海马结构及图
海马解剖结构
AP室床通路 6齿状回分子层
PP穿通路
• 经颞叶中部做大脑半球的冠状切面,海马呈双重C环抱的外形,大C代表海马, 开口向腹内侧,小C代表齿状回,位于海马沟的背内侧,开口朝背侧
• 依据细胞形态及皮质发育的差源自,海马被分为CA1、CA2、CA3、CA4四个扇 形区
细胞类型 资料仅供参考,不当之处,请联系改正。
• 接受 – 内嗅皮质:谷氨酸、ENK – 隔区:Ach、GABA、 – 蓝斑:NA – 中缝核:5-HT – 腹侧被盖、黑质:DA
• 纤维分布 – Ach:遍布海马各区 – NA:门区、腔隙分子层 – ENK:齿状回
纤维联系资料仅供参考,不当之处,请联系改正。
• 内部神经环路
– 三突触回路:
1. 嗅区II及III层锥体细胞轴突 (形成穿通径路PP)-齿 状回分子层外2/3-颗粒细 胞树突树突棘;
资料仅供参考,不当之处,请联系改正。
位
置
• 海马 (hippocampus, Ammon horn)
– 位于侧脑室下角底 及内侧壁,形状如 海马,全长约5cm, 呈一条镰状隆嵴
资料仅供参考,不当之处,请联系改正。
外形
• 海马前端膨大称海马足 , 被2-3个浅沟分开,沟 间隆起称海马趾
• 海马表面被室管膜上皮 覆盖,下方有一层有髓 纤维称为海马槽(室 床),室床纤维沿海马 背内侧缘集中,形成纵 行白色扁带称海马伞
– 外侧份II层-齿状回分子 层2/3和CA1、CA3腔 隙分子层
– III层穿通纤维-CA1腔隙 分子层
• 对侧海马结构:CA3锥体细 胞-对侧海马CA1、CA3
• 乳头体:乳头体-齿状回通 路(抑制性传入)
• 脑干:蓝斑核、中锋核、腹 侧被盖-齿状回(多形细胞 层)
大脑海马区解剖
大脑海马区解剖:海马区示意图机能原理美国生物科技网在2003年6月10日报道,美国哈佛大学(Harvard University)与纽约大学(NYU)科学家共同发现了大脑海马区的运转机制——大脑海马区是帮助人类处理长期学习与记忆声光、味觉等事件(即叙述性记忆)的主要区域。
借着研究海马区神经元的活动情形,研究人员发现大脑叙述性记忆形成的方法。
而这个发现对于证明海马区记忆学习的可塑性,也提供了最有利的证据。
从1950年代起,科学家就已经注意到大脑海马区与记忆间的关系。
但却一直无法把记忆与海马区间的神经活动相连结。
如果切除掉海马区,那么以前的记忆就会一同消失。
但是“海马区的神经细胞又是如何把信息固定下来的”这个问题一直没能解决。
科学家发现一些分子参与到了记忆的形成。
此外,神经细胞突触的形成也与记忆相关联。
但是,科学家目前对于记忆的运作机制的了解还不够——而这一机制对于理解我们自身是非常重要的。
纽约大学研究人员利用电极(electrodes),监控学习中的猴子大脑神经活动的情形。
之后再用哈佛大学研究人员研发出的“动力评估演算系统”(dynamic estimation algorithms)分析记录下来的行为与神经信息。
在研究进行的过程中,研究人员每天都让猴子观看由四个类似物重叠的复杂影像。
当猴子从试误学习中知道各影像的位置时,就可以得到报偿。
在此同时研究人员观察猴子海马体内神经元的活动情形,结果他们发现有的细胞神经活动的改变曲线,与猴子学习的曲线平行。
这表示这些神经元与新的联想记忆形成有关。
而由于这些神经活动在猴子停止学习后仍然有持续进行的现象,因此,研究人员推测其中的部分细胞,应该与长期记忆的形成有关。
(医学课件)解剖-海马
05
海马的比较解剖学和进化
海马在脊椎动物中的比较解剖学
海马属于硬骨鱼纲
海马属于脊椎动物门,硬骨鱼 纲,海龙科,海马属。
形态特征
海马身体呈弯曲的管状,头部可 以伸缩,口鼻部分膨大,眼睛高 度近视,身体由多数环片组成, 有背鳍、臀鳍和胸鳍。
海马损伤与精神健康问题
海马损伤与记忆障碍
海马损伤会导致短期记忆和长期记忆的障碍,尤其是情节记忆的受损。
海马损伤与认知障碍
