2021年电磁屏蔽基本原理介绍
电磁屏蔽原理
电磁屏蔽原理
电磁屏蔽是一种能有效抑制外界电磁波干扰的技术,它通常用于电子设备的数据传输,保证信号完整无损地传输到目标位置。
今天,电磁屏蔽技术已经在电子行业广泛应用,比如电脑、手机、手表、汽车电子、数码产品等。
本文将着重介绍电磁屏蔽的原理,并分析其优缺点。
电磁屏蔽原理如下:一是屏蔽器,其作用是将有害的电磁辐射阻隔在室内,从而确保设备不受外界干扰;二是金属屏蔽器,其作用是把外来电磁波撞击在金属外壁上,使它们不能进入室内,从而减少了干扰;三是电磁屏蔽布,它可以有效阻止电磁波射透,并降低电磁波传播的距离,使室内内部设备有效地保护。
电磁屏蔽技术的优点是:一是保护性很强,可以有效防止外界电磁辐射对设备的伤害;二是可以减少电磁波的距离,并有效抑制电磁波的传播;三是能够提高设备的可靠性,确保信号可靠有效地传输到目标位置;四是为用户提供防止电磁辐射伤害的安全机制,保护用户的身体健康,同时也能有效减少一些由电磁辐射引起的设备故障。
而电磁屏蔽技术的缺点也是显而易见的:一是电磁屏蔽技术的实施需要一定的成本,而且可能要重新设计电子设备的外壳,从而增加了设备成本;二是电磁屏蔽的规格较高,在设计过程中,可能会出现不同的技术问题,从而导致设备性能的降低;三是电磁屏蔽技术在某些环境中并不完美,比如在低频电磁场中,它可能无法有效阻挡外界电磁辐射,从而出现设备故障。
综上所述,电磁屏蔽是一种有效的技术手段,它可以阻挡外界的电磁辐射,保护室内设备的完整性,并提高设备的可靠性,为用户提供更加安全的环境。
但是,电磁屏蔽技术也有一定的局限性,它需要花费一定的成本,而且在特定环境下也可能不能完全阻挡外界电磁辐射,因此需要设计者在进行电磁屏蔽设计之前,要对不同环境进行全面研究和分析。
电磁屏蔽原理及其常见材料介绍
电磁屏蔽原理及其常见材料介绍屏蔽原理电磁屏蔽即利用屏蔽材料阻隔或衰减被屏蔽区域与外界的电磁能量传播。
电磁屏蔽的作用原理是利用屏蔽体对电磁能流的反射、吸收和引导作用,其与屏蔽结构表面和屏蔽体内部感生的电荷、电流与极化现象密切相关。
屏蔽按其原理分为电场屏蔽(静电屏蔽和交变电场屏蔽)、磁场屏蔽(低频磁场和高频磁场屏蔽)和电磁场屏蔽(电磁波的屏蔽)。
通常所说的电磁屏蔽是指后一种,即对电场和磁场同时加以屏蔽。
屏蔽效果的好坏用屏蔽效~g(SE,Shielding effectiveness)来评价,它表现了屏蔽体对电磁波的衰减程度。
屏蔽效能定义为屏蔽前后该点电磁场强度的比值,即:SE=2OIg(Eo/Es)或SH=2Olg(HdHs)式中:、分别为屏蔽前该点的电场强度与磁场强度,、分别为屏蔽后该点的电场强度与磁场强度。
对屏蔽效果的评价是根据屏蔽效能的大小度量的。
按照屏蔽作用原理,屏蔽体对屏蔽效能的贡献分为3部分:(1)屏蔽体表面因阻抗失配引起的反射损耗;(2)电磁波在屏蔽材料内部传输时,电磁能量被吸收引起传输损耗或吸收损耗;(3)电磁波在屏蔽材料内壁面之间多次反射引起的多次反射损耗。
由此可以得到影响材料屏蔽效能的3个基本因素,即材料的电导率、磁导率及材料厚度。
这也是屏蔽材料研究本身所必须关注的问题和突破口。
当然,对于电磁屏蔽体结构,其屏蔽效能还与结构、形状、气密性等有关,对于具体问题,还需要考虑被屏蔽的电磁波频率、场源性质等。
常见的屏蔽材料电屏蔽指的是对电场(E场)的屏蔽,它通常可选用的屏蔽材料种类比较多,如下:1一、导电弹性体衬料(导电橡胶)每种导电橡胶都是由硅酮、硅酮氟化物、EPDM或者碳氟化物-硅氟化物等粘合剂及纯银、镀银铜、镀银铝、镀银镍、镀银玻璃、镀银铅或炭颗粒等导电填料组成。
由于这些材料含有银,包装和存储条件应与其他含银元件相似,它们应当存储在塑料板中,例如聚酯或者聚乙烯,远离含硫材料。
标准形状有:实体O形条、空心O形条、实体D形条、空心D形条、U 行条、矩形条、中空矩形条、中空P形条、通道条以及模制导电橡胶成形件、模制的D-形圈/O-形圈、各种法兰、I/O衬垫。
电磁屏蔽基本原理
电磁屏蔽基本原理(总2页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除1、电磁屏蔽基本原理如图1所示电磁屏蔽的基本原理是:采用低电阻的导体材料,并利用电磁波在屏蔽导体表面的反射和在导体内部的吸收以及传输过程中的损耗而使电磁波能量的继续传递受到阻碍,起到屏蔽作用。
某些屏蔽材料可将大部分入射波反射掉,利用内部吸收及多重反射损耗掉部分进入材料的电磁波,只允许极少量的电磁波透过材料继续传播。
钢金属结构就起到了电磁屏蔽的作用,会大大影响附近基站对楼内的信号覆盖强度,下面用具体公式证明这一点。
钢金属结构对电磁波的损耗主要由反射损耗和吸收损耗组成。
吸收损耗是指电磁波穿过屏蔽罩时能量损耗的数量,吸收损耗计算公式为:AdB=(f×σ×μ) /2×t其中 f:频率(MHz) μ:金属导磁率σ:金属导电率 t:屏蔽罩厚度联通附近基站使用的频率是900MHz,钢的导磁率约为450×10-4左右,钢的导电率约为×10-5左右,钢结构厚度约为米左右。
将上述参数代入公式,吸收损耗约为31dB。
反射损耗(近场)的大小取决于电磁波产生源的性质以及与波源的距离。
对于杆状或直线形发射天线而言,离波源越近波阻越高,反射损耗随波阻与屏蔽阻抗的比率变化,因此它不仅取决于波的类型,而且取决于屏蔽罩与波源之间的距离。
近场反射损耗可按下式计算RdB=168+10×lg(σ/μrf)其中 r:波源与屏蔽之间的距离,估算取为200米。
将参数代入公式,得到反射损耗为。
因此,由于钢金属结构引起的损耗为吸收损耗和反射损耗之和,即为,再加上建筑物其他混凝土结构的损耗20dB,总损耗约为97dB。
2、链路预算下行链路(DownLink)是指基站发,移动台接收的链路。
上行链路(UpLink)是指移动台发,基站接收的链路。
对于GSM900M系统的上下行链路,按照链路预算公式,计算后建筑物内信号电平值为-99dBm左右,基本无法满足正常的通话需求。
电磁屏蔽基本原理介绍
电磁屏蔽基本原理介绍电磁屏蔽是指通过采取一定的措施,将电磁辐射或电磁波的干扰降至可接受的水平的过程。
在现代社会中,电磁辐射已经成为无处不在的存在,如电视、手机、电脑等电子设备都会产生电磁辐射。
然而,过高的电磁辐射会对人体和其他电子设备造成不良影响,因此电磁屏蔽就显得尤为重要。
电磁屏蔽的基本原理可以归纳为两个方面:屏蔽材料和屏蔽结构。
1. 屏蔽材料:屏蔽材料是指用于隔离电磁辐射的材料,常见的屏蔽材料包括金属、导电涂料、导电纤维等。
这些材料具有良好的导电性能,能够吸收或反射电磁波,从而降低电磁辐射的强度。
金属是一种常用的屏蔽材料,如铜、铝等。
金属具有良好的导电性和反射性,能够有效地吸收和反射电磁波。
常见的金属屏蔽材料有金属屏蔽罩、金属屏蔽板等。
导电涂料是一种将导电材料加入到涂料中形成的涂层,具有良好的导电性能。
通过在电子设备的外壳或电路板上涂覆导电涂料,可以形成一层导电膜,起到屏蔽电磁辐射的作用。
导电纤维是一种将导电材料织入纤维中形成的材料,具有良好的导电性能和柔软性。
导电纤维可以用于制作电磁屏蔽布料,可以用于制作电子设备的屏蔽罩或服装等。
2. 屏蔽结构:屏蔽结构是指通过设计合理的结构来实现电磁屏蔽的效果。
常见的屏蔽结构包括屏蔽罩、屏蔽壳、屏蔽膜等。
屏蔽罩是一种金属或导电塑料制成的外壳,可以将电子设备完全包裹在内,从而阻挡电磁波的传播。
