最新小升初奥数必考真题及答案

合集下载

小升初奥数题及答案(三篇)

小升初奥数题及答案(三篇)

【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。

转化的类型有条件转化、问题转化、关系转化、图形转化等。

以下是整理的《⼩升初奥数题及答案(三篇)》相关资料,希望帮助到您。

⼩升初奥数题及答案篇⼀ 1、⼀个数除以7所得的余数和商相同,并且各个数位上的数字和最⼩,这个数是_______。

2、⼀项⼯程,预计15个⼯⼈每天做4个⼩时,18天可以完成。

为了赶⼯期,增加3⼈并且每天⼯作时间增加1⼩时,可以提前_______天完⼯。

3、甲、⼄两⼈背诵英语单词,甲⽐⼄每天多背8个,⼄因⽣病,中途停⽌10天。

40天后,⼄背的单词正好是甲的⼀半,甲背单词________个。

4、在⼀个两位数的两个数字之间加上⼀个0,所得的新数是原数的9倍,原数是。

5、买电影票,5元、8元、12元⼀张的⼀共150张,⽤去1140元,其中5元和8元的张数相等,5元的电影票有。

答案: 1、40 2、6 3、960 4、45 5、60⼩升初奥数题及答案篇⼆ 1、有2013名学⽣参加竞赛,共有20道竞赛题,每个学⽣有基础分25分,此外,答对⼀题得3分,不答题得1分,答错1题扣1分。

那么,所有参赛学⽣的得分总和是奇数还是偶数? 2、有n个同样⼤⼩的正⽅体,将它们堆成⼀个长⽅体,这个长⽅体的底⾯就是原正⽅体的底⾯。

如果这么长⽅体的表⾯积是3096平⽅厘⽶,当从这个长⽅体的顶部拿去⼀个正⽅体后,新的长⽅体的表⾯积⽐原来的表⾯积减少144平⽅厘⽶,那么n等于多少? 答案: 1、每个学⽣的基础分为奇数,⽆论题⽬的答题情况,每⼀题都将是总分加上或减去⼀个奇数,所以20题之后,总分相当于21个奇数做加减法,所以每个学⽣的总分肯定是奇数,⽽学⽣有2013名,奇数和奇数的和还是奇数,所以所有学⽣的分数⼀定是奇数。

2、正⽅体⼀个⾯的⾯积是144÷4=36平⽅厘⽶,根据长⽅体的表⾯积可得: 36×(4n+2)=3096 144n+72=3096 n=21 答:n是21。

小升初奥数题必考100道及答案(完整版)

小升初奥数题必考100道及答案(完整版)

小升初奥数题必考100道及答案(完整版)题目1:有一个两位数,十位上的数字是个位上数字的2 倍,如果把十位上的数字与个位上的数字交换,就得到另外一个两位数,把这个两位数与原两位数相加,和是132。

求原两位数。

答案:设原两位数个位上的数字为x,则十位上的数字为2x。

原两位数为20x + x = 21x,交换后的两位数为10x + 2x = 12x。

根据题意可得:21x + 12x = 132,33x = 132,x = 4。

所以原两位数为84。

题目2:小明从家到学校,如果每分钟走50 米,就要迟到3 分钟;如果每分钟走70 米,则可提前5 分钟到校。

小明家到学校的路程是多少米?答案:设小明按时到校要x 分钟。

50(x + 3) = 70(x - 5),50x + 150 = 70x - 350,20x = 500,x = 25。

路程为50×(25 + 3) = 1400(米)题目3:甲乙两数的和是180,甲数的1/4 等于乙数的1/5,甲乙两数各是多少?答案:设甲数为x,则乙数为180 - x。

1/4 x = 1/5 (180 - x),5x = 4×(180 - x),5x = 720 - 4x,9x = 720,x = 80,乙数为100。

题目4:某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:设三个车间总人数为x 人。

第一车间人数为0.25x,第二车间和第三车间人数之和为0.75x。

第二车间人数为0.75x×3/7 = 9/28 x。

0.25x + 40 = 9/28 x,9/28 x - 7/28 x = 40,2/28 x = 40,x = 560 人。

题目5:一桶油,第一次用去2/5 ,第二次用去10 千克,这时剩下的油正好是整桶油的一半。

这桶油有多少千克?答案:设这桶油有x 千克。

小升初奥数题大全100道附答案(完整版)

小升初奥数题大全100道附答案(完整版)

小升初奥数题大全100道附答案(完整版)题目1:有三个连续的自然数,它们的乘积是60。

这三个数分别是多少?答案:3、4、5因为3×4×5 = 60题目2:一个数除以5 余3,除以6 余4,除以7 余5。

这个数最小是多少?答案:2085、6、7 的最小公倍数是210,这个数为210 - 2 = 208题目3:小明在计算两个数相加时,把一个加数个位上的6 错写成2,把另一个加数十位上的5 错写成3,所得的和是374。

原来两个数相加的正确结果是多少?答案:408一个加数个位上的6 错写成2,少加了4;把另一个加数十位上的5 错写成3,少加了20。

所以正确结果是374 + 4 + 20 = 408题目4:鸡兔同笼,共有30 个头,88 只脚。

求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只假设全是鸡,有脚60 只,少了28 只脚。

每把一只鸡换成一只兔,脚多2 只,所以兔有28÷2 = 14 只,鸡有16 只题目5:在一条长400 米的环形跑道上,甲、乙两人同时从同一点出发,同向而行,甲每秒跑6 米,乙每秒跑4 米。

经过多少秒甲第一次追上乙?答案:200 秒甲每秒比乙多跑2 米,多跑一圈400 米追上,所以400÷2 = 200 秒题目6:一个长方体的棱长总和是80 厘米,长、宽、高的比是5 : 3 : 2。

这个长方体的体积是多少?答案:240 立方厘米长方体有4 条长、4 条宽、4 条高,所以一组长、宽、高的和为20 厘米。

按比例分配可得长10 厘米、宽6 厘米、高4 厘米,体积为10×6×4 = 240 立方厘米题目7:某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第二车间少40 人。

三个车间共有多少人?答案:560 人设总人数为x 人,则第一车间人数为1/4 x 人,第二车间人数为3/7×3/4 x 人,可列方程3/7×3/4 x - 1/4 x = 40题目8:一个分数,分子与分母的和是48,如果分子、分母都加上1,所得分数约分后是2/3。

