搅拌站罐仓抗倾覆计算书
搅拌站基础承载力及罐仓抗风计算书
XX 铁路XX 标第X 搅拌站罐仓基础承载力及罐仓抗风计算书计算:复核:中铁X 局集团XX 铁路项目经理部2010 年12 月、工程概况中铁X局XX铁路六标第X搅拌站,配备HZS90搅拌机、HZS120 搅拌机各一台,每台搅拌机设有6个100吨级储料罐仓。
根据厂家提供的拌和站安装施工图,确定罐仓基础呈扇型布置,尺寸如下:21.5m根据现场地质情况,基础浇筑厚度为 1.5m,混凝土强度等级为C30。
二、基础承载力检算1、相关计算公式根据《建筑地基基础设计规范》GB50007-2002 ,fa=fak+ n Y b-3)+ n d f n(d-0.5)式中fa--修正后的地基承载力特征值fak--地基承载力特征值n、M--基础宽度和埋深的地基承载力修正系数Y-基础底面以下土的重度,地下水位以下取浮重度;b--基础底面宽度(m) ,当基宽小于3m 按3m 取值,大于6m 按6m 取值;Y m--基础底面以上土的加权平均重度,地下水位以下取浮重度;d--基础埋置深度(m) 。
2、承载力检算不考虑摩擦力的影响,罐仓与基础自重P1=1100kN*6+ 基础自身重量,基础自身重量=95m 3*24kN/m 3=2280kN则P1=1100kN*6+95 m 3*24kN/ m 3=6600+2280=8880kN 最大应力f K=8880/64=139Kpa修正后地基承载力特征值:fa=120+0*(6-3)+2280/64=155KPa( 根据现场地质情况地基承载力特征值fak取120 Kpa)计算结果f K=139KPa v fa=155KPa 承载力满足要求三、罐仓抗风检算1 、相关计算公式根据《建筑结构荷载规范》GB50009-2001 ,风荷载强度:W=K1K2K3W0= K1K2K3V2/1.6W —风荷载强度PaW o —基本风压值PaK i、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0V —风速m/s,本次按照XX地区最大风速20.7m/s检算抗倾覆计算:K c =M i / M 2=[(P i *0.5*基础宽)/(14*P 2*受风面)]K c >1.5即满足抗倾覆要求M i — 抵抗弯距kN?mM 2—抵抗弯距kN?mP i —储蓄罐与基础自重kNP 2—风荷载kN2、抗倾覆检算W 二K1K2K3W0二K1K2K3V 2/1.6=0.8*1.13*1.0*20.7 2/1.6=242.1paP2=W/1000=0.2421kN罐仓顶至地表面距离为15米,罐身长12m,6个罐基本并排竖立, 受风面210m2,整体受风力抵抗风载,在最不利风力下计算基础的 抗倾覆性。
搅拌站地基承载力计算书
地基承载力计算书1、拌合站配置情况拌和站配备2台中联-CIFA JS2000拌和机,共配置8个水泥罐,单个罐自重10吨,在装满材料时材料重按照2个150吨,2个100吨计算。
2、拌和站储料罐基础设计根据罐体基础扩大后尺寸为16.8×3.2-3.6×1.5m,由于实际需要基础扇型布置,其扇型底面积为50m2。
按照此尺寸面积检算地基承载力。
图2-1 拌和站基础平面图3、抗倾覆计算1.本次计算按空罐在10级风作用下的倾覆稳定性验算每个储料罐空壳及支起架重为10t,设计储料罐容装水泥重150t (2个)、100t(2个),水泥罐直径2.97m(2个);3.4m(2个),罐身长14.3m(按15m长计算风力弯矩),4个罐基本并排竖立,受风面积182.18m2,整体受风力抵抗风载,在最不利风力、空罐情况下计算基础的抗倾覆性,示意图中A点为抗倾覆点。
C30钢筋混凝土比重2.5t/m3,体积75m3。
风级风速换算参考《桥梁工程师手册》1-2-6表风力、等级的划分,见表3-1。
表3-1 风级风速换算表风级风速m/s 风级风速m/s10 24.5-28.4 11 28.5-32.6图3-2 抗倾覆计算示意图2.计算公式(1)风荷载强度公式 : 0k z s z w w βμμ=k w —风荷载强度(Pa );0w —基本风压值(Pa ),根据《建筑结构荷载规范》附录E ,蚌埠地区重现期R=50年的基本风压值为300Pa ;z β—高度Z 处的风振系数,本次计算取1;s μ—风荷载体型系数,对圆形截面取0.8; z μ—风压高度变化系数; 本次计算取1.18;k w =0.8×1.18×1×300=283.2Pa 。
(2)基础抗倾覆计算/c k f k M M ==G 1×1/2×基础宽/k w ×受风面×(14.3/2+4)≥1.5即满足要求k M —抵抗弯矩 (KN •M ) f M —风荷载弯矩(KN •M )G 1—储蓄空罐+基础自重(KN)k w —风荷载强度(Pa )(3)基础抗滑稳定性验算 K 0= G 1×f/ F 风≥1.3 即满足要求 G 1—储蓄罐与基础自重(KN) F 风—风荷载(KN)f —基底摩擦系数,查表得0.25;罐与基础自重计算求得:G 1=4×10×10+75×2.5×10=2275KN ;k w =283.2Pa ;受风面积:2×14.3×(3.4+2.97)=182.18m 2;/c k f k M M = G 1×1/2×基础宽/k w ×受风面积×(14.3/2+4)=(2275×3.6/2)/(283.2×182.18×11.15/1000)=7.1>1.5,满足抗倾覆要求。
