大体积混凝土简易测温法[详细]
大体积混凝土测温方案
(三)、测温点布置基础大体积砼内测温点的布置,应真实地反映出砼浇筑体内最高温升、里表温差、降温速率及环境温度。
1、测温点位置该基础砼计划以后浇带为界分区段浇筑,各区段内混凝土一次浇注成型。
因此,在平面上的温度测点为梅花形布置,间距10m,并综合考虑电梯井的位置(测温点布置平面图见附图)。
由于底板混凝土最高温度多出现在厚度中部,故每个测温点按厚度方向沿厚度中部、混凝土表面和底部处布置三根测温线。
2、注意事项(1)所有测温线的埋设,必须按测温点布置图进行编号,并在埋设前进行测试检验。
(2)测温线必须在钢筋绑扎完毕和混凝土浇注前安好,测温线采用钢丝或胶布绑在一根Φ14的钢筋上,其感温头应处于测温点位置,不得与钢筋直接接触(测温点测温线布置示意图见图1)。
图1?测温点测温线布置示意图(3)测温线插头留在外面,并用塑料袋罩好,避免潮湿,保持清洁,留在外面的测温线长度应大于20cm,?并按上中下顺序分别绑扎,每组测温线在线的上段做上标记,?便于区分深度。
(4)砼表面测温线感温头位置在砼外表以内5cm处,砼底部测温线感温头位置在砼底面上5cm处。
三、测温(一)、测温要求1、一般在砼浇注完毕后10h开始测温,每班定时测定大气温度、砼内部温度,砼浇筑时,还应测砼的入模温度。
2、测温工作不分昼夜24h连续进行,第1天至第5天,每2h测温一次;第6天至第10天,?每4h测温一次;第11天至第28天,每8h测温一次。
3、测温数据应认真仔细记录分析,及时汇报结果,以便对混凝土的温控实施更及时的养护措施。
(二)、温控指标依据《YBJ224-91块体基础大体积施工技术规程》、《JGJ6-99?高程建筑箱型与筏型基础技术规范》的有关规定:混凝土结构内部中心温度与混凝土表面温度的差值小于25℃,温度场中的断面各测点温度陡降控制在10℃以内;大气温度与混凝土表面温度之差应控制在30℃以内;大体积混凝土的降温速率一般不宜大于2℃/d。
大体积混凝土测温方案
1、按照图纸要求,筏板厚度大于800mn长度大于6000mm勺混凝土为大体积混凝土,一般要求最小断面尺寸大于2米以上混凝土结构构件视为大体积混凝土。
按照此定义,主楼筏板和柱墩混凝土为大体积混凝土,必须采取相应的技术措施妥善处理温度差值,合理解决温度应力并控制裂缝开展的混凝土结构。
施工混凝土内部热量较难散发,外部表面热量散发较快,内部和外部热胀冷缩过程相应会在混凝土表面产生拉应力。
温差大到一定程度,混凝土表面拉应力超过当时的混凝土极限抗拉强度时,在混凝土表面会产生有害裂缝,有时甚至贯穿裂缝。
另外,混凝土硬化后随温度降低产生收缩,由于受到地基约束,会产生很大外约束力,当超过当时的混凝土极限抗拉强度时,也会产生裂缝。
为了了解基础大体积混凝土内部由于水化热引起的温度升降规律,掌握基础混凝土中心与表面、表面与大气温度间的温度变化情况,以便采取必要的措施。
2、测温的方法:采用采用温度计测温。
具体操作如下:(1)、混凝土浇捣前测出大气温度及入模混凝土温度并作好记录。
(2)、自混凝土入模至浇捣完毕的四天期间内每隔二小时测温一次,以后每隔四小时测温一次。
一般七天后可停止测温,或温度梯度v 20度时,可停止测温。
(3)、每测温一次,应记录、计算每个测温点的升降值及温差值。
3、测温导管的具体埋设:1)、测温导管的制作测温导管采用薄壁钢管管制作而成,内径16伽,上口用胶带封口,下口压扁并用胶带封堵,导管内尽可能不要进水。
长度按照埋设位深度、位置而定。
在同一测温点,按照测温深度上中下分别将三根测温导管插入混凝土(混凝土初凝前)。
2、测温点的布置测温点的布置原则应在有代表性的整个基础底板最深处、底板四个角点及结构尺寸变化较大的地方。
测温点的具体布置为:主楼每个柱墩设置一个测温点,主楼筏板按照距筏板边3米间距每6米设置一个测温点。
详见测温点布置图,测温点分别设置在筏板的下部和中间位置,表面温度在砼面向下5-10 cm部位量取。
大体积混凝土测温方案
大体积混凝土水化热温度和温差监测方案一、方案概述:大体积混凝土:混凝土结构物实体最小几何尺寸不小于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致的有害裂缝产生的混凝土。
随着我国建筑技术的不断提高,大体积混凝土结构的应用也越来越广泛。
大体积混凝土的截面尺寸较大,由荷载引起裂缝的可能性较小,但由于温度产生的变形对大体积混凝土却极为不利。
在混凝土硬化初期,水泥水化的同时释放出较多热量,而混凝土与周围环境的热交换较慢,所以混凝土内部的热量不断增加,使其内部温度不断升高,混凝土的体积膨胀变大。
