实验五-三点正弦振荡电路
正弦波振荡器实验报告

正弦波振荡器实验报告姓名:学号:班级:一、实验目的1.掌握LC三点式振荡电路的基本原理,掌握LC电容反馈式三点振荡电路设计及电参数计算。
2.掌握振荡回路Q 值对频率稳定度的影响。
3.掌握振荡器反馈系数不同时,静态工作电流IEQ对振荡器起振及振幅的影响。
二、实验电路图三、实验内容及步骤1. 利用EWB软件绘制出如图1.7的西勒振荡器实验电路。
2. 按图设置各个元件参数,打开仿真开关,从示波器上观察振荡波形,读出振荡频率,并做好记录3. 改变电容C 6的值,观察频率变化,并做好记录。
填入表1.3中。
4.改变电容C4的值,分别为0.33μF和0.001μF,从示波器上观察起振情况和振荡波形的好坏,并做好记录。
填入表1.3中。
5.将C4的值恢复为0.033μF,分别调节Rp 在最大到最小之间变化时,观察振荡波形,并做好记录。
填入表1.4中。
四、暑假记录与数据处理1、电路的直流电路图和交流电路图分别如下:(1):直流通路图(2)交流通路图2、改变电容C 6的值时所测得的频率f的值如下:3、C4 0.033μF 0.33μF 0.01μFC6(pF)270 470 670 270 470 670 270 470 670F(Hz)494853.5 403746.8 372023.8 32756.8 32688.2 32814.4 486357.7 420875.4 373357.2(1)、当C4=0.033uF时:C6=270pF时,f=1/T=1000000/2.0208=494853.5HZC6=470pF 时,f=1/T=1000000/2.4768=403746.8HZC6=670pF 时,f=1/T=1000000/2.6880=372023.8HZ(2)、当C4=0.33uF时:C6=270pF时,f=1/T=1000000/30.5280=32756.8HC6=470uF时,f=1/T=1000000/30.5921=32688.2HZC6=670uF时,f=1/T=1000000/30.4744=32814.4HZ(3)、C4=0.01时:当C6=270uF时,f=1/T=1000000/2.0561=486357.7HZ当C6=470uF时,f=1/T=1000000/2.3760=420875.4HZ当C6=670uF时,f=1/T=1000000/2.6784=373357.2HZ2、将C4的值恢复为0.033μF,分别调节Rp 在最大到最小之间变化时的频率和波形如下:Rp(KΩ)50 40 30 20 10 0F(HZ)403746.8 416666.7 420875.4 425170.1 422582.8 529553.3 (1)、当Rp=50k时,f=1/T=1000000/2.4768=403746.8HZ(2)、当Rp=40k时,f=1/T=1000000/2.4000=416666.7HZ(3)、当Rp=30k时,f=1/T=1000000/2.3760=420875.4HZ(4)、当Rp=20k时,f=1/T=1000000/2.3520=425170.1HZ(5)、当Rp=10k时,f=1/T=1000000/2.3664=422582.8HZ(6)、当Rp=0k时,f=1/T=1000000/2.3280=529553.3HZ总结:由表一可知,当C4较大(既为0.33PF)时,不管C6如何变化,电路所输出的波形的频率比较稳定,而且没有失真。
三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)摘要本实验采用三点式正弦波振荡器电路,通过实验验证了三点式正弦波振荡器的设计和实际应用,其中包括三点式正弦波振荡器的基本原理、电路结构和工作特性等。
实验结果表明,通过合理的电路设计和优化,可以得到高精度、稳定性好的正弦波振荡器,为工程应用提供了重要的参考。
关键词:三点式正弦波振荡器、电路结构、工作特性一、实验目的1.熟悉三点式正弦波振荡器的基本原理和电路结构;3.通过实验验证三点式正弦波振荡器的设计和实际应用。
二、实验原理三点式正弦波振荡器是一种常用的基本电路,它通过正反馈作用在电路中产生自激振荡现象,从而输出对称的正弦波信号。
其基本原理如下:当输出正弦信号幅度变动时,输入放大器的反相输出端和反馈电容之间的电压也会变化,导致反馈放大器的增益也会随之变化,最终导致输出正弦波的幅度稳定在一定的水平上。
同时,在电路中增加合理的RC网络,可以使三点式正弦波振荡器输出的波形更加准确、稳定。
其中,- OA1, OA2分别为运算放大器;- R1, R2, R3分别为电阻,C1, C2分别为电容,L为电感;- 输出信号可以从OA1反相输出端或者OA2非反相输出端输出。
三、实验过程本实验采用EDA软件进行电路仿真和搭建,整个实验过程分为以下几个步骤:1.根据电路原理图,使用EDAW工具将三点式正弦波振荡器的电路搭建出来;2.依据实验材料,按照电路图要求选择合适的R、C、L值;3.将搭建好的电路连接上电源(+12V),开启仿真。
4.在电路仿真过程中,通过示波器观察输出的正弦波形,并分析波形的稳定性和频率响应等特性;5.修改电路参数,观测输出波形的变化情况,并记录相应的数据;四、实验结果通过实验,在合适的电路参数和电源电压下,三点式正弦波振荡器的输出波形为一定幅值的正弦波。
图2 实验得到的三点式正弦波振荡器输出波形五、实验分析通过本实验,我们可以看出三点式正弦波振荡器具有以下特点:1.输出波形准确、稳定。
正弦波振荡器(LC振荡器和晶体振荡器)实验