水泥罐抗倾覆验算
混凝土搅拌站水泥罐抗倾覆验算计算书复核:计算:日期:2021年 4月 15日一、工程概况根据本工程的砼需求量和拌和站的设计要求,设置 JS1000 型搅拌站2台、HZS90P搅拌站 1 台。
每个 JS1000型搅拌站设置水泥储存罐2 个,HZS90P 搅拌站设置水泥储存罐 4 个。
为了保证拌和站能正常平安使用,现在将水泥罐的抗倾覆性进行受力验算。
二、各项参数水泥储存罐各项参数:直径3m,高,自重;满罐时水泥重100t 。
立柱采用 4 根Φ 220×6、壁厚 10mm无缝钢管与根底连接, JS1000型搅拌站水泥储存罐立柱高, HZS90P型搅拌站水泥储存罐立柱高。
水泥储存罐根底参数:JS1000型:长,宽,埋深,采用整体式C30根底HZS90P型:长 14m,宽,埋深 2m,采用整体式C30根底拌和站示意图如下:〔图 1〕三、计算说明:1、由于水泥储存罐建在高处,所以没有发生意外碰撞的可能,计算时不考虑外界碰撞;水泥储存罐根底在浇筑时,已经对基底标高,顶面标高,预埋钢板标高经过严格控制,高差都控制在±1cm内,所以对水泥储存罐自身倾斜带来的水平分力忽略不计。
计算时主要考虑风对罐体的影响。
2、计算时均按最不利因素考虑,风力采用当地极少见的10 级风 ( 风速s),有效的受风面按〔图 1〕所示分别计算。
2 个或 4 个罐按连接体计算,对罐与罐之间的空隙不再折减。
但立柱受的风压不考虑。
3、计算时主要考虑三个方面的平安性:1〕验算基底承载力够不够;2〕验算从罐体到根底作为整体时的抗倾覆性;3〕验算罐体立柱与根底连接处的平安性。
四、计算过程1、1 个罐○1 基地承载力:取最不利因素 1 个罐水泥全满时计算罐体和根底总重F 重=M?10=×1+100×1+××××10=基底面积 A=×=基底应力δ = F 重/A==<( 实测 )说明基底承载力满足需要。
拌合站基础设计计算书
拌合站料仓基础设计一、荷载设计1、考虑空罐重15吨、装料100吨,共115吨。
则每个支座竖向力为F N1=(115*103*9.8/1000)/4=281.75kN2、风荷载考虑查风荷载规范厦门基本风压w0=0.8kN/m2(无漳州基本风压,所以按厦门基本风压取)。
仓高按H=20m,直径d=2m,H/d=10,△≈0,u z w0d2≥0.015。
风载体型u s=0.517,风振系数βz=1.0仓的风荷载分布如图(按5米控制)地面粗糙度按B类考虑F1=βz u s u z w0s=1.0*0.517*1.00*0.8*2*5=4.136 kNF2=βz u s u z w0s=1.0*0.517*1.00*0.8*2*5=4.136 kNF3=βz u s u z w0s=1.0*0.517*1.14*0.8*2*5=4.715kNF4=βz u s u z w0s=1.0*0.517*1.25*0.8*2*5=2.585kN每个桩所受的水平力F s=(F1+ F2+ F3+ F4)/4=(4.136*2+4.715+2.585)/4=3.893 kN轴力F N=(2.585*20+4.715*15+4.136*10+4.136*5)/2/2=46.116kN (-46.116kN)3、地震荷载因拌合站设计使用年限为2年,临时结构,在此不考虑地震荷载。
4、偶然冲击荷载不考虑二、荷载组合1、只考虑恒载轴力F N=1.2*281.75=338.1kN,剪力,弯矩为零。
(此处上人较少,不考虑活荷载)2、考虑恒载和风荷载组合轴力F Nmax=1.2*281.75+1.4*46.116=402.667 kN,F Nmin=1.2*281.75-1.4*46.116=273.538 kN,剪力F s=1.4*3.893=5.45 kN三、抗倾覆验算基础边长按3m*4m设计。
(沿短边3m方向验算)风荷载倾覆力矩:M风=2.585*20+4.715*15+4.136*10+4.136*5=184.465kN.m 空仓反倾覆力矩M仓=(15*1000*9.8/1000+25*3*4*1)*1.5=447kN. m>184.465kN.m满足要求。
临时拌合站水泥罐地基承载力计算书
水泥罐基础承载力及抗倾覆验算书水泥罐基础承载力及抗倾覆验算书一、编制说明本方案编制是根据施工现场土质情况及水泥罐特点而进行的,为确保有足够的水泥贮藏量,保证工程顺利进行,本工程计划投入5座120T水泥罐。
二、编制范围XX标项目经理部水泥混凝土拌和站。
三、编制依据1、施工现场总平面布置图;2、水泥罐总示意图及基础图参数;3、《高耸结构设计标准》GB50135-2019;4、《建筑结构荷载规范》GB50009-2012;四、水泥罐基础设计1、本水泥罐基础根据现场实际地质情况,采用扩大基础,根据现场需要,一台HZS120拌和站配置5座120T水泥罐,故5座水泥罐扩大基础连成一个环形基础,基础尺寸为 4.5m×17.86m×2m。
基础采用C30钢筋砼,钢筋为双层配筋,钢筋为φ18。
2、每个水泥罐下设计四个支座,支座设计为C30砼,550×550×550mm立方体。
每个支座对应水泥罐罐脚处预埋4根φ18钢筋,以加强承台和基础的连接;3、水泥罐预埋板采用δ16mm Q235钢板,再焊接4根φ20锚固钢筋,锚固筋穿过支座与扩大基础钢筋网相焊接。
预埋板安装时每个预埋板四个角高程误差在1mm内,每个水泥罐4个预埋板高程误差在2mm以内。