屏蔽罩通常具有开口和连接器,以便电子设备与外界进行通信。
屏蔽壳是一种金属或导电塑料制成的外壳,可以将电子设备的关键部件包裹在内,从而阻挡电磁波的干扰。
屏蔽壳通常具有开口和密封装置,以便维修和保养。
屏蔽膜是一种将导电材料涂覆在基材上形成的薄膜,可以用于电子设备的屏蔽。
屏蔽膜具有柔软性和可塑性,可以根据需要进行剪裁和粘贴,方便实现电磁屏蔽。
总结:电磁屏蔽是通过屏蔽材料和屏蔽结构来降低电磁辐射的干扰。
屏蔽材料具有良好的导电性能,能够吸收或反射电磁波;屏蔽结构通过设计合理的结构来实现电磁屏蔽的效果。
电磁屏蔽的基本概念和原理(一)
电磁屏蔽的基本概念和原理(一)电磁屏蔽的基本概念和原理1. 电磁屏蔽是什么?电磁屏蔽是指利用物理或电子技术,以降低或消除电磁波辐射对设备或环境的干扰或损害的一种方法。
通过采用适当的材料或结构,电磁屏蔽可以将电磁波的能量吸收或反射,从而达到屏蔽的效果。
2. 电磁波的基本概念•电磁波是由电场和磁场交替变化所产生的一种波动现象。
•电磁波具有一定的频率和波长,广泛存在于我们的生活中,如无线电波、微波、可见光、X射线等。
3. 电磁波的传播特性•电磁波具有辐射性和穿透性,可以在空气和真空中传播,也可以穿透一些材料。
•电磁波会通过与之相互作用的物体产生反射、折射、散射等现象,从而影响设备的正常工作。
4. 电磁屏蔽的原理电磁屏蔽主要依赖于两个原理:吸收和反射。
4.1 吸收原理•电磁屏蔽材料可以通过吸收电磁波的能量来实现屏蔽作用。
•一些特殊的材料,如铁、镍、铜等,对电磁波的能量具有较好的吸收能力。
•这些材料在电磁波作用下产生涡流和电荷运动,从而将电磁波的能量转化为热能。
4.2 反射原理•电磁屏蔽材料可以通过反射电磁波的能量来实现屏蔽作用。
•一些金属材料,如铝、钢铁等,对电磁波具有较好的反射能力。
•这些材料可以将电磁波的能量反射回源头,从而减少对其他设备或环境的干扰。
5. 电磁屏蔽的应用电磁屏蔽广泛应用于各个领域,包括通信、电子设备、军事、医疗等。
•在通信领域,电磁屏蔽可以避免无线电波的相互干扰,保证通信的质量和可靠性。
•在电子设备中,电磁屏蔽可以避免电磁波对电子元件的损坏或干扰,提高设备的性能和寿命。
•在军事领域,电磁屏蔽具有重要的战术和战略意义,可以保护敏感设备和通信的安全。
•在医疗领域,电磁屏蔽可以避免医疗设备对患者产生干扰或损害,确保医疗的安全和准确性。
6. 总结电磁屏蔽作为一种重要的技术手段,可以有效降低电磁辐射对设备和环境的干扰或损害。
通过吸收和反射原理,电磁屏蔽材料能够将电磁波的能量转化为其他形式,从而实现屏蔽的效果。
电磁屏蔽机理
电磁屏蔽是指通过设计和使用特定的材料或结构来阻挡电磁波的传播。
电磁波是一种由电场和磁场相互作用而产生的能量波动,它在空间中传播,且速度与光速相等。
电磁屏蔽的机理涉及到电磁波的特性和材料的特性。
一般来说,电磁波在遇到材料时,会发生反射、穿透或吸收。
其中,反射是指电磁波遇到材料表面时发生反弹,穿透是指电磁波能够穿过材料而不改变方向,吸收是指电磁波被材料吸收并转化为热能或其他形式的能量。
电磁屏蔽的主要机理包括以下几种:
反射:当电磁波遇到屏蔽材料时,一部分电磁波会被材料表面反射回去,从而减少电磁波的传播。
吸收:屏蔽材料中的电离子或分子可以吸收电磁波的能量,并将其转化为热能或其他形式的能量,从而减少电磁波的传播。
散射:当电磁波遇到屏蔽材料中的不均匀性或粗糙表面时,会发生散射现象,从而减少电磁波的传播。
屏蔽器结构:屏蔽器的设计结构也可以对电磁波的传播产生影响。
例如,金属屏蔽器可以通过金属导体形成的屏蔽结构来阻挡电磁波的传播。
总的来说,电磁屏蔽的机理涉及到材料的吸收、反射和散射等特性,以及屏蔽器的设计结构。
电磁屏蔽原理
电磁屏蔽原理
电磁屏蔽原理是指将电磁波传播的能量限制在一个特定的区域内,防止其对周围设备和系统产生干扰的方法。
电磁波是由电场和磁场相互作用形成的波动现象,如无线电波、微波、红外线等。
当电磁波遇到各种物体时,会发生折射、反射、透射和吸收等现象。
电磁屏蔽原理就是通过选用适当的材料和结构,降低电磁波的传播能量,使其无法穿过屏蔽结构,从而达到屏蔽的效果。
电磁屏蔽的常用材料包括金属、导电涂层、电导纤维等。
金属是最常见的屏蔽材料,由于其具有良好的导电性能,能够吸收和反射电磁波。
导电涂层则是在物体表面喷涂一层导电材料,形成导电薄膜,起到屏蔽电磁波的作用。
电导纤维是一种导电纤维材料,其纤维表面被导电涂层包覆,可用于制作柔性屏蔽材料。
除了材料选择外,屏蔽结构的设计也是实现电磁屏蔽的关键。
常见的屏蔽结构包括金属屏蔽箱、金属网格、金属箔等。
金属屏蔽箱是用金属材料构成的封闭结构,能够有效地阻挡电磁波的传播。
金属网格则是将金属线或金属薄片编织而成,可以成为一种透明且有效的屏蔽结构。
金属箔是一层薄的金属膜,可以贴附于物体表面,起到屏蔽电磁波的作用。
总之,电磁屏蔽通过选择合适的材料和设计屏蔽结构,可以有效地限制电磁波的传播范围,以减少干扰并保护周围设备和系统的正常运行。
电磁屏蔽效能原理
电磁屏蔽效能原理
电磁屏蔽效能原理是利用屏蔽体对电磁能流的反射、吸收和引导作用,其与屏蔽结构表面和屏蔽体内部感生的电荷、电流与极化现象密切相关。
电磁屏蔽与屏蔽体接地与否并没有关系。
真正影响屏蔽体屏蔽效能的只有两个因素:一个是整个屏蔽体表面必须是导电连续的,另一个是不能有直接穿透屏蔽体的导体。
屏蔽体上有很多导电不连续点,最主要的一类是屏蔽体不同部分结合处形成的不导电缝隙。
这些不导电的缝隙就产生了电磁泄漏,如同流体会从容器上的缝隙上泄漏一样。
解决这种泄漏的一个方法是在缝隙处填充导电弹性材料,消除不导电点。
这就像在流体容器的缝隙处填充橡胶的道理一样。
这种弹性导电填充材料就是电磁密封衬垫。
电磁屏蔽原理
电磁屏蔽原理电磁屏蔽(Electromagneticshielding)作为一种重要的物理和工程技术,在当今世界具有重要的意义。
它具有极高的研究价值,也非常重要的应用实用价值。
本文深入研究电磁屏蔽原理,并介绍电磁屏蔽的具体应用。
1.磁屏蔽的概念电磁屏蔽是一种在科学中用于阻隔、消除、减少或绝缘一个物体对外界电磁波的影响的方法。
它通过相反的电磁波来抵消外部的电磁波,从而达到消除电磁干扰的效果。
它可以有效地阻止电磁波及其传输和分布,减少或者抑制外界电磁场的干扰,从而有效保护设备或系统遭到外部电磁干扰的影响。
2.磁屏蔽的原理电磁屏蔽的原理是通过一个覆盖物,它能够有效吸收入射的电磁波,以致于降低外部电磁波对内部设备的影响。
它的原理是:当电磁波碰到屏蔽介质时,通过磁力线的改变和电荷蓄积,形成一种反射电磁波,使其与原始电磁波抵消,从而形成电磁屏蔽效应。
3.磁屏蔽的具体应用电磁屏蔽可以应用于电子产品,电子系统或部件中,以避免外部电磁波的干扰。
它可以用于电子设备的绝缘层,以及电子操作台的绝缘层,以及高科技设备如测控仪器系统的敏感性部件的屏蔽层,以便阻止外部电磁波干扰。
此外,电磁屏蔽还可以用于汽车车辆、发电机组、电网设施等重要场所,以有效防止电磁干扰、保护电力系统和其他重要设备的正常工作。
4.结电磁屏蔽是一种具有重要实际意义的物理技术,它可以有效阻止电磁波及其传输和分布,减少或者抑制外界电磁场的干扰,从而有效保护设备或系统遭到外部电磁干扰的影响,以及用于汽车车辆、发电机组、电网设施等重要场所,保护电网的正常工作。
