,0),B(2,2),则菱形的对⾓线交点D 的坐标为____;若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,点D 的坐标为_____.三、解答题(本⼤题共 6 ⼩题,共 60 分)21.如图,左右两幅图案关于y 轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3),嘴⾓左右端点的坐标分别是(2,1),(4,1).(1)试确定左图案中的左右眼睛和嘴⾓左右端点的坐标;(2)从对称的⾓度来考虑,说⼀说你是怎样得到的;(3)直接写出右图案中的嘴⾓左右端点关于原点的对称点的坐标.22.为了了解江城中学学⽣的⾝⾼情况,随机对该校男⽣、⼥⽣的⾝⾼进⾏抽样调查.已知抽取的样本中,男⽣、⼥⽣的⼈数相同,根据所得数据绘制成如图所⽰的统计图表.组别⾝⾼(cm ) Ax<150 B 150≤x <155C 155≤x<160D 160≤x<165E x≥165根据图表中提供的信息,回答下列问题:(1)在样本中,男⽣⾝⾼的中位数落在________组(填组别序号),⼥⽣⾝⾼在B组的⼈数有________⼈;(2)在样本中,⾝⾼在150≤x<155之间的⼈数共有________⼈,⾝⾼⼈数最多的在________组(填组别序号);(3)已知该校共有男⽣500⼈、⼥⽣480⼈,请估计⾝⾼在155≤x<165之间的学⽣有多少⼈23.已知y是x的⼀次函数,当x=1时,y=1;当x=-2时,y=-14.(1)求这个⼀次函数的关系式;(2)在如图所⽰的平⾯直⾓坐标系中作出函数的图像;(3)由图像观察,当0≤x≤2时,函数y的取值范围.24.顺次连接四边形各边中点所得的四边形叫中点四边形.回答下列问题:(1)只要原四边形两条对⾓线______,就能使中点四边形是菱形;(2)只要原四边形的两条对⾓线______,就能使中点四边形是矩形;(3)请你设计⼀个中点四边形为正⽅形,但原四边形⼜不是正⽅形的四边形,把它画出来.25.王华同学要证明命题“对⾓线相等的平⾏四边形是矩形”是正确的,她先作出了如图所⽰的平⾏四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在平⾏四边形ABCD中,,求证:平⾏四边形ABCD是.(1)在⽅框中填空,以补全已知和求证;(2)按王晓的想法写出证明过程;证明:26.如图,直线y1=2x-2的图像与y轴交于点A,直线y2=-2x+6的图像与y轴交于点B,两者相交于点C.(1)⽅程组2226x yx y-=+=的解是______;(2)当y1>0与y2>0同时成⽴时,x的取值范围为_____;(3)求△ABC的⾯积;(4)在直线y1=2x-2的图像上存在异于点C的另⼀点P,使得△ABC与△ABP的⾯积相等,请求出点P的坐标.答案与解析⼀、选择题(本⼤题共 14 ⼩题,共 42 分)1. 为了解我市参加中考的15 000名学⽣的视⼒情况,抽查了1 000名学⽣的视⼒进⾏统计分析,下⾯四个判断正确的是()A. 15000名学⽣是总体B. 1000名学⽣的视⼒是总体的⼀个样本C. 每名学⽣是总体的⼀个个体D. 以上调查是普查【答案】B【解析】【详解】总体是参加中考的15 000名学⽣的视⼒情况,故A 错误;1000名学⽣的视⼒是总体的⼀个样本,故B 正确;每名学⽣的视⼒情况是总体的⼀个样本,故C 错误;以上调查应该是抽查,故D 错误;故选B .2.若点P (a ,b )在第⼆象限内,则a ,b 的取值范围是()A. a <0,b >0B. a >0,b >0C. a >0,b <0D. a <0,b <0 【答案】A【解析】【分析】点在第⼆象限的条件是:横坐标是负数,纵坐标是正数.【详解】解:因为点P (a ,b )在第⼆象限,所以a <0,b >0,故选A .【点睛】本题考查了平⾯直⾓坐标系中各象限点的坐标的符号特征,第⼀象限(+,+);第⼆象限(-,+);第三象限(-,-);第四象限(+,-).3.函数y =中⾃变量x 的取值范围是() A. 3x <B. 3x ≤C. 3x >D. 3x ≥【答案】B【解析】试题分析:根据⼆次根式的意义,被开⽅数是⾮负数.所以3﹣x≥0,解得x≤3.故选B.考点:函数⾃变量的取值范围.4.将⼀个n边形变成(n+1)边形,内⾓和将( )A. 减少180°B. 增加90°C. 增加180°D. 增加360°【答案】C【解析】【分析】利⽤多边形的内⾓和公式即可求出答案.【详解】解:n边形的内⾓和是(n﹣2)?180°,n+1边形的内⾓和是(n﹣1)?180°,因⽽(n+1)边形的内⾓和⽐n边形的内⾓和⼤(n﹣1)?180°﹣(n﹣2)?180=180°.故选C.5.设正⽐例函数y=mx的图象经过点A(m,4),且y的值随x的增⼤⽽增⼤,则m=()A. 2B. -2C. 4D. -4【答案】A【解析】【分析】直接根据正⽐例函数的性质和待定系数法求解即可.【详解】解:把x=m,y=4代⼊y=mx中,可得:m=±2,因为y的值随x值的增⼤⽽增⼤,所以m=2,故选:A.【点睛】本题考查了正⽐例函数的性质:正⽐例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第⼀、三象限,y值随x的增⼤⽽增⼤;当k<0时,图象经过第⼆、四象限,y值随x的增⼤⽽减⼩.也考查了⼀次函数图象上点的坐标特征.6.⼀次函数y=kx-(2-b)的图像如图所⽰,则k和b的取值范围是()A. k>0,b>2B. k>0,b<2C. k<0,b>2D. k<0,b<2 【答案】B 【解析】【分析】根据⼀次函数的图象经过⼀、三、四象限列出b的不等式,求出b及k的取值范围即可.【详解】∵⼀次函数y=kx-(2-b)的图象经过⼀、三、四象限,∴k>0,-(2-b)<0,解得b<2.故选B.【点睛】本题考查的是⼀次函数的性质,熟知⼀次函数的图象与系数的关系是解答此题的关键.7.在数学活动课上,⽼师让同学们判定⼀个四边形门框是否为矩形,下⾯是某合作⼩组的四位同学的拟订⽅案,其中正确的是( )A. 测量对⾓线是否互相平分B. 测量两组对边是否分别相等C. 测量⼀组对⾓是否为直⾓D. 测量两组对边是否相等,再测量对⾓线是否相等【答案】D【解析】【分析】根据矩形和平⾏四边形的判定推出即可得答案.【详解】A、根据对⾓线互相平分只能得出四边形是平⾏四边形,故本选项错误;B、根据对边分别相等,只能得出四边形是平⾏四边形,故本选项错误;C、根据⼀组对⾓是否为直⾓不能得出四边形的形状,故本选项错误;D、根据对边相等可得出四边形是平⾏四边形,根据对⾓线相等的平⾏四边形是矩形可得出此时四边形是矩形,故本选项正确;故选D.【点睛】本题考查的是矩形的判定定理,矩形的判定定理有①有三个⾓是直⾓的四边形是矩形;②对⾓线互相平分且相等的四边形是矩形;③有⼀个⾓是直⾓的平⾏四边形是矩形.牢记这些定理是解题关键.8.向最⼤容量为60升的热⽔器内注⽔,每分钟注⽔10升,注⽔2分钟后停⽌1分钟,然后继续注⽔,直⾄注满.则能反映注⽔量与注⽔时间函数关系的图象是( )A. B.C. D.【答案】D【解析】【详解】注⽔需要60÷10=6分钟,注⽔2分钟后停⽌注⽔1分钟,共经历6+1=7分钟,排除A、B;再根据停1分钟,再注⽔4分钟,排除C.故选D.9.如图,已知菱形ABCD的周长是24⽶,∠BAC=30°,则对⾓线BD的长等于()A. 3B. 3⽶C. 6⽶D. 3⽶【答案】C【解析】【分析】由菱形ABCD的周长是24⽶,∠BAC=30°,易求得AB=6⽶,△ABD是等边三⾓形,继⽽求得答案.【详解】解:∵菱形ABCD的周长是24⽶,∠BAC=30°,∴AB=AD=24÷4=6(⽶),∠DAB=2∠BAC=60°,∴△ABD是等边三⾓形,∴BD=AB=6⽶.故选C.【点睛】此题考查了菱形的性质以及等边三⾓形的判定与性质.注意证得△ABD是等边三⾓形是解此题的关键.10.如图,将矩形纸⽚ABCD 沿其对⾓线AC 折叠,使点B 落到点B′的位置,AB′与CD 交于点E ,若AB=8,AD=3,则图中阴影部分的周长为()A. 16B. 19C. 22D. 25【答案】C【解析】【分析】⾸先由四边形ABCD 为矩形及折叠的特性,得到B′C=BC=AD ,∠B′=∠B=∠D=90°,∠B′EC=∠DEA ,得到△AED ≌△CEB′,得出EA=EC ,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC ,即矩形的周长解答即可.【详解】解:∵四边形ABCD 为矩形,∴B′C=BC=AD ,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA ,△AED 和△C EB′中,'''BE C DEA B DB C AD ∠=∠??∠=∠??=?,∴△AED ≌△CEB′(AAS);∴EA=EC ,∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC ,=AD+DE+EC+EA+EB′+B′C ,=AD+DC+AB′+B′C ,=22,故选:C .【点睛】本题主要考查了图形的折叠问题,全等三⾓形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的⾓是解题的关键.11.