植物同化物的运输与分配

合集下载

植物体内有机物质的运输与分配

植物体内有机物质的运输与分配

四. 有机物运输与分配的调控
1. 代谢调节 (1)细胞内蔗糖浓度
<阈值 ,非运态 >阈值 ,可运态 K/Na比值低,有利于淀粉→蔗糖,输出率 提高。
(2) 能量代谢 ①作为直接的动力; ②通过提高膜透性而起作用。
2. 激素调节
除乙烯外,其他内源激素(主要是 IAA,GA, CTK) 都有促进有机物运 输与分配的效应。
库细胞
图6-7 蔗糖卸出到库组织的可能途径
2. 卸出机理
两种观点 ①质外体中蔗糖,同 H+ 协同运转,机制与 装载一样,是一个主动过程。
②共质体中蔗糖,借助筛管与库细胞的糖 浓度差将同化物卸出,是一个被动过程。
三、有机物运输动力——筛管运输机理
(Mechanism of Sieve Tube Transport)
受该叶片同化物的组织、器官(库)以及 连接它们之间的输导系统合称为源库单位.
2. 优先供应生长中心 3. 就近供应,同侧运输 4. 功能叶之间无同化物供应关系 5. 同化物和营养元素的再分配与再利用
三. 光合产物分配与产量的关系
1.影响同化物分配的3个因素
①供应能力 ——源的同化物能否输出以及 输出的多少。 “推力” ②竞争能力——库对同化物的吸引和“征 调”的能力。 “拉力” ③运输能力——联系直接、畅通,距离近, 库得到的同化物就多。
P-蛋白:亦称 韧皮蛋白,是 被子植物筛管 细胞所特有的, 利用ATP释放 的能量进行摆 动或蠕动,推 动筛管内有机 物质的长距离 运输。
成熟筛分子和伴胞(sieve elementcompanion cell,SE-CC)的结构
第二节 同化物运输的形式、方 向和速率
Section2 Form,direction and Rate of

第六章 植物体内同化物运输和分配

第六章 植物体内同化物运输和分配

种蠕动进行生理调节。第二,空心管壁上有大量的由
P-蛋白组成的微纤丝(毛),一端固定,一端游离于 筛管细胞质内,似鞭毛一样的颤动,驱动空心管内的
物质脉冲状流动。P-蛋白的收缩需要消耗代谢能量,
它的作用是将化学能转变为机械能,作为代谢动力推 动液流流动。
韧皮部的卸载
同化物的卸出是指同化物从筛管-伴胞复合体进
自由能高;(5)蔗糖的运输速率很高,适合长距离
运输。
同化物的运输方向
同化物的运输速度
借助放射性同位素示踪技术,可测得不同植物,
其有机物运输速度差异很大。
同一作物,由于生育期不同,有机物运输的速度也
有所不同。
运输速度也随物质种类而异。此外,植物体内同 化物的运输速度还受环境条件的影响。
韧皮部的装载
同化物的分配规律
一般来说,某一部分的同化先满足自身的需要,
有余才外运。同化物的分配总规律是从源到库,其主
要表现出以下几个特点:
(1)优先供应生长中心(或分配中心); (2)就近供应,同侧运输; (3)功能叶之间无同化物供应关系。
同化物的再分配和再利用
植物体除了已构成细胞壁的物质外,其它成分无
论是有机物还是无机物都可以被再分配再利用,即转 移到其它组织或器官去。
胞内运输指细胞内、细 胞器之间的物质交换。 细胞内有机物的运输, 主要通过扩散和布朗运动等 进行移动,也可通过原生质 运动使细胞器移位。 各种物质在细胞内部运
输速度不同。
胞间运输
胞间运输有共质体运输、质外体运输及共质
体与质外体之间的交替运输。
转移细胞
在共质体与质外体的交替运输过程中,需要一 种特化的薄壁细胞对物质起转运过渡的作用,这种
同化物的装载是指同化物从合成部位通过共质体