小升初奥数真题和答案

小升初奥数真题和答案

小升初奥数真题和答案试题一:有5个亮着的灯泡,每个灯泡都由一个开关控制,每次操作可以拉动其中的2个开关以改变相应灯泡的亮暗状态,能否经过假设干次操作使得5个灯泡都变暗?解答:每个灯泡变暗需要拉动奇数次开关;那么5个灯泡全部变暗一共也需要拉动奇数次开关;而每次操作是拉动2个开关;假设干次操作后一共拉动的次数肯定是2的倍数,也就是偶数次;但是5个灯泡全部变暗一定需要总共拉动奇数次,所以矛盾了;所以无论经过多少次操作都不可能使5个灯泡一起变暗。

试题二:甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.解答:第一次相遇时,两人合走了半个圆周;第二次相遇时,两人又合走了一个圆周,所以从第一相遇到第二次相遇时乙走的路程是第一次相遇时走的2倍,所以第二次相遇时,乙一共走了100×(2+1)=300 米,两人的总路程和为一周半,又甲所走路程比一周少60米,说明乙的路程比半周多60米,那么圆形场地的半周长为300-60=240 米,周长为240×2=480米.试题三:"迎春杯"数学竞赛后,甲、乙、丙、丁四名猜想他们之中谁能获奖.甲说:"如果我能获奖,那么乙也能获奖."乙说:"如果我能获奖,那么丙也能获奖."丙说:"如果丁没获奖,那么我也不能获奖."实际上,他们之中只有一个人没有获奖.并且甲、乙、丙说的话都是正确的.那么没能获奖的同学是。

解答:首先根据丙说的话可以推知,丁必能获奖.否那么,假设丁没获奖,那么丙也没获奖,这与"他们之中只有一个人没有获奖"矛盾。

其次考虑甲是否获奖,假设甲能获奖,那么根据甲说的话可以推知,乙也能获奖;再根据乙说的话又可以推知丙也能获奖,这样就得出4个人全都能获奖,不可能.因此,只有甲没有获奖。

六年级小升初奥数题100例附答案(完整版)

六年级小升初奥数题100例附答案(完整版)

六年级小升初奥数题100例附答案(完整版)题目1:一个数的30%是15,这个数是多少?答案:15÷30% = 50题目2:比80 米多25%是多少米?答案:80×(1 + 25%) = 100 米题目3:某班男生人数是女生人数的4/5,女生比男生多5 人,男生有多少人?答案:设女生人数为x 人,则男生人数为4/5 x 人。

x - 4/5 x = 5 ,解得x = 25 ,男生人数为20 人。

题目4:一个圆的半径是4 厘米,它的面积是多少平方厘米?答案:3.14×4×4 = 50.24 平方厘米题目5:一件商品原价200 元,现打八折出售,现价是多少元?答案:200×80% = 160 元题目6:在一个比例中,两个外项互为倒数,其中一个内项是 2.5,另一个内项是多少?答案:两个外项互为倒数,积为1。

所以另一个内项为1÷2.5 = 0.4题目7:一项工程,甲单独做15 天完成,乙单独做20 天完成,甲乙合作几天完成?答案:1÷(1/15 + 1/20) = 60/7 天题目8:一个数除以8,商是12,余数是5,这个数是多少?答案:8×12 + 5 = 101题目9:有一堆煤,第一天用去1/3,第二天用去1/4,还剩下18 吨,这堆煤原有多少吨?答案:设这堆煤原有x 吨,x - 1/3 x - 1/4 x = 18 ,解得x = 43.2 吨题目10:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少?答案:48÷4 = 12 厘米,长为12×3/(3 + 2 + 1) = 6 厘米,宽为4 厘米,高为2 厘米,体积为6×4×2 = 48 立方厘米题目11:一个圆锥形沙堆,底面周长是18.84 米,高是 2 米,每立方米沙重 1.8 吨,这堆沙重多少吨?答案:底面半径为18.84÷3.14÷2 = 3 米,体积为1/3×3.14×3×3×2 = 18.84 立方米,重18.84×1.8 = 33.912 吨题目12:甲乙两车同时从A、B 两地相对开出,3 小时相遇,甲车每小时行50 千米,乙车每小时行40 千米,A、B 两地相距多少千米?答案:(50 + 40)×3 = 270 千米题目13:小明看一本120 页的书,第一天看了全书的1/4,第二天看了全书的1/3,第三天应从第几页看起?答案:第一天看了120×1/4 = 30 页,第二天看了120×1/3 = 40 页,前两天共看了70 页,第三天从第71 页看起。

小升初奥数试题及参考答案

小升初奥数试题及参考答案

小升初奥数试题及参考答案一、选择题1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3参考答案:C2. 一个数的1/5加上它的1/3,求和的结果是这个数的几分之几?A. 1/15B. 8/15C. 1/3D. 3/5参考答案:B3. 一个长方体的长是10厘米,宽是8厘米,高是5厘米,其表面积是多少平方厘米?A. 170B. 270C. 340D. 420参考答案:D二、填空题4. 一个数的3/4加上它的1/2,和是这个数的______。

参考答案:7/85. 一本书的价格是35元,如果打8折出售,那么现价是______元。

参考答案:286. 一个正方形的边长增加10%,那么它的面积增加了多少百分比?参考答案:21%三、解答题7. 一块长方形草地的长是40米,宽是30米。

现在要在其四周围上篱笆,问篱笆的总长度是多少米?参考答案:(40+30)×2 = 140米8. 小明和小红合作完成一项工作,小明单独完成需要4小时,小红单独完成需要6小时。

现在他们合作,共同完成这项工作需要多少时间?参考答案:设工作总量为1,小明每小时完成1/4,小红每小时完成1/6的工作量。

合作时,他们每小时完成的工作量是1/4 + 1/6 =5/12。

所以,他们合作完成工作需要的时间为1 ÷ (5/12) = 2.4小时。

9. 一个班级有48名学生,其中2/3是男生,剩下的是女生。

问这个班级有多少名女生?参考答案:48 × (1 - 2/3) = 48 × 1/3 = 16名女生。

四、应用题10. 小华有一些贴纸,她给了小明一半的贴纸后,自己还剩下20张。

请问小华原来有多少张贴纸?参考答案:设小华原来有x张贴纸,根据题意,x/2 = 20,解得x = 40张。

11. 一辆汽车从甲地到乙地,如果速度提高20%,可以比原定时间提前1小时到达。

已知原定速度是60公里/小时,求两地之间的距离。

小升初最常考奥数题100道及答案(完整版)