如图,在平⾯直⾓坐标系中,正三⾓形OAB 的顶点B 的坐标为(2,0),点A 在第⼀象限内,将△OAB沿直线OB的⽅向平移⾄△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为()A. 3)B. 3)C. 3)D. 3)【答案】D【解析】【分析】根据等边三⾓形的性质和平移的性质即可得到结论.【详解】解:∵△OAB是等边三⾓形,∵B的坐标为(2,0),∴A(13),∵将△OAB沿直线OB的⽅向平移⾄△O′B′A′的位置,此时点B′的横坐标为5,∴A′的坐标(43,故选:D.【点睛】本题考查了坐标与图形变化-平移,在平⾯直⾓坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.也考查了等边三⾓形的性质,含30°⾓的直⾓三⾓形的性质.求出点A′的坐标是解题的关键.12.在平⾯直⾓坐标系中,⼀矩形上各点的纵坐标不变,横坐标变为原来的12,则该矩形发⽣的变化为( )A. 向左平移了12个单位长度 B. 向下平移了12个单位长度C. 横向压缩为原来的⼀半D. 纵向压缩为原来的⼀半【答案】C∵平⾯直⾓坐标系中,⼀个正⽅形上的各点的坐标中,纵坐标保持不变,∴该正⽅形在纵向上没有变化.⼜∵平⾯直⾓坐标系中,⼀个正⽅形上的各点的坐标中,横坐标变为原来的12,∴此正⽅形横向缩短为原来的12,即正⽅形横向缩短为原来的⼀半.故选C. 13.某商店在节⽇期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款⾦额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所⽰,则超过500元的部分可以享受的优惠是( )A. 打六折B. 打七折C. 打⼋折D. 打九折【答案】C【解析】【分析】设超过200元的部分可以享受的优惠是打n 折,根据:实际付款⾦额=500+(商品原价-500)×10折扣,列出y 关于x 的函数关系式,由图象将x=1000、y=900代⼊求解可得.【详解】设超过500元的部分可以享受的优惠是打n 折,根据题意,得:y=500+(x-500)?10n ,由图象可知,当x=1000时,y=900,即:900=500+(1000-500)×10n ,解得:n=8,∴超过500元的部分可以享受的优惠是打8折,故选C.【点睛】本题主要考查⼀次函数实际应⽤,理解题意根据相等关系列出实际付款⾦额y 与商品原价x 间的函数关系式是解题的关键.14. ⼩明在学习了正⽅形之后,给同桌⼩⽂出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD 中选两个作为补充条件,使?ABCD 为正⽅形(如图),现有下列四种选法,你认为其中错误的是()A. ①②B. ②③C. ①③D. ②④【答案】B【解析】【详解】A 、∵四边形ABCD 是平⾏四边形,当①AB=BC 时,平⾏四边形ABCD 是菱形,当②∠ABC=90°时,菱形ABCD 是正⽅形,故此选项正确,不合题意;B 、∵四边形ABCD 是平⾏四边形,∴当②∠ABC=90°时,平⾏四边形ABCD 是矩形,当AC=BD 时,这是矩形的性质,⽆法得出四边形ABCD 是正⽅形,故此选项错误,符合题意;C 、∵四边形ABCD 是平⾏四边形,当①AB=BC 时,平⾏四边形ABCD 是菱形,当③AC=BD 时,菱形ABCD 是正⽅形,故此选项正确,不合题意;D 、∵四边形ABCD 是平⾏四边形,∴当②∠ABC=90°时,平⾏四边形ABCD 是矩形,当④AC ⊥BD 时,矩形ABCD 是正⽅形,故此选项正确,不合题意.故选C .⼆、填空题(本⼤题共 6 ⼩题,共 18 分)15.当m =________时,函数y =-(m -2)2m 3x -+(m -4)是关于x 的⼀次函数.【答案】-2【解析】【详解】∵函数y =-(m -2)23x m -+(m -4)是⼀次函数,∴()23120m m ?-=??--≠??,∴m =-2.故答案为-216.如图,在△ABC 中,AB =5,BC =7,EF 是△ABC 的中位线,则EF 的长度范围是________.【答案】1<EF<6【解析】【详解】∵在△ABC中,AB=5,BC=7,∴7-5<AC<7+5,即2<AC<12.⼜∵EF是△ABC的中位线,∴EF=12AC∴1<EF<6.17.⼀次函数y=k(x-1)的图象经过点M(-1,-2),则其图象与y轴的交点是__________.【答案】(0,-1)【解析】【分析】由图象经过点M,故将M(-1,-2)代⼊即可得出k的值.【详解】解:∵⼀次函数y=k(x-1)的图象经过点M(-1,-2),则有k(-1-1)=-2,解得k=1,所以函数解析式为y=x-1,令x=0代⼊得y=-1,故其图象与y轴的交点是(0,-1).故答案为(0,-1).【点睛】本题考查待定系数法求函数解析式,难度不⼤,直接代⼊即可.18.如图,在平⾯直⾓坐标系中,△ABC的顶点都在⽅格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为________.【答案】(2,5)【解析】【详解】∵将△ABC先向右平移4个单位长度,再向下平移1个单位长度,∵图形可知点A的坐标为(-2,6),∴则平移后的点A1坐标为(2,5).19.如图,四边形ABCD是菱形,O是两条对⾓线的交点,过O点的三条直线将菱形分成阴影和空⽩部分.当菱形的两条对⾓线的长分别为10和6时,则阴影部分的⾯积为_________.【答案】15【解析】【分析】根据中⼼对称的性质判断出阴影部分的⾯积等于菱形的⾯积的⼀半,即可得出结果.【详解】解:∵O是菱形两条对⾓线的交点,菱形ABCD是中⼼对称图形,∴△OEG≌△OFH,四边形OMAH≌四边形ONCG,四边形OEDM≌四边形OFBN,∴阴影部分的⾯积=12S菱形ABCD=12×(12×10×6)=15.故答案为15.【点睛】本题考查了中⼼对称,菱形的性质,熟记性质并判断出阴影部分的⾯积等于菱形的⾯积的⼀半是解题的关键.20.如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对⾓线交点D的坐标为____;若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为_____.【答案】(1). (1,1)(2). (-1,-1).【解析】【分析】根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点旋转后的坐标.【详解】∵菱形OABC的顶点O(0,0),B(2,2),得∴D点坐标为(1,1).∵每秒旋转45°,∴第60秒旋转45°×60=2700°,2700°÷360°=7.5周,即OD旋转了7周半,∴菱形的对⾓线交点D的坐标为(-1,-1),故答案为(1,1);(-1,-1)【点睛】本题考查了旋转的性质及菱形的性质,利⽤旋转的性质得出OD旋转的周数是解题关键.三、解答题(本⼤题共6 ⼩题,共60 分)21.如图,左右两幅图案关于y轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3),嘴⾓左右端点的坐标分别是(2,1),(4,1).(1)试确定左图案中的左右眼睛和嘴⾓左右端点的坐标;(2)从对称的⾓度来考虑,说⼀说你是怎样得到的;(3)直接写出右图案中的嘴⾓左右端点关于原点的对称点的坐标.【答案】(1)左眼睛坐标为(-4,3),右眼睛坐标为(-2,3),嘴⾓的左端点坐标为(-4,1),右端点坐标为(-2,1);(2)见解析;(3) (-2,-1),(-4,-1).【解析】【分析】(1)根据图形的位置关系可知:将右图案向左平移6个单位长度得到左图案等.(2)根据题意可知,这两个图是关于y轴对称的,所以根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”可知左图案的左右眼睛的坐标和嘴⾓左右端点的坐标;(3)根据“两点关于原点对称,横坐标互为相反数,纵坐标互为相反数”求解即可.【详解】(1)左图案中的左眼睛坐标为(-4,3),右眼睛坐标为(-2,3),嘴⾓的左端点坐标为(-4,1),右端点坐标为(-2,1).(2)关于y轴对称的两个图形横坐标互为相反数,纵坐标不变..(3) (-2,-1),(-4,-1).【点睛】主要考查了平⾯直⾓坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.22.为了了解江城中学学⽣的⾝⾼情况,随机对该校男⽣、⼥⽣的⾝⾼进⾏抽样调查.已知抽取的样本中,男⽣、⼥⽣的⼈数相同,根据所得数据绘制成如图所⽰的统计图表.组别⾝⾼(cm)A x<150B 150≤x<155C 155≤x<160D 160≤x<165E x≥165根据图表中提供的信息,回答下列问题:(1)在样本中,男⽣⾝⾼的中位数落在________组(填组别序号),⼥⽣⾝⾼在B组的⼈数有________⼈;(2)在样本中,⾝⾼在150≤x<155之间的⼈数共有________⼈,⾝⾼⼈数最多的在________组(填组别序号);(3)已知该校共有男⽣500⼈、⼥⽣480⼈,请估计⾝⾼在155≤x<165之间学⽣有多少⼈【答案】(1)D;12;(2)16;C;(3)⾝⾼在155≤x<165之间的学⽣约有541⼈.