正弦波振荡器(LC 振荡器和晶体振荡器)实验一、实验目的1.掌握电容三点式LC 振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC 振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;通过实验进一步了解调幅的工作原理。
4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定波形的交变振荡能量的装置。
正弦波振荡器在电子技术领域中有着广泛的应用。
在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去的。
在超外差式的各种接收机中,是由振荡器产生一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。
振荡器的种类很多。
从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。
此实验只讨论反馈式振荡器。
根据振荡器所产生的波形,又可以把振荡器分为正弦波振荡器与非正弦波振荡器。
此实验只介绍正弦波振荡器。
常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。
按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC 振荡器和晶体振荡器等类型。
(1)反馈型正弦波自激振荡器基本工作原理以互感反馈振荡器为例,分析反馈型正弦波自激振荡器的基本原理,其原理电路如图2-1所示。
b V bE cE -1L 2L f V bV '+-图 2-1反馈型正弦波自激振荡器原理电路当开关K 接“1”时,信号源b V 加到晶体管输入端,构成一个调谐放大器电路,集电极回路得到了一个放大了的信号F V 。
当开关K 接“2”时,信号源b V 不加入晶体管,输入晶体管是F V 的一部分b V '。
三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器一、实验目的1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。
二、实验内容1、 熟悉振荡器模块各元件及其作用。
2、 进行LC 振荡器波段工作研究。
3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。
4、 测试LC 振荡器的频率稳定度。
三、实验仪器1、模块 3 1块2、频率计模块 1块3、双踪示波器 1台4、万用表 1块四、基本原理实验原理图见下页图1。
将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。
)14(1210CC C L f +=π振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数F=32.04702202203311≈+=+C C C振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。
图1 正弦波振荡器(4.5MHz )五、实验步骤1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
2、研究振荡器静态工作点对振荡幅度的影响。
(1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。
(2)改变上偏置电位器W1,记下N1发射极电流I eo (=11R V e ,R11=1K)(将万用表红表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。
5.3 LC正弦波振荡器

5.3 LC正弦波振荡器定义:采用LC谐振回路作为选频网络的反馈型振荡电路称为LC振荡器,按其反馈方式,LC振荡器可分为互感耦合式振荡器、电感反馈式振荡器和电容反馈式振荡器三种类型,其中后两种通常称为三点式振荡器。
5.3.1 互感耦合振荡器互感耦合振荡器利用互感耦合实现反馈振荡。
根据LC谐振回路与三极管不同电极的连接方式分为集电极调谐型、发射极调谐型和基极调谐型。
图5 —17 三种互感耦合振荡电路集电极调谐型电路的高频输出方面比其它两种电路稳定,而且输出幅度大,谐波成分小。
基极调谐型电路的振荡频率可以在较宽的范围内变化,且能保持输出信号振荡幅度平稳。
我们只讨论集电极调谐型电路(用得最多)。
而集电极调谐型又分为共射和共基两种类型,均得到广泛应用。
两者相比,共基调集电路的功率增益较小,输入阻抗较低,所以难于起振,但电路的振荡频率比较高,并且共基电路内部反馈较小,工作比较稳定。
互感耦合电路,变压器同名端的位置必须满足振荡的相位条件,在此基础上适当调节反馈量M总是可以满足振荡的振幅条件。
振荡起振和平衡的相位条件?判断互感耦合振荡器是否可能振荡,通常是以能否满足相位平衡条件,即是否构成正反馈为判断准则。
判断方法采用“瞬时极性法”。
瞬时极性法:首先识别放大器的组态,即共射、共基、共集。
然后根据同名端的设置判断放大器是否满足正反馈。
放大器组态的判别方法:观察放大器中晶体管与输入端和输出回路相连的电极,余下的电极便是参考端。
(后面以实例说明)①输入端接基极端,输出端接集电极,发射极为参考点(接地点),是共射组态。
共射组态为反相放大器,输入、输出信号的瞬时极性相反,如图5 —18(a)所示。
②输入端接发射极,输出端接集电极,基极为参考点(接地点),是共基组态。
共基组态为同相放大器,输入、输出信号的瞬时极性相同,如图5 —18(b)所示。
③共集:输入端接基极端,输出端接发射极,集电极为参考点(接地点),是共集组态。
lc电容反馈式三点式振荡器 实验报告