海马损伤可能导致认知障碍,包括注意力、反应时间、学习和执行功能的改变。
精神健康状况对海马的影响
抑郁症与海马体积减小
研究发现抑郁症患者的海马体积普遍较小,尤其是右侧海马 。
精神压力与海马神经元损伤
06
海马的生物地理分布和生态影响
海马在海洋生态系统中的角色
海洋生态系统的重要组成部分
海马是海洋生态系统中的一个关键物种,在食物链中处于中上层,同时也是 许多物种的猎物。
生物指示剂
海马对环境变化非常敏感,因此常常被用作生物指示剂,用于监测海洋生态 系统的健康状况和环境变化。
海马的生物地理分布
分布范围
海马在生物多样性中的地位
生物多样性的重要组成部分
海马是海洋生态系统中的重要组成部分,具有重要的生态功能。
特殊生态位
海马在海洋生态系统中占据特殊的生态位,主要以小型浮游生物为食,同时也可以利用周围的有机物残渣。
保护意义
随着海洋污染和过度捕捞等人为因素影响,海马也面临着生存威胁,因此保护海马对于维护海洋生态平衡和生物多样性具 有重要意义。
1
海马是脑内的一个内侧颞叶结构,与记忆、学 习、情感和空间认知等认知功能密切相关。
海马解剖结构与海马硬化磁共振(MRI)诊断
左图为正常海马,右图为硬化侧海马
研究发现,海马 的前段病变常较 后段为重。 评定标准: NAA/(Cho+Cr)头 部:<0.68 体部:<0.70 尾部:<0.75
病例1
病例2
例 3 容 积 效 应 造 成 波 谱
例4
谢 谢 大 家 !
更多内容请进溜达网址导航:
海马硬化( hippocampal sclerosis,HS ) 是难治 性颞叶癫痫最常见的病理类型,主要病理改变为 抑制性神经元数目的减少, 神经元树突棘的丧失 以及星形胶质细胞的反应性增生。在大体结构上, 海马变小变硬。
•
• 海马硬化性颞叶癫痫(temporal lobe epilepsies, TLE)为颞叶内侧癫痫,具有典型的发作症候学, 以复杂部分性发作(complex partial seizures)为 主,表现为精神运动性发作(psychomotor seizures),发作时可有上腹不适、上升感及恐惧等 先兆,继续进展出现意识模糊、口、手自动症等 惊厥表现,惊厥后一般有较长时间的意识模糊期。
• 下托(subiculum),下 托是指位于海马旁回皮 质和海马之间的过渡区 域。 • 下托是由3 层皮质向6 层皮质转变的移行区, 按其移行变化的状况通 常将下托再分为4个带, 即旁下托、 前下托、 下托和下托尖。 旁下 托与海马旁回的内嗅皮 质互相延续。
HS的病理改变
HS的病理改变
海马解剖结构与海马硬化 磁共振(MRI)诊断
概念
• 海马(hippocampus):为颞叶的一部分, 因其外形类似海马而得名,为颞叶内侧结 构的重要组成部分。 • 海马伞 (fimbria hippocampi ):海马背内 侧缘的一扁带状白质 • 海马结构(hippocampal formation):包括海 马、齿状回、下托、邻近的内嗅区皮质 (海马旁回)等。
海马结构
海马结构2010-06-18 10:19:05| 分类:专业相关| 标签:|字号大中小订阅概述海马结构(hippocampal formation)包括海马(又称安蒙角cornu AmmonisCA)、下托、齿状回和围绕胼胝体形成一圈的海马残件。
齿状回至胼胝体压部,消失齿状外形,改称束状回,束状回向前上与覆盖胼胝体上面的深层灰质称灰被(又称胼胝体上回)相连续。
灰被中埋有一对纵纹,分别为内侧纵纹与外侧纵纹。
灰被与纵纹就是海马及其白质的残件。
它们向前经胼胝体膝与终板旁回连续。
位置与外型海马(hippocampus)形如中药海马故名。
位于侧脑室下角底兼内侧壁,全长5 cm。
海马前端较膨大称海马足,它被2-3个浅沟分开,沟间隆起称海马趾。
海马是一条镰状隆嵴,自胼胝体压部向前到侧脑室的颞端。
海马至胼胝体压部时,从齿状回和海马旁回间翻出称Retzius回。
海马结构的位置海马表面被室管膜上皮覆盖。