随着混凝土水化速度减慢,释放的热量也越来越少,积聚在混凝土中的热量由于热交换的进行逐渐减少,混凝土的温度降低,因而产生收缩。
当此收缩受到约束时,混凝土内部产生拉应力(此应力简称为温度应力),此时混凝土的强度较低,如不足抵抗拉应力时,混凝土的内部就产生了裂缝。
此外,混凝土的导热系数相对较小。
其内部的热量不易散失,而表面热量易与周边环境进行热交换而减少,从而温度降低,就形成混凝土内外的温差。
如果温差较大,则混凝土表里收缩不一致,也使混凝土开裂。
因此,在大体积混凝土中,必须考虑温度应力和温差引起的不均匀收缩应力(简称温差应力)的影响。
而温度应力和温差应力大小,又涉及到结构的平面尺寸,结构厚度,约束条件,周边环境情况,含筋率,混凝土各种组成材料的特性和物理力学性能,施工工艺等许多因素影响。
故为了保证大体积混凝土施工质量,国家建设部于2010年颁布JGJ3-2010《高层建筑混凝土结构技术规程》中,第13.9.6条规定:大体积混凝土浇筑后,应在12h内采取保湿、控温措施。
混凝土浇筑体的里表温差不宜大于25℃,混凝土浇筑体表面与大气温差不宜大于20℃。
建设部颁发的JGJ6-2011《高层建筑箱形与筏形基础技术规范》中第8.2.3条要求在进行筏形与箱形基础大体积混凝土施工时,应对其表面和内部的温度进行监测。
大体积混凝土测温记录(自动计算)
大体积混凝土测温记录(自动计算)大体积混凝土测温记录(自动计算)一、引言大体积混凝土是指一次性浇筑量大于500m³的混凝土。
由于其浇筑过程中的保温性和温度控制都与普通混凝土有很大的不同,因此对于大体积混凝土的温度监测和记录十分重要。
本旨在提供一份详尽的大体积混凝土测温记录的模板,以供参考使用。
二、测温设备1. 温度传感器:使用高精度的温度传感器进行温度测量。
2. 数据采集系统:使用自动数据采集系统,进行数据的实时监测和记录。
3. 软件系统:使用专门的软件系统进行数据的分析和计算。
三、测温位置1. 混凝土浆液温度:在混凝土浆液浇注过程中,选择不同高度的温度测点进行监测和记录。
2. 混凝土表面温度:在混凝土浇筑完成后,选择混凝土表面不同位置进行温度测量。
3. 核心温度:在混凝土硬化过程中,选择混凝土核心位置进行温度测量。
四、温度测量方法1. 混凝土浆液温度:将温度传感器插入混凝土浆液中,保持一定的时间测量温度。
2. 混凝土表面温度:使用非接触式红外温度枪对混凝土表面进行温度测量。
3. 核心温度:选择合适的位置,在混凝土中钻取一个孔洞,插入温度传感器进行测量。
五、温度测量记录1. 混凝土浆液温度记录:分别记录不同高度的混凝土浆液温度,以时间为标识进行记录。
2. 混凝土表面温度记录:记录不同位置的混凝土表面温度,以时间为标识进行记录。
3. 核心温度记录:记录混凝土核心温度的变化情况,以时间为标识进行记录。
六、数据分析与计算使用数据采集系统和软件系统对测得的温度数据进行分析和计算,得出相应的计算结果。
七、结论根据测温记录和计算结果,对大体积混凝土的温度控制进行评估和总结。
八、附件1. 测温记录表格2. 温度传感器和数据采集系统相关九、法律名词及注释1. 大体积混凝土:指一次性浇筑量大于500m³的混凝土。
2. 温度传感器:用于测量混凝土的温度的传感器设备。
3. 数据采集系统:用于实时监测和记录温度数据的系统设备。
大体积混凝土测温方案
大体积混凝土测温方案为了保证混凝土的质量,测量混凝土温度是非常重要的一项工作。
特别是在大体积混凝土的浇筑工作中,温度的变化会对混凝土的硬化过程产生较大的影响。
因此,在大体积混凝土浇筑工作中,测温方案的选择显得尤为重要。
一、大体积混凝土测温原理在大体积混凝土的测温过程中,一般采用探针法进行测量。
探针法是以温度计的感应探头为测量对象,将探头通过混凝土搅拌机中的混凝土进行测量。
混凝土搅拌机中的混凝土通过不断的搅动,温度会逐渐趋于稳定。
在这个过程中,可以不断测量混凝土中的温度值,并通过计算得到混凝土的平均温度值。
二、大体积混凝土测温方案1.试验设计在进行大体积混凝土测温之前,需要进行试验设计。
试验设计是为了确定测量混凝土温度的具体方案。
试验设计应包括以下内容:(1)探针的材料选择。
(2)混凝土的生产工艺和配筋组合。
(3)测量温度的区域和深度。
(4)探头的数量和布置。
(5)探头与温度计的匹配方式。
2.试验操作在进行大体积混凝土测温时,需要进行如下操作:(1)在进行混凝土浇筑之前,需要先将混凝土搅拌均匀,并将其中的探头插入混凝土中进行测量。