lc电容反馈式三点式振荡器实验报告一、实验目的本实验旨在掌握LC电容反馈式三点式振荡器的基本原理和电路结构,学习其工作特性和参数影响规律,培养学生对于实际电路的调试能力和实验操作技能。
二、实验原理LC电容反馈式三点式振荡器是一种常用的振荡器电路,它由一个LC谐振回路和一个三极管组成。
当谐振回路中的电容和电感相互作用时,会形成一个正弦波信号,而三极管则起到放大信号的作用。
在LC谐振回路中,当电容C和电感L组合成一个谐振回路时,在一定条件下会产生自激振荡。
此时,谐振回路中会有一定的能量存储,并且不断地从这些能量中提取出一部分来放大形成输出信号。
同时,在输出端口上还需要加入一个滤波网络来过滤掉高频噪声和杂波。
三、实验器材1. 万用表2. 示波器3. 信号发生器4. 三极管5. 电阻、电容、电感等元件四、实验步骤及数据记录1. 按照电路图连接电路,调整电阻和电容的值,使得输出波形为正弦波。
2. 测量并记录输出波形的频率、幅度和相位。
3. 调整电阻和电容的值,观察输出波形的变化,并记录数据。
4. 将三极管更换为其他型号,观察输出波形的变化,并记录数据。
五、实验结果分析通过实验可以看出,在LC谐振回路中,当电容和电感组成一个谐振回路时,在一定条件下会产生自激振荡。
此时,谐振回路中会有一定的能量存储,并且不断地从这些能量中提取出一部分来放大形成输出信号。
同时,在输出端口上还需要加入一个滤波网络来过滤掉高频噪声和杂波。
在实验过程中,我们调整了电阻和电容的值,使得输出波形为正弦波,并测量了其频率、幅度和相位。
随着参数的变化,我们也观察到了输出波形的变化,并记录了相关数据。
此外,我们还更换了三极管型号,发现不同型号的三极管对于输出信号也有影响。
六、实验结论通过本次实验,我们深入了解了LC电容反馈式三点式振荡器的基本原理和电路结构,学习了其工作特性和参数影响规律。
同时,我们也培养了对于实际电路的调试能力和实验操作技能。
电容三点式振荡电路

南昌大学实验报告学生姓名:田启泽学号:6100212164 专业班级:电子121班实验类型:□验证□综合□设计□创新实验日期:实验成绩:电容三点式振荡电路一,实验目的1,掌握电路振荡原理,工作条件。
2,熟悉设计振荡电路的设计方法。
二,实验内容。
设计一个振荡电路产生振荡信号。
三,实验原理。
三点式振荡器是指LC回路的三个端点与晶体管的三个电极分别连接而组成的反馈型振荡器。
三点式振荡电路用电感耦合或电容耦合代替变压器耦合,可以克服变压器耦合振荡器只适宜于低频振荡的缺点,是一种广泛应用的振荡电路,其工作频率可从几兆赫到几百兆赫。
三点式振荡电路与发射极相连的两个电抗元件为容性时,称为电容三点式振荡电路反馈振荡的原理及分析反馈型振荡器的振荡条件一个反馈振荡器要产生稳定的振荡必须满足三个条件:起振条件, 保证接通电源后能逐步建立起振荡;平衡条件,保证起振之后能够进入维持等幅持续振荡的平衡状态;稳定条件,保证平衡状态不因外界不稳定因素影响而受到破坏。
反馈型振荡器的基本工作原理:一个简单的反馈型振荡器包括一个以并联LC谐振回路作为负载调谐放大器,同时配置合适的直流偏置电路,以使晶体管处于正确的工作状态,反馈网络将输出的一部分反馈回输入端。
要求必须满足正反馈。
LC振荡器可用来产生几十千赫到几百兆赫的正弦波信号。
根据晶体管接地电极的不同,可分为共射(共源)组态、共基(共栅)组态和共集(共漏)组态。
共集(共漏)组态的电压放大倍数小于1,而电压反馈系数大于1,这对分析和理解都增加了一些难度,这里不予讨论。
主要讨论共射和共基两种组态。
(?共集(共漏)组态最重要的应用)在设计振荡电路时必须注意两个问题:i) 反馈电压的提取振荡电路中的放大器有三种组态:共基、共集、共射。
共基、共集放大器为同相放大器,共射为反相放大器。
反馈提取时,必须满足正反馈,才可能产生振荡。
ii) 对并联LC 回路Q 值的要求并联LC 谐振回路的Q 值反映了回路选频特性的好坏, Q 值越高,振荡器的频率稳定度就越高;Q 值过低,造成两个不良后果1调谐放大器的谐振电阻R ∑=就很小,放大器的增益m A g R ∑=也就很小,起振条件1AF >就不容易得到满足, 2 Q 值过低不利于提高振荡器的频率稳定度。
振荡电路的设计实验报告plc