室管膜上皮下面有一层有髓纤维称为海马槽(又称室床alveus)。
室床纤维沿海马背内侧缘集中,形成白色扁带称海马伞(fimbria of hippocampus),它自海马趾伸向压部,续于穹隆脚(crus of fomix)。
海马伞的游离缘直接延续于其上方的脉络丛,两者间隔以脉络裂。
海马结在下角的发育齿状回(dentate gyms)是一狭条皮质;由于血管进入被压成许多横沟呈齿状,故名。
它位于海马的内侧,介于海马沟与海马伞之间。
齿状回向前伸展至钩的切迹,在此急转弯,成光滑小束横过钩的下面,这横行段称齿状回尾。
齿状回尾将钩分成前部的前钩回,后部的边叶内回。
齿状回向后与束状回(fasciolar gyrus)相连。
在海马结构发育较好的颞中平面,作一个大脑半球的冠状切面,海马结构呈双重“C”形环抱的外形,大C锁住小C。
大C代表海马,它开口向腹内侧。
小C代表齿状回,位于海马沟的背内侧,开口朝向背侧。
海马沟的腹侧为下托(subiculum)。
(医学课件)解剖-海马
海马的基本结构
• 海马具有头部和躯干 • 海马的头部很大 • 海马的躯干细长 • 海马具有尾鳍
02
海马的解剖学特征
海马的外部解剖
形状和大小
海马呈弯曲的管状,前后两端膨大,前部与脐孔相接,后部 与座骨棘相连。全长57-107mm,平均78mm。
头部
海马头部呈半球形,向外凸出,与头颅腔间以一深沟相隔。
解剖-海马
xx年xx月xx日
目录
• 海马的基本信息 • 海马的解剖学特征 • 海马的功能和作用 • 海马的病变和疾病 • 海马相关研究的展望
01
海马的基本信息
海马的基本信息
海马的基本定义
• 海马是一种小型海洋生物 • 海马属于硬骨鱼纲 • 海马是一种非常有特点的鱼类
海马的生物分类
• 海马属于硬骨鱼纲 • 海马属于海龙科 • 海马属于脊椎动物门
,也可由某些药物、毒物等引起。
症状
03
海马病变引起的认知和情感障碍主要表现为记忆力减退、定向
力障碍、情绪不稳定等。
05
海马相关研究的展望
海马研究的前沿技术
基因编辑技术
利用CRISPR-Cas9等基因编辑工具,精确敲除或插入海马相关基因,研究其在神经功能和 认知行为中的作用。
神经影像技术
高分辨率MRI、fMRI和光学成像等神经影像技术的发展,可以揭示海马微观结构和功能连 接的细节。
。对海马的研究有助于理解人类空间认知的神经基础。
03
神经退行性疾病
海马在阿尔茨海默病等神经退行性疾病中的病理变化,是研究神经退
行性疾病的重要靶点。研究海马有助于寻找疾病的治疗方法和预防策
略。
海马在未来医学中的应用前景
脑机接口
海马结构及图
海马结构及图 Hessen was revised in January 2021海马结构,希望有所帮助海马结构(hippocampal formation,HF)属于脑的边缘系统(1imbic system)中的重要结构,与学习、记忆、认知功能有关,尤其是短期记忆与空间记忆。
海马皮质从海马沟至侧脑室下角依次为分子层、锥体层和多形层。
齿状回也分三层:分子层、颗粒细胞层和多形层。
依据细胞形态、不同皮质区的发育差异以及纤维排列的不同,将海马分为4个区,即CAl、CA2、CA3、CA4区。
海马结构是大脑边缘系统的重要组成部分.在进化上是大脑的古皮质,位于大脑内侧面颞叶的内侧深部,左右对称。
一般认为海马结构由海马或称Ammon角、齿状回、下托及海马伞组成,结构比较复杂。
在功能和纤维联系上,不仅与嗅觉有关,更与内脏活动.情绪反应和性活动有密切关系。
细胞学研究表明,海马头部主要是由CAI区折叠而成,而CAI区对缺氧等损伤最为敏感,也被称为易损区,因此海马头部也是最易发生病变的部位。
海马结构由海马(hippoeampus)、齿状回(dentate gyrls)、下托(subiculum)和围绕胼胝体的海马残体(hippoeampal rudimerit)组成,其中海马为体积最大最主要的部分。