(2)为了确保测温的准确性,需要不断地调整探头的位置,使其更贴近混凝土的中心地带。
(3)在混凝土温度达到一定数值时,需要及时停止混凝土的测量,并进行数据的处理和分析。
3.试验结果分析通过试验操作,可以得到混凝土温度的测量结果。
这些结果需要进行数据的统计和分析。
根据混凝土的实际情况,可以制定对应的处理方式,以确保混凝土的质量和性能。
三、测温方案的优化在大体积混凝土的测温工作中,为了使测量结果更加准确、可靠,需要进行优化。
优化主要包括以下方面:1.探头选用目前市场上的探针种类比较多,应该根据具体情况选择,选择探针的质量和防水性能要尽可能好。
2.测温深度在大体积混凝土的测温中,一般要求探头的插入深度达到混凝土中心一定的深度,以保证测量结果的准确性。
大体积混凝土简易测温法
大体积混凝土简易测温法在混凝土的生产和施工过程中,混凝土的温度是一个非常重要的指标。
混凝土的温度对其强度和耐久性等性能具有很大的影响,因此,在现场施工和混凝土生产过程中需要对混凝土的温度进行实时监测,以确保混凝土的质量。
然而,传统的混凝土温度监测方法通常需要昂贵的仪器和复杂的操作,因此不太适用于现场施工或小规模混凝土生产。
本文介绍一种简易的大体积混凝土测温法,适用于现场施工和小规模混凝土生产。
测温原理混凝土的温度变化是由混凝土的水化反应和外部环境的影响共同作用的结果。
混凝土的水化反应是一个放热过程,会产生大量的热量,导致混凝土的温度升高。
在施工和生产过程中,混凝土表面的温度受到外部环境的影响,如阳光照射、空气温度等等。
因此,混凝土的温度变化是一个复杂的过程,需要综合考虑多种因素。
本文介绍的大体积混凝土简易测温法是基于混凝土内部温度的变化来进行的。
混凝土内部的温度变化比表面温度变化缓慢,更加稳定。
因此,测量混凝土内部温度可以更加准确地反映混凝土的温度变化情况。
测温方法混凝土的内部温度可以通过深层测温孔进行测量。
深层测温孔是一种特殊的孔洞,可以穿过混凝土的整个截面,达到混凝土内部,并保持通畅。
通过深层测温孔,可以将温度探头插入混凝土内部,测量混凝土的内部温度。
深层测温孔的直径和深度需要根据混凝土的截面尺寸和温度变化情况进行选择。
通常,孔的直径为5-10cm,深度为混凝土截面的2/3-3/4。
在孔的底部需要设置一个水平孔,用于放置温度探头。
在进行深层测温之前,需要在混凝土浇注之前准备好深层测温孔,通常需要在混凝土模板中设置孔洞模板。
在混凝土浇注时,需要具有一定的施工技巧和经验,以确保混凝土不会从孔洞模板中流出。
测温仪器混凝土内部温度的测量需要使用专门的温度探头和温度计。
温度探头通常由热敏电阻或热电偶组成,可以将温度变化转化为电信号输出。
温度计则可以接收并显示电信号,以实现对混凝土的温度测量。
常用的测温仪器有数字温度计、多功能温度计等,通过选择合适的温度探头可以适应不同混凝土的测温需求。
大体积混凝土简易测温法
大体积混凝土简易测温法在建筑工程中,大体积混凝土的施工是一项具有挑战性的任务。
由于混凝土在硬化过程中会释放出大量的水化热,如果不能有效地控制温度变化,可能会导致混凝土出现裂缝,从而影响结构的安全性和耐久性。
因此,对大体积混凝土进行温度监测是非常重要的。
本文将介绍一种简易的大体积混凝土测温法,帮助您在实际工程中更好地掌握混凝土的温度变化情况。
一、大体积混凝土温度变化的特点大体积混凝土在浇筑后的初期,由于水泥的水化反应,会产生大量的热量。
这些热量在混凝土内部积聚,导致内部温度迅速升高。
而混凝土的表面则与外界环境接触,散热较快,温度相对较低。
这种内外温差会在混凝土内部产生温度应力,如果温差过大,可能会超过混凝土的抗拉强度,从而引起裂缝。
随着时间的推移,混凝土内部的热量逐渐散发到外界,温度逐渐降低。
在这个过程中,如果降温速度过快,也可能会产生收缩裂缝。
因此,了解大体积混凝土温度变化的特点,对于采取有效的测温措施和控制温度裂缝至关重要。
二、简易测温法的原理和设备简易测温法的原理是通过测量混凝土内部不同深度处的温度,来了解混凝土的温度分布情况。
常用的测温设备包括温度计、热电偶和热敏电阻等。
温度计是一种简单直观的测温工具,通常使用水银温度计或酒精温度计。
在使用时,将温度计插入预先在混凝土中预留的测温孔内,经过一定时间后读取温度值。
热电偶是一种基于热电效应的测温元件,它由两种不同的金属材料组成。
当热电偶的两端存在温度差时,会产生热电势,通过测量热电势的大小可以得到温度值。
热电偶具有测量精度高、响应速度快等优点,但安装和使用相对复杂。
热敏电阻是一种电阻值随温度变化而变化的元件。