【解析】【分析】从频数分布直⽅图可得到男⽣的总⼈数,则中位数是第20、21个⼈⾝⾼的平均数,⼥⽣与男⽣⼈数相同,由此可得到题(1)的答案;结合上步所得以及各组的⼈数可求出⾝⾼在150≤x<155的总⼈数和⾝⾼最多的组别,从⽽解决(2);对于(3),可根据两幅统计图得到男⼥⽣⾝⾼在155≤x<165之间的学⽣的百分率,从⽽使问题得以解决.【详解】解:(1)因为在样本中,共有男⽣2+4+8+12+14=40(⼈),所以中位数是第20、21个⼈⾝⾼的平均数,⽽2+4+12=18⼈,所以男⽣⾝⾼的中位数位于D组,⼥⽣⾝⾼在B组的⼈数有40×(1-30%-20%-15%-5%)=12(⼈).(2)在样本中,⾝⾼在150≤x<155之间的⼈数共有4+12=16(⼈),⾝⾼⼈数最多的在C组;(3)500×121440?+480×(30%+15%)=541(⼈),故估计⾝⾼在155≤x<165之间的学⽣约有541⼈.【点睛】本题主要考查从统计图表中获取信息,中等难度,解题的关键是要读懂统计图.23.已知y是x的⼀次函数,当x=1时,y=1;当x=-2时,y=-14.(1)求这个⼀次函数的关系式;(2)在如图所⽰的平⾯直⾓坐标系中作出函数的图像;(3)由图像观察,当0≤x≤2时,函数y的取值范围.【答案】(1)y=5x-4;(2)详见解析;(3)-4≤y≤6.【解析】【分析】(1)设函数解析式y=kx+b,将题中的两个条件代⼊即可得出解析式;(2)根据题意可确定函数上的两个点(1,1)、(-2,-14),运⽤两点法即可确定函数图象.(3)根据图象可知,当0≤x≤2时,y的取值范围是-4≤x≤6.【详解】解:(1)设函数的关系式为y=kx+b,。

2020年人教版八年级(下)期末数学试卷及答案

2020年人教版八年级(下)期末数学试卷及答案

八年级(下)期末数学试卷一、选择题1.二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤22.下列计算正确的是()A.2= B.= C.4﹣3=1 D.3+2=53.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.94.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.936.菱形的两条对角线长分别为9cm与4cm,则此菱形的面积为()cm2.A.12 B.18 C.20 D.367.一次函数y=2x+4的图象与y轴交点坐标()A.(2,0) B.(﹣2,0)C.(0,﹣4)D.(0,4)8.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()A.4 B.16 C. D.4或二、填空题9.若实数a、b满足|a+1|+=0,则的值为.10.化简:=.11.数集5、7、6、6、6的众数为,平均数为.12.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是(填“甲”或“乙“).13.已知一次函数y=ax+b的图象如图,根据图中信息请写出不等式ax+b≥2的解集为.14.如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AC=6cm,BC=8cm,则CD的长为cm.15.如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.16.正方形A1B1C1O,A2B2C2B1、A3B3C3B2,…,按如图的方式放置,点A1、A2、A3,…和点C1、C2、C3,…分别在直线y=x+1和x轴上,则点B2015的纵坐标是.三、解答题(一)17.计算:×()18.如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.四、解答题(二)19.已知一次函数的图象经过点(1,1)和点(﹣1,﹣3).(1)求这个一次函数的解析式;(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x增大时y如何变化?20.如图,在Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD.求证:EF=CD.21.如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD 于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值.五、解答题(三)22.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?23.如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.24.甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原件为x(x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.六、附加题25.(1)如图,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直线边经过点B,另一条直角边交边DC于点E,求证:PB=PE.(2)如图2,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC的延长线于点E,PB=PE还成立吗?若成立,请证明,若不成立,请说明理由.八年级(下)期末数学试卷参考答案与试题解析一、选择题1.二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0,解得x≥2.故选C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.下列计算正确的是()A.2= B.= C.4﹣3=1 D.3+2=5【考点】二次根式的加减法;二次根式的性质与化简.【分析】直接利用二次根式加减运算法则分别化简求出答案.【解答】解:A、2=2×=,故此选项正确;B、+无法计算,故此选项错误;C、4﹣3=,故此选项错误;D、3+2无法计算,故此选项错误;故选:A.【点评】此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.9【考点】中位数.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故选:C.【点评】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.【专题】数形结合.【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.5.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.93【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:95×20%+90×30%+88×50%=90(分).即小彤这学期的体育成绩为90分.故选B.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.6.菱形的两条对角线长分别为9cm与4cm,则此菱形的面积为()cm2.A.12 B.18 C.20 D.36【考点】菱形的性质.【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.【解答】解:根据对角线的长可以求得菱形的面积,根据S=ab=×4cm×9cm=18cm2,故选:B.【点评】本题考查了根据对角线计算菱形的面积的方法,根据菱形对角线求得菱形的面积是解题的关键,难度一般.7.一次函数y=2x+4的图象与y轴交点坐标()A.(2,0) B.(﹣2,0)C.(0,﹣4)D.(0,4)【考点】一次函数图象上点的坐标特征.【分析】求与y轴的交点坐标,令x=0可求得y的值,可得出函数与y轴的交点坐标【解答】解:令x=0,代入y=2x+4解得y=4,∴一次函数y=2x+4的图象与y轴交点坐标这(0,4),故选D.【点评】本题主要考查函数与坐标轴的交点坐标,掌握求函数与坐标轴交点的求法是解题的关键,即与x轴的交点令y=0求x,与y轴的交点令x=0求y.8.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()A.4 B.16 C. D.4或【考点】勾股定理.【专题】分类讨论.【分析】此题要分两种情况:当3和5都是直角边时;当5是斜边长时;分别利用勾股定理计算出第三边长即可.【解答】解:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选:D.