植物体内同化物的运输与分配

植物体内同化物的运输与分配
用,为了能提高作物后代的整体适应力、繁殖力以及增产,成熟作物会将生育期内同化的物质毫不保留地供给新 生器官,如果实、块根,叶片中的同化物会被重新分配到就近的新生器官,枝叶因缺少同化物便会枯黄。
提高烟叶的产量,通常要在开花后打掉花头等。
2. 长距离运输
筛管分子---伴胞 (SE—CC)复合体
概念
P—蛋白(韧皮蛋白): 指存在于筛管中的蛋白
质,主要位于筛管的内壁。是被子植物筛管细胞 所特有,利用ATP释放的能量进行摆动或蠕动, 推动筛管内有机物质的长距离运输。
胼胝质
功能:但当植物受到外界刺激 (如机械损伤、高温等)时, 筛管分子内就会迅速合成胼 胝质,并沉积到筛板的表面 或筛孔内,堵塞筛孔,以维 持其他部位筛管正常的物质 运输。
库控制源的制造和输出
二. 有机物分配的规律
概念
1. 按源库单位进行分配
植物体内供应同化物的叶片(源)与接
受该叶片同化物的组织、器官(库)以及 连接它们之间的输导系统合称为源库单位.
2. 优先供应生长中心 3. 就近供应,同侧运输 4. 功能叶之间无同化物供应关系 5. 同化物和营养元素的再分配与再利用
(2)库限制型 库小源大,产量限制因素: 库的接纳能力低 ,结实率高且饱满,但粒 数少,产量不高。
(3)源库互作型 产量由源库协同调节, 可塑性大。只要栽培措施得当,容易获得 较高的产量。
四. 有机物运输与分配的调控 1. 膨压 (1)卸出 快, 库组织同化物利用快, 库 的膨压 下降, 传递到源,引起韧皮部转载 增加。
一旦外界刺激解除,沉积到 筛板表面或筛孔内的胼胝质 则会迅速消失,使筛管恢复 运输功能。
图6-2 树木枝条的环割 a. 开始环割的树干;b.经过一段时间的树干

6 植物体内同化物的运输与分配

6 植物体内同化物的运输与分配

第六章植物体内同化物的运输与分配知识要点物质在维管束中运输的一般规律是:无机营养及信息物质在木质部中向上运输,而在韧皮部中向下运输;同化物在韧皮部中可向上或向下运输,而在木质部中向上运输;木质部和韧皮部间可侧向发生物质交换。

源叶中由光合作用形成的磷酸丙糖通过叶绿体被膜上磷运转器进入细胞质,并经过一系列酶促反应合成蔗糖,蔗糖是光合同化物的主要运输形式,它通过质外体和/ 或共质体的胞间短距离运输进入韧皮部薄壁细胞,然后又经过质外体和/ 或共质体装载进入筛管- 伴胞复合体,一旦光合同化物进入韧皮部,在压力梯度的驱动下,向库细胞侧运输。

在库端同化物从筛管- 伴胞复合体向周围细胞卸出。

源端的蔗糖装载和库端蔗糖卸出维持着源库两端蔗糖浓度差,由蔗糖浓度差引起的膨压差推动着韧皮部中的物质运输。

光合同化物进入库细胞或用于生长和呼吸,或进一步合成贮藏性物质,因此,光合同化物的形成、运输、分配直接关系到作物产量的高低和品质的好坏。

叶绿体中的磷酸丙糖及细胞质中合成的蔗糖的去向决定于源库间的相互协调和相互作用。

当光合同化物的形成能力大于对同化物的需求时,细胞质中蔗糖的合成受到抑制,用于输出的蔗糖的量减少,而进入液泡作临时性贮藏的量增加。

光合作用形成的磷酸丙糖滞留在叶绿体内用于合成淀粉,并通过某种( 些) 机理反馈抑制光合作用。

另外,通过促进库细胞有关蔗糖和淀粉合成代谢酶的合成或活性,最终使光合同化物的形成能力与同化物的需求间达到一种新的平衡。

当光合同化物的形成能力小于对同化物的需求时,磷酸丙糖优先进入细胞质用于合成蔗糖并向库细胞输送,细胞质中低浓度的蔗糖对源叶光合酶活性有反馈促进作用,从而两者达到一种新的平衡。

光合同化物分配的总规律是从源到库,源是合成和/或输出同化物的器官,而库是消耗和/ 或积累同化物的器官,源和库对同化物的运输和分配具有显著的影响,其影响的程度可用源强和库强来衡量。