通过测量热敏电阻的电阻值,再根据其电阻温度特性曲线,可以计算出温度值。
热敏电阻的体积小、价格便宜,但测量精度相对较低。
在实际工程中,可以根据具体情况选择合适的测温设备。
对于要求不高的工程,温度计通常能够满足需求;对于精度要求较高的工程,则可以选择热电偶或热敏电阻。
大体积混凝土测温管做法及位置方式及测温表
筏板基础测温管做法及位置及测温方式根据GB50496大体积混凝土施工规范要求,在各底板的四角、中部及落深区用方管设置测温点,每测点分别在砼厚度的不同深度布置测点(即砼表面、砼中部、基础底部),根据规范要求测量混凝土外表温度的测温管布置在混凝土外表以内50mm处,测量混凝土底面温度的测温管布置在混凝土浇筑体底面上50mm处。
土测温选用测温管加温度计的测温方式,测温管采用30方管,露出混凝土面150mm,方管底部包裹严实。
监测周期的前7天,派专人每隔2h测量并记录各点温度数据一次;8~15天,每隔4h测量并记录各点温度数据一次;15天后每隔6h测量并记录各点温度数据一次。
测温终止条件:连续48小时混凝土内部温度与表面温度之差小于25℃,混凝土表面温度与大气温度之差小于20℃。
附表一:
大体积混凝土测温记录。
大体积混凝土测温方案
大体积混凝土测温方案标准化管理部编码-[99968T-6889628-J68568-1689N]1、按照图纸要求,筏板厚度大于800mm长度大于6000mm的混凝土为大体积混凝土,一般要求最小断面尺寸大于2米以上混凝土结构构件视为大体积混凝土。
按照此定义,主楼筏板和柱墩混凝土为大体积混凝土,必须采取相应的技术措施妥善处理温度差值,合理解决温度应力并控制裂缝开展的混凝土结构。
施工混凝土内部热量较难散发,外部表面热量散发较快,内部和外部热胀冷缩过程相应会在混凝土表面产生拉应力。
温差大到一定程度,混凝土表面拉应力超过当时的混凝土极限抗拉强度时,在混凝土表面会产生有害裂缝,有时甚至贯穿裂缝。
另外,混凝土硬化后随温度降低产生收缩,由于受到地基约束,会产生很大外约束力,当超过当时的混凝土极限抗拉强度时,也会产生裂缝。
为了了解基础大体积混凝土内部由于水化热引起的温度升降规律,掌握基础混凝土中心与表面、表面与大气温度间的温度变化情况,以便采取必要的措施。
2、测温的方法:采用采用温度计测温。
具体操作如下:(1)、?混凝土浇捣前测出大气温度及入模混凝土温度并作好记录。
(2)、自混凝土入模至浇捣完毕的四天期间内每隔二小时测温一次,以后每隔四小时测温一次。
一般七天后可停止测温,或温度梯度<20度时,可停止测温。
(3)、每测温一次,应记录、计算每个测温点的升降值及温差值?。
3、测温导管的具体埋设:1)、测温导管的制作测温导管采用薄壁钢管管制作而成,内径16㎜,上口用胶带封口,下口压扁并用胶带封堵,导管内尽可能不要进水。
长度按照埋设位深度、位置而定。
在同一测温点,按照测温深度上中下分别将三根测温导管插入混凝土(混凝土初凝前)。
2、测温点的布置测温点的布置原则应在有代表性的整个基础底板最深处、底板四个角点及结构尺寸变化较大的地方。
测温点的具体布置为:主楼每个柱墩设置一个测温点,主楼筏板按照距筏板边3米间距每6米设置一个测温点。
大体积混凝土测温布置(二)2024
大体积混凝土测温布置(二)引言概述:大体积混凝土测温布置是指在大体积混凝土工程中,合理布置温度测量点,以监测混凝土的温度变化情况。
本文将从测温点的选取、布置方式、测温设备、数据采集及分析等五个大点进行详细阐述。
正文:一、测温点的选取1. 根据混凝土结构和尺寸选取主要测温点,如混凝土心温度点、混凝土表面温度点等。
2. 考虑混凝土温度变化的不均匀性,选取分布均匀的测温点。
3. 针对特殊部位,如跨梁、钢筋浇筑区域,选取靠近该部位的测温点。
二、布置方式1. 根据混凝土工程结构特点,采用直线型、网格型或环形布置方式。
2. 确保测温点之间的距离适当,通常不超过2米。
3. 避免测温点过于集中或过于分散,保证整体布置的有效性。
三、测温设备1. 选择适合大体积混凝土测温的传感器,如热电偶、光纤光栅等。
2. 确保传感器的测温范围和精度满足实际需求。
3. 防止传感器受到混凝土浇筑过程中的损坏,采取保护措施。
四、数据采集1. 使用专业的数据采集设备,确保测温数据的准确性和稳定性。
2. 定期校准传感器,避免测温数据产生偏差。
3. 建立完备的数据采集记录系统,确保数据存档和备份。
五、数据分析1. 对测温数据进行实时监测和记录。
2. 通过数据分析,判断混凝土的温度变化趋势,及时发现异常情况。
3. 结合混凝土的温度变化情况,优化施工方案,确保混凝土的质量和安全。