【点评】此题主要考查了利用勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.二、填空题9.若实数a、b满足|a+1|+=0,则的值为﹣2.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+1=0,b﹣2=0,解得a=﹣1,b=2,所以=﹣2.故答案为:﹣2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.化简:=2.【考点】二次根式的性质与化简.【专题】计算题;二次根式.【分析】原式化为最简二次根式即可.【解答】解:==2,故答案为:2【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.11.数集5、7、6、6、6的众数为6,平均数为6.【考点】众数;算术平均数.【分析】根据众数和平均数的概念求解.【解答】解:6出现的次数最多,故众数为6,平均数为:=6.故答案为:6,6.【点评】本题考查了众数和平均数的概念:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.12.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是乙(填“甲”或“乙“).【考点】方差.【分析】直接根据方差的意义求解.【解答】解:∵S甲2=2,S乙2=1.5,∴S甲2>S乙2,∴乙的射击成绩较稳定.故答案为:乙.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.13.已知一次函数y=ax+b的图象如图,根据图中信息请写出不等式ax+b≥2的解集为x≥0.【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】观察函数图形得到当x≥0时,一次函数y=ax+b的函数值不小于2,即ax+b≥2.【解答】解:根据题意得当x≥0时,ax+b≥2,即不等式ax+b≥2的解集为x≥0.故答案为x≥0.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14.如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AC=6cm,BC=8cm,则CD的长为5 cm.【考点】直角三角形斜边上的中线;勾股定理.【分析】利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:有勾股定理得,AB===10cm,∵∠ACB=90°,D为斜边AB的中点,∴CD=AB=×10=5cm.故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.15.如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是2.【考点】轴对称-最短路线问题;菱形的性质.【分析】连接BD,根据菱形的对角线平分一组对角线可得∠BAD=∠ADC=60°,然后判断出△ABD 是等边三角形,连接DE,根据轴对称确定最短路线问题,DE与AC的交点即为所求的点P,PE+PB 的最小值=DE,然后根据等边三角形的性质求出DE即可得解.【解答】解:如图,连接BD,∵四边形ABCD是菱形,∴∠BAD=∠ADC=×120°=60°,∵AB=AD(菱形的邻边相等),∴△ABD是等边三角形,连接DE,∵B、D关于对角线AC对称,∴DE与AC的交点即为所求的点P,PE+PB的最小值=DE,∵E是AB的中点,∴DE⊥AB,∵菱形ABCD周长为16,∴AD=16÷4=4,∴DE=×4=2.故答案为:2.【点评】本题考查了轴对称确定最短路线问题,菱形的性质,等边三角形的判定与性质,熟记性质与最短路线的确定方法找出点P的位置是解题的关键.16.正方形A1B1C1O,A2B2C2B1、A3B3C3B2,…,按如图的方式放置,点A1、A2、A3,…和点C1、C2、C3,…分别在直线y=x+1和x轴上,则点B2015的纵坐标是22014.【考点】正方形的性质;一次函数图象上点的坐标特征.【专题】规律型.【分析】根据直线解析式先求出OA1=1,得出B1的纵坐标是1,再求出B2的纵坐标是2,B3的纵坐标是22,得出规律,即可得出结果.【解答】解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,即B1的纵坐标是1,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴A2C1=2=21,即B2的纵坐标是2,同理得:A3C2=4=22,即B3的纵坐标是22,…,∴点B2015的纵坐标是22014;故答案为:22014.【点评】本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出B1、B2、B3的纵坐标得出规律是解决问题的关键.三、解答题(一)17.计算:×()【考点】二次根式的混合运算.【分析】首先利用单项式与多项式的乘法,然后进行化简即可.【解答】解:原式=﹣=6﹣2=4.【点评】本题考查的是二次根式的混合运算,在进行此类运算时,一定要把二次根式化为最简二次根式的形式.18.如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.【考点】平行四边形的判定与性质.【专题】证明题.【分析】由平行四边形的性质可知:AE∥CF,又因为AE=CF,所以四边形AECF是平行四边形,所以AF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,∴AE∥CF,又∵AE=CF,∴四边形AECF是平行四边形,∴AF=CE.【点评】本题考查了平行四边形的性质和判定,题目比较简单.四、解答题(二)19.已知一次函数的图象经过点(1,1)和点(﹣1,﹣3).(1)求这个一次函数的解析式;(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x增大时y如何变化?【考点】待定系数法求一次函数解析式;一次函数的图象.【专题】计算题.【分析】(1)设一次函数解析式为y=kx+b,将已知两点坐标代入求出k与b的值,即可确定出解析式;(2)做出函数图象,如图所示,根据增减性即可得到结果.【解答】解:(1)设一次函数解析式为y=kx+b,将(1,1)与(﹣1,﹣3)代入得,解得:k=2,b=﹣1,则一次函数解析式为y=2x﹣1;(2)如图所示,y随着x的增大而增大.【点评】此题考查了待定系数法求一次函数解析式,以及一次函数的图象,熟练掌握待定系数法是解本题的关键.20.如图,在Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD.求证:EF=CD.【考点】矩形的判定与性质;三角形中位线定理.【专题】证明题.【分析】由DE、DF是△ABC的中位线,可证得四边形DECF是平行四边形,又由在Rt△ABC中,∠ACB=90°,可证得四边形DECF是矩形,根据矩形的对角线相等,即可得EF=CD.【解答】证明:∵DE、DF是△ABC的中位线,∴DE∥BC,DF∥AC,∴四边形DECF是平行四边形,又∵∠ACB=90°,∴四边形DECF是矩形,∴EF=CD.【点评】此题考查了矩形的判定与性质以及三角形中位线的性质.此题难度不大,注意掌握数形结合思想的应用.21.如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD 于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值.【考点】翻折变换(折叠问题).【分析】(1)根据矩形的性质、轴对称的性质可得到AD=EC,AE=DC,即可证到△DEC≌△EDA (SSS);(2)易证AF=CF,设DF=x,则有AF=4﹣x,然后在Rt△ADF中运用勾股定理就可求出DF的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,AB=DC.由折叠可得:EC=BC,AE=AB,∴AD=EC,AE=DC,在△ADE与△CED中,,∴△DEC≌△EDA(SSS).(2)解:∵∠ACD=∠BAC,∠BAC=∠CAE,∴∠ACD=∠CAE,∴AF=CF,设DF=x,则AF=CF=4﹣x,在RT△ADF中,AD2+DF2=AF2,即32+x2=(4﹣x)2,解得;x=,即DF=.【点评】本题主要考查了矩形的性质、全等三角形的判定与性质、等腰三角形的判定、轴对称的性质等知识,解决本题的关键是明确折叠的性质,得到相等的线段,角.五、解答题(三)22.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中m的值为15;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】图表型.