一般来说,源强决定同化物分配的数量,而不影响同化物在不同库间的分配比例。

第六章 同化物的运输、分配

第六章 同化物的运输、分配

装载的途径与所运输糖的形式有关
以蔗糖为同化物运输形式的植物种属大多数都利用质外体 装载途径。例如甜菜,许多豆科植物等。 而具有共质体装载途径的植物种属除蔗糖外还运输棉子糖、 水苏糖等多聚糖,在筛管分子-伴胞复合体与周围细胞间有大 量的胞间连丝,例如锦紫苏、西葫芦和甜瓜等。
质外体装载 共质体装载
3.韧皮部装载的特点
2.共质体运输
1) 共质体中原生质的粘度大,运输的阻力大。 2) 共质体中的物质有质膜的保护,不易流失于体外。 3) 共质体运输受胞间连丝状态控制。
胞间连丝有三种状态
1)正常态 2)开放态 3)封闭态
一般地说,细胞间的胞间连 丝多、孔径大,存在的浓度 梯度大,则有利于共质体的 运输。
3.质外体与共质体间的运输
支持质外体装载的实验证据:
①许多植物(如大豆,玉米)小叶脉SE-CC复合体与周围薄 壁细胞间无胞间连丝连接; ②在SE-CC复合体介面上存在大的渗透梯度,SE-CC内的蔗糖 浓度可高达800~1000mmol·L-1 ,而叶肉细胞的蔗糖浓度只有 50mmol·L-1左右; ③用14C标记的大豆叶片质外体中存在高浓度的 14C-蔗糖。质 外体中蔗糖含量占细胞总蔗糖含量的7%; ④用14C蔗糖和14C葡萄糖进行的放射性自显影研究表明,SECC复合体可以直接吸收蔗糖,但不吸收葡萄糖等非运输形式的 糖分子; ⑤代谢抑制剂如DNP及厌氧处理会抑制SE-CC复合体对蔗糖的 吸收,这表明质外体装载是一个主动过程; ⑥用质外体运输抑制剂PCMBS(对氯汞苯磺酸)处理 14CO2 标记 的叶片,然后进行放射性自显影,发现SE-CC复合体中几乎无 14C蔗糖存在。 这些结果都直接或间接地说明韧皮部装载通过质外体。
如:马铃薯块茎与植株地上部由韧皮部横切面为 0.004cm2 的地下蔓相连,块茎在50d内增重230g,块 茎含水量为75%,则此株马铃薯同化物运输的比集转 运速率为: SMTR=230×(1-75%)/(0.004×24×50) ≈12(g·cm-2·h-1)

植物生理学 第六章 植物体内同化物的运输与分配

植物生理学 第六章 植物体内同化物的运输与分配

韧皮部汁液的物质组成:
• 水分:75-90%,说明物质以溶液形式为运输 • 糖类:占干物质的90%,运输的糖类为非还原糖 (蔗糖、棉子糖、山梨糖醇),但没有还原性糖 (葡萄糖、果糖) • 氨基酸:十余种 • 有机酸:柠檬酸、苹果酸、酒石酸 • 无机离子:阳离子中K+最多,达60-112mmol/L, 可能与有机酸共同维持筛管汁液的离子平衡;阴离 子中不含NO3- • ATP:0.24-0.36 mg/L,说明运输过程需要能量供应 • 植物激素:运输过程拌有信息传递
pumping theory) 3、收缩蛋白学说(Contractile protein theory)
1、压力流动学说(E. MÜnch ,1930) :
韧皮部中物质流沿着 膨压梯度由源移动到库。
压力流学说的物理模式
筛 管
导 管
(源)
(库)
木质部导管分子
韧皮部筛管分子
伴胞 源细胞
水分渗透进入 韧皮部,建立 高的压力势 蔗糖 压力驱动从源 到库的集流 库细胞 蒸腾流
第6章 植物体内同化物的运输与分配
第1节 第2节 第3节 第4节 同化物运输 同化物运输机制 同化物的装载和卸出 同化物的配置和分配
第 1节
同化物运输
• 短距离运输: 细胞内及相邻细胞间的 运输,包括胞内运输和胞间(质外体 和共质体)运输。~μm。 • 长距离运输:通过输导组织(维管束) 中的运输。
利用荧光探剂 (CF)实时显示 韧皮部卸出:
间隔6分钟显示CF 在拟南芥根尖中的 卸出
豆类韧皮部卸出的研究手 段:空胚珠技术
Empty-ovule technique
• 在豆荚切开一口; • 切去种子的一半,并 将另一半种子中的胚 组织挖去,仅留下种 皮组织(杯); • 在杯中注入缓冲液或 琼脂,以接受维管组 织卸出的物质 • 若在杯中加入其他物 质、抑制剂或改变其 pH,则可研究影响卸 出的因素