总结:大体积混凝土测温布置是保障工程质量的重要环节。
合理选取测温点、科学布置方式、使用适当的测温设备、精确进行数据采集和深入分析,可以有效监测和控制混凝土温度变化,在工程施工中起到重要作用。
大体积混凝土测温技术
大体积混凝土测温技术在现代建筑工程中,大体积混凝土的应用越来越广泛。
然而,由于大体积混凝土在浇筑和养护过程中会产生大量的水化热,如果不能有效地控制温度变化,就容易导致混凝土出现裂缝,从而影响结构的安全性和耐久性。
因此,大体积混凝土测温技术就显得尤为重要。
大体积混凝土测温的目的主要有两个:一是及时掌握混凝土内部的温度变化情况,以便采取有效的温控措施,防止混凝土出现温度裂缝;二是为混凝土的养护提供依据,确保混凝土在适宜的温度环境下养护,提高混凝土的强度和耐久性。
目前,常用的大体积混凝土测温技术主要包括以下几种:一、热电偶测温法热电偶测温法是一种比较传统且常用的测温方法。
它是利用热电偶的热电效应来测量温度的。
热电偶由两种不同的金属材料组成,当两端存在温度差时,就会产生热电势。
通过测量热电势的大小,就可以计算出温度值。
在使用热电偶测温时,需要将热电偶预先埋设在混凝土中。
一般来说,热电偶的布置应遵循均匀、有代表性的原则。
例如,可以在混凝土的中心、表面、边缘等部位分别布置热电偶,以全面了解混凝土内部的温度分布情况。
同时,为了保证测量结果的准确性,热电偶的埋设深度和间距也需要根据混凝土的厚度和结构特点进行合理设计。
二、热敏电阻测温法热敏电阻测温法是利用热敏电阻的电阻值随温度变化的特性来测量温度的。
热敏电阻通常具有较高的灵敏度和精度,能够准确地反映出温度的微小变化。
在大体积混凝土测温中,热敏电阻可以通过预埋的方式安装在混凝土内部。
与热电偶相比,热敏电阻的体积较小,更容易布置,但其测量范围相对较窄。
三、光纤测温法光纤测温法是一种较为先进的测温技术。
它是利用光纤中传输的光信号随温度变化的特性来实现温度测量的。
光纤具有抗电磁干扰、耐腐蚀、耐高温等优点,适用于恶劣的环境条件。
在大体积混凝土中使用光纤测温时,可以将光纤沿着混凝土的结构布置成网状或蛇形。
通过光纤传感器采集到的温度数据,可以实时传输到计算机系统进行处理和分析。
大体积混凝土简易测温法
大体积混凝土简易测温法在建筑工程中,大体积混凝土的施工是一个常见且关键的环节。
由于大体积混凝土结构厚实、混凝土量大,水泥水化热释放集中,内部温升快,如果不能有效地控制温度,就容易产生温度裂缝,从而影响混凝土结构的耐久性和安全性。
因此,对大体积混凝土进行温度监测是十分必要的。
本文将介绍一种简易的大体积混凝土测温法。
一、测温的目的和意义大体积混凝土在浇筑和养护过程中,水泥水化反应会释放出大量的热量,导致混凝土内部温度升高。
如果内部温度与表面温度之间的温差过大,就会产生温度应力,当温度应力超过混凝土的抗拉强度时,混凝土就会出现裂缝。
通过测温,可以及时了解混凝土内部的温度变化情况,采取相应的温控措施,如调整养护方式、控制浇筑速度等,以防止温度裂缝的产生。
二、测温设备的选择1、温度计常见的温度计有玻璃液体温度计和电子温度计。
玻璃液体温度计价格便宜,但测量精度相对较低,且容易损坏。
电子温度计测量精度高、读数方便,但价格相对较高。
2、测温探头测温探头一般采用热电偶或热敏电阻。
热电偶测温范围广、响应速度快,但需要进行冷端补偿。
热敏电阻精度高、稳定性好,但测温范围相对较窄。
3、数据采集仪数据采集仪用于自动采集和记录温度数据,可以提高测温的效率和准确性。
三、测温点的布置测温点的布置应具有代表性,能够反映混凝土内部温度的分布情况。
一般来说,应在混凝土的中心、表面、角部和边缘等位置布置测温点。
对于平面尺寸较大的混凝土结构,可以采用网格状布置测温点,相邻测温点的间距不宜大于 5 米。
在混凝土的厚度方向,每个测温点应布置在不同的深度,如表面下 50mm、中心处、底面以上 50mm 等。
四、测温时间和频率测温应从混凝土浇筑完成后开始,直至混凝土内部温度与环境温度之差小于 25℃为止。
在混凝土浇筑后的前 3 天,测温频率应较高,一般每 2 小时测一次。
3 天后,可根据混凝土内部温度的变化情况适当降低测温频率,如每 46 小时测一次。
大体积混凝土如何测温(一)
大体积混凝土如何测温(一)引言概述:大体积混凝土指的是混凝土结构中具有较大体积和较厚混凝土构件的结构。
在混凝土的浇筑和养护过程中,及时准确地监测混凝土温度是确保混凝土质量的重要环节。
本文将介绍大体积混凝土测温的方法和步骤。
正文:一、传感器选择和布置1.选择适合的传感器类型,常用的有热电偶、铂电阻温度传感器等。