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.23.如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.【考点】菱形的判定;平行四边形的性质.【专题】证明题.【分析】(1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证;(2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可.【解答】证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠ABE=∠EAD;(2)∵AD∥BC,∴∠ADB=∠DBE,∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB,∴∠ABD=∠ABE﹣∠DBE=2∠ADB﹣∠ADB=∠ADB,∴AB=AD,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.【点评】本题考查了菱形的判定,平行四边形的性质,平行线的性质,等边对等角的性质,等角对等边的性质,熟练掌握平行四边形与菱形的关系是解题的关键.24.甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原件为x(x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.【考点】一次函数的应用.【分析】(1)根据单价乘以数量,可得函数解析式;(2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案.【解答】解;(1)甲商场写出y关于x的函数解析式y1=0.85x,乙商场写出y关于x的函数解析式y2=200+(x﹣200)×0.75=0.75x+50;(2)由y1>y2,得0.85x>0.75x+50,x>500,当x>500时,到乙商场购物会更省钱;由y1=y2得0.85x=0.75x+50,x=500时,到两家商场去购物花费一样;由y1<y2,得0.85x<0.75x+500,x<500,当x<500时,到甲商场购物会更省钱;综上所述:x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.【点评】本题考查了一次函数的应用,分类讨论是解题关键.六、附加题25.(1)如图,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直线边经过点B,另一条直角边交边DC于点E,求证:PB=PE.(2)如图2,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC的延长线于点E,PB=PE还成立吗?若成立,请证明,若不成立,请说明理由.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)根据正方形的性质,可得BC=CD,∠ACB=∠ACD=45°,根据全等三角形的判定与性质,可得∠PBC=∠PDC,PB=PD,根据圆内接四边形的性质,可得∠PBC+∠PEC=180°,根据补角的性质,可得∠PED=∠PDE,根据等腰三角形的判定,可得答案;(2)根据正方形的性质,可得BC=CD,∠ACB=∠ACD=45°,根据全等三角形的判定与性质,可得∠PBC=∠PDC,PB=PD,根据三角形的内角和,可得∠PBC=∠PEC,根据等腰三角形的判定,可得答案.【解答】(1)证明:如图1,连接PD,∵四边形ABCD是正方形,∴BC=CD,∠ACB=∠ACD=45°.在△PBC和△PDC中,,∴△PBC≌△PDC (SAS),∴∠PBC=∠PDC,PB=PD.∵∠BPE,∠BCD,∠PBC,∠PEC是圆内接四边形的内角,∠BPE+∠BCD=180°,∴∠PBC+∠PEC=180°,∴∠PED=∠PDE,∴PD=PE,∴PB=PE;(2)仍然成立,理由如下:连接PD,如图2:,∵四边形ABCD是正方形,∴BC=CD,∠ACB=∠ACD=45°,在△PBC和△PDC中,,∴△PBC≌△PDC (SAS),∴∠PBC=∠PDC,PB=PD.若BC与PE相交于点O,在△PBO和△CEO中,∠POB=∠EOC,∠OPB=∠OCE,∠PBC=180°﹣∠OPB﹣∠POB,∠PEC=180°﹣∠EOC﹣∠OCE,∴∠PBC=∠PEC,∴∠PEC=∠PDC,∴PD=PE,∴PB=PE.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,圆内接四边形的性质,补角的性质,等腰三角形的判定.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人 教 版 数 学 八 年 级 下 学 期期 末 测 试 卷一、选择题1.若二次根式2x -在实数范围内有意义,则x 的取值范围是( )A. 2x ≠B. 2x ≥C. 2x ≤D. 任何实数 2.能判定四边形ABCD 为平行四边形的条件是( )A. AB ∥CD ,AD=BC;B. ∠A=∠B ,∠C=∠D;C. AB=CD ,AD=BC;D. AB=AD ,CB=CD3.已知正比例函数y=(k+5)x ,且y 随x 的增大而减小,则k 的取值范围是( )A. k>5B. k<5C. k>−5D. k<−5 4.如图,字母B 所代表的正方形的面积是( )A. 12B. 144C. 13D. 1945. 一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的中位数是( )A. 6B. 7C. 8D. 96.不能判定一个四边形是菱形的条件是( )A. 对角线互相平分且有一组邻边相等B. 四边相等C. 两组对角相等,且一条对角线平分一组对角D. 对角线互相垂直7.如图所示,一次函数y mx m =+的图像可能是 ( )A. B. C. D. 8.已知25523y x x =--,则2xy 的值为( ) A. 15- B. 15 C. 152- D. 1529.从鱼塘捕获同时放养草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为( )A. 300千克B. 360千克C. 36千克D. 30千克10.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是( )A. 3.5B. 4.2C. 5.8D. 711.等腰三角形的周长是40 cm,腰长y(cm)是底边长x(cm)的函数.此函数的表达式和自变量取值范围正确的是()A. y=-2x+40(0<x<20)B. y=-0.5x+20(10<x<20)C. y=-2x+40(10<x<20)D. y=-0.5x+20(0<x<20)12.如图所示,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若ABCV的周长为10,则OEC△的周长为()A. 5cmB. 6cmC. 9cmD. 12cm13.一个三角形的三边长分别为15,20和25,那么它的最长边上的高为().A. 12.5B. 12C. 522D. 914.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()纸笔测试实践能力成长记录甲90 83 95 乙98 90 95 丙80 88 90A. 甲B. 乙丙C. 甲乙D. 甲丙15.一次函数y ax b =+的图象如图所示,则不等式0ax b +>的解集是( )A. 2x <-B. 2x >-C. 1x <D. 1x >16.一天,小明和爸爸去登山,已知山脚到山顶的路程为300米,小明先走了一段路程,爸爸才开始出发,图中两条线段分别表示小明和爸爸离开山脚的路程y (米)与登山所用时间x (分)的关系(从爸爸开始登山时计时),根据图象,下列说法错误的是( )A. 爸爸登山时,小明已经走了50米B. 爸爸走了5分钟,小明仍在爸爸的前面C. 小明比爸爸晚到5分钟D. 爸爸前10分钟登山的速度比小明慢,10分钟之后登山的速度比小明快二、填空题17.已知a ,b 为两个连续..的整数,且29a b <<,则a b +=______.18.某校八年级有7名同学的体能测试成绩(单位:分)如下:50,48,47,50,48,49,48.这组数据的众数是______分.19.一艘轮船以16海里/小时的速度从港口A 出发向东北方向航行,同时另一轮船以12海里/小时从港口A 出发向东南方向航行,离开港口3小时后,则两船相距______海里.20.如图,在四边形ABCD 中,//,6,16AD BC AD BC ==, E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从 点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形.则t 的值为_________.三、解答题21.