植物生理学之第五章植物体内同化物的运输与分配

植物生理学之第五章植物体内同化物的运输与分配

植物生理学之第五章植物体内同化物的运输与分配第五章植物体内同化物的运输与分配一、名词解释1.代谢源与代谢库2.库—源单位3.转运细胞4.运输速度5.运输速率6.比集运量7.极性运输8.共质体运输9.质外体运输10.同化物的装卸11.P-蛋白12.协同转移13.经济产量14.经济系数15.源强和库强二、写出下列符号的中文名称1. SMTR2. SMT3. SE-CC4.SC三、填空题1.植物体内有机物质长距离运输的途径是______,而胞内的运输则主要是通过______和______的运输。

2.有机物质运输的动力大致有和两种。

3.同化物质从绿色细胞向韧皮装载的途径,可能是从______→_____→______→韧皮筛管分子。

4. 有机物的分配受______、______、______的影响,其中______起较重要的作用。

5.有机物质向韧皮部装载属载体调节的过程,其依据是:______、______、______。

6.被子植物的韧皮部由______、______和_____组成。

7.支持压力流动学说的实验证据有:______、______、______。

8. 叶肉细胞中糖分向韧皮部装载是_____浓度梯度进行。

9.青海、新疆等地的小麦千粒重比湖北地区的要高出10克以上,其主要原因是______、______,因而______、______。

10. 细胞间物质运输的途径包括______、______、______。

11.有机物总的分配方向是由______到______。

有机物分配有______、______、______和______等四个特点。

12. ______是细胞间物质运输的通道。

13.就源与库间的关系而言,在源大于库时,籽粒的增重受______的限制,库大于源时,籽粒增重受______的影响。

14._____是糖类运输的主要形式,其次还有______、______和_____。

15.植物体各器官竞争同化的能力是:果实__________>_________>__________>__________>____________。

第5章 植物体内同化物运输与分配

第5章 植物体内同化物运输与分配

第五章植物体内同化物运输与分配一、名词解释(写出下列名词的英文并解释)区隔化生长中心源库单位代谢源代谢库糖和质子共运输转运细胞二、填空题11植物体内的碳水化合物,作为运输形式的主要是,作为贮藏形式的主要是,作为结构物质主要是。