小升初最常考奥数题100道及答案(完整版)

小升初最常考奥数题100道及答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:3/4×2 = 3/2 = 1.5(杯)2. 小明看一本书,第一天看了全书的1/4,第二天看了全书的2/5,第二天比第一天多看了21 页,这本书一共有多少页?答案:21÷(2/5 - 1/4)= 21÷3/20 = 140(页)3. 有一批货物,第一天运走了总数的2/5,第二天运走的货物比总数的1/4 多4 吨,这时还剩17 吨,这批货物共有多少吨?答案:(17 + 4)÷(1 - 2/5 - 1/4)= 21÷7/20 = 60(吨)4. 某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:40÷[(1 - 25%)×3/(3 + 4) - 25%] = 40÷[3/7 - 1/4] = 560(人)5. 师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21 个,这批零件有多少个?答案:21÷(1 - 2/7 - 2/7)= 21÷3/7 = 49(个)6. 仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3 少12 袋,这时仓库里还剩24 袋,两次共取出多少袋?答案:(24 - 12)÷(1 - 2/5 - 1/3)= 12÷4/15 = 45(袋),45 - 24 = 21(袋)7. 甲、乙、丙三个数的和是110,甲与乙的比是3:2,乙与丙的比是4:1,乙数是多少?答案:甲:乙= 3:2 = 6:4,乙:丙= 4:1,所以甲:乙:丙= 6:4:1,乙数:110×4/(6 + 4 + 1) = 408. 一辆汽车从甲地开往乙地,行了全程的3/8,离乙地还有135 千米,两地之间的公路长多少千米?答案:135÷(1 - 3/8)= 216(千米)9. 修一条路,已修的与未修的比是1:5,又修了490 米后,已修的与未修的比是3:1,这时还有多少米未修?答案:490÷(3/4 - 1/6)×1/4 = 180(米)10. 某校有学生465 人,其中女生的2/3 比男生的4/5 少20 人,男、女生各有多少人?答案:设男生有x 人,4/5 x - 2/3×(465 - x) = 20 ,解得x = 225,女生人数:465 - 225 = 240(人)11. 水果店里卖出的梨的重量是苹果的5/7,梨比苹果少卖30 千克,梨卖了多少千克?答案:30÷(1 - 5/7)×5/7 = 75(千克)12. 一筐苹果卖掉1/5 后,又卖掉6 千克,这时卖出的重量正好是剩下的1/2,这筐苹果原来有多少千克?答案:6÷(1/3 - 1/5)= 45(千克)13. 甲、乙两班共有84 人,甲班人数的5/8 与乙班人数的3/4 共有58 人,甲、乙两班各有多少人?答案:设甲班有x 人,5/8 x + 3/4×(84 - x) = 58 ,解得x = 40,乙班:84 - 40 = 44(人)14. 学校买来两种图书共220 本,取出甲种图书的1/4 和乙种图书的1/5 共50 本借给五年级(1)班同学阅读,问甲、乙两种图书各买来多少本?答案:设甲种图书有x 本,1/4 x + 1/5×(220 - x) = 50 ,解得x = 120,乙种图书:220 - 120 = 100(本)15. 某工厂第一车间有工人150 人,第二车间有工人90 人,要使第一车间人数是第二车间的2 倍,需要从第二车间调多少人到第一车间?答案:(150 + 90)÷(2 + 1) = 80(人),90 - 80 = 10(人)16. 甲、乙两堆煤共180 吨,甲堆煤的1/3 比乙堆煤的2/3 多18 吨,甲、乙两堆煤各有多少吨?答案:设甲堆煤有x 吨,1/3 x - 2/3×(180 - x) = 18 ,解得x = 138,乙堆煤:180 - 138 = 42(吨)17. 学校图书馆有科技书和文艺书共3200 本,科技书的本数是文艺书的4/5,科技书和文艺书各有多少本?答案:文艺书:3200÷(1 + 4/5)= 16000/9 ≈1778(本),科技书:3200 - 1778 = 1422(本)18. 一辆汽车从甲地到乙地,已经行了全程的1/5,再向前行50 千米,就比全程的2/3 少6 千米,求甲乙两地的距离。

小升初奥数题及答案【六篇】

小升初奥数题及答案【六篇】

【导语】奥数是奥林匹克数学竞赛的简称。

1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。

以下是整理的《2021年愚⼈节简短句⼦3篇》相关资料,希望帮助到您。

1.⼩升初奥数题及答案 ⽤1~9可以组成______个不含重复数字的三位数:如果再要求这三个数字中任何两个的差不能是1,那么可以组成______个满⾜要求的三位数? 答案与解析: (1)9×8×7=504个。

(2)504-(6+5+5+5+5+5+5+6)×6-7×6=210个; (减去有2个数字差是1的情况,括号⾥8个数分别表⽰这2个数是12,23,34,45,56,67,78,89的情况,×6是对3个数字全排列,7×6是三个数连续的123、234、345、456、567、789这7种情况)。

 2.⼩升初奥数题及答案 龟兔赛跑,全程5.2千⽶,兔⼦每⼩时跑20千⽶,乌龟每⼩时跑3千⽶,乌龟不停地跑;兔⼦边跑边玩,它先跑了1分钟后玩了15分钟,⼜跑了2分钟后玩15分钟,再跑3分钟后玩15分钟,……。