预埋时采用水准仪实时量测。
五、水泥罐基础计算1、计算公式①地基承载力计算公式P1/A=σP1—水泥罐重量与基础本身重量 KNA—基础作用于地基上有效面积mm²σ—土基受到的压应力 MPa通过动力触探计算得出土基容许的应力②风荷载强度计算公式根据《高耸结构设计标准》GB50135-2019,垂直作用于高耸结构表面单位计算面积上的风荷载标准值应按下式计算:W k=βz×μs×μz×W0;W k —作用在高耸结构z高度处单位投影面积,上的风荷载标准值(kN/m²);W0 —基本风压值(kN/m²),查《建筑结构荷载规范》GB50009-2012得W k=0.40;μz—高度z处的风压高度变化系数,查规范μz=1.23;μs—风何在体形系数,查规范计算得μs=0.8;βz—高度z处的风振系数βz=2.19;③基础抗倾覆计算公式Kc=M1/ M2=P1×1/2×基础宽/W k×受风面×(7+7)≥1.5 即满足要求M1—抵抗弯距 KN•MM2—抵抗弯距 KN•MP1—储料罐与基础自重 KNW k —作用在高耸结构z高度处单位投影面积,上的风荷载标准值kN/m²④基础抗滑稳定性验算计算公式K0= P1×f/ P2≥1.3 即满足要求P1—储料罐与基础自重 KNW k —作用在高耸结构z高度处单位投影面积,上的风荷载标准值kN/m²f—基底摩擦系数,查表得0.25;⑤基础承载力计算公式P/A=σ≤σ0P—储料罐单腿重量 KNA—储料罐单腿有效面积mm²σ—基础受到的压应力 MPaσ0—砼容许的应力 MPa(2)水泥罐基础验算①水泥罐地基开挖及浇筑根据厂家提供的拌合站安装施工图,现场平面尺寸如“图1拌合站安装施工图”所示。
水泥罐抗倾覆验算
混凝土搅拌站水泥罐抗倾覆验算计算书复核:计算:日期:2015年4月15日一、工程概况根据本工程得砼需求量与拌与站得设计要求,设置JS1000型搅拌站2台、HZS90P搅拌站1台。
每个JS1000型搅拌站设置水泥储存罐2个,HZS90P搅拌站设置水泥储存罐4个。
为了保证拌与站能正常安全使用,现在将水泥罐得抗倾覆性进行受力验算。
二、各项参数水泥储存罐各项参数:直径3m,高12、5m,自重3、8T;满罐时水泥重100t。
立柱采用4根Φ220×6、壁厚10mm无缝钢管与基础连接,JS1000型搅拌站水泥储存罐立柱高5、7m,HZS90P型搅拌站水泥储存罐立柱高6、3m。
水泥储存罐基础参数:JS1000型:长3、6m,宽3、6m,埋深2、5m,采用整体式C30基础HZS90P型:长14m,宽3、6m,埋深2m,采用整体式C30基础拌与站示意图如下:(图1)三、计算说明:1、由于水泥储存罐建在高处,所以没有发生意外碰撞得可能,计算时不考虑外界碰撞;水泥储存罐基础在浇筑时,已经对基底标高,顶面标高,预埋钢板标高经过严格控制,高差都控制在±1cm内,所以对水泥储存罐自身倾斜带来得水平分力忽略不计。
计算时主要考虑风对罐体得影响。
2、计算时均按最不利因素考虑,风力采用当地极少见得10级风(风速28、4m/s),有效得受风面按(图1)所示分别计算。
2个或4个罐按连接体计算,对罐与罐之间得空隙不再折减。
但立柱受得风压不考虑。
3、计算时主要考虑三个方面得安全性:1)验算基底承载力够不够;2)验算从罐体到基础作为整体时得抗倾覆性;3)验算罐体立柱与基础连接处得安全性。
四、计算过程1、1个罐基地承载力:取最不利因素1个罐水泥全满时计算罐体与基础总重F重=M•10=(3、8×1+100×1+3、6×3、6×2、5×2、4) ×10=1815、6KN基底面积A=3、6×3、6=12、96m2基底应力δ= F重/A=1815、6/12、96=140、093KPa<(实测) 说明基底承载力满足需要。
水泥罐抗倾覆验算
混凝土搅拌站水泥罐抗倾覆验算计算书复核:___________________计算:___________________日期:2015年4月15日一、工程概况根据本工程的砼需求量和拌和站的设计要求,设置J S 1000型搅拌站2台、HZS90P搅拌站1台。
每个JS1000型搅拌站设置水泥储存罐2个,HZS90P搅拌站设置水泥储存罐4个。
为了保证拌和站能正常安全使用,现在将水泥罐的抗倾覆性进行受力验算。
二、各项参数水泥储存罐各项参数:直径3m高12.5m,自重3.8T ;满罐时水泥重100t。
立柱采用4根①220 X 6、壁厚10mn无缝钢管与基础连接,JS1000型搅拌站水泥储存罐立柱高5.7m, HZS90P型搅拌站水泥储存罐立柱高6.3m。
水泥储存罐基础参数:JS1000型:长3.6m,宽3.6m,埋深2.5m,采用整体式C30基础HZS90P型:长14m宽3.6m,埋深2m,采用整体式C30基础拌和站示意图如下:(图1)三、计算说明:1、由于水泥储存罐建在高处,所以没有发生意外碰撞的可能,计算时不考虑外界碰撞;水泥储存罐基础在浇筑时,已经对基底标高,顶面标高,预埋钢板标高经过严格控制,高差都控制在士1cm内,所以对水泥储存罐自身倾斜带来的水平分力忽略不计。
计算时主要考虑风对罐体的影响。
2、计算时均按最不利因素考虑,风力采用当地极少见的10级风(风速28.4m/s),有效的受风面按(图1)所示分别计算。
2 个或4 个罐按连接体计算,对罐与罐之间的空隙不再折减。
但立柱受的风压不考虑。