22木质素等酚类物质的生物合成与细胞内的代谢途径有关。

33乙醛酸体是进行代谢的细胞器,它主要出现在种子萌发过程中。

44油料种子萌发时,其脂肪转变成糖首先经过和途径,这时细胞内形成了许多与此代谢途径有关的细胞器。

55胞间连丝是由和构成的通道。

胞间连丝的数量多,直径大,则有利于系统的运输。

66P-蛋白是分布在内的一种运输性蛋白,它是被子植物特有的。

77在同化物长距离运输中,碳水化合物主要是以形式进行的,而含氮物质是以形式进行的。

88韧皮部运输的碳水化合物主要是,其他种类的物质则有、和等。

99筛管计液中,阳离子以K 最多,阴离子以Pi 为主。

1010筛管内运输的含氮化合物,主要是以硝酸盐和含氮有机物的形式运输的。

1111代谢源是指的部位,代谢库是指的部位。

1212环割试验证明有机物是通过运输的,这种方法应用于果树的枝条上可促进。

1313在禾谷类植物抽穗期,如剪去部分麦穗,叶片的光合速率将;若剪去一部分叶片,保留下来的叶片的光合速率将。

1414影响同化物运输的植物因素主要有、和。

1515影响韧皮部同化物运输的环境因素主要是、和。

1616温度过高或过低均可导致筛管内形成胼胝质而使有机物的运输受阻。

1717胼胝质是容易在里形成的一种化合物。

1818在夜温高、昼夜温差小的地区,小麦叶片衰老的速度,灌浆的天数,穗粒重。

1919在夜温较低、昼夜温差较大的地区,小麦叶片功能期,灌浆的天数,植株衰老,穗粒重。

2020一般说来,在昼夜温差很小的地区,瓜果的含糖量。

2121昼夜温差大,有机物呼吸消耗,禾谷种子的千粒重。

2222同化物在植物体内的运输分配规律有、、和。

2323在必需元素中,与同化物运输有关的元素是、、。

同化物的运输和分配

同化物的运输和分配
4
第一节 植物体内有机物质的运输
5
第一节 植物体内有机物质的运输
二、长距离运输系统
植物体 内承担 物质长 距离运 输的系 统为维 管束系 统。
6
第一节 植物体内有机物质的运输
1、同化物运输通道——韧皮部
2、韧皮部中运输的主要物质:蔗糖
优点:水溶性强----利于运输 不易分解----安全运输
(二)影响同化物分配的内在因素
1.源对同化物分配的影响 2.流对同化物分配的影响 3.库对同化物分配的影响 4.生长对同化物分配的影响
12
第二节 同化物的分配及其控制
(三)影响同化物分配的外界因素
1.温度 2.水分 3.其它因素: 光 、矿质元素、 CO2、病原体和寄生植物等
3、运输的方向:单向运输
双向运输
返回
横向运输
7
第二节 同化物的分配及其控制 一、源和库的关系 (一)源和库的概念
源:制造营养并向其它器官提供营养的 部位或器官。 库:消耗养料和贮藏养料的器官。
8
第二节 同化物的分配及其控制
(二)源-库关系
源强:源器官同化物形成和输出的能力。 库强:库器官按纳和转化同化物的能力 关系:相互依赖,相互制约。源强有利 于库强的潜势的发挥,而库强则有利源 强的维持。
第六章 同化物的运输和分配
第一节 植物体内有机物质的运输 第二节 同化物的分配及其控制
1
第六章 同化物的运输和分配
无论是单细胞的藻类还是高大的树木,都存 在体内同化物的运输和分配问题。叶片是同 化物的主要制造器官,它合成的同化物不断 地运至根、茎、芽、果实和种子中去,用于 这些器官的生长发育和呼吸消耗,或者作为 贮藏物质而积累下来。而贮藏器官中的同化 物也会在一定时期被调运到其他器官,供生 长所需要。同化物的运输与分配,无论对植 物的生长发育,还是对农作物的产量和品质 的形成都是十分重要的。

植物生理学6植物体内同化物的运输分配与信号转导

植物生理学6植物体内同化物的运输分配与信号转导
胞。
细胞壁与质膜向内伸入细胞质中, 形成许多皱折,或呈片层或类似囊 泡,扩大了质膜的表面,增加了溶 质向外转运的面积。
第十页,共81页。

环割

A 开始(kāishǐ)时;B 过一
(z
段时间后
hu
ǎn
yí) 细第十一页,共81页。
(2)长距离运输 (yùnshū)通过(tōngguò)
筛韧管皮(部主。要通道(tōngdào),有P -蛋白)
相对性
(2)有机物运输的方向
由源到库。
第十四页,共81页。
4 有机物运输(yùnshū)的 速(1率)有机(yǒujī)物质的运输速度
有机物在单位时间(shíjiān)内的运输 距一离般约。为100cm/h。
(2)有机物质的运输率
单位时间内通过单位韧皮部横截面的数量,即 比集运量(SMT)或比集运量转运率(SMTR)。
第二十三页,共81页。
3 有机物运输(yùnshū)的动力
渗透动力 两 种
代谢动力
即依靠源库两端的同化物浓度差顺流 而下,这一过程不需要代谢能,是一 个物理过程
需要消耗代谢能的生理(shēnglǐ)过程。

解释有机物质运输机制的假说有三个
压力(yālì)流动学 渗透说动力
细胞质泵动学说
代谢动力
收缩蛋白学说
4 光合产物的分配(fēnpèi)与产量形成的关系
影响有机物质运输分配 的三个因素
源的供应 (gōngyìng) 能力
库的竞争能 力
运输系统的 运输能力
是指源的同化产物能否输出以 及输出多少的能力。“推力”。
与需求相一致。生长旺盛,代 谢强 的部位, 对养分竞争能力 强。“拉力”。

6 植物体内同化物的运输与分配

6 植物体内同化物的运输与分配

第六章植物体内同化物的运输与分配知识要点物质在维管束中运输的一般规律是:无机营养及信息物质在木质部中向上运输,而在韧皮部中向下运输;同化物在韧皮部中可向上或向下运输,而在木质部中向上运输;木质部和韧皮部间可侧向发生物质交换。