那么先到达终点⽐后到达终点的快多少分钟? 答案与解析: 乌龟⽤时:5.2÷3×60=104(分钟);兔⼦总共跑了:5.2÷20×60=15.6(分钟)。

⽽我们有:15.6=1+2+3+4+5+0.6按照题⽬条件,从上式中我们可以知道兔⼦⼀共休息了5次,共15×5=75(分钟)。

所以兔⼦共⽤时:15.6+75=90.6(分钟)。

兔⼦先到达终点,⽐后到达终点的乌龟快:104-90.6=13.4(分钟)。

3.⼩升初奥数题及答案 ⼩华从甲地到⼄地,3分之1骑车,3分之2乘车;从⼄地返回甲地,5分之3骑车,5分之2乘车,结果慢了半⼩时。

已知,骑车每⼩时12千⽶,乘车每⼩时30千⽶,问:甲⼄两地相距多少千⽶? 解答:把路程当作1,得到时间系数 去时时间系数:1/3÷12+2/3÷30 返回时间系数:3/5÷12+2/5÷30 两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2⼩时 去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75 路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千⽶)4.⼩升初奥数题及答案 ⽼奶奶家有20个鸡蛋,还养了⼀天能下⼀个蛋的⽼母鸡,如果她家⼀天吃两个鸡蛋,⽼奶奶家的鸡蛋可以连续吃多少天? 解答: (1)20个鸡蛋,每天吃2个 20÷2=10天,在这10天⾥,母鸡⼜下了10个鸡蛋 (2)10个鸡蛋,每天吃2个 10÷2=5天,在这5天⾥,母鸡⼜下了5个鸡蛋 (3)5个鸡蛋,每天吃2个 5÷2=2天……1个,在这2天⾥,母鸡⼜下了2个鸡蛋 (4)2个鸡蛋+余下的1个鸡蛋,每天吃2个 3÷2=1天……1个,在这1天⾥,母鸡⼜下了1个鸡蛋 (5)1个鸡蛋+余下的1个鸡蛋,每天吃2个 2÷2=1天 (6)总天数 10+5+2+1+1=19天5.⼩升初奥数题及答案 有⼀班同学去划船,他们算了⼀下,如果增加⼀条船,每条船正好坐6⼈;如果减少⼀条船,每条船正好坐9⼈。

小升初奥数题及答案五篇

小升初奥数题及答案五篇

【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。

转化的类型有条件转化、问题转化、关系转化、图形转化等。

以下是®⽆忧考⽹整理的《⼩升初奥数题及答案五篇》相关资料,希望帮助到您。

1.⼩升初奥数题及答案 1、⽤⼀只⽔桶装⽔,把⽔加到原来的2倍,连桶重10千克,如果把⽔加到原来的5倍,连桶重22千克。

桶⾥原有⽔多少千克? 想:由已知条件可知,桶⾥原有⽔的(5-2)倍正好是(22-10)千克,由此可求出桶⾥原有⽔的重量。

解:(22-10)÷(5-2)=12÷3=4(千克) 答:桶⾥原有⽔4千克。

2、⼩红和⼩华共有故事书36本。

如果⼩红给⼩华5本,两⼈故事书的本数就相等,原来⼩红和⼩华各有多少本? 想:从“⼩红给⼩华5本,两⼈故事书的本数就相等”这⼀条件,可知⼩红⽐⼩华多(5×2)本书,⽤共有的36本去掉⼩红⽐⼩华多的本数,剩下的本数正好是⼩华本数的2倍。

解:⼩华有书的本数:(36-5×2)÷2=13(本) ⼩红有书的本数:13+5×2=23(本) 答:原来⼩红有23本,⼩华有13本。

 2.⼩升初奥数题及答案 1、已知⼀张桌⼦的价钱是⼀把椅⼦的10倍,⼜知⼀张桌⼦⽐⼀把椅⼦多288元,⼀张桌⼦和⼀把椅⼦各多少元? 想:由已知条件可知,⼀张桌⼦⽐⼀把椅⼦多的288元,正好是⼀把椅⼦价钱的(10-1)倍,由此可求得⼀把椅⼦的价钱。

再根据椅⼦的价钱,就可求得⼀张桌⼦的价钱。

解:⼀把椅⼦的价钱:288÷(10-1)=32(元) ⼀张桌⼦的价钱:32×10=320(元) 答:⼀张桌⼦320元,⼀把椅⼦32元。

2、3箱苹果重45千克。

⼀箱梨⽐⼀箱苹果多5千克,3箱梨重多少千克? 想:可先求出3箱梨⽐3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

小升初数学必考奥数题100道附答案(完整版)

小升初数学必考奥数题100道附答案(完整版)

小升初数学必考奥数题100道附答案(完整版)题目1:有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄乘积是360。

他们中年龄最大的是多少岁?答案:将360 分解因数,360 = 2×2×2×3×3×5 = 3×4×5×6,所以年龄最大的是6 岁。

题目2:计算:1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 +…+ 2014 - 2015 - 2016 + 2017 + 2018答案:原式= (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) +…+ (2013 + 2014 - 2015 - 2016) + 2017 + 2018 = 2017 + 2018 = 4035题目3:一项工程,甲单独做10 天完成,乙单独做15 天完成。

甲乙合作,几天可以完成?答案:甲每天完成工程的1/10,乙每天完成工程的1/15,两人合作每天完成1/10 + 1/15 = 1/6,所以合作需要6 天完成。

题目4:在一个比例中,两个外项互为倒数,其中一个内项是2.5,另一个内项是多少?答案:两个外项互为倒数,乘积为1。

根据比例的性质,两个内项的积也为1,所以另一个内项是1÷2.5 = 0.4题目5:一个数除以8 余5,除以9 余6,这个数最小是多少?答案:这个数加上3 就能被8 和9 整除,8 和9 的最小公倍数是72,所以这个数最小是72 - 3 = 69题目6:一个圆形花坛的周长是25.12 米,在它的周围加宽1 米,加宽后的面积比原来增加了多少平方米?答案:原来花坛的半径为25.12÷3.14÷2 = 4 米,加宽后的半径为5 米。

增加的面积为3.14×(5²- 4²) = 28.26 平方米题目7:一个长方体的棱长总和是120 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少立方厘米?答案:120÷4 = 30 厘米,3 + 2 + 1 = 6,长为15 厘米,宽为10 厘米,高为5 厘米,体积为750 立方厘米题目8:甲乙两车同时从A、B 两地相对开出,4 小时后相遇。