3、计算时主要考虑三个方面的安全性:1 )验算基底承载力够不够;2)验算从罐体到基础作为整体时的抗倾覆性;3)验算罐体立柱与基础连接处的安全性。
四、计算过程1 、1 个罐①基地承载力:取最不利因素1 个罐水泥全满时计算罐体和基础总重F 重=M?10=(3.8 x 1+100X 1+3.6 X 3.6 X 2.5 X 2.4)x 10=1815.6KN基底面积A=3.6X 3.6=12.96m2基底应力5 = F 重/A=1815.6/12.96=140.093KPa<(实测)说明基底承载力满足需要。
拌合站水泥仓计算书
拌合站水泥仓计算书-CAL-FENGHAI.-(YICAI)-Company One1拌合站水泥仓稳定计算一、设计资料1、根据厂家提供数据可知:(1)每个水泥仓 自重150t+=;(2)水泥仓单个轴向力值为2200kN;(3)结构适用于风荷载为1kPa 。
二、计算公式1 .地基承载力P/A=σ≤0σP — 水泥仓单腿重量 kNA — 水泥仓单腿有效面积mm2σ— 基础受到的压应力 MPa0σ— 混凝土容许的应力 MPa采用C25混凝土浇筑地基基础,25C σ=25MPa 。
2.风荷载强度W=0321W K K KW 0— 基本风压值 Pa 206.11v W =按11级飓风平均风速 s m v /30=来计算K 1、K 2、K 3—风荷载系数,查表分别取、、3.基础抗倾覆计算K c =M 1/ M 2=P1×1/2×基础宽/ P2×受风面×20≥, 即满足要求 M 1— 抵抗弯距 kN •mM 2— 抵抗弯距 kN •mP1—水泥仓与基础自重 kNP2—风荷载 kN三、结构验算1、基础承载力计算根据上面的计算公式,已知静荷载P=1582kN ,计算面积A=×106mm 2。
当满载时为最不利荷载:MPa A P 129.01025.1215826=⨯==地基σ 2、风荷载强度计算风荷载强度计算:0321W K K K W ⋅⋅⋅=其中 基本风压: Pa v W 5.5626.1306.1220=== 风载体形系数:K 1=风压高度变化系数:K 2=地形、地理变化系数,按一般平坦空旷地区取K 3=W=×××=<1MPa3、储蓄罐支腿处混凝土承压性根据力学计算公式,已知的水泥仓,单腿受力P=,承压面积为335mm ×335mm 。
P/A=(335mm ×335mm )= MPa ≤25MPa满足受压要求。
搅拌站水泥罐基础检算
搅拌站水泥罐基础检算粉罐处地基承载力f=444kp,地基基础长16m,宽4m,高1m,每个基础立5各粉罐,粉罐自重为11t,可装水泥150t,资阳地区历史最大风速为18.3m/s。
地面1、验算地基承载力,按5各粉罐装满水泥验算,123(462 2.41151505)10009.890179600G G G G N =++=⨯⨯⨯+⨯+⨯⨯⨯=1G -基础混凝土自重,2G —粉罐自重,3G -水泥重量。
21375748/37646G G f N m kp A ====⨯<444kp ,安全。
2、验算抗倾覆,当空罐是最可能倾覆:垂直于建筑物表面上的风荷载标准值,应按下式计算:1230w k k k w =式中 w -—---风荷载标准值,kN/m2;2k ----z 高度处的风振系数; 1k --—-风荷载体型系数;3k ——--风压高度变化系数;w --—基本风压值,kN/m2。
基本风压系以当地比较空旷平坦地面上离地 10m 高统计所得到 30 年一遇 10min 平均最大风速 υ0(m/s )为标准,按 0w =υ02/1。
6确定的风压值。
υ0=18。
3m/s1k =0。
82k =1。
0322t 391631[]2400.025*******d R l=2.4102096132Nmm 2k F MP MP A F ττππμ===〈=⨯⨯⨯⨯⨯⨯=⨯⨯=握=0。
922012300.8 1.00.9150.7/1.6v w k k k w N m ==⨯⨯⨯= 155150.716.5 3.1539163F wA N ==⨯⨯⨯=22140.5 3.5462 2.410009.851110009.822222 4.216.53916313.5(21.50.3)2f G G b G K F ⨯+⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯⨯⨯===⨯⨯-+4.2>1.5,安全。
3、验算预埋件抗剪力和抗拔力粉罐预埋件示意图,钢筋采用25的螺纹钢筋2391631[]2400.025*******F MP MP A ττπ===〈=⨯⨯⨯⨯⨯⨯钢筋握裹里的计算:t dR l=2.4102096132N 2F πμ=⨯⨯=握t R 为握裹应力,μ为钢筋周长,l 为钢筋长度,t R 查表得2.4N/2mm 设每根钢筋在风力作用下受到拉力为f, 4×2×5×3f=13.5F,f=4405N <F 握,安全。
A13拌合站水泥罐基础设计计算书5.18
北安至富裕高速公路古城至富裕段工程建设项目A13标段(K88+000-K97+000)拌合站水泥罐基础承载力、抗风、抗倾覆计算黑龙江省龙建路桥第二工程有限公司拌合站水泥罐基础承载力、抗风、抗倾覆计算一、工程概况我项目承担北安至富裕高速公路古城至富裕段工程建设项目项目A13合同段的施工任务,路基、路面基层起讫桩号K88+000-K97+000 ,路基工程规模 9 km;路面面层起讫桩号K79+000-K105+300 ,路面工程规模 26.3 km;主要工程量挖方 4.1万m3、填方63.2万m3、路面基层20.4万m2、路面面层53.8万 m2。