源叶中由光合作用形成的磷酸丙糖通过叶绿体被膜上磷运转器进入细胞质,并经过一系列酶促反应合成蔗糖,蔗糖是光合同化物的主要运输形式,它通过质外体和/ 或共质体的胞间短距离运输进入韧皮部薄壁细胞,然后又经过质外体和/ 或共质体装载进入筛管- 伴胞复合体,一旦光合同化物进入韧皮部,在压力梯度的驱动下,向库细胞侧运输。

在库端同化物从筛管- 伴胞复合体向周围细胞卸出。

源端的蔗糖装载和库端蔗糖卸出维持着源库两端蔗糖浓度差,由蔗糖浓度差引起的膨压差推动着韧皮部中的物质运输。

光合同化物进入库细胞或用于生长和呼吸,或进一步合成贮藏性物质,因此,光合同化物的形成、运输、分配直接关系到作物产量的高低和品质的好坏。

叶绿体中的磷酸丙糖及细胞质中合成的蔗糖的去向决定于源库间的相互协调和相互作用。

当光合同化物的形成能力大于对同化物的需求时,细胞质中蔗糖的合成受到抑制,用于输出的蔗糖的量减少,而进入液泡作临时性贮藏的量增加。

光合作用形成的磷酸丙糖滞留在叶绿体内用于合成淀粉,并通过某种( 些) 机理反馈抑制光合作用。

另外,通过促进库细胞有关蔗糖和淀粉合成代谢酶的合成或活性,最终使光合同化物的形成能力与同化物的需求间达到一种新的平衡。

当光合同化物的形成能力小于对同化物的需求时,磷酸丙糖优先进入细胞质用于合成蔗糖并向库细胞输送,细胞质中低浓度的蔗糖对源叶光合酶活性有反馈促进作用,从而两者达到一种新的平衡。

光合同化物分配的总规律是从源到库,源是合成和/或输出同化物的器官,而库是消耗和/ 或积累同化物的器官,源和库对同化物的运输和分配具有显著的影响,其影响的程度可用源强和库强来衡量。

一般来说,源强决定同化物分配的数量,而不影响同化物在不同库间的分配比例。

植物生理学06-植物体内同化物的运输与分配

植物生理学06-植物体内同化物的运输与分配
2. 装载途径
共质体途径:同化物通过胞间连丝进入伴胞,最后进 入筛管;
替代途径:同化物由叶肉细胞,先进入质外体,然后 逆浓度梯度进入伴胞,最后进入筛管分子,即“共质 体-质外体-共质体”途径。 (同化物在韧皮部的装载途径示意图)
第六章 植物体内同化产物的运输与分配
质外体途径 (apoplastic pathway) 共质体-质外体-共质体 交替途径
证据:
许多植物的筛孔处于开放状态,有利于物质的集流 运动;
韧皮部汁液中糖的浓度随距地面高度的增加而增加 ,且浓度差与同化物运输相一致;
SMTR(g·cm-2·h-1) = W/(S×t)=V×C
多数植物的SMTR为1~13g·cm-2·h-1,最高的可达 200g·cm-2·h-1。
第六章 植物体内同化产物的运输与分配 第二节 同化产物的装卸与运输
一、同化物在源端韧皮部的装载 二、同化物在库端的卸出 三、韧皮部同化物运输的机制
第六章 植物体内同化产物的运输与分配
一、同化物在源端韧皮部的装载
同化物的韧皮部装载(phloem loading)是指最终进入SE-CC的全过程。
1. 装载步骤
叶绿体同化物——→细胞质中合成蔗糖—— →叶片细脉的SE-CC附近——→SE-CC。
第六章 植物体内同化产物的运输与分配
第六章 植物体内同化产物的运输与分配
蔗糖卸出途径
G
S
G
F F
S
S
S GF
S
S
GF
S
细胞壁 质膜 液泡膜 液泡
韧皮部SE-CC
接受细胞
第六章 植物体内同化产物的运输与分配
2、卸出机制 质外体途径:主动过程,蔗糖-质子同向运输

植物生理学_06同化物的运输与分配

植物生理学_06同化物的运输与分配

第三节 植物体内同化物的分配及调控
一、源、库的关系
源-库单位: 相应的源与相应的库, 以及二者之间的输导系统构成。
源是库的供应者,库对源具有调节作用。 库源相互依赖,又相互制约。 源对库的影响 库对源的反馈作用
二、同化物的分布规律
(1)影响同化物分配的因素 内因:
1. 供应能力 2. 竞争能力 3. 运输能力
三、同化物运输方向
(一)代谢源、代谢库
1、代谢源: 制造并输出有机物的器官、组织或部位。 2、代谢库:接纳、消耗或贮藏有机物的器官、组织或
部位。 (二)同化物运输方向:多向性,总趋势:源 库
(见下图)
a
b
R
R c