大脑海马(hippocampus)是位于脑颞叶内的一个部位的名称,人有两个海马,分别位于左右脑半球. 它是组成大脑边缘系统的一部分,担当着关于记忆以及空间定位的作用. 名字来源于这个部位的弯曲形状貌似海马 (希腊语 hippocampus).在阿兹海默病中,海马是首先受到损伤的区域; 表现症状为记忆力衰退以及方向知觉的丧失。
大脑缺氧(缺氧症)以及脑炎等也可导致海马损伤 .在动物解剖中, 海马属于脑的演化过程中最古老的一部分。
来源于旧皮质的海马在灵长类以及海洋生物中的鲸类中尤为明显。
虽然如此, 与进化树上相对年轻的大脑皮层相比灵长类动物尤其是人类的海马在端脑中只占很小的比例。
(医学课件)解剖-海马
解剖-海马xx年xx月xx日contents •海马的基本信息•海马的解剖学特征•海马在记忆和认知中的作用•海马与其他器官的联系与相互作用•海马的病理生理学•总结与展望目录01海马的基本信息海马的基本定义海马是一种小型海洋生物海马属于硬骨鱼纲海马是一种非常有特点的鱼类海马属于硬骨鱼纲海马属于海龙科海马属于脊椎动物门海马的生物分类海马的基本结构海马的头部很大海马具有头部和躯干海马具有尾鳍海马的躯干细长02海马的解剖学特征海马呈弯曲的管状,前后稍扁,长约5-15cm,直径约2-3cm。
形状和大小海马表面有许多细小突起,包括背侧的沟和腹侧的隆脊,以及背侧中央的矢状沟。
表面结构海马的外部解剖内部构造海马内部由两个弯折的袢状结构组成,分别为直部和弯曲部。
直部由前向后依次为前庭、中庭和后庭,弯曲部则有神经部和盲囊。
海马旁回海马旁回是海马与下丘脑之间的神经联系,由前向后分为背侧海马旁回、内侧海马旁回和外侧海马旁回。
海马的内部解剖位置海马位于颞叶内侧,钩回下方,与下丘脑、颞极等毗邻。
毗邻结构海马与杏仁核、钩回、扣带回等结构相邻,相互之间有丰富的神经联系。
海马在人体中的位置和毗邻结构03海马在记忆和认知中的作用海马在记忆形成和巩固中发挥关键作用,尤其是短期记忆向长期记忆的转化。
海马参与空间记忆和情景记忆,帮助人类在空间导航和识别面孔等方面。
海马是边缘系统的重要组成部分,与记忆功能密切相关。
海马与认知功能有一定关联,尤其是情景记忆和空间认知。
海马损伤可能导致患者无法回忆过去或形成新的记忆,影响认知能力。
海马在情感认知中也发挥一定作用,例如情绪的识别、理解和反应。
海马损伤对记忆和认知的影响海马损伤可能导致短期和长期记忆障碍。
海马损伤可能导致空间认知和情景记忆受损。
海马损伤还可能影响情绪认知和社会行为,例如社交障碍和情感冷漠。
04海马与其他器官的联系与相互作用海马与大脑皮层存在直接神经联系,这些联系涉及记忆和认知功能。
海马体
解剖学家Giulio Cesare Aranzi(约1564年)首先使用 海马(hippocampus)一词形 容这一大脑器官,源于此部位 貌似海马。这一部位最初被认 为司控嗅觉,而非现在周知的 记忆储存作用。
1950年代前期开始有科学家认识到海马对于某些记忆以及学习有着基 本的作用。特别是1957年Scoville和Milner的报告成为了神经心理学 中很重要的一个病例。
他就在家中胡言乱语。
大卫照常弹琴。
扫罗手里拿着枪。 扫罗把枪一抡, 心里说:我要将大卫刺 透,钉在墙上。 大卫又躲避他两次。
—— 旧约圣经 撒母耳 记上(1 Samuel) 第 18 章 第 10,11小节
海马体分为:齿状回(dentate gyrus)、海马、海马 支脚(subiculum)、前海马支脚(presubiculum)、 傍海马支脚(parasubiculum)、嗅内野皮质 (entorhinal cortex)。这之中齿状回、海马、海马 支脚的细胞层为单层,其上下夹有低细胞密度层和无细 胞层。此外的部位有由数的层面构成。
海马的损伤通常造成难以组织新的记忆(顺行性失忆症),而且造成难以搜 索过去的记忆(逆行性失忆症)。
海马的损伤不会影响某些记忆, 例如学习新的技能的能力。
有些证据提供以下的线索:空间讯息的储存与处理牵涉到海马体。