合同工期 36 月(现调整为24月),开工日期 2015年10月,交工日期 2018年10月(现调整为2017年10月);合同总造价 29109 万元。
拌合站场地的位于太东乡民玉村小学原学校北侧(对应主线里程桩号:K91+600),拌合站面积为60500m2,为满足基层、底基层质量和施工需求,结合现场实际施工情况,拟设置一座水泥稳定拌合站WCZ800型,配备2个80T水泥罐,每个水泥罐自重10T,装满水泥重90T;水泥罐高15(腿高5m),直径3m,在主机侧面布置。
二、编制依据1、北安至富裕高速公路设计图纸等设计资料;2、施工现场总平面布置图;3、水泥罐总示意及基础图参数(厂家提供);4、《建筑结构荷载规范》GB50009-2012。
三、水泥罐基础及承台设计1、本水泥罐基础根据现场实际地质情况,采用天然基础;2、基础承台设计为:承台砼为C30、两承台每个尺寸为3000×3000×2800mm ;基础埋深2000 mm ,其水泥罐的地脚螺栓根据厂家说明书配置,基础顶预埋地脚钢板与水泥罐支腿满焊。
四、水泥罐基础、承台计算1、基础竖向承载力验算施工前先对地基进行现场检测,测得地基承载为180kpa 。
V=90×9.8=882KNG=3×3×2.8×2.5×9.8=617KNA=3×3=9m 2б地=(G+V )/A=(617+882)/9=166.56KM/m 2<[б地]=180KM/m 2所以,满足要求。
拌合站水泥罐基础设计计算书
望安高速150t 水泥仓粉罐基础设计计算书一、 各项参数:1、 风荷载参数计算风力考虑8级,最大风速v=20.7m/s2、 仓体自重:G=15t二、 空仓时整体抗倾覆稳定性稳定性计算1、 计算模型1.2AB CD风荷载强度计算:风荷载强度计算:0321W K K K W ⋅⋅⋅=其中 基本风压:风载体形系数:K1=0.8风压高度变化系数:K2=1.0地形、地理变化系数,按一般平坦空旷地区取K3=1.0W=0.8×1.0×1.0×267.81=214.25Pa2、 风力计算:A 1=1.522×1.2=1.826m 2,考虑仓顶护栏等,提高1.5倍F 1=214.25×1.826×1.5=586.83N作用高度:H 1=19.322-1.522/2=18.561mA 2=(3.8+0.063×2) ×9.0=35.334m 2F 2=214.25×35.334=7570N作用高度:H 2=8.8+9/2=13.3mA 3=(3.926+0.3)/2×3.3=6.973 m 2F 3=214.25×6.973=1493.97N作用高度:H 3=8.8-3.3/3=7.7mA 4=3.8×2×0.3=2.28 m 2F 4=214.25×2.28=488.49N作用高度:H 4=5.5m3、 倾覆力矩计算:mt F M i ⋅=⨯+⨯+⨯+⨯=⋅=∑58.125.549.4887.797.14933.137570561.1883.586h i 41倾稳定力矩计算:假定筒仓绕AB 轴倾覆,稳定力矩由两部分组成,一部分是仓体自重稳定力矩M 稳1,另一部分是水泥仓立柱与基础连接螺栓抗拉产生的稳定力矩M 稳2。
(每个支撑立柱与基础之间的向上抗拔力按8t 计算)4、 稳定系数三、 地基承载力计算单仓基础按4m*4m ,高度1.5m 设计,混凝土采用C25。
水泥罐抗倾覆验算
水泥罐抗倾覆验算 The manuscript was revised on the evening of 2021混凝土搅拌站水泥罐抗倾覆验算计算书复核:计算:日期:2015年4月15日一、工程概况根据本工程的砼需求量和拌和站的设计要求,设置JS1000型搅拌站2台、HZS90P搅拌站1台。
每个JS1000型搅拌站设置水泥储存罐2个,HZS90P搅拌站设置水泥储存罐4个。
为了保证拌和站能正常安全使用,现在将水泥罐的抗倾覆性进行受力验算。
二、各项参数水泥储存罐各项参数:直径3m,高,自重;满罐时水泥重100t。
立柱采用4根Φ220×6、壁厚10mm无缝钢管与基础连接,JS1000型搅拌站水泥储存罐立柱高,HZS90P型搅拌站水泥储存罐立柱高。
水泥储存罐基础参数:JS1000型:长,宽,埋深,采用整体式C30基础HZS90P型:长14m,宽,埋深2m,采用整体式C30基础拌和站示意图如下:(图1)三、计算说明:1、由于水泥储存罐建在高处,所以没有发生意外碰撞的可能,计算时不考虑外界碰撞;水泥储存罐基础在浇筑时,已经对基底标高,顶面标高,预埋钢板标高经过严格控制,高差都控制在±1cm 内,所以对水泥储存罐自身倾斜带来的水平分力忽略不计。
计算时主要考虑风对罐体的影响。
2、计算时均按最不利因素考虑,风力采用当地极少见的10级风(风速s),有效的受风面按(图1)所示分别计算。
2个或4个罐按连接体计算,对罐与罐之间的空隙不再折减。
但立柱受的风压不考虑。
3、计算时主要考虑三个方面的安全性:1)验算基底承载力够不够;2)验算从罐体到基础作为整体时的抗倾覆性;3)验算罐体立柱与基础连接处的安全性。
四、计算过程1、1个罐○1基地承载力:取最不利因素1个罐水泥全满时计算罐体和基础总重F重=M10=×1+100×1+××××10=基底面积A=×=基底应力δ= F重/A==<(实测)说明基底承载力满足需要。