韧 皮 部 运 输 方 向
枝 条 两 个 部 位 环 割



四、同化物运输的速率
以蔗糖是同化物的主要形式的原因:
⒈ 蔗糖是光合作用的主要形式,是绿色细胞中常见的糖。 ⒉ 蔗糖在生理上有许多优点,适合于作为运输形式:
⑴ 蔗糖易溶于水,其溶解度相当大。 ⑵ 蔗糖为非还原性的糖。 ⑶ 蔗糖糖苷键水解产生的自由能较高。 ⑷ 在水溶液中,蔗糖的物理性质与葡萄糖等单糖相似。 ⑸蔗糖在不改变渗透势的情况下能比单糖运输更多的碳, 即运输碳的效率高。
植物生理学_06同化物的运输与分配
第一节 植内运输 2、细胞间运输 共质体运输 质外体运输 交替运输
(二)长距离运输
⒈ 木质部运输 2. 韧皮部运输 (共质体运输 )
二、同化物的运输形式
糖类:以蔗糖为主 蛋白质 脂类 有机酸 激素
叶肉细胞
筛管分子 伴胞 韧皮部薄壁细胞 维管束鞘细胞
共质体
源叶中韧皮部装载途径 (图中粗箭头示共质体途径, 细箭头示质外体途径)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核酸等; (2) 质外体运输
自由扩散的被动过程,速度很快; (3) 替代运输
物质在共质体与质外体间交替进行的运输形式。
植物同化物的运输与分配
(二) 长距离运输
环割实验:有机物质 的长距离运输通过韧皮部。
环割的利用: (1)增加花芽分化和座果率; (2)促进生根:高空压条时进行环割可使养分在切 口处集中,有利于发植根物同。化物的运输与分配
韧皮部装载:是指在源端的同化物从合成部位运入 韧皮部筛管的过程。
筛管分子和伴胞之间在结构和功能上的密切联系, 通常把两者作为一个功能单位,称为筛管分子-伴胞复 合体。SE-CC
植物同化物的运输与分配
植物韧皮部装载的过程
光合产物到筛管分子中需要经过三个步骤:
① 光合作用中形成的磷酸丙糖从叶绿体运到细胞 质中,转化为蔗糖。
与质子共同转运至
细胞内,这种运输 方式称为蔗糖- H+ 共运输。
蔗糖转运蛋白
植物同化物的运输与分配
(二)通过共质体途径的韧皮部装载
共质体装载途径的证据
(1) 许多植物叶片 SE-CC 复合体和周围薄壁细胞间有紧 密的胞间连丝连接;
(2) 一些植物同化物韧皮部运输对质外体运输抑制剂 PCMBS 不敏感;
植物同化物的运输与分配
三、 同化物运输的形式
蚜虫吻刺法和同位素示踪法:
植物同化物的运输与分配
三、 同化物运输的形式
蔗糖占筛管汁液干重的73%以上,是有机物质的 主要运输形式。
优点:①稳定性高,蔗糖是非还原性糖,糖苷键 水解需要很高的能量;
②溶解度很高,在0℃时,100ml水中可溶 解蔗糖179g,100℃时溶解487g;
2、质外体途径:筛管中的糖分转运到质外体 ,由库细胞上存在的载体转运到库中。通常 发生于贮藏器官(果实、贮藏根茎等)
卸出比装载复杂
植物同化物的运输与分配
(二)卸出机制
卸出机理尚不清楚,可能是:
第六章 植物同化物的运输与分配
第一节 同化物的运输与分配概述 第二节 韧皮部运输的机制 第三节 同化物的分配与调控
植物同化物的运输与分配
第一节 同化物运输与分配概况
一、同化物运输的途径 二、同化物运输的方向 三、同化物运输的形式 四、同化物运输的度量
植物同化物的运输与分配
一、同化物运输的途径
同化物运输的途径:长距离运输和短距离运输 短距离运输——指细胞内与细胞器之间的运输。 长距离运输——同化物在器官之间通过韧皮部进行的 运输
② 蔗糖从叶肉细胞转移到叶片小叶脉筛管分子附 近。这一途径往往只涉及几个细胞的距离,为短距 离运输途径。
③ 蔗糖进入SE-CC复合体中,称为筛管分子装载。