2.根据混凝土的布置及结构尺寸,合理布置传感器,保证温度监测的全面性和准确性。
3.传感器与混凝土的接触面应充分接触,避免气隙和空洞,以确保测量结果的准确性。
二、测量仪器准备1.选择合适的温度测量仪器,如数字温度计、多功能温度计等。
2.校准测量仪器,确保测量结果的准确性和可靠性。
3.检查测量仪器的操作指南并熟悉操作步骤,以确保正确使用测温设备。
三、测温操作步骤1.根据实际需要确定监测时间间隔,例如每小时或每日进行测温。
2.在混凝土浇筑后的一定时间内进行测温,例如浇筑后的1小时、3小时等。
3.将温度传感器插入混凝土内部,确保传感器与混凝土结构充分接触。
4.记录测得的温度数值,并标注测量时间,确保数据的准确性和完整性。
5.重复以上操作,持续测温直至混凝土养护结束。
四、监测数据处理1.将测得的温度数据整理并记录。
2.根据监测数据分析混凝土的温度变化趋势,判断混凝土的养护状态及质量。
3.如发现温度异常情况,及时采取措施进行调整或纠正。
4.将监测数据整合为报告,方便后续参考和研究。
五、安全注意事项1.在进行测温操作时,需严格按照相关安全规范进行,并佩戴好相应的防护设备。
2.要保证测温设备和传感器的安全,避免破坏或损坏。
3.在对混凝土进行测温时,需注意周围环境和施工现场的安全,避免发生意外。
总结:通过合理选择和布置传感器,准备好合适的测量仪器,严格按照操作步骤进行测温操作,并合理处理监测数据,可以有效地测量大体积混凝土的温度。
在整个测温过程中,要注意安全事项,确保操作人员和设备的安全。
混凝土温度的及时监测可以帮助我们了解混凝土的养护情况,进而保证混凝土的质量。
大体积混凝土测温方案及测温方法(一)
大体积混凝土测温方案及测温方法(一)引言概述:本文将介绍大体积混凝土测温方案及测温方法。
大体积混凝土在建筑工程中应用广泛,为确保其施工质量和持久性,对其温度进行监测至关重要。
本文将以五个大点为主线,详细阐述大体积混凝土测温的方案和具体方法。
正文:一、温度传感器选择1. 预埋式电阻温度计:预埋式电阻温度计可直接嵌入混凝土内部,测量混凝土温度。
其优点是准确、稳定,适用于长期测温,但安装细节要注意,避免损坏电阻体。
2. 分布式光纤传感器:分布式光纤传感器可连续、实时地测量混凝土温度分布。
它具有灵敏度高、可靠性好的优点,但需要专业技术和设备配合进行安装。
二、测点布置方案1. 测点密度:根据混凝土施工的特点和具体要求,确定合适的测点密度。
通常,大体积混凝土需要在其内部设置多个测点来获取温度分布数据。
2. 测点布置位置:测点应尽可能分布在混凝土横截面上,包括顶部、中部和底部等位置,以全面了解混凝土的温度变化情况。
三、测温方法1. 实时测温:通过连续监测某个测点的温度变化,获取混凝土的实时温度数据。
可以使用温度传感器实时采集数据,并通过数据采集系统进行记录和分析。
2. 定点测温:选取几个特定测点进行定点测温,了解混凝土的温度变化趋势。
可以通过手持式测温仪器对测点进行测温,也可使用远程测温装置。
四、温度数据处理与分析1. 数据采集与存储:使用数据采集系统实时采集温度数据,并进行存储。
可以选择云端存储或本地存储的方式,以便后续的数据分析和结论。
2. 温度数据分析:对采集到的数据进行分析,包括温度变化趋势、温度分布等,以获得对混凝土采取相应的调控措施的依据。
五、温度控制与调节1. 温度监控:根据温度测量结果,及时监控混凝土的温度情况,确保其在施工过程中的质量和安全。
2. 温度调节:根据温度监测结果,对混凝土施工过程中的温度进行调控。
可采取降温措施,如增加外部冷却措施,或调节混凝土配方等方式。
总结:通过选择合适的温度传感器、科学布置测点、合理选取测温方法,结合温度数据处理与分析以及温度控制与调节,可以实现对大体积混凝土的准确测温和有效控制。
大体积混凝土测温方法
大体积混凝土测温方法大体积混凝土测温方法(两种)午后,天亮,48h内最高测温方法基本上有两种:*使用电子式测量温度的仪器,一般用预埋式的测温线与主机连接后进行测温,数字显示温度、准确直观快捷、体积小、性能好、携带方便,就是要购买这种仪器。
各类建筑杂志上,此类广告多得很。
*用棒式温度计测量温度。
在大体积混凝土浇筑过程中,从构件面分别埋入3根1″的电线管(线管壁薄,传热快),埋入深度可为构件厚度的3/4H、1/2H、4/1H等,视需要而定,管内灌满水,管口用木塞塞紧。
测量时,打开木塞,将温度计用绳吊入管内,静置3分钟后,取出,读取温度并记录。
这种方法简易,效果能满足要求,自然成本也低。