此外,还有些电磁屏蔽的发展前景,由此可见,当今社会技术的发展与电磁屏蔽紧密联系在一起,但我们还需要对其原理进行更为深入的研究,在实践应用中把握其作用并发挥最大效果,以满足社会技术发展的需求。
电磁屏蔽的原理
电磁屏蔽的原理
电磁屏蔽是一种减少或阻挡电磁波传播的技术。
其原理主要是利用导电性材料的导电性能和绝缘性材料的绝缘性能,以及电磁波的反射、吸收和衰减特性。
电磁波的传播是以电场和磁场的变化传递的。
当电磁波遇到导电材料时,会发生电磁波吸收和反射。
导电材料可以吸收电磁波的能量,并将其转化为热能,从而减少电磁波的传播。
此外,导电材料表面的自由电子会对电磁波产生反射作用,将电磁波反射回去,减少其传播。
绝缘材料内部存在弱的电流漏泄现象,这使得绝缘材料具有抑制电磁辐射的能力。
当电磁波遇到绝缘材料时,电荷在材料中移动的过程中会发生电荷和电场的重分布,从而使电磁波能量被损耗和分散,降低电磁波的穿透性。
为了提高电磁屏蔽的效果,可以采取多种手段,如增加导电材料的厚度、使用多层屏蔽结构、在导电材料之间加入绝缘层等。
这些手段能够增加电磁波与导电材料的相互作用,提高屏蔽效果。
总的来说,电磁屏蔽的原理是通过导电材料和绝缘材料相结合,利用反射、吸收和分散等特性来减少电磁波的传播和辐射,达到屏蔽电磁波的目的。
解释磁屏蔽的原理
解释磁屏蔽的原理
磁屏蔽的原理主要是利用磁导体来阻隔磁场。
1. 磁屏蔽材料一般选择高磁导率的材料,如钢板、软磁合金等。
这些材料内部容易形成磁场。
2. 当外部磁场作用到这些磁屏蔽材料上时,会诱导材料内部形成强烈的漩涡电流。
3. 这些漩涡电流会产生反向的磁场,抵消和减弱外部磁场,实现屏蔽作用。
4. 磁屏蔽的效果与材料的磁导率、厚度及外部磁场强度相关。
5. 屏蔽箱一般采用多层不同材料,利用各层间转移光明反复反射的原理增强屏蔽效果。
6. 常见的磁屏蔽材料还有鹅毛末、硫酸铁等多孔质材料,利用吸收和消散实现屏蔽。
7. 磁屏蔽可广泛应用于对磁场敏感的精密设备防护以及医疗检测系统中。
综上所述,磁屏蔽利用磁导体形成的反向磁场来抵消外部磁场干扰,从而达到屏蔽isolation效果。
电磁屏蔽的原理
电磁屏蔽的原理
随着电子产品的普及,人们越来越依赖于电子设备,但同时也面临着电磁辐射的问题。
电磁辐射不仅会对人体健康造成影响,还会对电子设备的性能产生负面影响。
为了解决这个问题,人们研究出了电磁屏蔽技术。
电磁屏蔽是指将电子设备内部的电磁场隔离开来,以防止外部电磁场对设备产生干扰。
电磁屏蔽的原理主要有以下几个方面:
1. 电磁波的反射和吸收
电磁波可以被金属等导体反射和吸收。
在电子设备内部,通过加装金属屏蔽罩或使用金属覆盖物等方法,可以将电磁波反射回去或者吸收掉,从而达到屏蔽的效果。
2. 电磁波的衰减
电磁波在传播过程中会发生衰减。
在电子设备内部,可以通过采用屏蔽材料、加装滤波器等方法,使电磁波在传播过程中发生衰减,从而达到屏蔽的效果。
3. 防止电磁泄漏
电子设备内部的电磁波如果泄漏出去,就会对周围环境产生干扰。
因此,在设计电子设备时,需要采用合适的屏蔽措施,防止电磁泄
漏。
4. 接地的作用
在电子设备内部,正确的接地是保证屏蔽效果的必要条件。
通过将设备内部的金属屏蔽罩接地,可以将电磁波引导到地面上,从而达到屏蔽的效果。
除了上述原理之外,电磁屏蔽还需要考虑屏蔽的频率范围、屏蔽的材料选择、屏蔽的结构设计等因素。
因此,在实际应用中,需要根据具体情况选择合适的屏蔽措施。
电磁屏蔽技术的应用,可以有效地减少电磁辐射对人体和设备的危害,保障人们的健康和电子设备的正常运作。
电磁屏蔽的基本概念和原理
电磁屏蔽是指采取一系列措施来减弱或阻止电磁辐射对设备、系统或人体的干扰或损害。
它是在电磁环境中保护敏感元件、防止电磁泄露或限制电磁辐射的重要技术手段。
以下是电磁屏蔽的基本概念和原理:
基本概念:
电磁波:电磁波是由电场和磁场通过空间传播的能量。
它包括各种频率和波长的电磁辐射,如无线电波、微波、红外线、可见光、紫外线和X射线等。
电磁辐射:电磁辐射是指电磁波通过空间传播,向周围环境辐射能量的过程。
电磁辐射可能会对设备、系统或人体产生干扰或损害。
电磁屏蔽:电磁屏蔽是指采取一系列措施,以降低或消除电磁波对设备、系统或人体的干扰或损害。
原理:
电磁屏蔽的原理基于电磁波的特性和物质的相互作用。
以下是一些常见的电磁屏蔽原理:
反射:通过使用具有良好导电性的材料,电磁波可以被反射回源头,从而减少外部电磁辐射对设备的影响。
吸收:使用吸波材料(如电磁波吸收材料)来吸收电磁波的能量,将其转化为热能或其他形式的能量,从而减少电磁波的传播和干扰。
屏蔽:使用具有良好导电性的材料制作屏蔽结构,将电磁波隔离在屏蔽区域内,防止其对周围设备或人体的干扰。
地线接地:通过良好的接地系统,将电磁波的能量引导到地面,减少电磁辐射对设备的干扰。
滤波:使用滤波器来过滤特定频率范围的电磁波,阻止它们进入设备或系统。
屏蔽箱或屏蔽室:使用金属屏蔽箱或建造电磁屏蔽室,有效隔离电磁波,阻止其对内部设备或系统的干扰。
电磁屏蔽理论简单分析
电磁屏蔽理论分析随着现代科学技术的发展,各种电子电气设备为人们的日常生活及社会建设提供了很大帮助,同时由此产生的电磁辐射与干扰问题又制约着人们的生产和生活,它不仅影响通讯甚至直接威胁到人类的健康及我们赖以生存的自然环境,因此有关电磁屏蔽问题受到人们的极大关注。
所谓电磁屏蔽就是利用导电或导磁材料将电磁辐射限制在某一规定的空间X围内,按其原理可以分为电场屏蔽、磁场屏蔽和电磁屏蔽。
一、静电屏蔽1、外电场屏蔽下图1为利用导体空腔屏蔽外部静电场的原理示意图。
A 为需要屏蔽的物体,S为导体屏蔽空腔,在静电平衡条件下空腔外表面两侧感应出等量异号的电荷,电力线终止于导体外表面上,整个腔为等位体,腔内无电力线,因而实现腔内物体不受外电场影响的目的。
图12、内电场的屏蔽当屏蔽带电体的电场时,除了要用导体空腔将带电体屏蔽起来外,还必须将屏蔽空腔接地。
图2为屏蔽腔不接地状态下的电力线分布情况,屏蔽腔的内表面感应出于带电体等量的负电荷,外表面感应出等量的正电荷。
若将屏蔽腔接地,如图3所示屏蔽空腔外表面所感应的电荷将通过接地线流入大地,外部电场消失,电力线被限制在屏蔽空腔内部起到屏蔽作用。
图2 图3二、稳横磁场的屏蔽静磁屏蔽的目的是防止外界的静磁场和低频电流的磁场进入到某个需要保护的区域,其依据的原理是利用高导磁材料所具有的低磁阻特性,使磁感线大部分从磁性介质中穿过,从而导致磁场在磁性介质中明显加强, 而在磁性介质所包围的区域内则明显减弱,起到屏蔽作用。
如图4所示。
图4定量分析如下图n为界面法线单位矢量,从介质1指向介质2,由边界条件12u u>>(1)()21n B B⋅-=(2)其中sJ为面电流密度,对于稳恒磁场,sJ=0()12n H H⨯-=(3)由(2)(3),得2211sin sinH Hθθ=(4)分界面n2u1u22H B2θ1θ11H B2211cos cos B B θθ=(5)又BH u=,得 212121sin sin B Bu u θθ= (6) 由(5)(6)得1122tan tan u u θθ= (7) 由(7)可知当12u u >>时,得12θθ>>,从而由1221cos cos B B θθ=得12B B >>。
电磁波屏蔽原理
电磁波屏蔽原理
电磁波屏蔽原理是通过使用特定的材料或结构,将电磁波的传播限制在一个特定的区域内,以减少或防止其对周围环境或电子设备的干扰。
电磁波屏蔽的原理主要涉及两个方面:反射和吸收。
首先是反射屏蔽原理。