振荡电路的设计实验报告一、实验目的本实验旨在通过设计并实现一个振荡电路,掌握振荡电路的基本原理、设计方法和测试技术。
通过实验,希望加深对振荡电路在电子工程领域中的应用理解,提升实验技能和理论知识。
二、实验原理振荡电路是一种能够产生自激振荡的电路,其基本原理是通过正反馈和能量损耗之间的平衡,使得电路中的信号能够持续地产生振荡。
振荡电路广泛应用于通信、测量、控制等领域。
三、实验步骤1.确定振荡电路类型:根据实验需求,选择合适的振荡电路类型,如LC振荡电路、RC振荡电路等。
2.设计电路:根据选择的振荡电路类型,使用电路设计软件绘制电路图,并确定相关元件参数。
3.搭建电路:根据电路图,使用电子元器件搭建实际的振荡电路。
4.测试与调整:通过示波器等测试设备,观察振荡电路的输出波形,调整相关元件参数,使得振荡频率符合设计要求。
5.记录数据:记录实验过程中的数据,包括振荡频率、波形等。
6.分析结果:根据实验数据,分析振荡电路的性能,总结实验经验。
四、实验结果通过实验,我们成功设计并实现了一个基于RC的振荡电路。
在测试过程中,我们观察到电路产生了稳定的正弦波输出,振荡频率约为10kHz。
通过调整电阻和电容的参数,我们可以实现对振荡频率的微调。
五、实验总结通过本次实验,我们深入了解了振荡电路的基本原理和设计方法。
在实验过程中,我们不仅学会了如何设计和搭建振荡电路,还掌握了使用示波器等测试设备进行电路性能测试的方法。
此外,我们还学会了如何根据实验数据对电路性能进行分析和优化。
本次实验的成功不仅让我们对振荡电路有了更深入的理解,还提高了我们的实验技能和理论知识水平。
在未来的学习和工作中,我们将继续努力,探索更多的电子工程领域知识。
模拟电路实验

常用器件的识别
电阻、电容、电位器 二极管、发光二极管、三极管 集成电路
电阻
黑 0 棕 1 红 2 橙黄绿蓝紫灰白 金 银 本色
3 4 5 6 7 8 9 5% 10% 20%
绿棕黑棕 金 5 1 0 1 5% 510X10=5.1K
R1 R
电容
+
C1 103
C2
电解电容 有极性
10uF
10uF
实验内容
1、调试静态工作点 2、测量电压放大倍数 3、观察静态工作点对电压放大倍数的影响 4、观察静态工作点对输出波形失真的影响 *5、测量输入电阻和输出电阻
1、调试静态工作点
接通直流电源前,先将RW调至最大, 函数信号发生 器输出旋钮旋至零。接通+12V电源、调节RW ,使IC = 2.0mA(即UE=2.0V), 用直流电压表测量UB、UE、UC及 用万用电表测量RB2值。记入表1-1。 表1-1
实验三
差动放大器
图3-1
差动放大器实验电路
实验目的
加深对差动放大器性能及特点的理解 学习差动放大电路的设计方法和调试方法。
学习差动放大器主要性能指标的测试方法
实验设备与器件
1、±12V直流电源 2、函数信号发生器 3、双踪示波器 4、交流毫伏表 5、直流电压表 6、晶体三极管3DG6×3,要求T1、T2管特性 参数一致。(或9011×3)。 电阻器、电容器若干。
学会放大器静态工作点的调试方法,分析
静态工作点对放大器性能的影响。 掌握放大器电压放大倍数、输入电阻、输 出电阻及最大不失真输出电压的测试方法。 熟悉常用电子仪器及模拟电路实验设备的 使用。
实验设备与器件
1、+12V直流电源 2、函数信号发生器 3、双踪示波器 4、交流毫伏表 5、直流电压表 6、直流毫安表 7、频率计 8、万用电表 9 、 晶 体 三 极 管 3DG6×1(β = 50 ~ 100) 或 9011×1 (管脚排列如图所示)
正弦波振荡电路设计实验报告模板