植物同化物的运输与分配
一、同化物在源端的装载
韧皮部装载:是指在源端同化物从合成部位运入韧 皮部筛管的过程。
装载是一个高流速、逆浓度梯度进行的主动分 泌过程,受载体调节。 依据: (1)为主动过程,需能量供应
二、同化物运输的方向
同 位 素 标 记
运输的方向:双向运输,但以纵向运输为主。由源到库。
植物同化物的运输与分配
物质在维管束系统中的运输
1)根系吸收的盐类和水通过木质部上运。 2)叶片吸收的盐类和水通过韧皮部上运或下运(双向) 3)叶片合成的有机物质在韧皮部向上和向下运(双向) 4)木质部和韧皮部之间存在侧向运输。
(3) 不能跨过膜的荧光染料注入叶肉细胞, 一段时间后在 维管束鞘细胞和小叶脉中可检测到这些染料的存在; 且不被 PCMBS 抑制。
植物同化物的运输与分配
二、同化物在库端的卸出
韧皮部卸出:指同化物从SE-CC复合体运出并进 入库细胞的过程。
植物同化物的运输与分配
(一)卸出途径
1、共质体途径:蔗糖通过胞间连丝顺浓度梯度, 从SE-CC复合体释放到库细胞。通常发生于正 在生长的营养器官(幼叶、根、茎尖等)
不同植物:大豆:0.17m•h-1;甘蔗:3.2m•h-1。 不同发育阶段:南瓜幼苗 72cm•h-1,老30~50cm•h-1; 不同环境条件:白天温度高,快;夜间温度低,慢。 不同的运输物质:如丙氨酸、丝氨酸、天冬氨酸较快; 而甘氨酸、谷酰胺、天冬酰胺较慢。
植物同化物的运输与分配
比集运量(SMT):有机物质在单位时间内通过单位 韧皮部横截面积运输的数量。也称比集转运速率 (SMTR),单位:g·cm-2·h-1。
单位时间内转运物质的量(g.h-1)
SMT=
韧皮部或筛管的横截面积(cm2)
=V•C V: 流速( cm.h-1); C: 浓度( g.cm-3)
植物同化物的运输与分配
第二节 韧皮部运输的机制
一 同化物在源端的装载 二 同化物在库端的卸出 三 同化物在韧皮部的运输机制
植物同化物的运输与分配
一、同化物在源端的装载
植物同化物的运输与分配
一、同化物运输的途径
(一) 短距离运输 1.胞内运输——指细胞内细胞器之间的物质交换。
主要方式: 扩散作用、原生质环流、细胞器膜内外的物质交
换、囊泡的形成以及内含物的释放等。
植物同化物的运输与分配
2. 胞间运输
(1) 共质体运输 主要通过胞间连丝。 如无机离子、糖类、氨基酸、蛋白质、内源激素、
(2)对被装载物质有选择性 (3)具有饱和效应,有载体的参与
植物同化物的运输与分配
装载途径
一是共质体途径,同化物通过胞间连丝进入伴胞,最 后进入筛管;
二是质外体途径,同化物 由叶肉细胞,先进入质外 体,然后逆浓度梯度进入 伴胞,最后进入筛管分子, 即“共质体-质外体-共质体” 途径。
植物同化物的运输与分配
③运输速率快。
植物同化物的运输与分配
少数植物的韧皮部汁液中还含有蔗糖的衍生物: 棉子糖、水苏糖、毛蕊花糖等。
有些植物含有山梨醇、甘露醇。
筛管汁液中还含有微量的氨基酸、酰胺、植物 激素、有机酸、多种矿质元素(K+最多, P其次) 等。
植物同化物的运输与分配
四、同化物运输的度量
运输速度:指单位时间内被运输物质移动的距离
(一)通过质外体途径的韧皮部装载
1 韧皮部的装载存在质外体途径(证据) (1)质外体中存在被运输的糖 (2)质外体的糖可以进入筛管分子 (3)跨膜运输的抑制作用
植物同化物的运输与分配
(一)通过质外体途径的韧皮部装载
质子泵将H+泵出
细胞,形成质子梯
ห้องสมุดไป่ตู้度。质子趋向于向
细胞内扩散,在细
胞膜上的特殊载体
细胞外的溶质蔗糖
相关文档
最新文档