当电磁波遇到一个导电材料时,材料中的自由电子会受到电磁波的作用力导致运动。
这些运动的自由电子会发生迅速的反向运动,产生反向的电场,从而使电磁波发生反射。
因此,导电材料可以作为电磁波的反射屏蔽。
其次是吸收屏蔽原理。
当电磁波通过一个导电材料时,材料中的自由电子会因为电磁波的作用力而发生震荡。
这种震荡过程会将电磁波的能量转化为热能,从而减少电磁波的干扰。
因此,导电材料也可以作为电磁波的吸收屏蔽。
不同频率的电磁波受到材料的屏蔽效果也有所不同。
一般来说,导电性强的材料对低频电磁波具有很好的屏蔽效果,而对高频电磁波的屏蔽效果则较差。
因此,在屏蔽电磁波时需要选择合适的材料和结构。
常见的电磁波屏蔽材料包括金属、碳纤维、导电涂层等。
金属在电磁波屏蔽中具有很好的反射和吸收能力,常用于制作屏蔽罩、屏蔽箱等设备。
碳纤维在高频电磁波屏蔽中具有较好的吸收性能,适合制作电磁波屏蔽材料。
导电涂层则可以在光透明材料上形成导电膜层,实现对电磁波的屏蔽。
总的来说,电磁波屏蔽的原理是基于导电材料对电磁波的反射和吸收作用,通过选择合适的材料和结构,可以有效地减少或阻止电磁波的传播,从而减少对周围环境或电子设备的干扰。
电磁屏蔽原理
电磁屏蔽原理
电磁屏蔽(EMI)是指利用永久磁铁、电容器和导体等电磁技术来防止空中传输的电磁波造成的电磁干扰。
它是一种综合利用物理防护技术和磁性防护技术的一种措施,旨在确保各种电子设备的正常工作状态,以及防止电磁波污染对其他系统和人员的影响。
电磁屏蔽是一种有效的保护电子电路和系统免受电磁干扰的技术,常用于电子系统、汽车电子系统、航空航天、通信设备、消费电子产品、电源系统等。
它的原理是:通过某种方式使物理空间内的电磁波不能从某处穿过,以保护电子电路或设备的正常运行;如果不进行屏蔽,电磁波可能会给电子设备造成损害。
电磁屏蔽的原理有三种:第一种是采用屏蔽结构,通过封闭屏蔽结构来阻挡电磁波;第二种是采用电磁绝缘,通过不同导体的磁阻和电阻来降低电磁波的能量;第三种是采用磁阻特性,通过改变电磁波的信号组成,从而降低其能量。
屏蔽结构由导线、铁片或金属框架组成,可以吸收、散射和反射电磁波,从而抑制其波动,从而达到吸收电磁波的效果,保障电子电路的正常运行。
电磁绝缘是指在电磁屏蔽的结构中加入两种或更多的导体,其中一个导体的传导中具有大量的磁阻和电阻,而另一种导体的传导中则没有或很少的磁阻和电阻,从而降低电磁波的干扰能量。
使用电磁绝缘可以降低高频电磁波的干扰,但是其电流传导能力较低。
磁阻特性是指在电磁屏蔽结构中,采用高磁阻性材料表面和容器
体等材料所构成的特殊结构,以防止电磁波的渗透。
这种方法可以有效促进电磁波的散射和反射,而不是完全阻挡。
磁阻的降低可以有效降低电磁波的能量水平。
总之,电磁屏蔽是一种有效的电磁干扰抑制技术,可以有效降低电磁波对电子电路和系统的影响,以确保设备的正常运行,促进其安全性与可靠性。
电磁屏蔽的原理
电磁屏蔽的原理
电磁屏蔽是一种减少电磁干扰的技术,它利用一系列的电磁屏蔽材料来隔离电磁波的传播和接收,用于保护电子设备的正常运作和减少对人体的影响。
电磁屏蔽的原理主要涉及电磁波的传播和反射、电磁波的辐射以及材料的导电性等因素。
在电磁场中,电磁波会在介质中传播,并被介质表面反射、透射、衍射等。
电磁屏蔽的主要原理是通过使用一系列的屏蔽材料,将电磁波的传播路径限制在材料的界面上。
电磁波传播时会相互干扰和干扰其他设备。
通过使用电磁屏蔽材料,可以减少电磁波的传播和干扰,从而有效保护设备的正常运作。
电磁波的辐射是电磁屏蔽的另一个重要原理。
通过采用各种屏蔽材料来减少电磁波的辐射,这些材料能够将电磁波吸收并将其转化为热能或者其他形式的能量。
这些材料能够有效地限制电磁辐射的范围,从而减少对其他设备的干扰和对人体的影响。
材料的导电性也是电磁屏蔽的基本原理之一。
通过使用导电材料,可以将电磁波的能量导入材料中,并将其吸收周围的环境中。
这些导电材料可以有效地吸收电磁波的能量,从而消除干扰和辐射。
综上所述,电磁屏蔽的原理主要包括电磁波的传播和反射、电磁波的辐射以及材料的导电性等因素。
通过使用一系列不同的电磁屏蔽材料,可以有效地减少电磁
干扰和辐射,从而保护电子设备的正常运作和减少对人体的影响。
电磁屏蔽基本原理介绍
在电子设备及电子产品中,电磁干扰Electromagnetic Interference能量通过传导性耦合和辐射性耦合来进行传输;为满足电磁兼容性要求,对传导性耦合需采用滤波技术,即采用EMI滤波器件加以抑制;对辐射性耦合则需采用屏蔽技术加以抑制;在当前电磁频谱日趋密集、单位体积内电磁功率密度急剧增加、高低电平器件或设备大量混合使用等因素而导致设备及系统电磁环境日益恶化的情况下,其重要性就显得更为突出;屏蔽是通过由金属制成的壳、盒、板等屏蔽体,将电磁波局限于某一区域内的一种方法;由于辐射源分为近区的电场源、磁场源和远区的平面波,因此屏蔽体的屏蔽性能依据辐射源的不同,在材料选择、结构形状和对孔缝泄漏控制等方面都有所不同;在设计中要达到所需的屏蔽性能,则需首先确定辐射源,明确频率范围,再根据各个频段的典型泄漏结构,确定控制要素,进而选择恰当的屏蔽材料,设计屏蔽壳体;屏蔽体对辐射干扰的抑制能力用屏蔽效能SEShielding Effectiveness来衡量,屏蔽效能的定义:没有屏蔽体时,从传输到空间某一点P的场强 1 1和加入屏蔽体后,辐射干扰源传输到空间同一点P的场强 2 2之比,用dB分贝表示;图1 屏蔽效能定义示意图屏蔽效能表达式为 dB 或dB 工程中,实际的辐射干扰源大致分为两类:类似于对称振子天线的非闭合载流导线辐射源和类似于变压器绕组的闭合载流导线辐射源;由于电偶极子和磁偶极子是上述两类源的最基本形式,实际的辐射源在空间某点产生的场,均可由若干个基本源的场叠加而成图2;因此通过对和所产生的场进行分析,就可得出实际辐射源的及和远、的场特性,从而为屏蔽分类提供良好的理论依据;图2 两类基本源在空间所产生的叠加场远近场的划分是根据两类基本源的场随1/r场点至源点的距离的变化而确定的, 为远近场的分界点,两类源在远近场的场特征及传播特性均有所不同;表1 两类源的场与传播特性场源类型近场远场场特性传播特性场特性传播特性以衰减平面波以衰减非平面波以衰减以衰减波阻抗为空间某点电场强度与磁场强度之比,场源不同、远近场不同,则波阻抗也有所不同,表2与图3分别用图表给出了的波阻抗特性;表2 两类源的波阻抗场源类型波阻抗Ω近场远场电偶极子120π120π磁偶极子120π120π能量密度包括电场分量能量密度和磁场分量能量密度,通过对由同一场源所产生的电场、磁场分量的能量密度进行比较,可以确定场源在不同区域内何种分量占主要成份,以便确定具体的屏蔽分类;能量密度的表达式由下列公式给出:电场分量能量密度磁场分量能量密度场源总能量密度表3 两类源的能量密度能量密度比较场源类型近场远场电偶极子磁偶极子表3给出了两种场源在远、近场的能量密度;从表中可以看出,两类源的近场有很大的区别,电偶极子的近场能量主要为电场分量,可忽略磁场分量;磁偶极子的近场能量主要为磁场分量,可忽略电场分量;两类源在远场时,电场、磁场分量均必须同时考虑;屏蔽类型依据上述分析可以进行以下分类:表4 