老鼠实验
老鼠实验的研究显示,海马体的神经元(neurons)有空间放电区,这些细胞称为 伦敦出租车司机 地点细胞 (place cells)。 发现了“地点细胞”,让世人觉得海马体可能扮演“认知地图” (cognitive map) 伦敦出租车司机必须要记住很多地点,并且知道这些地点之间最直接的 印第安那大学的老鼠实验 的角色,而认知地图就是环境格局的神经重现。 路线在伦敦大学大学学院( University College London) (Macguire 若海马体不健全,人类可能就无法记住曾经去过的地方、以及如何前往想去 et al, 2000) 的研究显示,相较于一般民众,伦敦出租车司机的海马体 的地点。大脑显影研究显示,寻找方向能力比较好的人,在寻找方向时,他 体积较大,至于更有经验的出租车司机的海马体体积又更大。 在印第安那大学(Indiana University)进行的老鼠实验提出了 们的海马体比较活跃。 如下的可能性:在反复的迷宫实验里观察老鼠的表现,海马体的 型态跟“性别双态”(sexual dimorphism)息息相关。
神经生物学(新版)课件:海马的结构
成熟海马神经细胞的形成
成熟海马神经发生中细胞类型的序列分析
在成年小鼠的新生细胞注射被标记的胸腺嘧啶类似物BrdU,4周后处 死动物。(蓝色)NEUN标记神经元的新生细胞,(红色)齿状回颗 粒细胞层内的部分,只有极少数的星形胶质细胞(S100β绿色)新产 生于成年海马。
神经干细胞就在这个V字形的深处分裂分化并逐渐 向外层的齿状回移动。
腹侧海马的神经元连接
ACB,伏隔核;AMY,类皮质杏仁核区域;BST,终纹核基底; CEA、中央杏仁核;LSR,V的外侧隔核和腹侧部分喙;MEA,内 侧杏仁核;MPF,内侧前额叶皮质;SUBV,腹侧海马下托。
神经递质系统和海马
多巴胺:轴突从腹侧被盖区通过前脑内侧束、扣带回、海 马杏仁核连接; 5-羟色胺:从背中缝核和突触的边缘结构扩散; 去甲肾上腺素系统:分布广泛,与边缘系统联系; 胆碱能系统:分布广泛,与边缘系统相联系。
矢状面
海马旁回 内嗅皮层 齿状回 脑下脚
冠状面
小鼠海马
海马的发育
海马区 背侧区 梨形区
新皮质 海马皮层 梨形皮层
背侧皮层 海马皮层 梨形皮层
海马:组织学
神经元大小
齿状回:
由三层细胞组成 分子层:终止在轴突末端; 颗粒层:由主细胞组成,产生齿状回的苔状纤维; 多形层或梭形细胞层:在齿状回中提供相关的连接。
海马结构的固有关系:
背侧海马的神经元连接
ACA、前扣带回区;ACB,伏隔核;ATN,前丘脑复合体;CP、尾壳核;DGD, 齿状回的背侧; ; ENTl, ,内嗅皮层;GP,苍白球;LM,外侧乳头核;LSC外 侧隔核尾侧部;MM,内侧乳头核;MSC ,内侧隔物;PRE,前下托;POST, 后下托;RSP,扣带皮层;SNr,黑质网状部;SUBd,背下托;SUM,乳头状 核;VTA,腹侧被盖区。
解剖-海马幻灯片课件
13
海马结构的皮质构造
1.1海马槽 alveus 是室管膜下的一
层白质,由海马的传入和传出纤维 组成。传出纤维主要来自锥体细胞 的轴突,少量来自齿状回皮质细胞 的轴突。这些轴突先发侧支返回海 马,而后形成海马伞。
14
海马结构的皮质构造
1.2多形细胞层 stratum oriens 含
有各种形态的小细胞,其中有一种 称为篮状细胞 basket cells,其轴突 进入辐射层和分子层,末梢与锥体 细胞形成突触。篮状细胞与传入纤 维及传出纤维的返回侧支也可形成 突触。
Hippocampal formation
1
位于半球内侧面、属古皮质,包括胼胝 体上回、束状回、齿状回、海马、下托 和海马旁回钩的一部分。 由于新皮质的发展,海马结构的前部 和上部为横越中线的胼胝体所挤压, 至成人退化成一菲薄的灰质层,谓之 灰被。海马结构的主体主要包括海马、 齿状回和下托。
2
海马结构的外形
22
海马结构的皮质构造