拌和站防倾覆基础检算书
拌和站基础检算资料一、粉罐仓基础验算验算基于《建筑地基基础设计规范》(GB50007-2002)1.1荷载混凝土灌仓地基承载力按最不利情况考虑,及满载状态,荷载取为自重+满载重,即单个灌仓重:N=180t+7t=1870000N单根灌仓柱腿上的重量N ‘=N/4=467500N1.2基础基础采取400cm 厚C35砼,地基通过碾压、夯实经试验检测承载力大于660KPa 。
因厚度较大可采用整体验算,基础跨度为3m ,面积等效为矩形计算,长边取为各灌仓中心线距离之和载加一个灌仓直径,依据图纸:L=3.02×6+3.16=21.28m基础计算面积:A=3m ×21.28m=63.84m ²1.3地基承载力验算混凝土为C35,依据相关规范抗压强度取为f=16.7N/mm ².混凝土强度验算,应按照一根灌仓柱腿通过500×500mm 的预埋钢板传递至混凝土体验算:227.16/244.25005004675002.1``Nmm mm N A N <=⨯⨯=η式中:'N --------单根灌仓柱腿上的重量'A --------预埋钢板受力面积η--------不均衡调整系数基于计算,混凝土承载力满足要求。
地基土强度验算:根据搅拌机厂家安装说明书要求,粉料罐对地基的承载力要求为不小于600Kpa 。
经试验室人员检测现场地基承载力为660Kpa 。
满足厂家设计说明要求。
现场实测地基承载力见重力触探实验报告。
粉料罐被混凝土基础整个包围,粉料罐支腿整体受力,浇筑完魂图基础后对地面产生的承载力应小于实测地基承载力。
简算如下:Kpa 6600.1kpa 1801084.63255366187000N 66⨯=<=⨯+⨯=+⨯k a c f K A N 混凝土基础式中:N --------单个灌仓的总重量N 混凝土基础--------基础混凝土的重量A --------混凝土传力基础面积cK --------地基承载力调整系数 ak f --------实测地基承载力基于计算,地基承载力满足要求。
搅拌站基础承载力及罐仓抗风计算书
XX铁路XX标第X搅拌站罐仓基础承载力及罐仓抗风计算书计算:复核:中铁X局集团XX铁路项目经理部2010年12月一、工程概况中铁X局XX铁路六标第X搅拌站,配备HZS90搅拌机、HZS120搅拌机各一台,每台搅拌机设有6个100吨级储料罐仓。
根据厂家提供的拌和站安装施工图,确定罐仓基础呈扇型布置,尺寸如下:根据现场地质情况,基础浇筑厚度为1.5m,混凝土强度等级为C30。
二、基础承载力检算1、相关计算公式根据《建筑地基基础设计规范》GB50007-2002,fa=fak+ηbγ(b-3)+ηdγm(d-0.5)式中fa--修正后的地基承载力特征值fak--地基承载力特征值ηb、ηd--基础宽度和埋深的地基承载力修正系数γ--基础底面以下土的重度,地下水位以下取浮重度;b--基础底面宽度(m),当基宽小于3m按3m取值,大于6m 按6m取值;γm--基础底面以上土的加权平均重度,地下水位以下取浮重度;d--基础埋置深度(m)。
2、承载力检算不考虑摩擦力的影响,罐仓与基础自重P1=1100kN*6+基础自身重量,基础自身重量=95m3*24kN/m3=2280kN则P1=1100kN*6+95m3*24kN/m3=6600+2280=8880kN最大应力f K=8880/64=139Kpa修正后地基承载力特征值:fa=120+0*(6-3)+2280/64=155KPa(根据现场地质情况地基承载力特征值fak取120 Kpa)计算结果f K=139KPa<fa=155KPa 承载力满足要求三、罐仓抗风检算1、相关计算公式根据《建筑结构荷载规范》GB50009-2001,风荷载强度:W=K1K2K3W0= K1K2K3V2/1.6W —风荷载强度PaW0—基本风压值PaK1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0V—风速m/s,本次按照XX地区最大风速20.7m/s检算抗倾覆计算:K c=M1/ M2=[(P1*0.5*基础宽)/(14*P2*受风面)]K c≥1.5 即满足抗倾覆要求M1—抵抗弯距kN•mM2—抵抗弯距kN•mP1—储蓄罐与基础自重kNP2—风荷载kN2、抗倾覆检算W=K1K2K3W0=K1K2K3V²/1.6=0.8*1.13*1.0*20.7²/1.6=242.1paP2=W/1000=0.2421kN罐仓顶至地表面距离为15米,罐身长12m,6个罐基本并排竖立,受风面210m²,整体受风力抵抗风载,在最不利风力下计算基础的抗倾覆性。
水泥罐抗倾覆验算
混凝土搅拌站水泥罐抗倾覆验算计算书复核:计算:日期:2015年4月15日一、工程概况根据本工程的砼需求量和拌和站的设计要求,设置JS1000型搅拌站2台、HZS90P搅拌站1台。
每个JS1000型搅拌站设置水泥储存罐2个,HZS90P搅拌站设置水泥储存罐4个。
为了保证拌和站能正常安全使用,现在将水泥罐的抗倾覆性进行受力验算。
二、各项参数水泥储存罐各项参数:直径3m,高12.5m,自重3.8T;满罐时水泥重100t。
立柱采用4根Φ220×6、壁厚10mm无缝钢管与基础连接,JS1000型搅拌站水泥储存罐立柱高5.7m,HZS90P型搅拌站水泥储存罐立柱高6.3m。