屏蔽分类场源类型近场远场电偶极子非闭合载流导线电屏蔽包括静电屏蔽电磁屏蔽磁偶极子闭合载流导线磁屏蔽包括恒定磁场屏蔽电磁屏蔽电屏蔽的实质是减小两个设备或两个电路、组件、元件间电场感应的影响;电屏蔽的原理是在保证良好接地的条件下,将干扰源所产生的干扰终止于由良导体制成的屏蔽体;因此,接地良好及选择良导体做为屏蔽体是电屏蔽能否起作用的两个关键因素;磁屏蔽的原理是由屏蔽体对干扰磁场提供低磁阻的磁通路,从而对干扰磁场进行分流,因而选择钢、铁、坡莫合金等高磁导率的材料和设计盒、壳等封闭壳体成为磁屏蔽的两个关键因素;电磁屏蔽的原理是由金属屏蔽体通过对电磁波的反射和吸收来屏蔽辐射干扰源的远区场,即同时屏蔽场源所产生的电场和磁场分量;由于随着频率的增高,波长变得与屏蔽体上孔缝的尺寸相当,从而导致屏蔽体的孔缝泄漏成为电磁屏蔽最关键的控制要素;屏蔽体的泄漏耦合结构与所需抑制的频率密切相关,三类屏蔽所涉及的频率范围及控制要素如表5所示:表5 泄漏耦合结构与控制要素屏蔽类型频率范围10kHz~500kHz 1MHz~500MHz 500MHz~40GHz实际屏蔽体上同时存在多个泄漏耦合结构n个,设机箱接缝、通风孔、屏蔽体壁板等各泄漏耦合结构的单独屏蔽效能如只考虑接缝为SEii=1,2,…,n,则屏蔽体总的屏蔽效能由上式可以看出,屏蔽体的屏蔽效能是由各个泄漏耦合结构中产生最大泄漏耦合的结构所决定的,即由屏蔽最薄弱的环节所决定的;因此进行屏蔽设计时,明确不同频段的泄漏耦合结构,确定最大泄漏耦合要素是其首要的设计原则;在三类屏蔽中,磁屏蔽和电磁屏蔽的难度较大;尤其是电磁屏蔽设计中的孔缝泄漏抑制最为关键,成为屏蔽设计中应重点考虑的首要因素;图4 典型机柜结构示意图根据孔耦合理论,决定孔缝泄漏量的因素主要有两个:孔缝面积和孔缝最大线度尺寸;两者皆大,则泄漏最为严重;面积小而最大线度尺寸大则电磁泄漏仍然较大;图4所示为一典型机柜示意图,上面的孔缝主要分为四类:●机箱机柜接缝该类缝虽然面积不大,但其最大线度尺寸即缝长却非常大,由于维修、开启等限制,致使该类缝成为电子设备中屏蔽难度最大的一类孔缝,采用导电衬垫等特殊屏蔽材料可以有效地抑制电磁泄漏;该类孔缝屏蔽设计的关键在于:合理地选择导电衬垫材料并进行适当的变形控制;●通风孔该类孔面积和最大线度尺寸较大,通风孔设计的关键在于通风部件的选择与装配结构的设计;在满足通风性能的条件下,应尽可能选用屏效较高的屏蔽通风部件;●观察孔与显示孔该类型孔面积和最大线度尺寸较大,其设计的关键在于屏蔽透光材料的选择与装配结构的设计;●连接器与机箱接缝这类缝的面积与最大线度尺寸均不大,但由于在高频时导致连接器与机箱的接触阻抗急剧增大,从而使得的共模传导发射变大,往往导致整个设备的辐射发射出现超标,为此应采用导电橡胶等连接器导电衬垫;综上所述,孔缝抑制的设计要点归纳为:●合理选择屏蔽材料;●合理设计安装互连结构;电磁屏蔽电磁屏蔽是解决电磁兼容问题的重要手段之一;大部分电磁兼容问题都可以通过电磁屏蔽来解决;用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需要对电路做任何修改;1 选择屏蔽材料屏蔽体的有效性用屏蔽效能来度量;屏蔽效能是没有屏蔽时空间某个位置的场强E1与有屏蔽时该位置的场强E2的比值,它表征了屏蔽体对电磁波的衰减程度;用于电磁兼容目的的屏蔽体通常能将电磁波的强度衰减到原来的百分之一至百万分之一,因此通常用分贝来表述屏蔽效能,这时屏蔽效能的定义公式为:SE = 20 lg E1/ E2 dB用这个定义式只能测试屏蔽材料的屏蔽效能,而无法确定应该使用什么材料做屏蔽体;要确定使用什么材料制造屏蔽体,需要知道材料的屏蔽效能与材料的什么特性参数有关;工程中实用的表征材料屏蔽效能的公式为:SE = A + R dB式中的A称为屏蔽材料的吸收损耗,是电磁波在屏蔽材料中传播时发生的,计算公式为:A=fμrσr dBt = 材料的厚度,μr = 材料的磁导率,σr = 材料的电导率,对于特定的材料,这些都是已知的;f = 被屏蔽电磁波的频率;式中的R称为屏蔽材料的反射损耗,是当电磁波入射到不同媒质的分界面时发生的,计算公式为:R=20lgZW/ZS dB式中,Zw=电磁波的波阻抗,Zs=屏蔽材料的特性阻抗;电磁波的波阻抗定义为电场分量与磁场分量的比值:Zw = E / H;在距离辐射源较近<λ/2π,称为近场区时,波阻抗的值取决于辐射源的性质、观测点到源的距离、介质特性等;若辐射源为大电流、低电压辐射源电路的阻抗较低,则产生的电磁波的波阻抗小于377,称为低阻抗波,或磁场波;若辐射源为高电压,小电流辐射源电路的阻抗较高,则波阻抗大于377,称为高阻抗波或电场波;关于近场区内波阻抗的具体计算公式本文不予论述,以免冲淡主题,感兴趣的读者可以参考有关电磁场方面的参考书;当距离辐射源较远>λ/2π,称为远场区时,波波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377Ω;屏蔽材料的阻抗计算方法为:|ZS|=×10-7fμr/σr Ωf=入射电磁波的频率Hz,μr=相对磁导率,σr=相对电导率从上面几个公式,就可以计算出各种屏蔽材料的屏蔽效能了,为了方便设计,下面给出一些定性的结论;●在近场区设计屏蔽时,要分别考虑电场波和磁场波的情况;●屏蔽电场波时,使用导电性好的材料,屏蔽磁场波时,使用导磁性好的材料;●同一种屏蔽材料,对于不同的电磁波,屏蔽效能使不同的,对电场波的屏蔽效能最高,对磁场波的屏蔽效能最低,也就是说,电场波最容易屏蔽,磁场波最难屏蔽;●一般情况下,材料的导电性和导磁性越好,屏蔽效能越高;●屏蔽电场波时,屏蔽体尽量靠近辐射源,屏蔽磁场源时,屏蔽体尽量远离磁场源;有一种情况需要特别注意,这就是1kHz以下的磁场波;这种磁场波一般由大电流辐射源产生,例如,传输大电流的电力线,大功率的变压器等;对于这种频率很低的磁场,只能采用高导磁率的材料进行屏蔽,常用的材料是含镍80%左右的坡莫合金;2 孔洞和缝隙的电磁泄漏与对策一般除了低频磁场外,大部分金属材料可以提供100dB以上的屏蔽效能;但在实际中,常见的情况是金属做成的屏蔽体,并没有这么高的屏蔽效能,甚至几乎没有屏蔽效能;这是因为许多设计人员没有了解电磁屏蔽的关键;首先,需要了解的是电磁屏蔽与屏蔽体接地与否并没有关系;这与静电场的屏蔽不同,在静电中,只要将屏蔽体接地,就能够有效地屏蔽静电场;而电磁屏蔽却与屏蔽体接地与否无关,这是必须明确的;电磁屏蔽的关键点有两个,一个是保证屏蔽体的导电连续性,即整个屏蔽体必须是一个完整的、连续的导电体;另一点是不能有穿过机箱的导体;对于一个实际的机箱,这两点实现起来都非常困难;首先,一个实用的机箱上会有很多孔洞和孔缝:通风口、显示口、安装各种调节杆的开口、不同部分结合的缝隙等;屏蔽设计的主要内容就是如何妥善处理这些孔缝,同时不会影响机箱的其他性能美观、可维性、可靠性;其次,机箱上总是会有电缆穿出入,至少会有一条电源电缆;这些电缆会极大地危害屏蔽体,使屏蔽体的屏蔽效能降低数十分贝;妥善处理这些电缆是屏蔽设计中的重要内容之一穿过屏蔽体的导体的危害有时比孔缝的危害更大;当电磁波入射到一个孔洞时,其作用相当于一个偶极天线图1,当孔洞的长度达到λ/2时,其辐射效率最高与孔洞的宽度无关,也就是说,它可以将激励孔洞的全部能量辐射出去;对于一个厚度为0材料上的孔洞,在远场区中,最坏情况下造成最大泄漏的极化方向的屏蔽效能实际情况下屏蔽效能可能会更大一些计算公式为:SE=100 - 20lgL - 20lg f + 20lg 1 + L/H dB若L ≥λ/2,SE = 0 dB式中各量:L = 缝隙的长度mm,H = 