2.齿状回皮质的构造
分三层,即分子层、颗粒细胞层和多 形细胞层。在冠状切面上,三层排列 成“V”字形,其开口部位对向海马伞, 海马的CA3 区恰伸向齿状回的门。齿 状回的分子层在海马沟的尽处续于海 马的分子层。
23
海马结构的皮质构造 海马结构的皮质构造
颗粒细胞
由紧密排列的小圆形或卵圆 形细胞构成,树突主要进入分子层,轴突 又叫苔藓纤维 mossy fibers,穿过多形层, 进入海马皮质,沿辐射层的浅层行进,与 锥体细胞的尖树突基部形成一系列的突触。 此纤维含有并释放谷氨酸,可以引起谷氨 酸受体的兴奋性突触后电位。另外,苔状 纤维终末的大颗粒囊泡中含有高浓度的锌。
海马解剖结构 PPT
锥体细胞示意图
• 胞体长径20-30uM。短径1020uM。CA1区排列2-3层, CA3区的细胞数是CA1区的1.52.0倍,排列疏松,最多可达10 层。
• 树突与苔藓纤维形成突触,构 成透明层
• CA2区细胞排列最紧密,但不 与苔藓纤维形成突触,只接受 下丘脑乳头上区的传入纤维
欢迎大家
PP穿通路
• 经颞叶中部做大脑半球的冠状切面,海马呈双重C环抱的外形,大C代表海马, 开口向腹内侧,小C代表齿状回,位于海马沟的背内侧,开口朝背侧
• 依据细胞形态及皮质发育的差异,海马被分为CA1、CA2、CA3、CA4四个扇 形区
细胞类型
• 锥体细胞或颗 粒细胞
• 中间神经元 (5%-8%):篮 细胞、腔隙分 子层中间神经 元、吊灯样细 胞
– (三种突触之间都是兴奋 性氨基酸-形成兴奋性前馈 通路)
– CA3反向投射到齿状回分 子层-解释海马腹侧惊厥易 感性问题
• 海马结构的外部联系:
– 皮层:海马旁回、颞上回、旁嗅回、岛叶、扣 带回、眶额皮质
– 皮层下:杏仁复合体、屏状核、内侧隔核、下 丘脑后部的乳头体上区、前丘脑、丘脑中线核 群、腹侧被盖、蓝斑
• 轴突由海马伞经穹窿进入隔区, 并经穹窿连合投射到对侧CA1、 CA3区
大家学习辛苦了,还是要坚持
继续保持安静
海马的化学解剖
• 固有 – 锥体细胞:谷氨酸、Ach – 颗粒细胞:谷氨酸、强啡肽 – 中间神经元:GABA、CCK、nNOS、VIP、 SS
• 接受 – 内嗅皮质:谷氨酸、ENK – 隔区:Ach、GABA、 – 蓝斑:NA – 中缝核:5-HT – 腹侧被盖、黑质:DA
• 纤维分布 – Ach:遍布海马各区 – NA:门区、腔隙分子层 – ENK:齿状回
海马结构(HF)
海马结构(HF)来源:内蒙古医学影像论坛作者:李木子商务合作:*****************版主微信号:fsslong2海马结构(HF)是大脑边缘系统的重要组成部分,属大脑古皮质,位于端脑颞叶的内侧深部,左右各一。
海马结构的组成:海马(Ammon’s角)、海马伞、齿状回、束状回、下托、围绕胼胝体的海马残体(胼胝体上回/灰背)、海马旁回、钩(深面为杏仁体)。
深红色 GD 齿状回浅红色 CA 海马白色 Sub 下托灰色 GPh 海马旁回在海马结构发育较好的颞中平面,作一个大脑半球的冠状切面,海马结构呈双重“C”形环抱的外形,大C锁住小C。
大C代表海马,它开口向腹内侧。
小C代表齿状回,位于海马沟的背内侧,开口朝向背侧。
海马沟的腹侧为下托(subiculum)。
灰质部分:海马--齿状回--束状回--灰被白质部分:海马伞--穹窿脚--穹窿联合--穹窿海马(hippocampus)=Ammon角Ammon角,因形似海马而得名,弓形隆起,5cm,古皮质海马由海马沟被挤到侧脑室下角底壁(内侧壁),由海马沟内陷卷曲而成,前段较宽,有时有2-3个浅沟将其分割成若干个隆起,称海马足(头、脚),沟间隆起为海马趾。
海马位于侧脑室颞角后方、内侧,与灰质等信号;海马趾间脑脊液海马(Ammon 角)分为头、体、尾三部分:头部因其上缘有海马趾,而呈波浪形外观体位于海马沟与脉络膜裂之间尾的特征是海马槽形成海马伞海马常规扫描方式●常规扫描方位:轴位,冠状位。
●轴位:以冠状位和矢状位作为参考定位。