水泥储存罐基础参数:JS1000型:长3.6m,宽3.6m,埋深2.5m,采用整体式C30基础HZS90P型:长14m,宽3.6m,埋深2m,采用整体式C30基础拌和站示意图如下:(图1)三、计算说明:1、由于水泥储存罐建在高处,所以没有发生意外碰撞的可能,计算时不考虑外界碰撞;水泥储存罐基础在浇筑时,已经对基底标高,顶面标高,预埋钢板标高经过严格控制,高差都控制在±1cm内,所以对水泥储存罐自身倾斜带来的水平分力忽略不计。
计算时主要考虑风对罐体的影响。
2、计算时均按最不利因素考虑,风力采用当地极少见的10级风(风速28.4m/s),有效的受风面按(图1)所示分别计算。
2个或4个罐按连接体计算,对罐与罐之间的空隙不再折减。
但立柱受的风压不考虑。
3、计算时主要考虑三个方面的安全性:1)验算基底承载力够不够;2)验算从罐体到基础作为整体时的抗倾覆性;3)验算罐体立柱与基础连接处的安全性。
四、计算过程1、1个罐○1基地承载力:取最不利因素1个罐水泥全满时计算罐体和基础总重F重=M•10=(3.8×1+100×1+3.6×3.6×2.5×2.4) ×10=1815.6KN 基底面积A=3.6×3.6=12.96m2基底应力δ= F重/A=1815.6/12.96=140.093KPa<(实测)说明基底承载力满足需要。
拌合楼水泥仓基础承载力计算书
混凝土拌合站水泥仓基础计算书编制:审核:目录1 基本概况 (3)2 计算公式 (3)2.1 计算依据 (3)2.2 地基承载力 (3)2.3 风荷载强度 (3)2.4 基础抗倾覆计算 (4)2.5 基础承载力 (4)3 拌合站基础验算 (4)3.1 储料罐基地开挖及浇筑 (4)3.2 计算方案 (5)3.3 储料罐扩大式基础验算 (6)3.3.1 满仓时地基承载力 (6)3.3.2 空仓时基础抗倾覆 (7)3.3.3 储蓄罐支腿处混凝土承压 (7)3.4 水泥仓桩基础验算 (8)3.4.1 桩基承载力验算 (8)3.4.2 桩基稳定性验算 (9)3.4.3 承台验算 (9)3.5 桩基配筋计算 (11)拌合站水泥仓基础承载力计算书1 基本概况本项目拌合站位于武穴大桥项目部驻地处,主要服务于主桥的混凝土供应需求。
拌合站配备两台拌合机,每台拌合机设有4个200t的储料罐,储料罐筒高20m,罐筒为圆形截面,直径为3m。
储料罐基础采用扩大基础和钢管桩基础两种方式验算,通过计算分析选择更为安全合理的钢管桩基础。
2 混凝土扩大基础2.1 计算依据《建筑地基基础设计规范》(GB 50007-2011)《混凝土结构设计规范》(GB 50010-2010)《建筑抗震设计规范》(GB 50011-2010)《建筑结构荷载规范》(GB 50009-2012)《建筑桩基技术规范》(JGJ 94-2008)《钢筋混凝土承台设计规程》(CECS 88-97)2.2 地基承载力P/A=Ơ≤Ơ0P——储料罐重量,kNA——基础作用于地基上的有效面积,mm2Ơ——地基所受到的压应力,MPaƠ0——地基容许的应力,MPa通过地质勘测并经计算得土体的容许应力为Ơ0=120kPa2.3 风荷载强度W=K1K2K3W0=K1K2K3×1/1.6V2W——风荷载强度,PaW0——基本分压值,PaK1、K2、K3——风荷载系数,查表分别取0.8、1.3、1.0V——风速,m/s,取30m/s2.4 基础抗倾覆计算K c=M1/M2=P1×0.5×基础宽度/P2×受风面×h≥1.5 即满足要求M1——抗倾覆矩,KN·MM2——倾覆矩,KN·MP1——储料罐及基础自重,KNP2——风荷载,KNh——基础底距受风面的距离2.5 基础承载力P/A=Ơ≤Ơ0P——储料罐单腿重量,KNA——储料罐单腿作用于基础上的有效面积,mm2Ơ——基础所受到的压应力,MPaƠ0——基础混凝土容许应力,MPa3 拌合站基础验算3.1 储料罐基地开挖及浇筑根据厂家提供的拌合站安装及施工图纸,现场平面尺寸图如下:图2-1拌合站平面布置图3.2 计算方案开挖深度少于3m,根据规范不考虑摩擦力的影响,计算只考虑单个储料罐通过基础作用于地基上,单个储料罐满仓按220t计算,空仓时灌重20t,基础尺寸为3850mm×3850mm×1200mm,承载力计算示意图如下:图2-2地基承载力计算示意图根据武穴市历年气象资料,考虑最大风速30m/s,储料罐筒仓高20m,直径3.05m,迎风面积为(20-2)×3.05=54.9m2,,在最不利风速下计算基础的抗倾覆性,计算示意图如下:图2-3基础抗倾覆计算示意图基础采用混凝土C25,储料罐支腿受力最为集中,受力面积为600mm×600mm。
拌合站水泥罐基础设计计算书
望安高速150t 水泥仓粉罐基础设计计算书一、 各项参数:1、 风荷载参数计算风力考虑8级,最大风速v=s2、 仓体自重:G=15t二、 空仓时整体抗倾覆稳固性稳固性计算1、 计算模型1.2A B C D风荷载强度计算:风荷载强度计算:0321W K K K W ⋅⋅⋅=其中 大体风压:Pa v W 81.2676.17.206.1220===风载体形系数:K1=风压高度转变系数:K2=地形、地理转变系数,按一样平坦空旷地域取K3=W=×××=2、 风力计算:A 1=×=,考虑仓顶护栏等,提高倍F 1=××=作用高度:H 1= ×=F 2=×=7570N作用高度:H 2=+9/2=A 3=+/2×= m 2F 3=×=作用高度:H 3= m 2F 4=×=作用高度:H 4=3、 倾覆力矩计算:mt F M i ⋅=⨯+⨯+⨯+⨯=⋅=∑58.125.549.4887.797.14933.137570561.1883.586h i 41倾稳固力矩计算:假定筒仓绕AB 轴倾覆,稳固力矩由两部份组成,一部份是仓体自重稳固力矩M 稳1,另一部份是水泥仓立柱与基础连接螺栓抗拉产生的稳固力矩M稳2。