西安交通大学第一医院l号、2号高层住宅楼采用筏板混凝土基础,剪力墙结构,地上33层.地下2层(含夹层),建筑高度97.8m,建筑面积72,469rn2。
1号、20楼筏板混凝土总方量分别约为1250m3,筏板强度等级C35,抗渗等级P6。
筏板混凝土厚度为600mm,基础梁l400mm,核心承台1800mm。
本筏板工程属于大体积混凝土。
大体积混凝土施二r 中要求控制混凝土内外温差,混凝土厚度小于2.0m时,内外温差不宜大于25℃;对于厚度超过2.0m的混凝土,根据已有的经验,只要控制温度梯度小于12.5℃/m。
可适当放宽内外温差至30~33℃,否则会产生温差裂缝。
1大体积混凝土施工的技术要求1.1本工程大体积混凝±筏板的特点(1)筏板要求具有足够的强度,达到设计强度等级C35。
水泥、粉煤灰、膨胀剂等胶凝材料在水化过程中将放出大量的热量。
(2)筏板要求具有良好的抗渗性,因此,原材料要严格控制含泥量。
在混凝土配合比设计中要加入优质的泵送减水剂,提高混凝土密实度,同时掺入膨胀剂,以补偿混凝土收缩。
(3)筏板要求具有良好的整体性,防止贯穿性裂缝产生,同时尽量减少浅层裂缝的出现。
1.2大体积混凝±施工技术要求本工程采用商品混凝土,l号楼于2O04年5月3日(16:30)至5日(16:00)一次浇筑完毕,混凝土浇筑期间环境温度为10~28℃。
什么是大体积混凝土测温
什么是大体积混凝土测温范本一:大体积混凝土测温详细解析一、概述大体积混凝土测温是指测量大型混凝土结构物内部温度的一种方法。
本文将从测温原理、测温设备、测温方法等方面进行详细解析。
二、测温原理1. 热传导原理热传导是大体积混凝土测温的基本原理之一。
混凝土中的温度会通过热传导的方式向周围传播,通过测量不同位置的温度差异,来获取结构物内部的温度分布情况。
2. 热电偶原理热电偶是大体积混凝土测温的常用设备之一。
热电偶原理是利用两种不同材质的导线连接处产生的温差电动势来测量温度变化。
3. 其他原理除了热传导原理和热电偶原理,还有红外线测温、光纤测温等方法可以用于大体积混凝土测温。
三、测温设备1. 热电偶热电偶由两种不同材质的导线连接处组成,可以根据导线的材质选择合适的热电偶。
2. 红外线测温仪红外线测温仪可以通过接收物体辐射的红外线来测量物体的温度,适合于大范围测温。
3. 光纤测温仪光纤测温仪利用光纤的传输特性,通过测量光纤中的光信号变化来获取物体的温度。
四、测温方法1. 单点测温法单点测温法是指在大体积混凝土结构物中选取一个代表性点进行温度测量。
2. 多点测温法多点测温法是指在大体积混凝土结构物中选择多个测点进行温度测量,以获取更全面的温度分布情况。
3. 连续测温法连续测温法是指在大体积混凝土结构物中布置多个测点,并通过连续监测来获取温度变化曲线,以分析结构物的温度特性。
五、附件本所涉及的附件如下:1. 测温设备购买指南2. 测温数据记录表3. 测温仪器操作手册六、法律名词及注释本所涉及的法律名词及注释如下:1. 混凝土结构物:指使用混凝土作为主要结构材料的建造物或者工程构筑物。
2. 测温原理:指用于测量温度的基本物理原理。
3. 热传导:指温度通过物质内部的传导方式传递。
范本二:全面解析大体积混凝土测温方法一、引言大体积混凝土测温是一项关键的工作,对于混凝土结构物的温度控制和后续加工具有重要意义。
本文将全面解析大体积混凝土测温的方法,读者更好地了解和实践。
关于大体积混凝土测温方法
关于大体积混凝土测温方法•韩书坤•5位粉丝•1楼1、首先,我说一下为什么要测温?施工混凝土内部热量较难散发,外部表面热量散发较快,内部和外部热胀冷缩过程相应会在混凝土表面产生拉应力。
温差大到一定程度,混凝土表面拉应力超过当时的混凝土极限抗拉强度时,在混凝土表面会产生有害裂缝,有时甚至贯穿裂缝。
另外,混凝土硬化后随温度降低产生收缩,由于受到地基约束,会产生很大外约束力,当超过当时的混凝土极限抗拉强度时,也会产生裂缝。
为了了解基础大体积混凝土内部由于水化热引起的温度升降规律,掌握基础混凝土中心与表面、表面与大气温度间的温度变化情况,以便采取必要的措施。
2、其次,测温的方法:比较常用的是:采用建筑电子测温仪(JDC-2)配合预埋测温导线进行测温。
具体操作如下:(1)、混凝土浇捣前测出各测温探头的初始温度值,并作好记录。
(2)、混凝土浇捣前测出大气温度及入模混凝土温度并作好记录。
(3)、自混凝土入模至浇捣完毕的四天期间内每隔二小时测温一次,以后每隔四小时测温一次。
一般十~十四天后可停止测温,或温度梯度<20度时,可停止测温。
(4)、每测温一次,应记录、计算每个测温点的升降值及温差值。