正弦波振荡电路设计实验报告模板一、实验目的1.掌握正弦波振荡电路的基本原理;2.理解RC振荡电路和LC振荡电路的工作原理;3.学习设计正弦波振荡电路及其参数调节方法;4.掌握基本测量仪器的使用和测量方法。
二、实验器材电源、万用表、示波器、电容、电感、电阻、二极管、晶体管等。
三、实验原理1.振荡电路的基本概念振荡电路是指将直流能够转换为交流的电路,它能够自行维持某一稳定的电压或电流波形振荡,并将其输出。
振荡电路一般由一个反馈电路和放大器组成,其中放大器被称为振荡器。
2.RC振荡电路RC振荡电路由一个电容和一个电阻组成,其工作原理是:当电容中的电荷积累到一定程度时,电容极板之间的电压就会达到放大器的门限电压,从而使放大器输出一个脉冲波,使电容充电电过程反转。
之后又会反转到放大器门限电压状态,继续输出脉冲波,如此反复循环,最终产生一定振幅的正弦波。
3.LC振荡电路LC振荡电路由一个电容和一个电感组成,其工作原理是:电感储存着磁能,当电路稳定工作时,电容和电感之间的振荡电流会产生周期性变化的磁场,控制着电感的电磁力线的指向,从而产生电势变化,之后电势会让电容反向充电,这种反向充电循环会一直进行下去,最终形成一定振幅的正弦波输出。
4.放大器的作用放大器是振荡器中的关键器件,它的主要作用是放大振荡电路中产生的正弦波信号。
在RC振荡器中,由于电容和电阻的限制,输出的正弦波信号较弱,需要经过放大器放大后才能被有效的使用;而在LC振荡器中虽然电路振幅比较大,但同样需要放大器过度放大信号以达到要求的输出功率。
四、实验内容1.设计一个RC振荡电路并调整器件参数,测量输出正弦波的频率、幅度和相位差;2.设计一个LC振荡电路并调整器件参数,测量输出正弦波的频率、幅度和相位差;3.比较RC振荡器和LC振荡器的输出波形,分析其差异;4.讨论如何提高振荡电路输出的稳定性和精度。
五、实验步骤1.设计RC振荡电路(以放大器为集成电路为例);2.按照设计电路图逐一连接电路元件;3.将万用表用于测量电路元件和信号输出端之间的参数(电流、电压、功率、频率等);4.将示波器连接到电路的信号输出端,调节示波器参数(如扫描速度、触发方式、增益等);5.调整RC振荡电路中的电容和电阻参数,使输出信号频率、幅度和相位差符合要求;6.重复以上步骤,设计并测试LC振荡电路。
实验 LC电容反馈三点式振荡器

实验 LC 电容反馈三点式振荡器正弦波振荡器是指振荡波形为正弦波或接近正弦波的振荡器,它广泛应用于各类信号发生器中,如高频信号发生器、电视遥控器等。
产生正弦信号的振荡电路形式很多,但归纳起来,则主要有RC 、LC 和晶体振荡器三种形式。
本实验主要研究LC 电容反馈三点式振荡器。
一、实验目的1、理解LC 三点式振荡器的工作原理,掌握其振荡性能的测量方法。
2、理解振荡回路Q 值对频率稳定度的影响。
3、理解晶体管工作状态、反馈深度、负载变化对振荡幅度与波形的影响。
4、了解LC 电容反馈三点式振荡器的设计方法。
二、实验仪器1、高频实验箱 1台2、高频信号发生器 1台3、双踪高频示波器 1台4、扫频仪 1台5、万用表 1块6、LC 电容反馈三点式振荡器实验板 1块三、预习要求1、复习正弦波振荡器的工作原理及技术指标的计算方法。
2、分析实验电路,理解各元件的作用并计算相关技术指标。
四、实验原理三点式振荡器的交流等效电路如图4-1所示。
图中,ce X 、be X 、cb X 为谐振回路的三个电抗。
根据相位平衡条件可知,ce X 、be X 必须为同性电抗,cb X 与ce X 、be X 相比必须为异性电抗,且三者之间满足下列关系:)(be ce cb X X X +-= (4-1)这就是三点式振荡器相位平衡条件的判断准则。
在满足式(4-1)的前提下,若ce X 、be X 呈容性,呈感性,则振荡器为电容反馈三点式振荡器;若ce X 、be X 呈感性,cb X 呈容性,则为电感反馈三点式振荡器。
下面以“考毕兹”电容三点式振荡器为例分析其原理。
1、“考毕兹”电容三点式振荡器工作原理“考毕兹”电容三点式振荡器电路如图4-2所示,图中L 和C 1、C 2组成振荡回路,反馈电压取自电容C 2的两端,C b 和C c 为高频旁路电容,L c 为高频扼流圈,对直流可视为短路,对交流可视为开路。
显然,该振荡器的交流通路满足相位平衡条件。
正弦波振荡电路的实验报告

新疆大学实训(实习)设计报告所属院系:机械工程学院专业:工业设计课程名称:电工电子学设计题目:正弦波振荡电路设计(RC)班级:机械10-5班学生姓名:盛晓亮学生学号:20102001007指导老师: 玛依拉完成日期:2012.7.5RCfnπ21=;(式4)图6 RC串并联电路这说明只有符合上述频率nf的反馈电压才能与0•U相位相同。
这时的反馈系数为31==••UUF f(式5)可见,RC串、并联电路既是反馈电路又是选频电路。
ωω•υF31ωωο90ο90-fϕο图7 幅频特性图8 相频特性2.自励振荡的幅度条件:反馈电压的大小必须与放大电路所需要的输入电压的大小相等,即必须有合适的反馈量。
用公式表示即ifUU=(式6)由于iUUA0=(式7)对于图6所示振荡电路,由于101R R A F+==3,故起振时o A >3, 即12R R F >, 因而要求F R 由起振时的大于12R 逐渐减小到稳定振荡时的等于12R 。
所以F R 采用了非线性电阻。
改变R 和C 即可改变输出电压的频率。
四、设计内容与步骤1.内容(1)根据设计结果连接电路。
(2)分析和观察不同时间段输出波形由小到达的起振过程和稳定到某一幅度的全过程。
(3)参数设置,若参数不能达到设计要求,按指标要求调试电路。
2.步骤(1)在Multisim 平台上建立如图9所示的实验电路,仪器参数按图8所示设置:nF C C 1.021==;电阻4R +5R >23R ;4R >5R .调节1R (即21,R R 同时改变)使振荡稳定时满足Ω==K R R 5.521。
图9 RC 正弦波振荡仿真电路图调节直至震荡稳定时的输出信号观测示波器显示(如图10、11)a. 起震:电位器8%图10 起震时的图形b. 振幅最大且不失真:电位器55%图11 震荡稳定时输出信号的图形(2)单击仿真开关运行动态分析,观测频率计数据(如图12所示)。
三点式正弦波振荡器实验数据