小升初数学奥数题120道附带完整答案

小升初数学奥数题120道附带完整答案

小升初数学奥数题120道附带完整答案1. 某数加上6,乘以6,减去6,除以6,其结果等于6,求这个数。

答案:1。

解题思路:从后向前来推算,“除以6,结果等于6”,则前一个数是6×6=36;“减去6 等于36”,则前一个数是36+6=42;“乘以6 等于42”,则前一个数是42÷6=7;“加上6 等于7”,所以这个数是7-6=1。

2. 两支蜡烛,第一支4 小时燃尽,第二支3 小时燃尽,如果同时点燃这两支蜡烛,问多长时间后第一支蜡烛的长度是第二支蜡烛的2 倍?答案:12/5 小时。

解题思路:把蜡烛的长度看作单位“1”,第一支蜡烛每小时燃烧1/4,第二支蜡烛每小时燃烧1/3,设x 小时后第一支蜡烛的长度是第二支蜡烛的 2 倍,可列出方程1-x/4=2×(1-x/3),解得x=12/5。

3. 一个最简分数,如果分子加1,分数值就等于1,如果分母加1,分数值就等于2/3,求原来这个分数。

答案:4/5。

解题思路:设分子为x,分母为y,根据条件可列方程组(x+1)/y=1,x/(y+1)=2/3,解方程组可得x=4,y=5,所以原来的分数是4/5。

4. 甲、乙两车分别从A、B 两地同时出发相向而行,它们的速度比是2:3,在途中相遇后,甲车速度提高20%,乙车速度不变,当乙车到达A 地时,甲车距B 地还有28 千米,求A、B 两地相距多少千米?答案:180 千米。

解题思路:相遇时甲乙所行路程比也是2:3,设全程为 5 份,相遇后乙行2 份到 A 地,甲行2×(1+20%)=2.4 份,那么3-2.4=0.6 份是28 千米,一份是28÷0.6=140/3 千米,全程5 份就是140/3×5=700/3=180 千米。

5. 有含盐8%的盐水40 千克,要配制成含盐20%的盐水,需加盐多少千克?答案:6 千克。

解题思路:原来盐水中盐的质量为40×8%=3.2 千克,设加盐x 千克,可列出方程(3.2+x)/(40+x)=20%,解得x=6。

小升初奥数题及答案五篇

小升初奥数题及答案五篇

小升初奥数题及答案五篇第一篇:数与代数1. 某数的三倍加上5等于20,求这个数。

解答:设这个数为x,则根据题意,可以列出方程3x + 5 = 20。

解这个一次方程可以得到x = 5。

2. 一个数增加20%后得到30,求这个数。

解答:设这个数为x,则根据题意,可以列出方程x + 0.2x = 30。

解这个一次方程可以得到x = 25。

第二篇:几何与图形1. 已知长方形的长是5cm,宽是3cm,求其面积和周长。

解答:长方形的面积可以通过长度乘以宽度来计算,即5cm × 3cm = 15cm²。

周长可以通过将长度和宽度相加再乘以2来计算,即(5cm + 3cm) × 2 = 16cm。

2. 在平面直角坐标系中,点A(2,3)和点B(5,1)连线,求线段AB的长度。

解答:根据坐标系中两点间的距离公式,线段AB的长度可以计算为√[(5-2)²+(1-3)²] = √[(3)²+(-2)²] = √(9+4) = √13。

第三篇:概率与统计1. 从1至15中随机抽取一个整数,求这个整数是偶数的概率。

解答:在1至15中,一共有8个偶数(2, 4, 6, 8, 10, 12, 14, 15)和7个奇数(1, 3, 5, 7, 9, 11, 13)。

因此,抽取的整数是偶数的概率为8/15。

2. 一个骰子中的每个面都标有1至6的数字,投掷骰子一次,求投掷结果是5或6的概率。

解答:骰子共有6个面,其中有2个面标有5和6。

因此,投掷结果是5或6的概率为2/6 = 1/3。

第四篇:逻辑与推理1. 小明说他有7本书,其中一半给了朋友,又借了5本回来,这时他还有多少本书?解答:小明有7本书,一半给了朋友,剩下的数量是7/2 = 3.5本。

因为书的数量不能为小数,所以小明实际上只剩下3本书。

2. 汤姆比杰克大三岁,而杰克比肯尼大两岁。

如果汤姆今年10岁,那么肯尼的年龄是多少?解答:根据题意,杰克比肯尼大两岁,汤姆比杰克大三岁,所以汤姆与肯尼之间的年龄差是5岁。

小升初奥数竞赛题100例附答案(完整版)

小升初奥数竞赛题100例附答案(完整版)