计算:(1)80205-+; (2)()()132322724+-+; (3)()()()265652332-++-. 22.如图,点E ,F 分别是锐角A ∠两边上的点,分别以点E ,F 为圆心,以AF ,AE 的长为半径画弧,两弧相交于点D ,连接DE ,DF .(1)请你判断所画四边形的形状,并说明理由;(2)若AE AF =,请判断此四边形的形状,并说明理由;(3)在(2)的条件下,连接AD ,若8AE =厘米,60A ∠=︒,求线段AD 的长.23.省射击队从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次 第二次 第三次 第四次 第五次 第六次 甲10 8 9 8 10 9 乙 10 7 10 10 9 8(1)根据表格中的数据,计算出甲的平均成绩是环,乙的平均成绩是环;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.计算方差的公式:s2=1n[(x1-x)2+(x2-x)2++(x n-x)2] .24.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y千米,出租车离甲地的距离为2y千米,两车行驶的时间为x小时,1y、2y关于x的函数图像如图所示:(1)根据图像,求出1y、2y关于x的函数关系式;(2)设两车之间的距离为S千米. ①求两车相遇前S关于x的函数关系式;②求出租车到达甲地后S关于x的函数关系式;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.25.知识再现如图1,若点A,B在直线l同侧,A,B到l的距离分别是3和2,4AB=,现在直线l上找一点P,使AP BP+的值最小,做法如下:作点A关于直线l的对称点A',连接BA',与直线l的交点就是所求的点P,线段BA'的长度即为AP BP+的最小值,请你求出这个最小值.实践应用如图2,菱形ABCD 中2AB =,120A ∠=︒,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK QK +的最小值为______;拓展延伸如图3,在四边形ABCD 的对角线AC 上找一点P ,使APB APD ∠=∠,保留作图痕迹,不必写出作法. 26.如图1,在平面直角坐标系中,直线2L :162y x =-+与1L :12y x =交于点A ,分别与x 轴、y 轴交于点B 、C .(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式;(3)在(2)的条件下,设P 是射线CD 上的点.①如图2,过点P 作//PQ OC ,且使四边形OCPQ 为菱形,请直接写出点Q 的坐标; ②在平面内是否存在其它点Q ,使以O 、C 、P 、Q 为顶点四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.答案与解析一、选择题1.x 的取值范围是( )A. 2x ≠B. 2x ≥C. 2x ≤D. 任何实数【答案】B【解析】【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【详解】由题意得,x-2≥0,解得x≥2.故选B .2.能判定四边形ABCD 为平行四边形的条件是( )A. AB ∥CD ,AD=BC;B. ∠A=∠B ,∠C=∠D;C. AB=CD ,AD=BC;D. AB=AD ,CB=CD 【答案】C【解析】【分析】利用一组对边平行且相等的四边形为平行四边形可对A 进行判定;根据两组对角分别相等的四边形为平行四边形可对B 进行判定;根据两组对边分别相等的四边形为平行四边形可对C 、D 进行判定.【详解】A 、若AB ∥CD ,AB =CD ,则四边形ABCD 为平行四边形,所以A 选项错误;B 、若∠A =∠C ,∠B =∠D ,则四边形ABCD 为平行四边形,所以B 选项错误;C 、若AB =CD ,AD =BC ,则四边形ABCD 为平行四边形,所以C 选项正确;D 、若AB =CD ,AD =BC ,则四边形ABCD 为平行四边形,所以D 选项错误.故选:C .【点睛】本题考查了平行四边形的判定,解题的关键是熟知平行四边形的判定定理.3.已知正比例函数y=(k+5)x ,且y 随x 的增大而减小,则k 的取值范围是( )A. k>5B. k<5C. k>−5D. k<−5 【答案】D【解析】分析】根据正比例函数图象的特点可直接解答.【详解】解:∵正比例函数y=(k+5)x中若y随x的增大而减小,∴k+5<0.∴k<﹣5,故选D.4.如图,字母B所代表的正方形的面积是()A. 12B. 144C. 13D. 194【答案】B【解析】【分析】外围正方形的面积就是斜边和一直角边的平方,实际上是求另一直角边的平方,用勾股定理即可解答.【详解】如图,根据勾股定理我们可以得出:a2+b2=c2a2=25,c2=169,b2=169﹣25=144,因此B的面积是144.故选B.【点睛】本题主要考查了正方形的面积公式和勾股定理的应用.只要搞清楚直角三角形的斜边和直角边本题就容易多了.5. 一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的中位数是()A. 6B. 7C. 8D. 9【答案】C【解析】【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),据此求解即可.【详解】将这组数据重新排序为6,7,8,9,9,∴中位数是按从小到大排列后第3个数为:8.故选C.6.不能判定一个四边形是菱形的条件是()A. 对角线互相平分且有一组邻边相等B. 四边相等C. 两组对角相等,且一条对角线平分一组对角D. 对角线互相垂直【答案】D【解析】【分析】菱形的判定方法:(1)一组邻边相等的平行四边形是菱形;(2)四边相等;(3)对角线互相垂直平分的四边形是菱形;据此判断即可.【详解】∵对角线互相平分且有一组邻边相等的四边形是菱形,∴选项A能判定一个四边形是菱形;∵四边相等的四边形是菱形,∴选项B能判定一个四边形菱形;∵两组对角相等,且一条对角线平分一组对角的四边形是菱形,∴选项C能判定一个四边形是菱形;∵对角线互相垂直平分的四边形是菱形,∴选项D不能判定一个四边形是菱形.故答案选:D.【点睛】本题考查了菱形的判定,解题的关键是熟练的掌握菱形的性质与判定.=+的图像可能是 ( )7.如图所示,一次函数y mx mA. B. C. D.【答案】D【解析】分析:根据题意,当m ≠0时,函数y =mx +m 是一次函数,结合一次函数的性质,分m >0与m <0两种情况讨论,可得答案.详解:根据题意,当m ≠0时,函数y =mx +m 是一次函数,有两种情况:(1)当m >0时,其图象过一二三象限,D 选项符合,(2)当m <0时,其图象过二三四象限,没有选项的图象符合,故选D.点睛:本题考查了一次函数的定义、图象和性质.熟练应用一次函数的性质对图象进行辨别是解题的关键. 8.已知25523y x x =--,则2xy 的值为( ) A. 15-B. 15C. 152-D. 152 【答案】A【解析】 试题解析:由25523y x x =--,得250{520x x -≥-≥, 解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .9.从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为( )A. 300千克B. 360千克C. 36千克D. 30千克 【答案】B【解析】先计算出8条鱼的平均质量,然后乘以240即可.【详解】解:8条鱼的质量总和为(1.5+1.6+1.4+1.3+1.5+1.2+1.7+1.8)=12千克,每条鱼的平均质量=12÷8=1.5(千克),可估计这240条鱼的总质量大约为1.5×240=360(千克).故选B.【点睛】本题考查了用样本平均数估计总体平均数的方法,这种方法在生活中常用.10.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是( )A. 3.5B. 4.2C. 5.8D. 7【答案】D【解析】【详解】解:根据垂线段最短,可知AP的长不可小于3∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.≤≤∴3PA6故选D.11.等腰三角形的周长是40 cm,腰长y(cm)是底边长x(cm)的函数.此函数的表达式和自变量取值范围正确的是()A. y=-2x+40(0<x<20)B. y=-0.5x+20(10<x<20)C. y=-2x+40(10<x<20)D. y=-0.5x+20(0<x<20)【答案】D【解析】【分析】根据三角形的周长=2y+x可得出y与x的关系,再根据三角形的三边关系可确定x的范围.【详解】解:根据三角形周长等于三边之和可得:2y=40-x∴y=-0.5x+20,根据三角形三边关系可得:x<2y,x>y-y∴可知0<x<20【点睛】本题考查三角形的周长和三边关系,掌握三角形周长等于三边之和及两边之和大于第三边,两边之差小于第三边是解决本题的关键.12.