在冠状位上定位线平行于两侧颞叶底部的连线;矢状面上平行于前后联合的连线或者与胼胝体的前后连线平行。
扫描范围至少包括整颞叶范围。
●冠状位:以矢状位和轴位作为参考定位。
在轴位上与大脑纵裂垂直;在矢状位上定位线与海马长轴垂直。
扫描范围包括整个颞叶及海马。
层厚3mm● T2需加上下饱和带。
【今日推荐】《中华医学影像技术学》丛书国内该领域专家理论和实践的全面展现中华医学会影像技术分会倾心之作!。
神经生物学(新版)课件:海马的结构
腹侧海马的神经元连接
ACB,伏隔核;AMY,类皮质杏仁核区域;BST,终纹核基底; CEA、中央杏仁核;LSR,V的外侧隔核和腹侧部分喙;MEA,内 侧杏仁核;MPF,内侧前额叶皮质;SUBV,腹侧海马下托。
神经递质系统和海马
多巴胺:轴突从腹侧被盖区通过前脑内侧束、扣带回、海 马杏仁核连接; 5-羟色胺:从背中缝核和突触的边缘结构扩散; 去甲肾上腺素系统:分布广泛,与边缘系统联系; 胆碱能系统:分布广泛,与边缘系统相联系。
海马结构的固有关系:
背侧海马的神经元连接
ACA、前扣带回区;ACB,伏隔核;ATN,前丘脑复合体;CP、尾壳核;DGD, 齿状回的背侧; ; ENTl, ,内嗅皮层;GP,苍白球;LM,外侧乳头核;LSC外 侧隔核尾侧部;MM,内侧乳头核;MSC ,内侧隔物;PRE,前下托;POST, 后下托;RSP,扣带皮层;SNr,黑质网状部;SUBd,背下托;SUM,乳头状 核;VTA,腹侧被盖区。
矢状面
海马旁回 内嗅皮层 齿状回 脑下脚
冠状面
小鼠海马
海马的发育
海马区 背侧区 梨形区
新皮质 海马皮层 梨形皮层
背侧皮层 海马皮层 梨形皮层
海马:组织学
神经元大小
齿状回:
由三层细胞组成 分子层:终止在轴突末端; 颗粒层:由主细胞组成,产生齿状回的苔状纤维; 多形层或梭形细胞层:在齿状回中提供相关的连接。
人类的海马
1.杏仁核 2.海马神经纤维 3.海马头 4.侧脑室下角 5.海马体 6.海马尾 7.海马伞 8.海马神经纤维
海马头
1.海马头 2.海马趾 3.海马神经纤维 4.侧脑室下角 5. 环池
海马分为CA1、 CA2、CA3及CA4 区,各区之间的 构筑有差异, CA4有最大的锥 体细胞,CA3区 为大锥体细胞, CA1区的锥体细 胞最小,CA2为 移行区,由大小 锥体细胞组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海马结构,希望有所帮助
海马结构(hippocampal formation,HF)属于脑的边缘系统(1imbic system)中的重要结构,与学习、记忆、认知功能有关,尤其是短期记忆与空间记忆。
海马皮质从海马沟至侧脑室下角依次为分子层、锥体层和多形层。
齿状回也分三层:分子层、颗粒细胞层和多形层。
依据细胞形态、不同皮质区的发育差异以及纤维排列的不同,将海马分为4个区,即CAl、CA2、CA3、CA4区。
海马结构是大脑边缘系统的重要组成部分.在进化上是大脑的古皮质,位于大脑内侧面颞叶的内侧深部,左右对称。
一般认为海马结构由海马或称Ammon角、齿状回、下托及海马伞组成,结构比较复杂。
在功能和纤维联系上,不仅与嗅觉有关,更与内脏活动.情绪反应和性活动有密切关系。
细胞学研究表明,海马头部主要是由CAI区折叠而成,而CAI区对缺氧等损伤最为敏感,也被称为易损区,因此海马头部也是最易发生病变的部位。
海马结构由海马(hippoeampus)、齿状回(dentate gyrls)、下托(subiculum)和围绕胼胝体的海马残体(hippoeampal rudimerit)组成,其中海马为体积最大最主要的部分。
大脑海马(hippocampus)是位于脑颞叶内的一个部位的名称,人有两个海马,分别位于左右脑半球. 它是组成大脑边缘系统的一部分,担当着关于记忆以及空间定位的作用. 名字来源于这个部位的弯曲形状貌似海马(希腊语hippocampus).