小升初奥数竞赛题100例附答案(完整版)1. 计算:2 + 4 + 6 + 8 + …+ 100解:这是一个等差数列求和,项数= (100 - 2)÷2 + 1 = 50和= (2 + 100)×50 ÷2 = 2550答:25502. 若a△b = a×b - a + b,计算5△3解:5△3 = 5×3 - 5 + 3 = 13答:133. 一本书,已看页数与未看页数之比是3 : 5,再看30 页,已看页数与未看页数之比是2 : 3,这本书共有多少页?解:30÷(2/5 - 3/8)= 1200(页)答:1200 页4. 甲、乙、丙三个数的比是5 : 3 : 4,甲数是20,乙数比丙数少多少?解:乙数:20÷5×3 = 12丙数:20÷5×4 = 16乙数比丙数少:16 - 12 = 4答:45. 一个圆柱的底面半径是4 厘米,高是6 厘米,它的侧面积是多少平方厘米?解:侧面积= 2×3.14×4×6 = 150.72(平方厘米)答:150.72 平方厘米6. 一项工程,甲队单独做10 天完成,乙队单独做15 天完成,两队合作几天能完成这项工程的一半?解:1/2÷(1/10 + 1/15)= 3(天)答:3 天7. 有浓度为30%的糖水200 克,要使浓度变为40%,需蒸发掉多少克水?解:糖的质量:200×30% = 60(克)后来糖水质量:60÷40% = 150(克)蒸发掉水:200 - 150 = 50(克)答:50 克8. 一圆形花坛周长36 米,每隔6 米种一棵月季花,在相邻两棵月季花之间种两棵菊花,一共种了多少棵花?解:月季花:36÷6 = 6(棵)菊花:6×2 = 12(棵)共种:6 + 12 = 18(棵)答:18 棵9. 鸡兔共有20 只,脚有56 只,鸡兔各有多少只?解:假设全是鸡,脚有20×2 = 40 只兔:(56 - 40)÷(4 - 2)= 8(只)鸡:20 - 8 = 12(只)答:鸡12 只,兔8 只10. 把一个棱长8 厘米的正方体木块削成一个最大的圆柱,圆柱的体积是多少?解:半径= 8÷2 = 4(厘米)体积= 3.14×4²×8 = 401.92(立方厘米)答:401.92 立方厘米11. 某商品进价100 元,按20%的利润定价,然后打九折出售,赚了多少钱?解:定价:100×(1 + 20%)= 120(元)售价:120×90% = 108(元)利润:108 - 100 = 8(元)答:8 元12. 甲乙两车分别从A、B 两地同时出发,相向而行,甲车每小时行70 千米,乙车每小时行80 千米,3 小时后两车相距60 千米,A、B 两地相距多少千米?解:(70 + 80)×3 + 60 = 450 + 60 = 510(千米)答:510 千米13. 小明读一本书,第一天读了全书的1/5,第二天读了28 页,这时读的页数与剩下页数的比是5 : 6,这本书有多少页?解:两天读了全书的5/(5 + 6)= 5/11全书页数:28÷(5/11 - 1/5)= 110(页)答:110 页14. 在200 克水中加入50 克盐,盐水的含盐率是多少?解:50÷(200 + 50)×100% = 20%答:20%15. 一个数的3/4 比它的40%多70,这个数是多少?解:70÷(3/4 - 40%)= 200答:20016. 修一条路,已修的和未修的长度比是3 : 5,如果再修12 千米,已修的和未修的长度比是9 : 11,这条路全长多少千米?解:原来已修的占全长的3/(3 + 5)= 3/8后来已修的占全长的9/(9 + 11)= 9/20全长:12÷(9/20 - 3/8)= 160(千米)答:160 千米17. 一个圆锥形麦堆,底面直径6 米,高1.2 米。

小升初最常考的奥数题100道及答案(完整版)

小升初最常考的奥数题100道及答案(完整版)

小升初最常考的奥数题100道及答案(完整版)1. 已知一张桌子的价钱是一把椅子的10 倍,又知一张桌子比一把椅子多288 元,一张桌子和一把椅子各多少元?答案:桌子320 元,椅子32 元。

解析:设一把椅子的价格为x 元,则一张桌子的价格为10x 元。

根据一张桌子比一把椅子多288 元,可列出方程:10x - x = 288,解得x = 32,那么桌子的价格为10x = 320 元。

2. 3 箱苹果重45 千克。

一箱梨比一箱苹果多5 千克,3 箱梨重多少千克?答案:60 千克。

解析:一箱苹果的重量为45÷3 = 15 千克,一箱梨比一箱苹果多5 千克,所以一箱梨重15 + 5 = 20 千克,3 箱梨的重量为20×3 = 60 千克。

3. 甲乙二人从两地同时相对而行,经过4 小时,在距离中点4 千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?答案:2 千米。

解析:甲比乙在4 小时内多走了4×2 = 8 千米,那么甲每小时比乙快8÷4 = 2 千米。

4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13 支,张强要了7 支,李军又给张强0.6 元钱。

每支铅笔多少钱?答案:0.15 元。

解析:两人付同样多的钱,应得到同样多的铅笔,一共买了13 + 7 = 20 支铅笔,平均每人10 支。

李军多要了13 - 10 = 3 支,给张强0.6 元,所以每支铅笔的价格为0.6÷3 = 0.2 元。

5. 甲乙两辆客车上午8 时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2 点。

甲车每小时行40 千米,乙车每小时行45 千米,两地相距多少千米?(交换乘客的时间略去不计)答案:250 千米。

解析:下午2 点即14 点,从上午8 点到下午2 点经过了6 小时。

小升初数学常见奥数题100道附答案(完整版)

小升初数学常见奥数题100道附答案(完整版)

小升初数学常见奥数题100道附答案(完整版)1. 甲、乙两人同时从A、B 两地相向而行,甲每分钟走52 米,乙每分钟走48 米,两人走了10 分钟后交叉而过,又相距38 米,A、B 两地相距多少米?答案:962 米思路:两人10 分钟走的路程之和为(52 + 48)×10 = 1000 米,减去交叉而过相距的38 米,A、B 两地相距1000 - 38 = 962 米。

2. 一筐苹果,先拿出140 个,又拿出余下的60%,这时剩下的苹果正好是原来总数的1/6,这筐苹果原来有多少个?答案:240 个思路:设这筐苹果原来有x 个,(x - 140)×(1 - 60%) = 1/6x ,解得x = 240 。

3. 修一条路,第一天修了全长的1/5 多100 米,第二天修了余下的2/7 ,还剩500 米,这条路全长多少米?答案:1000 米思路:设全长为x 米,第一天修了1/5x + 100 米,余下x - (1/5x + 100) = 4/5x - 100 米,第二天修了2/7×(4/5x - 100) 米,可列方程4/5x - 100 - 2/7×(4/5x - 100) = 500 ,解得x = 1000 。

4. 某工厂三个车间共有180 人,第二车间人数是第一车间人数的3 倍多1 人,第三车间人数是第一车间人数的一半还少1 人,三个车间各有多少人?答案:第一车间40 人,第二车间121 人,第三车间19 人思路:设第一车间有x 人,则第二车间有3x + 1 人,第三车间有1/2x - 1 人,x + 3x + 1 + 1/2x - 1 = 180 ,解得x = 40 ,第二车间121 人,第三车间19 人。

5. 一个书架,上层书的本数是下层的4 倍,如果从上层拿60 本到下层,两层书的本数就相同,上层和下层原来各有多少本书?答案:上层160 本,下层40 本思路:设下层原来有x 本,则上层原来有4x 本,4x - 60 = x + 60 ,解得x = 40 ,上层160 本。

小升初常考的奥数题100道附答案(完整版)

小升初常考的奥数题100道附答案(完整版)