缝隙的宽度mm,f = 入射电磁波的频率MHz;在近场区,孔洞的泄漏还与辐射源的特性有关;当辐射源是电场源时,孔洞的泄漏比远场时小屏蔽效能高,而当辐射源是磁场源时,孔洞的泄漏比远场时要大屏蔽效能低;近场区,孔洞的电磁屏蔽计算公式为:若ZC >D·f:SE = 48 + 20lg ZC - 20lgL·f+ 20lg 1 + L/H若Zc<D·f:SE = 20lg D/L + 20lg 1 + L/H式中:Zc=辐射源电路的阻抗Ω,D = 孔洞到辐射源的距离m,L、H = 孔洞长、宽mm,f = 电磁波的频率MHz说明:● 在第二个公式中,屏蔽效能与电磁波的频率没有关系;● 大多数情况下,电路满足第一个公式的条件,这时的屏蔽效能大于第二中条件下的屏蔽效能;● 第二个条件中,假设辐射源是纯磁场源,因此可以认为是一种在最坏条件下,对屏蔽效能的保守计算;● 对于磁场源,屏蔽效能与孔洞到辐射源的距离有关,距离越近,则泄漏越大;这点在设计时一定要注意,磁场辐射源一定要尽量远离孔洞;多个孔洞的情况当N个尺寸相同的孔洞排列在一起,并且相距很近距离小于λ/2时,造成的屏蔽效能下降为20lgN1/2;在不同面上的孔洞不会增加泄漏,因为其辐射方向不同,这个特点可以在设计中用来避免某一个面的辐射过强;除了使孔洞的尺寸远小于电磁波的波长,用辐射源尽量远离孔洞等方法减小孔洞泄漏以外,增加孔洞的深度也可以减小孔洞的泄漏,这就是截止波导的原理;一般情况下,屏蔽机箱上不同部分的结合处不可能完全接触,只能在某些点接触上,这构成了一个孔洞阵列;缝隙是造成屏蔽机箱屏蔽效能降级的主要原因之一;减小缝隙泄漏的方法有:● 增加导电接触点、减小缝隙的宽度,例如使用机械加工的手段如用铣床加工接触表面来增加接触面的平整度,增加紧固件螺钉、铆钉的密度;● 加大两块金属板之间的重叠面积;● 使用电磁密封衬垫,电磁密封衬垫是一种弹性的导电材料;如果在缝隙处安装上连续的电磁密封衬垫,那么,对于电磁波而言,就如同在液体容器的盖子上使用了橡胶密封衬垫后不会发生液体泄漏一样,不会发生电磁波的泄漏;3 穿过屏蔽体的导体的处理造成屏蔽体失效的另一个主要原因是穿过屏蔽体的导体;在实际中,很多结构上很严密的屏蔽机箱机柜就是由于有导体直接穿过屏蔽箱而导致电磁兼容试验失败,这是缺乏电磁兼容经验的设计师感到困惑的典型问题之一;判断这种问题的方法是将设备上在试验中没有必要连接的电缆拔下,如果电磁兼容问题消失,说明电缆是导致问题的因素;解决这个问题有两个方法:● 对于传输频率较低的信号的电缆,在电缆的端口处使用低通滤波器,滤除电缆上不必要的高频频率成分,减小电缆产生的电磁辐射因为高频电流最容易辐射;这同样也能防止电缆上感应到的环境噪声传进设备内的电路;● 对于传输频率较高的信号的电缆,低通滤波器可能会导致信号失真,这时只能采用屏蔽的方法;但要注意屏蔽电缆的屏蔽层要360°搭接,这往往是很难的;在电缆端口安装低通滤波器有两个方法● 安装在线路板上,这种方法的优点是经济,缺点是高频滤波效果欠佳;显然,这个缺点对于这种用途的滤波器是十分致命的,因为,我们使用滤波器的目的就是滤除容易导致辐射的高频信号,或者空间的高频电磁波在电缆上感应的电流;● 安装在面板上,这种滤波器直接安装在屏蔽机箱的金属面板上,如馈通滤波器、滤波阵列板、滤波连接器等;由于直接安装在金属面板上,滤波器的输入、输出之间完全隔离,接地良好,导线上的干扰在机箱端口上被滤除,因此滤波效果十分理想;缺点是安装需要一定的结构配合,这必须在设计初期进行考虑;由于现代电子设备的工作频率越来越高,对付的电磁干扰频率也越来越高,因此在面板上安装干扰滤波器成为一种趋势;一种使用十分方便、性能十分优越的器件就是滤波连接器;滤波连接器的外形与普通连接器的外形完全相同,可以直接替换;它的每根插针或孔上有一个低通滤波器;低通滤波器可以是简单的单电容电路,也可以是较复杂的电路;解决电缆上干扰的一个十分简单的方法是在电缆上套一个铁氧体磁环,这个方法虽然往往有效,但是有一些条件;许多人对铁氧体寄予了过高期望,只要一遇到电缆辐射的问题,就在电缆上套铁氧体,往往会失望;铁氧体磁环的效果预测公式为:共模辐射改善 =20lg加磁环后的共模环路阻抗/加磁环前的共模环路阻抗例如,如果没加铁氧体时的共模环路阻抗为100Ω,加了铁氧体以后为1000Ω,则共模辐射改善为20dB;说明:有时套上铁氧体后,电磁辐射并没有明显的改善,这并不一定是铁氧体没有起作用,而可能是除了这根电缆以外,还有其他辐射源;在电缆上使用铁氧体磁环时,要注意下列一些问题:● 磁环的内径尽量小● 磁环的壁尽量厚● 磁环尽量长● 磁环尽量安装在电缆的端头处金属屏蔽效率可用屏蔽效率SE对屏蔽罩的适用性进行评估,其单位是分贝,计算公式为 SEdB=A+R+B 其中 A:吸收损耗dB R:反射损耗dB B:校正因子dB适用于薄屏蔽罩内存在多个反射的情况一个简单的屏蔽罩会使所产生的电磁场强度降至最初的十分之一,即SE等于20dB;而有些场合可能会要求将场强降至为最初的十万分之一,即SE要等于100dB;吸收损耗是指电磁波穿过屏蔽罩时能量损耗的数量,吸收损耗计算式为AdB=f×σ×μ1/2×t其中 f:频率MHz μ:铜的导磁率σ:铜的导电率 t:屏蔽罩厚度反射损耗近场的大小取决于电磁波产生源的性质以及与波源的距离;对于杆状或直线形发射天线而言,离波源越近波阻越高,然后随着与波源距离的增加而下降,但平面波阻则无变化恒为377;相反,如果波源是一个小型线圈,则此时将以磁场为主,离波源越近波阻越低;波阻随着与波源距离的增加而增加,但当距离超过波长的六分之一时,波阻不再变化,恒定在377处;反射损耗随波阻与屏蔽阻抗的比率变化,因此它不仅取决于波的类型,而且取决于屏蔽罩与波源之间的距离;这种情况适用于小型带屏蔽的设备;近场反射损耗可按下式计算R电dB=20×lg r-30×lg f-10×lgμ/σ R磁dB=+20×lg r+10×lg f+10×lgμ/σ其中 r:波源与屏蔽之间的距离;SE算式最后一项是校正因子B,其计算公式为B=20lg-exp-2t/σ此式仅适用于近磁场环境并且吸收损耗小于10dB的情况;由于屏蔽物吸收效率不高,其内部的再反射会使穿过屏蔽层另一面的能量增加,所以校正因子是个负数,表示屏蔽效率的下降情况;EMI抑制策略只有如金属和铁之类导磁率高的材料才能在极低频率下达到较高屏蔽效率;这些材料的导磁率会随着频率增加而降低,另外如果初始磁场较强也会使导磁率降低,还有就是采用机械方法将屏蔽罩作成规定形状同样会降低导磁率;综上所述,选择用于屏蔽的高导磁性材料非常复杂,通常要向EMI屏蔽材料供应商以及有关咨询机构寻求解决方案;在高频电场下,采用薄层金属作为外壳或内衬材料可达到良好的屏蔽效果,但条件是屏蔽必须连续,并将敏感部分完全遮盖住,没有缺口或缝隙形成一个法拉第笼;然而在实际中要制造一个无接缝及缺口的屏蔽罩是不可能的,由于屏蔽罩要分成多个部分进行制作,因此就会有缝隙需要接合,另外通常还得在屏蔽罩上打孔以便安装与插卡或装配组件的连线;设计屏蔽罩的困难在于制造过程中不可避免会产生孔隙,而且设备运行过程中还会需要用到这些孔隙;制造、面板连线、通风口、外部监测窗口以及面板安装组件等都需要在屏蔽罩上打孔,从而大大降低了屏蔽性能;尽管沟槽和缝隙不可避免,但在屏蔽设计中对与电路工作频率波长有关的沟槽长度作仔细考虑是很有好处的;任一频率电磁波的波长为: 波长λ=光速C/频率Hz当缝隙长度为波长截止频率的一半时,RF波开始以20dB/10倍频1/10截止频率或6dB/8倍频1/2截止频率的速率衰减;通常RF发射频率越高衰减越严重,因为它的波长越短;当涉及到最高频率时,必须要考虑可能会出现的任何谐波,不过实际上只需考虑一次及二次谐波即可;一旦知道了屏蔽罩内RF辐射的频率及强度,就可计算出屏蔽罩的最大允许缝隙和沟槽;例如如果需要对1GHz波长为300mm的辐射衰减26dB,则150mm的缝隙将会开始产生衰减,因此当存在小于150mm的缝隙时,1GHz辐射就会被衰减;所以对1GHz频率来讲,若需要衰减20dB,则缝隙应小于15 mm150mm的1/10,需要衰减26dB时,缝隙应小于7.5 mm15mm的1/2以上,需要衰减32dB时,缝隙应小于3.75 mm7.5mm的1/2以上;可采用合适的导电衬垫使缝隙大小限定在规定尺寸内,从而实现这种衰减效果;定在规定尺寸内,从而实现这种衰减效果;。