如图所示,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若ABCV的周长为10,则OEC△的周长为()A. 5cmB. 6cmC. 9cmD. 12cm【答案】A【解析】【分析】根据平行四边形的对边相等和对角线互相平分可得,OA=OC,DO=BO,E点是CD的中点,可得OE是△ABC的中位线,可得OE=12AB.从而得到结果是5cm.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,又∵E是BC中点,∴OE是△ABC的中位线,BE=CE,∴OE=12 AB,∴△OEC的周长=12△ABC的周长=12×10=5,故选:A.【点睛】本题主要考查平行四边形的性质及三角形中位线的性质的应用.13.一个三角形的三边长分别为15,20和25,那么它的最长边上的高为().A. 12.5B. 12C. 522D. 9【答案】B【解析】【分析】首先,建立三角形,根据AC2+BC2=152+202=625,AB2=252=625,得到AC2+BC2=AB2,由此得∠C=90°;然后,在直角三角形中,根据三角形面积的不同表达方式,即可得到答案.【详解】如图:设AB=25是最长边,AC=15,BC=20,过C 作CD ⊥AB 于 D.∵AC 2+BC 2=152+202=625,AB 2=252=625,∴AC 2+BC 2=AB 2,∴∠C=90°. ∵S △ACB =12AC×BC=12AB×CD , ∴AC×BC=AB×CD , 即:15×20=25CD , ∴CD=12.故选B.【点睛】本题主要考查勾股定理的逆定理和直角三角形的性质,熟悉掌握是关键.14.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力 成长记录 甲 9083 95 乙 9890 95 丙 8088 90A. 甲B. 乙丙C. 甲乙D. 甲丙 【答案】C【解析】【分析】利用平均数的定义分别进行计算成绩,然后判断谁优秀.【详解】解:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1, 乙的总评成绩=98×50%+90×20%+95×30%=95.5, 丙的总评成绩=80×50%+88×20%+90×30%=84.6, ∴甲乙的学期总评成绩是优秀.故选C .【点睛】本题考查加权平均数,掌握加权成绩等于各项成绩乘以不同的权重的和是解题的关键. 15.一次函数y ax b =+的图象如图所示,则不等式0ax b +>的解集是( )A. 2x <-B. 2x >-C. 1x <D. 1x >【答案】B【解析】【分析】 从图象上得到函数的增减性及与x 轴的交点的横坐标,即能求得不等式ax +b >0的解集.【详解】解:一次函数y =ax +b 的图象经过点A (−2,0),且函数值y 随x 的增大而增大,∴不等式ax +b >0的解集是x >−2.故选:B .【点睛】正确理解图象,函数图象在x 轴上方,即函数值大于0;在下方时,函数值小于0;图象在y 轴左侧的部分函数的自变量x 小于0,在右侧则自变量x 大于0.16.一天,小明和爸爸去登山,已知山脚到山顶的路程为300米,小明先走了一段路程,爸爸才开始出发,图中两条线段分别表示小明和爸爸离开山脚的路程y (米)与登山所用时间x (分)的关系(从爸爸开始登山时计时),根据图象,下列说法错误的是( )A. 爸爸登山时,小明已经走了50米B. 爸爸走了5分钟,小明仍在爸爸的前面C. 小明比爸爸晚到5分钟D. 爸爸前10分钟登山的速度比小明慢,10分钟之后登山的速度比小明快【答案】D【解析】【分析】根据函数图象爸爸登山的速度比小明快进行判断.【详解】解:由图象可知,小明和爸爸离开山脚登山的路程S (米)与登山所用时间t (分钟)的关系都是一次函数关系,因而速度不变.错误的是:爸爸前10分钟登山的速度比小明慢,10分钟后登山的速度比小明快.A 由图象的起点为(0,50)判定正确,B 观察图像可得,当横坐标是5时,小明所在直线图象位于爸爸所在直线图象上方,正确,C 中用25-20=5,正确.故选:D .【点睛】本题主要考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.二、填空题17.已知a ,b 为两个连续..的整数,且29a b <<,则a b +=______. 【答案】11【解析】【分析】 252936<进而求出a,b 的值.【详解】解:<<∴<6∴a=5,b=6∴a+b=11故答案是:11【点睛】此题主要考查了估计无理数大小,正确得出a,b的值是解题关键.18.某校八年级有7名同学的体能测试成绩(单位:分)如下:50,48,47,50,48,49,48.这组数据的众数是______分.【答案】48【解析】【分析】根据众数的定义即可判断【详解】解:50,48,47,50,48,49,48这组数据中,48出现了3次,出现的次数最多.故众数为48.故答案为48.【点睛】本题考查众数的定义,解题的关键是记住众数的定义,属于中考常考题型.19.一艘轮船以16海里/小时的速度从港口A出发向东北方向航行,同时另一轮船以12海里/小时从港口A 出发向东南方向航行,离开港口3小时后,则两船相距______海里.【答案】60【解析】【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了48海里,36海里.再根据勾股定理,即可求得两条船之间的距离.【详解】解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,三小时后,两艘船分别行驶了16×3=48海里,12×3=36海里,60(海里).故答案为:60海里.【点睛】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.20.如图,在四边形ABCD 中,//,6,16AD BC AD BC ==, E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从 点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形.则t 的值为_________.【答案】1秒或3.5秒【解析】【分析】分别从当Q 运动到E 和B 之间、当Q 运动到E 和C 之间去分析求解即可求得答案.【详解】∵E 是BC 的中点,∴BE=CE=12BC=8, ①当Q 运动到E 和B 之间,设运动时间为t ,则得:3t−8=6−t ,解得:t=3.5;②当Q 运动到E 和C 之间,设运动时间为t ,则得:8−3t=6−t ,解得:t=1,∴当运动时间t 为1秒或3.5秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.【点睛】此题考查平行四边形的判定,解题关键在于掌握判定定理.三、解答题21.计算:(1(2)1324-;(3)(2+.【答案】(1) (2)44-- (3)31-【解析】【分析】 (1)先把二次根式化为最简二次根式,然后合并即可;(2)先把二次根式化为最简二次根式,然后合并即可;(3)利用平方差公式和完全平方公式计算.【详解】解:(1==(2)1324-=2244+--=44--(3)(2+=651218-+-=31126 -【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.如图,点E,F分别是锐角A∠两边上的点,分别以点E,F为圆心,以AF,AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的形状,并说明理由;(2)若AE AF=,请判断此四边形的形状,并说明理由;(3)在(2)的条件下,连接AD,若8AE=厘米,60A∠=︒,求线段AD的长.【答案】(1)(2)见解析;(3)3厘米【解析】【分析】(1)根据题意得出ED=AF,AE=DF,进而利用平行四边形的判定解答即可;(2)由AE=AF=ED=DF,根据四条边都相等的四边形是菱形,即可证得:四边形AEDF是菱形;(3)首先连接EF,由AE=AF,∠A=60°,可证得△EAF是等边三角形,则可求得线段EF的长.【详解】解:(1)四边形AEDF是平行四边形,根据题意可得:ED=AF,AE=DF,∴四边形AEDF是平行四边形;(2)菱形.理由:∵根据题意得:AE=AF=ED=DF,∴四边形AEDF是菱形;(3)连接EF,交AD于点O,∵AE=AF,∠A=60°,∴△EAF是等边三角形,∴EF=AE=8厘米∴EO=4,由菱形的性质得∠AOE=90°,在直角三角形AOE中,22228443AO AE EO=-=-=3【点睛】此题考查了菱形的判定与性质以及等边三角形的判定与性质.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.23.