小升初常考的奥数题100道附答案(完整版)1. 有红、黄、白三种颜色的球,红球和黄球一共有21 个,黄球和白球一共有20 个,红球和白球一共有19 个。

三种球各有多少个?答案:三种球的总数:(21 + 20 + 19)÷2 = 30(个)白球:30 - 21 = 9(个)红球:30 - 20 = 10(个)黄球:30 - 19 = 11(个)2. 在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3 倍,那么差等于多少?答案:被减数= 减数+ 差被减数+ 减数+ 差= 120所以被减数= 60差:60÷(3 + 1) = 153. 某班学生去划船,如果增加一条船,那么每条船正好坐6 人;如果减少一条船,那么每条船就要坐9 人。

问:学生有多少人?答案:设原来有x 条船。

6(x + 1) = 9(x - 1)x = 5学生人数:6×(5 + 1) = 36(人)4. 老师把一些苹果分给小朋友。

如果每人分一个,还剩下8 个苹果;如果每人分2 个,那么还少2 个苹果。

一共有多少个小朋友?答案:设小朋友有x 个。

x + 8 = 2x - 2x = 105. 甲、乙两数的和是180,甲数的1/4 等于乙数的1/5,甲、乙两数各是多少?答案:甲:乙= 4 : 5甲:180×4/(4 + 5) = 80乙:180 - 80 = 1006. 一个长方形,如果长增加2 厘米,宽增加5 厘米,那么面积就增加60 平方厘米,这时恰好是一个正方形。

原来长方形的面积是多少平方厘米?答案:设正方形边长为x 厘米。

(x - 2)(x - 5) + 60 = x²x = 10原长方形长8 厘米,宽 5 厘米,面积40 平方厘米。

7. 一筐苹果分给甲、乙、丙三人,甲分得全部苹果的1/5 加5 个苹果,乙分得全部苹果的1/4 加7 个苹果,丙分得其余苹果的1/2,最后剩下的苹果正好等于一筐苹果的1/8。

六年级小升初奥数题目

六年级小升初奥数题目

六年级小升初奥数题目一、工程问题。

1. 一项工程,甲队单独做20天完成,乙队单独做30天完成。

现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天。

从开始到完成共用了16天。

问乙队休息了多少天?- 解析:- 甲队单独做20天完成,则甲队每天的工作效率为1÷20=(1)/(20);乙队单独做30天完成,则乙队每天的工作效率为1÷30=(1)/(30)。

- 甲队工作了16 - 3=13天,甲队完成的工作量为(1)/(20)×13=(13)/(20)。

- 那么乙队完成的工作量为1-(13)/(20)=(7)/(20)。

- 乙队完成这些工作量需要的时间为(7)/(20)÷(1)/(30)=(7)/(20)×30 = 10.5天。

- 所以乙队休息的天数为16 - 10.5 = 5.5天。

2. 有一个水池,单开甲管1小时可以将水池的水注满,单开乙管40分钟可以将水池的水注满,两管同时开10(2)/(5)分钟后,共注水4(1)/(3)吨,水池能装水多少吨?- 解析:- 1小时 = 60分钟,甲管1分钟注水1÷60=(1)/(60),乙管1分钟注水1÷40=(1)/(40)。

- 两管同时开10(2)/(5)分钟,即(52)/(5)分钟,它们注水的效率和为(1)/(60)+(1)/(40)=(2 + 3)/(120)=(5)/(120)=(1)/(24)。

- 那么(52)/(5)分钟的注水量占水池总量的(1)/(24)×(52)/(5)=(13)/(30)。

- 已知共注水4(1)/(3)吨,即(13)/(3)吨,设水池能装水x吨,则(13)/(30)x=(13)/(3),解得x = 10吨。

二、行程问题。

3. 甲、乙两车分别从A、B两地同时出发相向而行,6小时后相遇在C点。

如果甲车速度不变,乙车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点16千米。

小升初奥数测试题及答案

小升初奥数测试题及答案

小升初奥数测试题及答案一、选择题1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的1/4加上它的1/2,和是多少?A. 1/4B. 3/4C. 9/4D. 1答案:D3. 一本书的价格是35元,如果打8折,那么现价是多少元?A. 28元B. 30元C. 35元D. 42元答案:A二、填空题4. 一个长方形的长是15厘米,宽是10厘米,它的周长是________厘米。

答案:50厘米5. 一本书有120页,小明第一天看了总页数的1/4,第二天看了总页数的1/2,小明两天共看了________页。

答案:90页三、解答题6. 小明和小红共有100张邮票,如果小明给小红10张邮票,那么小红的邮票数将是小明的2倍。

小明和小红原来各有多少张邮票?解答:设小明原来有x张邮票,小红原来有(100-x)张邮票。

根据题意,2(x-10) = (100-x) + 10解得:2x - 20 = 110 - x3x = 130x = 40所以,小明原来有40张邮票,小红原来有60张邮票。

7. 一个水池有A、B、C三个进水管,A管单独注满水池需要10小时,B管需要12小时,C管需要15小时。

如果三个管子同时工作,那么需要多少时间才能注满水池?解答:设三个管子同时工作需要t小时注满水池。

A管每小时注水1/10,B管每小时注水1/12,C管每小时注水1/15。

三个管子同时工作,每小时注水量为1/10 + 1/12 + 1/15。

根据题意,(1/10 + 1/12 + 1/15) * t = 1解得:t = (1/10 + 1/12 + 1/15)^(-1)t = 4 (小时)四、应用题8. 一辆汽车从甲地到乙地,如果速度提高20%,可以比原定时间提前1小时到达。

如果速度降低20%,则会比原定时间晚1小时到达。

请问甲地到乙地的原定行驶时间是多少?解答:设原定速度为v,原定时间为t。

根据题意,v * t = (1.2v) * (t - 1) = (0.8v) * (t + 1)解得:t = 5 (小时)答案:甲地到乙地的原定行驶时间是5小时。

小升初常考奥数练习题及答案

小升初常考奥数练习题及答案

小升初常考奥数练习题及答案【三篇】和差问题已知两数的和与差,求这两个数口诀】和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的例:已知两数和是10,差是2,求这两个数按口诀,则大数=(10+2)/2=6 ,小数=(10-2)/2=4差比问题口诀】我的比你多,倍数是因果分子实际差,分母倍数差商是一倍的,乘以各自的倍数,两数便可求得。