三点式正弦波振荡器实验数据引言三点式正弦波振荡器实验是电子工程学中的一项基础实验,用于研究电路中的振荡现象。
本文将详细介绍该实验的原理、实验装置、实验过程和实验数据分析,并对实验结果进行深入探讨。
一、实验原理正弦波振荡器是一种能够产生稳定频率和振幅的信号源。
它由三个主要部分组成:放大器、反馈网络和频率稳定电路。
1.1 放大器在正弦波振荡器中,放大器起到放大信号的作用。
放大器通常采用共射放大器或共基放大器的形式,工作在其放大区间。
1.2 反馈网络反馈网络是正弦波振荡器中的关键组成部分,它将部分输出信号反馈到放大器的输入端,从而形成正反馈回路,使得系统产生振荡。
1.3 频率稳定电路频率稳定电路用于保持振荡器的输出频率稳定。
最常见的频率稳定电路是RC网络,通过调节电容或电阻的值可以改变振荡器的频率。
二、实验装置本实验使用的实验装置主要包括示波器、信号发生器和三点式正弦波振荡器电路。
2.1 示波器示波器用于显示电路的波形,是本实验中不可缺少的仪器之一。
示波器可以测量电压和时间的关系,并以波形的形式显示出来。
2.2 信号发生器信号发生器用于产生稳定的正弦波信号,作为振荡器电路的输入信号。
信号发生器具有可调节频率和振幅的功能,可以为实验提供所需的输入信号。
2.3 三点式正弦波振荡器电路三点式正弦波振荡器电路是本实验的核心部分。
它由放大器、反馈网络和频率稳定电路组成,可以产生稳定的正弦波信号。
三、实验过程3.1 实验准备首先,将示波器和信号发生器连接起来,并根据实验要求设置信号发生器的输出频率和振幅。
3.2 搭建电路根据实验指导书提供的电路图,搭建三点式正弦波振荡器电路。
确保电路连接正确并牢固。
3.3 调节电路打开示波器和信号发生器,逐步调节电路,使得示波器上显示出稳定的正弦波波形。
根据实验指导书中给出的方法,调节放大器、反馈网络和频率稳定电路的参数。
3.4 记录实验数据在调节电路的过程中,用示波器测量和记录各部分电路的电压和频率值。
实验五 正弦波的设计(QuartusII版)

实验五正弦波的设计一.实验目的1、熟悉ROM的设计方法2、熟悉D/A转换二.实验内容1、设计正弦波发生器三.实验步骤1、在E盘建立个人文件夹,如E:\EDA\DX05\SIN_WA VE。
2、在QuartusII下用文本方式设计64进制计数器模块,即CNT64,注意按照先建立工程后建立文件的做法进行,且要求将工程置于上述文件夹下面,如下图:仿真结果如下图所示,其中clr是异步清零端,低电平清零,注意仿真时间>=20us。
最后一步一定不能忘记,即创建CNT64在元件库中的符号,即选择"File->Create/Update->Create Symbol Files for current File"3.在QuartusII下用文本方式设计正弦波数据储存模块,即SIN_ROM,注意按照先建立工程后建立文件的做法进行,且要求将工程置于最开始建立的文件夹下面,如下图:在接下来的对话框中选择“否”,以后步骤略。
波形数据ROM中存有波形发生器的波形数据。
64个点构成正弦波波型数据ROM 用VHDL实现如下,其中Q是输入端口,D是输出端口,都是整数类型。
下面程序需要补充完整。
------- start ---------------CASE Q IS --选择地址以生成相应数据WHEN 00=> D<=255; WHEN 01=> D<=254;WHEN 02=> D<=252; WHEN 03=> D<=249;WHEN 04=> D<=245; WHEN 05=> D<=239;WHEN 06=> D<=233; WHEN 07=> D<=225;WHEN 08=> D<=217; WHEN 09=> D<=207;WHEN 10=> D<=197; WHEN 11=> D<=186;WHEN 12=> D<=174; WHEN 13=> D<=162;WHEN 14=> D<=150; WHEN 15=> D<=137;WHEN 16=> D<=124; WHEN 17=> D<=112;WHEN 18=> D<= 99; WHEN 19=> D<= 87;WHEN 20=> D<= 75; WHEN 21=> D<= 64;WHEN 22=> D<= 53; WHEN 23=> D<= 43;WHEN 24=> D<= 34; WHEN 25=> D<= 26;WHEN 26=> D<= 19; WHEN 27=> D<= 13;WHEN 28=> D<= 8; WHEN 29=> D<= 4;WHEN 30=> D<= 1; WHEN 31=> D<= 0;WHEN 32=> D<= 0; WHEN 33=> D<= 1;WHEN 34=> D<= 4; WHEN 35=> D<= 8;WHEN 36=> D<= 13; WHEN 37=> D<= 19;WHEN 38=> D<= 26; WHEN 39=> D<= 34;WHEN 40=> D<= 43; WHEN 41=> D<= 53;WHEN 42=> D<= 64; WHEN 43=> D<= 75;WHEN 44=> D<= 87; WHEN 45=> D<= 99;WHEN 46=> D<=112; WHEN 47=> D<=124;WHEN 48=> D<=137; WHEN 49=> D<=150;WHEN 50=> D<=162; WHEN 51=> D<=174;WHEN 52=> D<=186; WHEN 53=> D<=197;WHEN 54=> D<=207; WHEN 55=> D<=217; WHEN 56=> D<=225; WHEN 57=> D<=233; WHEN 58=> D<=239; WHEN 59=> D<=245; WHEN 60=> D<=249; WHEN 61=> D<=252; WHEN 62=> D<=254; WHEN 63=> D<=255;WHEN OTHERS => NULL ; --结束选择 END CASE;------- end ----------------最后一步一定同样不能忘记,即创建SIN_ROM 在元件库中的符号,即选择"File->Create/Update->Create Symbol Files for current File"4、在QuartusII 下用原理图方式设计最终的正弦信号发生器(顶层设计),取名为“SIN_WA VE ”。
电容反馈三点式振荡器实验