省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,计算出甲的平均成绩是环,乙的平均成绩是环;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.计算方差的公式:s2=1n[(x1-x)2+(x2-x)2++(x n-x)2] .【答案】(1)9,9;(2)23,43;(3)甲,理由见解析.【解析】【分析】(1)平均数是指在一组数据中所有数据之和再除以数据的个数,所以甲的平均成绩=(10+8+9+8+10+8)÷6=9,乙的平均成绩=(10+7+10+10+9+8)÷6=9; (2)应用方差公式,直接计算即可;(3)方差就是和中心偏离的程度,用来衡量一批数据的波动大小在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定,因此作出判断.【详解】解:(1)(1)甲:(10+8+9+8+10+9)÷6=9(环),乙:(10+7+10+10+9+8)÷6=9(环);故答案为:9;9.(2)s 2甲=2222221(109)(89)(99)(89)(109)(99)6⎡⎤-+-+-+-+-+-⎣⎦=1(110110)6+++++=23; s 2乙=2222221(109)(79)(109)(109)(99)(89)6⎡⎤-+-+-+-+-+-⎣⎦=1(141101)6+++++=43. (3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.【点睛】此题主要考查了平均数的求法以及方差的求法,正确的记忆方差公式是解决问题的关键. 24.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,1y 、2y 关于x 的函数图像如图所示:(1)根据图像,求出1y 、2y 关于x 的函数关系式;(2)设两车之间的距离为S 千米.①求两车相遇前S 关于x 的函数关系式;②求出租车到达甲地后S 关于x 的函数关系式;(3)甲、乙两地间有A 、B 两个加油站,相距200千米,若客车进入A 加油站时,出租车恰好进入B 加油站,求A 加油站离甲地的距离.【答案】(1)y 1=60x (0≤x ≤10),y 2=−100x +600(0≤x ≤6);(2)①S =y 2−y 1=−160x +600;②S =60x (6≤x≤10);(3)150km 或300km .【解析】【分析】(1)直接运用待定系数法就可以求出y 1、y 2关于x 的函数图关系式;(2)①根据当0≤x <154时,求出即可,②当6≤x ≤10时,求出即可;(3)分A 加油站在甲地与B 加油站之间,B 加油站在甲地与A 加油站之间两种情况列出方程求解即可.【详解】解:(1)设y 1=k 1x ,由图可知,函数图象经过点(10,600),∴10k 1=600,解得:k 1=60,∴y 1=60x (0≤x ≤10),设y 2=k 2x +b ,由图可知,函数图象经过点(0,600),(6,0),则 260060b k b ⎧⎨⎩=+= 解得:2100600k b -⎧⎨⎩== ∴y 2=−100x +600(0≤x ≤6);(2)①由题意,得60x =−100x +600x =154,即第154小时两车相遇 当0≤x <154时, S =y 2−y 1=−160x +600; ②令y 2=−100x +600=0,解得:x=6即第6小时出租车到达甲地当6≤x ≤10时,S =60x ;(3)由题意,得①当A 加油站在甲地与B 加油站之间时,(−100x +600)−60x =200,解得x =52, 此时,A 加油站距离甲地:60×52=150km ,②当B 加油站在甲地与A 加油站之间时,60x−(−100x +600)=200,解得x =5,此时,A 加油站距离甲地:60×5=300km ,综上所述,A 加油站到甲地距离为150km 或300km .【点睛】本题考查了分段函数,函数自变量的取值范围,用待定系数法求一次函数、正比例函数的解析式等知识点的运用,综合运用性质进行计算是解此题的关键,通过做此题培养了学生的分析问题和解决问题的能力,注意:分段求函数关系式,题目较好,但是有一定的难度.25.知识再现如图1,若点A ,B 在直线l 同侧,A ,B 到l 的距离分别是3和2,4AB =,现在直线l 上找一点P ,使AP BP +的值最小,做法如下:作点A 关于直线l 的对称点A ',连接BA ',与直线l 的交点就是所求的点P ,线段BA '的长度即为AP BP +的最小值,请你求出这个最小值.实践应用如图2,菱形ABCD 中2AB =,120A ∠=︒,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK QK +的最小值为______;拓展延伸如图3,在四边形ABCD 的对角线AC 上找一点P ,使APB APD ∠=∠,保留作图痕迹,不必写出作法.【答案】知识再现:103拓展延伸:图形见详解【解析】【分析】知识再现:根据对称性和勾股定理即可解题,实践应用:先根据四边形ABCD 是菱形可知,AD ∥BC ,由∠A =120°可知∠B =60°,作点P 关于直线BD 的对称点P ′,连接P ′Q ,PC ,则P ′Q 的长即为PK +QK 的最小值,由图可知,当点Q 与点C 重合,CP ′⊥AB 时PK +QK 的值最小,再在Rt △BCP ′中利用锐角三角函数的定义求出P ′C 的长即可.拓展延伸:作B 关于AC 的对称点,连接DE 并延长,即可得出答案.【详解】解:知识再现:由对称的性质得到AP A P '=∴AP+BP=A P BP A B ''+=过点B 作BD⊥AC 于D,∴AC=3,CD=2,AD=1,5A D '=在Rt△ADB 中22224115BD AB AD =-=-=在Rt△A DB '中22225(15)40210A B A D BD ''=+=+==实践应用:∵四边形ABCD 是菱形,∴AD ∥BC ,∵∠A =120°,∴∠B =180°−∠A =180°−120°=60°,如图2中,作点P关于直线BD的对称点P′,连接P′Q,P′C,则P′Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP′⊥AB时PK+QK的值最小,在Rt△BCP′中,∵BC=AB=2,∠B=60°,∴P′Q=CP′=BC•sinB=2×32=3故答案为3拓展延伸:如图3所示:作B关于AC的对称点E,连接DE并延长交AC于P即可.【点睛】本题考查的是轴对称−最短路线问题及菱形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.26.如图1,在平面直角坐标系中,直线2L:162y x=-+与1L:12y x=交于点A,分别与x轴、y轴交于点B、C.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且COD△的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点.①如图2,过点P作//PQ OC,且使四边形OCPQ为菱形,请直接写出点Q的坐标;②在平面内是否存在其它点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【答案】(1)A(6,3).B(12,0).C(0,6),(2)y=−x+6.(3)①Q(,-3),②(−3,3),(6,6).【解析】【分析】(1)构建方程组确定交点A的坐标,利用待定系数法确定B,C两点坐标即可.(2)设D(m,12m),利用三角形的面积公式,构建方程求出m的值,再利用待定系数法即可解决问题.(3)①构建OC=PC,设P(m,12m),利用两点间距离公式,构建方程求出m即可.②当OC为菱形的对角线时,OC垂直平分线段PQ,利用对称性解决问题即可;当PC为对角线时,OQ⊥CP, 利用对称性解决问题即可.【详解】解:(1)由16212y xy x⎧=-+⎪⎪⎨⎪=⎪⎩解得63 xy=⎧⎨=⎩∴A(6,3).∵162y x=-+与分别与x轴、y轴交于点B、C,∴C(0,6),B(12,0).(2)设D(m,12m),由题意:OC=6,△COD的面积为12,∴12×6×m=12,∴m=4,∴D(4,2),∵C(0,6),设直线CD的解析式为y=kx+b,则有426k bb+=⎧⎨=⎩解得16 kb=-⎧⎨=⎩∴直线CD的解析式为y=−x+6.(3)①∵四边形OCPQ是菱形,∴OC=PC=6,设P(m,−m+6),∴m2+m2=36,∴m=32或−32,∴P(32,-32+6),∵PQ∥OC,PQ=OC,∴Q(32,-32)②如图,当OC为菱形的对角线时,OC垂直平分线段PQ,易知P′(3,3),Q′(−3,3),∴满足条件的点Q′的坐标为(−3,3).(−3,3)如下图,当PC为对角线时,OQ⊥CP,易知△OCP是等腰直角三角形,∴四边形OCQP是正方形,此时Q的坐标为(6,6).【点睛】本题属于一次函数综合题,考查了待定系数法,三角形的面积,菱形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。

相关文档
最新文档