电磁屏蔽原理
电磁屏蔽原理
电磁屏蔽(EMI),即电磁干扰屏蔽,是减少外界电磁波影响,使被屏蔽物体和周围环境之间尽量建立一个“物理屏障”的技术手段,保证被屏蔽物体的安全性。
它主要用于汽车、航空、航天等领域,也广泛用于电子信息产品和系统。
其目的是将一种电磁波的能量散射到环境中,以减少对接收机等接收系统的损害。
电磁屏蔽是电磁波的一种屏蔽技术,有时也被称为EMI屏蔽。
具体来说,它是通过安装一种合适材料,如钢板或金属罐、铁罐,或是采用一种特殊结构,比如屏蔽罩,而把外界电磁波抵消掉的方法。
它的基本原理是:屏蔽材料具有吸收和反射电磁能的能力,可以把外界的磁场引到屏蔽材料的表面,然后再由屏蔽材料的表面反射掉。
由于屏蔽材料的安装方式,可以达到有效的抑制屏蔽外部电磁波的作用,有效地防止外部电磁波的干扰。
电磁屏蔽的分类
1、机械屏蔽:机械屏蔽是指将外界电磁波与电路系统封闭在一个密闭的容器中,形成物理屏蔽,以减少电磁波对电路系统的干扰。
2、电容屏蔽:采用电容屏蔽技术将电路系统与外界电磁波隔离开来,使得电路系统能够有效地抑制外界电磁波的干扰。
3、磁性屏蔽:采用磁性屏蔽技术,就是采用外界电磁波的磁场作用,把电路系统与外界电磁波隔离开来,从而有效的抑制外界电磁波的干扰。
4、源外屏蔽:源外屏蔽是指采用外部磁场把接收系统屏蔽在一
个相对安静的磁场空间,以减少源外电磁波的干扰。
以上是电磁屏蔽的原理和分类,电磁屏蔽在航空、航天等领域起着不可被忽视的作用,可以在一定程度上保证系统运行的安全性。
另外,它也可以用于电子信息产品和系统,使得系统能够运行稳定,不受外界干扰。
在电子系统的设计中,要考虑到电磁屏蔽的问题,以求得最好的效果。
解释电磁屏蔽原理
解释电磁屏蔽原理
说到电磁屏蔽,不得不提到普通物理学中的静电场和静电平衡。
在普通物理学里面,任何电荷都在其周围空间激发电场,把两个电荷之间的相互作用力叫做电场力。
当把一个不带电的导体放置于静电场中时,不带电的导体会在瞬间产生新的电场,其内部电场强度与外部电场强度相等、方向相反达到静电平衡状态。
这样,原本不带电的导体受到“干扰”了。
假如说辐射源是一台正在运转的有刷电动机,那它产生的干扰电场也会使其他设备上产生电荷移动,进而影响设备的正常工作。
为了避免对设备的影响,一般通过“控制发射”和“减少接收”两种途径。
但控制发射,这边由于现实中较难对其进行定位和有效管理,所以往往都通过“减少
接收”来提高抗干扰的能力。
举个通俗的例子就是,管不了外面大吵大闹,只好关好门窗再安心读书。
上面的图很清晰的说明了电磁屏蔽的原理:如果没有屏蔽层,那么系统肯定要受到外界电磁干扰;增加屏蔽层,但由于屏蔽层未接地,系统仍然受到外界电磁干扰(屏蔽层只起到了传导介质的作用);如果增加的屏蔽层电位已强制控制在零,那么外界再怎么干扰,它也不为所动的。
比如女儿国的国王再怎么动人,在唐僧面前,她也就是普通施主……
所以基于此,一般在电子设备的外壳均为金属材质(高精度信号处理电路或高频/高速电路外部也会使用金属屏蔽罩)。
当然,考虑到系统散热,有必要采用蜂窝孔,但要保证电磁波不至于发生衍射或透射进去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在电子设备及电子产品中,电磁干扰(Electromagnetic Interference)能量通过传导性耦合和辐射性耦合来进行传输。
为满足电磁兼容性要求,对传导性耦合需采用滤波技术,即采用EMI滤波器件加以抑制;对辐射性耦合则需采用屏蔽技术加以抑制。
在当前电磁频谱日趋密集、单位体积内电磁功率密度急剧增加、高低电平器件或设备大量混合使用等因素而导致设备及系统电磁环境日益恶化的情况下,其重要性就显得更为突出。
欧阳光明(2021.03.07)屏蔽是通过由金属制成的壳、盒、板等屏蔽体,将电磁波局限于某一区域内的一种方法。
由于辐射源分为近区的电场源、磁场源和远区的平面波,因此屏蔽体的屏蔽性能依据辐射源的不同,在材料选择、结构形状和对孔缝泄漏控制等方面都有所不同。
在设计中要达到所需的屏蔽性能,则需首先确定辐射源,明确频率范围,再根据各个频段的典型泄漏结构,确定控制要素,进而选择恰当的屏蔽材料,设计屏蔽壳体。
屏蔽体对辐射干扰的抑制能力用屏蔽效能SE(Shielding Effectiveness)来衡量,屏蔽效能的定义:没有屏蔽体时,从辐射干扰源传输到空间某一点(P)的场强1(1)和加入屏蔽体后,辐射干扰源传输到空间同一点(P)的场强2(2)之比,用dB(分贝)表示。
图1 屏蔽效能定义示意图屏蔽效能表达式为 (dB) 或(dB)工程中,实际的辐射干扰源大致分为两类:类似于对称振子天线的非闭合载流导线辐射源和类似于变压器绕组的闭合载流导线辐射源。
由于电偶极子和磁偶极子是上述两类源的最基本形式,实际的辐射源在空间某点产生的场,均可由若干个基本源的场叠加而成(图2)。
因此通过对电偶极子和磁偶极子所产生的场进行分析,就可得出实际辐射源的远近场及波阻抗和远、近场的场特性,从而为屏蔽分类提供良好的理论依据。
图2 两类基本源在空间所产生的叠加场远近场的划分是根据两类基本源的场随1/r(场点至源点的距离)的变化而确定的,为远近场的分界点,两类源在远近场的场特征及传播特性均有所不同。
表1 两类源的场与传播特性场源类型近场()远场( )场特性传播特性场特性传播特性电偶极子非平面波以衰减平面波以衰减磁偶极子非平面波以衰减平面波以衰减波阻抗为空间某点电场强度与磁场强度之比,场源不同、远近场不同,则波阻抗也有所不同,表2与图3分别用图表给出了的波阻抗特性。
表2 两类源的波阻抗场源类型波阻抗(Ω)近场()远场()电偶极子120π120π磁偶极子120π120π能量密度包括电场分量能量密度和磁场分量能量密度,通过对由同一场源所产生的电场、磁场分量的能量密度进行比较,可以确定场源在不同区域内何种分量占主要成份,以便确定具体的屏蔽分类。
能量密度的表达式由下列公式给出:电场分量能量密度磁场分量能量密度场源总能量密度表3 两类源的能量密度能量密度比较场源类型近场()远场()电偶极子磁偶极子表3给出了两种场源在远、近场的能量密度。
从表中可以看出,两类源的近场有很大的区别,电偶极子的近场能量主要为电场分量,可忽略磁场分量;磁偶极子的近场能量主要为磁场分量,可忽略电场分量;两类源在远场时,电场、磁场分量均必须同时考虑。