成绩高频电子电路实验报告实验名称电容反馈三点式振荡器实验实验班级电子08-2班姓名何达清学号12(后两位)指导教师谢胜实验日期 2010.10.21实验一电容反馈三点式振荡器实验一、实验目的:1. 通过实验深入理解电容反馈三点式振荡器的工作原理,熟悉电容反馈三点式振荡器的构成和电路各元件的作用:2. 研究不同静态工作点对振荡器起振、振荡幅度和振荡波形的影响;3. 学习使用示波器和频率计测量高频振荡器振荡频率的方法;4. 观察电源电压和负载变化对振荡幅度和振荡频率及频率稳定性的影响。
.二、实验内容与实验数据图7.1三、实验内容及步骤:1. 研究晶体三极管静态工作点不同时对振荡器输出幅度和波形的影响:1)将开关K1和K2均拨至1X档,负载电阻R5暂不接入,接通+12V电源,调节W使振荡器振荡,此时用示波器在TP1观察不失真的正弦电压波形;2)调节W使Q1静态电流在0.5-4mA之间变化(可用万用表测量R4两端的电压来计算相应的IeQ,至少取4个点),用示波器测量并记下TP1 点的幅度与波形变化情况。
2. 研究外界条件变化时对振荡频率的影响及正确测量振荡频率:1)选择一合适的稳定工作点电流IeQ,使振荡器正常工作,利用示波器在TP3点和TP2点分别估测振荡器的振荡频率;2)用频率计重测,比较在TP3点和TP2点测量有何不同?3)将负载电阻R5接入电路(将开关K3拨至ON档),用频率计测量振荡频率的变化(为估计振荡器频稳度的数量级,可每10s记录一次频率,至少记录5表1-14)分别将开关K3拨至“OFF”和“ON”档,比较负载电阻R5不接入电路和接入电路两种情况下,输出振幅和波形的变化。
用示波器在TP1点观察并记录。
3. 将开关K1和K2均拨至2X档。
比较选取电容值不同的C2、C3和C2X、C3X,反馈系数不同时的起振情况。
注意改变电容值时应保持静态电流值不变。
四、思考题答:1.为什么静态工作点电流不合适时会影响振荡器的起振?静态工作点电流不合适时会影响与回路电容有关的反馈系数,则必将影响振荡器起振。
正弦波振荡器实验内容和实验步骤

正弦波振荡器实验内容和实验步骤下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!正弦波振荡器实验详解引言正弦波振荡器是电子电路中常见的一种基本元件,用于产生频率稳定的正弦波信号。
全版模电实验教案实验