3、测温导线的具体埋设:对于这个问题,仁者见仁,智者见智,我就不评说什么,我来说一下我的具体操作。
竖向导线埋设,我采用的是1根20的钢筋做竖向支撑,记得是:3米的承台砼,竖向共埋设了4根导线(每处),用30mm *30mm*30mm的小木方绑在钢筋上做隔离,然后安装测温导线上的探头,用电工用的相色带绑牢,4个探头的安装高度分别为:底板上部20公分,砼中心处,砼表面下20公分,砼表面。
顶2009-9-3 23:55回复•韩书坤•5位粉丝•2楼电子测温比较贵也麻烦,还是埋设测温管的好。
1、测温管的制作测温管采用PVC管制作而成,内径17㎜,长度按埋设位置的基础筏板厚度加工,下口塞入长600㎜的ф16紫铜管,外面用胶布裹坚实,紫铜管下端用胶布层层封住,PVC管上露200,管内灌入机油,浇筑砼前插入一根ф14的钢筋防止塑料管变形,塞紧管口后胶布密封。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大体积混凝土简易测温法
大体积混凝土工程施工采取温控防裂措施十分重要,但测温时的工作量很大 ,测温所用的仪器及所采取的保证措施都比较复杂,所需的费用也很高,而且使用的热敏元件都是一次性的,造成一定的浪费.在部钢高炉基础大体积混凝土施工时,采用一种简易测温法进行温控,使用上海产的半导体点温计,其测温范围为0~l00℃,反映时间为6s.现将这种测温方法介绍如下:
第1章简易测温法的布点方法及要求
第1节布点方法
简易测温时,一般在基础平面的中心及边缘处各埋置1根垂直于基础底面的通长钢管,如果基础的尺寸较大 ,布点时可适当加密.
第2节布点要求
钢管为普通脚手架钢管,外径50米米.
钢管下口应密封不透水.
在浇灌混凝土之前,将钢管内注满饮用水,用木塞或其他方法将钢管上口封闭,以免浇灌混凝土时堵塞,影响测温.
钢管上口超出混凝土表面30厘米,下口距底面10厘米.
第3节施测方法
测温前将测温导线按要求标出尺寸,以便于测温时使用.测温仪表需经计量检定.在测温的触点处,用稍大于触头的钢管将其保护起来,同时可帮助其垂直下降.
在测量混凝土内部温度时,从混凝土上表面向下缓慢地将热敏触头放到混凝土内部的不同标高处,随时记录实测的温度值,不得从基础底面往上测量混凝土内部的温度 ,以免出现误差.
第2章简易测温仪与标准测温仪实测温度数据的比较
第1节测温点布置的位置
测温点按基础的高度布置数层,为了便于进行简易测温与标准测温的数据比较,从邯钢高炉基础温度实测的层数中,选出有代表性的三层作依据(图3-9-1).
第2节测温数据的整理
用简易测温法测量混凝土内部的温度 ,所利用的介质是钢管及水,而不是混凝土本身,标准测温法的热敏元件是直接与混凝土接触的 .从理论上讲,混凝土与钢管及水的比热和热传导系数都是不同的 ,且钢管内的水沿基础的高度方向也有一定的热交换在连续地进行.所以,用标
准仪器测量混凝土的温度 ,与通过钢管、水为媒介所测得的混凝土温度值应是不同的 .它们之间的温度误差应是多少呢?通过对邯钢高炉大体积混凝土的测温,将简易测温得到的温度
数据与标准测进行比较,然后在运用数理统计的方法,将误差值确定出来,就可以将用简易测温仪得的温度数据换算成混凝土内部的实际温度值.该工程温差数理统计结果详见表3-9-1.
第3节简易测温法的温度计算
根据所测得的温度数据比较,简易方法测得的温度值略大 ,又从温差的数理统计结果发现,三层测温点之间的温差平均值变化并不大 ,总体温差平均值为1.3℃.数理统计结果中的三层温差标准偏差也说明每层简易测温的温度数据的场值性比较好,从而证明了每次测温数据的可靠性.
根据以上对温差数理统计结果的分析,简易测温法具体的温度计算公式为
式中 T ——混凝土不同标高处的实际温度 (℃);
T0——混凝土不同标高处用简易测温仪测取的温度 (℃)数据.
第3章结语
在进行大体积混凝土的温度监测时,实际上只需要知道混凝土内部的最大温升及混凝土的表面温升.如果使用热敏元件,只能分层布点,测得的混凝土内部的最高温升可能并不是最大值.而采用简易测温方法时,所使用的热敏触点可以沿着混凝土的断面连续地测得混凝土内部的温度变化,明显地优于标准监测方法.在大体积混凝土施工中,混凝土内部温度变化、最高温升出现一般都是以d为单位,即测量混凝土的内部温度变化l d只需测l~2次.虽然用标准测温仪可在1d的 24h内连续观察和自动记录,但带来的好处并不明显.从经济方面分析,简易测温法只需200元左右即可,并且仪器可反复使用,布点方法简便易行,不需任何附加条件,可在一般的土建施工单位推广使用.。