屏蔽类型依据上述分析可以进行以下分类:表4 屏蔽分类场源类型近场()远场()电偶极子(非闭合载流导线)电屏蔽(包括静电屏蔽)电磁屏蔽磁偶极子(闭合载流导线)磁屏蔽(包括恒定磁场屏蔽)电磁屏蔽电屏蔽的实质是减小两个设备(或两个电路、组件、元件)间电场感应的影响。
电屏蔽的原理是在保证良好接地的条件下,将干扰源所产生的干扰终止于由良导体制成的屏蔽体。
因此,接地良好及选择良导体做为屏蔽体是电屏蔽能否起作用的两个关键因素。
磁屏蔽的原理是由屏蔽体对干扰磁场提供低磁阻的磁通路,从而对干扰磁场进行分流,因而选择钢、铁、坡莫合金等高磁导率的材料和设计盒、壳等封闭壳体成为磁屏蔽的两个关键因素。
电磁屏蔽的原理是由金属屏蔽体通过对电磁波的反射和吸收来屏蔽辐射干扰源的远区场,即同时屏蔽场源所产生的电场和磁场分量。
由于随着频率的增高,波长变得与屏蔽体上孔缝的尺寸相当,从而导致屏蔽体的孔缝泄漏成为电磁屏蔽最关键的控制要素。
屏蔽体的泄漏耦合结构与所需抑制的电磁波频率密切相关,三类屏蔽所涉及的频率范围及控制要素如表5所示:表5 泄漏耦合结构与控制要素实际屏蔽体上同时存在多个泄漏耦合结构(n个),设机箱接缝、通风孔、屏蔽体壁板等各泄漏耦合结构的单独屏蔽效能(如只考虑接缝)为SEi(i=1,2,…,n),则屏蔽体总的屏蔽效能由上式可以看出,屏蔽体的屏蔽效能是由各个泄漏耦合结构中产生最大泄漏耦合的结构所决定的,即由屏蔽最薄弱的环节所决定的。
因此进行屏蔽设计时,明确不同频段的泄漏耦合结构,确定最大泄漏耦合要素是其首要的设计原则。
在三类屏蔽中,磁屏蔽和电磁屏蔽的难度较大。
尤其是电磁屏蔽设计中的孔缝泄漏抑制最为关键,成为屏蔽设计中应重点考虑的首要因素。
图4 典型机柜结构示意图根据孔耦合理论,决定孔缝泄漏量的因素主要有两个:孔缝面积和孔缝最大线度尺寸。
两者皆大,则泄漏最为严重;面积小而最大线度尺寸大则电磁泄漏仍然较大。
图4所示为一典型机柜示意图,上面的孔缝主要分为四类:●机箱(机柜)接缝该类缝虽然面积不大,但其最大线度尺寸即缝长却非常大,由于维修、开启等限制,致使该类缝成为电子设备中屏蔽难度最大的一类孔缝,采用导电衬垫等特殊屏蔽材料可以有效地抑制电磁泄漏。
该类孔缝屏蔽设计的关键在于:合理地选择导电衬垫材料并进行适当的变形控制。
●通风孔该类孔面积和最大线度尺寸较大,通风孔设计的关键在于通风部件的选择与装配结构的设计。
在满足通风性能的条件下,应尽可能选用屏效较高的屏蔽通风部件。
●观察孔与显示孔该类型孔面积和最大线度尺寸较大,其设计的关键在于屏蔽透光材料的选择与装配结构的设计。
●连接器与机箱接缝这类缝的面积与最大线度尺寸均不大,但由于在高频时导致连接器与机箱的接触阻抗急剧增大,从而使得屏蔽电缆的共模传导发射变大,往往导致整个设备的辐射发射出现超标,为此应采用导电橡胶等连接器导电衬垫。
综上所述,孔缝抑制的设计要点归纳为:●合理选择屏蔽材料;●合理设计安装互连结构。
电磁屏蔽电磁屏蔽是解决电磁兼容问题的重要手段之一。
大部分电磁兼容问题都可以通过电磁屏蔽来解决。
用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需要对电路做任何修改。
1 选择屏蔽材料屏蔽体的有效性用屏蔽效能来度量。
屏蔽效能是没有屏蔽时空间某个位置的场强E1与有屏蔽时该位置的场强E2的比值,它表征了屏蔽体对电磁波的衰减程度。
用于电磁兼容目的的屏蔽体通常能将电磁波的强度衰减到原来的百分之一至百万分之一,因此通常用分贝来表述屏蔽效能,这时屏蔽效能的定义公式为:SE = 20 lg ( E1/ E2 ) (dB) 用这个定义式只能测试屏蔽材料的屏蔽效能,而无法确定应该使用什么材料做屏蔽体。
要确定使用什么材料制造屏蔽体,需要知道材料的屏蔽效能与材料的什么特性参数有关。
工程中实用的表征材料屏蔽效能的公式为:SE = A + R (dB) 式中的A称为屏蔽材料的吸收损耗,是电磁波在屏蔽材料中传播时发生的,计算公式为:A=3.34t(fμrσr)(dB) t = 材料的厚度,μr = 材料的磁导率,σr = 材料的电导率,对于特定的材料,这些都是已知的。
f = 被屏蔽电磁波的频率。
式中的R称为屏蔽材料的反射损耗,是当电磁波入射到不同媒质的分界面时发生的,计算公式为:R=20lg(ZW/ZS)(dB)式中,Zw=电磁波的波阻抗,Zs=屏蔽材料的特性阻抗。
电磁波的波阻抗定义为电场分量与磁场分量的比值:Zw = E / H。
在距离辐射源较近(<λ/2π,称为近场区)时,波阻抗的值取决于辐射源的性质、观测点到源的距离、介质特性等。
若辐射源为大电流、低电压(辐射源电路的阻抗较低),则产生的电磁波的波阻抗小于377,称为低阻抗波,或磁场波。
若辐射源为高电压,小电流(辐射源电路的阻抗较高),则波阻抗大于377,称为高阻抗波或电场波。
关于近场区内波阻抗的具体计算公式本文不予论述,以免冲淡主题,感兴趣的读者可以参考有关电磁场方面的参考书。
当距离辐射源较远(>λ/2π,称为远场区)时,波波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377Ω。
屏蔽材料的阻抗计算方法为:|ZS|=3.68×10-7(fμr/σr) (Ω) f=入射电磁波的频率(Hz),μr=相对磁导率,σr=相对电导率从上面几个公式,就可以计算出各种屏蔽材料的屏蔽效能了,为了方便设计,下面给出一些定性的结论。
●在近场区设计屏蔽时,要分别考虑电场波和磁场波的情况;●屏蔽电场波时,使用导电性好的材料,屏蔽磁场波时,使用导磁性好的材料;●同一种屏蔽材料,对于不同的电磁波,屏蔽效能使不同的,对电场波的屏蔽效能最高,对磁场波的屏蔽效能最低,也就是说,电场波最容易屏蔽,磁场波最难屏蔽;●一般情况下,材料的导电性和导磁性越好,屏蔽效能越高;●屏蔽电场波时,屏蔽体尽量靠近辐射源,屏蔽磁场源时,屏蔽体尽量远离磁场源;有一种情况需要特别注意,这就是1kHz以下的磁场波。
这种磁场波一般由大电流辐射源产生,例如,传输大电流的电力线,大功率的变压器等。
对于这种频率很低的磁场,只能采用高导磁率的材料进行屏蔽,常用的材料是含镍80%左右的坡莫合金。
2 孔洞和缝隙的电磁泄漏与对策一般除了低频磁场外,大部分金属材料可以提供100dB以上的屏蔽效能。
但在实际中,常见的情况是金属做成的屏蔽体,并没有这么高的屏蔽效能,甚至几乎没有屏蔽效能。
这是因为许多设计人员没有了解电磁屏蔽的关键。
首先,需要了解的是电磁屏蔽与屏蔽体接地与否并没有关系。
这与静电场的屏蔽不同,在静电中,只要将屏蔽体接地,就能够有效地屏蔽静电场。
而电磁屏蔽却与屏蔽体接地与否无关,这是必须明确的。
电磁屏蔽的关键点有两个,一个是保证屏蔽体的导电连续性,即整个屏蔽体必须是一个完整的、连续的导电体。
另一点是不能有穿过机箱的导体。
对于一个实际的机箱,这两点实现起来都非常困难。
首先,一个实用的机箱上会有很多孔洞和孔缝:通风口、显示口、安装各种调节杆的开口、不同部分结合的缝隙等。
屏蔽设计的主要内容就是如何妥善处理这些孔缝,同时不会影响机箱的其他性能(美观、可维性、可靠性)。
其次,机箱上总是会有电缆穿出(入),至少会有一条电源电缆。
这些电缆会极大地危害屏蔽体,使屏蔽体的屏蔽效能降低数十分贝。
妥善处理这些电缆是屏蔽设计中的重要内容之一(穿过屏蔽体的导体的危害有时比孔缝的危害更大)。
当电磁波入射到一个孔洞时,其作用相当于一个偶极天线(图1),当孔洞的长度达到λ/2时,其辐射效率最高(与孔洞的宽度无关),也就是说,它可以将激励孔洞的全部能量辐射出去。