全版模电实验教案实验一、实验目的1. 理解模拟电子技术的基本概念和原理。
2. 熟悉常见模拟电子电路的组成和功能。
3. 掌握基本模拟电子电路的实验操作方法。
4. 提高实验观察和分析问题的能力。
二、实验原理1. 放大电路:了解放大电路的基本组成,掌握放大电路的输入输出特性,包括静态工作点、动态范围等。
2. 滤波电路:理解滤波电路的作用和分类,掌握滤波电路的设计方法,分析滤波电路的频率响应特性。
3. 振荡电路:了解振荡电路的原理和分类,掌握振荡电路的稳定性和频率控制方法。
4. 调制解调电路:理解调制解调电路的原理和功能,掌握调制解调电路的组成和操作方法。
5. 非线性电路:了解非线性电路的特点和应用,掌握非线性电路的分析方法。
三、实验设备与材料1. 信号发生器2. 示波器3. 万用表4. 电子元件(电阻、电容、电感、二极管、晶体管等)5. 实验板6. 导线四、实验内容与步骤1. 实验一:放大电路(1)搭建一个基本放大电路,包括输入电阻、输出电阻、反馈电阻等。
(2)调整静态工作点,使放大电路处于最佳工作状态。
(3)测量并记录放大电路的输入输出特性,包括放大倍数、频率响应等。
2. 实验二:滤波电路(1)设计并搭建一个低通滤波电路,滤除高频噪声。
(2)调整滤波电路的截止频率,满足实际应用需求。
(3)使用示波器观察滤波电路的频率响应特性。
3. 实验三:振荡电路(1)搭建一个LC振荡电路,产生正弦波信号。
(2)调整LC振荡电路的频率,观察振荡信号的稳定性。
(3)分析并测量振荡电路的频率响应特性。
4. 实验四:调制解调电路(1)搭建一个调幅调制电路,实现模拟信号的调幅。
(2)搭建一个解调电路,恢复调幅信号。
(3)调整调制解调电路的参数,分析信号的调制解调效果。
5. 实验五:非线性电路(1)搭建一个非线性电路,如二极管限幅电路。
(2)观察并测量非线性电路的输出特性。
(3)分析非线性电路在实际应用中的优势和局限性。
五、实验要求与评分标准1. 实验报告:要求实验报告内容完整,包括实验目的、原理、设备、内容、步骤、结果及分析。
LC电容反馈三点式振荡器

3)按表中所列数据要求,分别 拨动S3开关,从而改变负载电阻 的大小,并用示波器记录振荡幅 度、振荡频率的变化与停振时的 负载电阻值。
负载电阻 振荡幅度 振荡频率
结 论
S3全开路 S3=4//10K
S3=3//1K
S3=2//500
S3=1//100
R b1
+ V CC
Rs
C3
A
C1
Cb
L
R b2
Re
C2
A
电路的振Ccb荡c 频率主C3要由C3
来 容决(定Cb 1、,C基e2)本Cce 的不影受RCe1o响其。它L这的R对电L
RL
提高振荡频率C b e的稳定性是有
利的。但也Re 有缺点C2:
B
1、如C1、C2 过大B,振荡幅
(a)克拉泼电路的实用用电路
第二题:为什么反馈系数要选取F=0.5-0.01,过大,过小有什么不好?
第三题 对于LC电路,为什么当静态电流发生变化时,其振荡频率会发生变化? 第四题: 对于西勒电路,当频率变化时,为什么幅度变化不太明显?
答1:从形成振荡的过程可知,电路在起振之初为小信号工作状态,随着振荡的 不断增长,将进入大信号工作状态。由于晶体管特性曲线的非线性(对于小功率 振荡器而言,非线性主要表现为截止失真),使其集电结电流的通角减小,此时的 平均电流为起振后的直流电流,它必大于静态时的工作点电流。能,主要根据起 振前后,发射极直流电压是否变化。若发射极电压大于静态时的电压,表明电路 已发生振荡。
4、2 三点式振荡器的基本电路构成
其二为 电感反馈三点振荡器也称为哈特莱振荡器,电路组成 特点是:
c b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三点式正弦波振荡器
一、实验目的
1、掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。
二、实验内容
1、熟悉振荡器模块各元件及其作用。
2、进行LC振荡器波段工作研究。
3、研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。
4、测试LC振荡器的频率稳定度。
三、实验仪器
1、模块3 1块
2、频率计模块1块
3、双踪示波器1台
4、万用表1块
四、基本原理
将开关S1 的1 拨下2 拨上,S2 全部断开,由晶体管N1 和C3、C10、C11、C4、CC1、L1 构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。
振荡器的频率约为4.5MHz(计算振荡频率可调范围)
振荡电路反馈系数
振荡器输出通过耦合电容C5(10P)加到由N2组成的射极跟随器的输入端,因C5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。
五、实验步骤
1、根据图5-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
2、研究振荡器静态工作点对振荡幅度的影响。
1)将开关S1拨为“01”,S2拨为“00”,构成LC振荡器。
2)改变上偏置电位器W1,记下N1发射极电流Ieo(=Ve/R11 ,R11=1K)(将万用表红表笔接TP2,黑表笔接地测量VE),并用示波测量对应点TP4的振荡幅度VP-P,填于表5-1中,分析输出振荡电压和振荡管静态工作点的关系。
表5-1
分析思路:静态电流ICQ会影响晶体管跨导gm,而放大倍数和gm是有关系的。
在饱和状态下(ICQ过大),管子电压增益AV会下降,一般取ICQ=(1~5mA)为宜。
3、测量振荡器输出频率范围
将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频
六、实验报告。