(每一个支撑立柱与基础之间的向上抗拔力按8t 计算)m t M ⋅=⨯⨯=114.155.115672.01稳 m t M ⋅=⨯⨯⨯=01.432344.1282稳4、 稳固系数1.562.458.1201.43.11451M 倾稳>=+=M 三、 地基承载力计算单仓基础按4m*4m ,高度设计,混凝土采纳C25。
满仓时,总重量为:水泥+粉罐自重+基础混凝土=150t+15t+60t=225t基础底面积为:4*4=16m 2(偏于平安考虑,施工时水泥仓基础连成整体)最大压强为:225*10/16=故设计地基承载力不小于200Kpa 。
搅拌站罐仓抗倾覆计算书
XX搅拌站罐仓抗倾覆计算书XX搅拌站,位于主线ZK148+000左侧约200m,配备HZS75搅拌机2台台, 每台搅拌机设有2个100吨级储料罐仓。
本搅拌站混凝土供应主要结构物包括混凝土方量约9万m3。
一.相关计算公式1.风荷载强度 W=K I K2KW0=K I K?K3V2/1.6W —风荷载强度PaW0 —基本风压值PaK i、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0V—风速m/s,本次按照扎鲁特地区最大风速19.3m/s计算2.抗倾覆计算Kc=M1 M2=[(P1*0.5* 基础宽)/(14*P2* 受风面)]K01.5即满足抗倾覆要求M1—抵抗弯距KN?MM2 —抵抗弯距KN?MP1—储蓄罐与基础自重KNP2-风荷载KN二、罐仓抗倾覆验算1.罐仓及基础尺寸根据厂家提供的拌和站安装施工图,现场平面尺寸如下地基开挖尺寸如图所示(两站基础及罐仓相同),浇筑深度为2m,平面尺寸8.5m*4.5m2.计算方案基础采用整体开挖,开挖深度为2米,根据规范,不考虑摩擦力的影响,储蓄罐与基础自重P仁1000KN*2+基础自身重量,基础自身重量=76.5m3*24kN/m3=1836kN则P仁1000KN*2+76.5m3*24kN/m3=2000+1836=3836kN根据历年气象资料,考虑最大风力为19.3m/s 则W=K1K2K3W0=KK2KV2/1.6=0.8*1.13*1.0*19.3 2/1.6=201.69paP2=W/1000=0.20169kN储蓄罐顶至地表面距离为15米,罐身长12m,2个罐基本并排竖立,受风面80m2,整体受风力抵抗风载,在最不利风力下计算基础的抗倾覆性。
计算示意图如下抗倾覆计算如下Kc=M1M2=[(P1*0.5* 基础宽)/(14*P2* 受风面)]=(3836*0.5*4.5)/(14*0.20169 X 80) =38.21》1.5满足抗倾覆要求经过验算,储料罐基础满足抗倾覆要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七分部搅拌站罐仓抗倾覆计算书
七分部搅拌站,位于主线ZK148+000左侧约200m,配备HZS75搅拌机2台台,每台搅拌机设有2个100吨级储料罐仓。
本搅拌站混凝土供应主要结构物包括混凝土方量约9万m³。
一.相关计算公式
1.风荷载强度W=K1K2K3W0= K1K2K3V2/1.6
W —风荷载强度Pa
W0—基本风压值Pa
K1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0
V—风速m/s,本次按照扎鲁特地区最大风速19.3m/s计算
2.抗倾覆计算
Kc=M1/ M2=[(P1*0.5*基础宽)/(14*P2*受风面)]
Kc≥1.5 即满足抗倾覆要求
M1—抵抗弯距KN•M
M2—抵抗弯距KN•M
P1—储蓄罐与基础自重KN
P2—风荷载KN
二、罐仓抗倾覆验算
1.罐仓及基础尺寸根据厂家提供的拌和站安装施工图,现场平面尺寸如下
地基开挖尺寸如图所示(两站基础及罐仓相同),浇筑深度为2m,平面尺寸8.5m*4.5m
2.计算方案基础采用整体开挖,开挖深度为2米,根据规范,不考虑摩擦力的影响,储蓄罐与基础自重P1=1000KN*2+基础自身重量,基础自身重量=76.5m3*24kN/m3=1836kN
则P1=1000KN*2+76.5m3*24kN/m3=2000+1836=3836kN
根据历年气象资料,考虑最大风力为19.3m/s 则W=K1K2K3W0=K1K2K3V2/1.6=0.8*1.13*1.0*19.32/1.6=201.69pa
P2=W/1000=0.20169kN
储蓄罐顶至地表面距离为15米,罐身长12m,2个罐基本并排竖立,受风面80m2,整体受风力抵抗风载,在最不利风力下计算基础的抗倾覆性。
计算示意图如下
抗倾覆计算如下
Kc=M1/M2=[(P1*0.5*基础宽)/(14*P2*受风面)] =(3836*0.5*4.5)/(14*0.20169×80) =38.21≥1.5 满足抗倾覆要求经过验算,储料罐基础满足抗倾覆要求。