在阿兹海默病中,海马是首先受到损伤的区域; 表现症状为记忆力衰退以及方向知觉的丧失。
大脑缺氧(缺氧症)以及脑炎等也可导致海马损伤 .
在动物解剖中, 海马属于脑的演化过程中最古老的一部分。
来源于旧皮质的海马在灵长类以及海洋生物中的鲸类中尤为明显。
虽然如此, 与进化树上相对年轻的大脑皮层相比灵长类动物尤其是
人类的海马在端脑中只占很小的比例。
相对新皮质的发展海马的增长在灵长类动物中的重要作用是使得其脑容量显著增长。
解剖
尽管关于海马与其向邻近的大脑皮层的表述尚缺乏一致的观点,通常情况下术语上的海马结构指的是齿状回, CA1-CA3部位(或CA4,常称为hilus区并被认为是齿状回的一部分), 以及脑下脚(另见阿蒙神之角)。
CA1与CA3 部位构成严格意义上的海马。
信息进入海马时由齿状回流入CA3到CA1再到脑下脚,在每个区域输入附加信息在最后的两个区域输出。
CA2只占海马的一个很小部分通常将其对海马的功能忽略, 值得注意的一点是这一小区域似乎能抵抗由于例如癫痫等造成的大规模的细胞破坏。
穿缘通路(perforant path)主要从内鼻叶(entorhinal cortex)获取信息, 通常被认为是海马输入信息的主要来源。
一般记忆中的作用
心理学家与神经学家对海马的作用存在争论,但是都普遍认同海马的重要作用是将经历的事件形成新的记忆(情景记忆或自传性记忆). 一些研究学者认为应该将海马看作对一般的陈述性记忆起作用内侧颞叶记忆系统的一部分。
(陈述性记忆指的是那些可以被明确的描述的记忆,如“昨天晚饭吃了什么”这样的关于经历过的事情的情景记忆,以及“北京是中国的首都”这样的关于知识的概念记忆).
有迹象显示,虽然这些形式的记忆通常能终身持续,在一系列的记忆强化以后海马便中止对记忆的保持。
海马的损伤通常造成难以组织新的记忆(顺行性失忆症), 而且造成难以搜索过去的记忆(逆行性失忆症)。
尽管这样的逆行性效果通常在脑损伤的很多年之前就开始扩展,一些情况下相对久远一些的记忆能够维持下来。
这表明海马将巩固以后的记忆转入了脑的其他的部位。
但是,旧的记忆是如何储存的要用实验来检测的话存在一些难点。
另外,在一些逆行性失忆症案例中,在海马遭受损伤的数十年前的记忆也受到了影响,导致了这一关于旧的记忆的观点的争议。
海马的损伤不会影响某一些记忆,例如学习新的技能的能力(如学习一种乐器),将设这样的能力依靠的是另外一种记忆(程序记忆)和不同的脑区域。
有迹象表明著名的病人HM(作为治疗癫痫病的手段他的内侧颞叶被切除) 有组织新的概念记忆的能力
研究史
解剖学家Giulio Cesare Aranzi (约1564年)首先使用海马(hippocampus)一词形容这一大脑器官,源于此部位貌似海马。
这一部位最初被认为司控嗅觉,而非现在周知的记忆储存作用。
俄国学者Vladimir Bekhterev于1900年左右基于对一位有严重记忆紊乱的病患者的长期观察,首先提出海马与记忆相关。
但是,其后的很长时间,学界习惯上关于海马的作用都被认为和其他大脑边缘系统一样,司控情绪。
著名的病人HM的病例引起了众多科学家的关注,并使人开始认识到海马对记忆起重要作用。
为减轻HM时常发作的癫痫症状其脑内侧颞叶被切除(其中就包括两个海马)由此导致了一系列的相关空间以及时间的记忆损伤。
重要的是HM仍然能完成程序性任务的学习(这一点与纹状体相关联)甚至有着高于常人水平的智商. HM的智能与陈述性记忆展现出显著的分裂。
绝大多数的哺乳类动物海马的大小取决于脑容量的大小,但是鲸类这一部位的发育相对不完全。
在医学上,「海马体」是大脑皮质的一个内褶区,在「侧脑室」底部绕「脉络膜裂」形成一弓形隆起,它由两个扇形部分所组成,有时将两者合称海马结构;海马体的机能是主管人类的近期主要记忆,有点像是计算机的内存,将几周内或几个月内的记忆鲜明暂留,以便快速存取。
而失忆症病患的海马体中并没有任何近期记忆暂留。
由这项实验可以初步证实人类的梦境并非是由海马体中的近期记忆抽取并组织而成。