例:甲数比乙数大12且甲: 乙=7:4,求两数。

先求一倍的量,12/ (7-4 )=4,所以甲数为:4X7=28,乙数为:4X4=16年龄问题口诀】岁差不会变,同时相加减。

岁数一改变,倍数也改变抓住这三点,一切都简单例1:小军今年8 岁,爸爸今年34 岁,几年后,爸爸的年龄是小军的3 倍?分析:岁差不会变,今年的岁数差点34-8=26 ,到几年后仍然不会变已知差及倍数,转化为差比问题26/ (3-1 ) =13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X仁13 岁,所以应该是5 年后。

例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?分析:岁差不会变,今年的岁数差13-9=4 几年后也不会改变几年后岁数和是40,岁数差是4,转化为和差问题。

则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4 )/2=18 ,所以答案是9 年后。

和比问题已知整体,求部分口诀】家要众人合,分家有原则分母比数和,分子自己的和乘以比例,就是该得的例:甲乙丙三数和为27,甲:乙:丙=2:3:4 ,求甲乙丙三数。

分母比数和,即分母为:2+3+4=9;分子自己的,则甲乙丙三数占和的比例分别为2/9 ,3/9 ,4/9和乘以比例,则甲为27X2/9=6,乙为27X3/9=9,丙为27X4/9=12鸡兔同笼问题口诀】假设全是鸡,假设全是兔多了几只脚,少了几只足?除以脚的差,便是鸡兔数例:鸡免同笼,有头36 ,有脚120,求鸡兔数求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数=(4X36-120)/(4-2)=12路程问题(1) 相遇问题口诀】相遇那一刻,路程全走过除以速度和,就把时间得例:甲乙两人从相距120千米的两地相向而行,甲的速度为40 千米/小时,乙的速度为20千米/ 小时,多少时间相遇?相遇那一刻,路程全走过,即甲乙走过的路程和恰好是两地的距离120 千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

慢车每小时行 65 千米,相遇时快车比慢车多行了 40 千米,甲乙两地相距多少千 米?
11. 某玻璃厂托运玻璃 250 箱,合同规定每箱运费 20 元,如果损坏一箱, 不但不 付运费还要赔偿 100 元。运后结算时,共付运费 4400 元。托运中损坏了多少箱 玻璃?
12. 五年级一中队和二中队要到距学校 20 千米的地方去春游。 第一中队步行每小 时行 4 千米,第二中队骑自行车, 每小时行 12 千米。 第一中队先出发 2 小时后, 第二中队再出发,第二中队出发后几小时才能追上一中队?
19. 学校里买来了 5 个保温瓶和 10 个茶杯,共用了 90 元钱。每个保温瓶是每个 茶杯价钱的 4 倍,每个保温瓶和每个茶杯各多少元?
20. 两个数的和是 572,其中一个加数个位上是 0,去掉 0 后,就与第二个加数相 同。这两个数分别是多少?
21. 一桶油连桶重 16 千克,用去一半后,连桶重 9 千克,桶重多少千米?
25. 有 5 桶油重量相等, 如果从每只桶里取出 15 千克,则 5 只桶里所剩下油的重 量正好等于原来 2 桶油的重量。原来每桶油重多少千克?
26. 把一根木料锯成 3 段需要 9 分钟,那么用同样的速度把这根木料锯成 5 段, 需要多少分?
27. 一个车间,女工比男工少 35 人,男、女工各调出 17 人后,男工人数是女工 人数的 2 倍。原有男工多少人?女工多少人? 28. 李强骑自行车从甲地到乙地,每小时行 12 千米, 5 小时到达,从乙地返回甲 地时因逆风多用 1 小时,返回时平均每小时行多少千米? 29. 甲、乙二人同时从相距 18 千米的两地相对而行, 甲每小时行走 5 千米, 乙每 小时走 4 千米。如果甲带了一只狗与甲同时出发, 狗以每小时 8 千米的速度向乙 跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗 跑了多少千米? 30. 有红、黄、白三种颜色的球,红球和黄球一共有 21 个,黄球和白球一共有 20 个,红球和白球一共有 19 个。三种球各有多少个? 31. 在一根粗钢管上接细钢管。 如果接 2 根细钢管共长 18 米,如果接 5 根细钢管 共长 33 米。一根粗钢管和一根细钢管各长多少米? 32. 水泥厂原计划 12 天完成一项任务,由于每天多生产水泥 4.8 吨,结果 10 天 就完成了任务,原计划每天生产水泥多少吨? 33. 学校举办歌舞晚会,共有 80 人参加了表演。其中唱歌的有 70 人,跳舞的有 30 人,既唱歌又跳舞的有多少人? 34. 学校举办语文、数学双科竞赛,三年级一班有 59 人,参加语文竞赛的有 36 人,参加数学竞赛的有 38 人,一科也没参加的有 5 人。双科都参加的有多少人? 35. 学校买了 4 张桌子和 6 把椅子,共用 640 元。 2 张桌子和 5 把椅子的价钱相 等,桌子和椅子的单价各是多少元? 36. 父亲今年 45 岁, 5 年前父亲的年龄是儿子的 4 倍,今年儿子多少岁? 37. 有两桶油, 甲桶油重是乙桶油重的 4 倍,如果从甲桶倒入乙桶 18 千克, 两桶 油就一样重,原来每桶各有多少千克油? 38. 光明小学举办数学知识竞赛,一共 20 题。答对一题得 5 分,答错一题扣 3 分,不答得 0 分。小丽得了 79 分,她答对几道,答错几道,有几题没答? 39. 甲列火车长 240 米,每秒行 20 米;乙列火车长 264 米,每秒行 16 米,两车 相向而行,从两车头相遇到两车尾相离需要几秒? 40. 一列火车长 600 米,通过一条长 1150 米的隧道,已知火车的速度是每分 700
4. 李军和张强付同样多的钱买了同一种铅笔,李军要了 李军又给张强 0.6 元钱。每支铅笔多少钱?
13 支,张强要了 7 支,
5. 甲乙两辆客车上午 8 时同时从两个车站出发, 相向而行, 经过一段时间, 两车 同时到达一条河 的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换 乘客,然后按原路返回各自出发的车站,到站时已是下午 2 点。甲车每小时行 40 千米, 乙车每小时行 45 千米, 两地相距多少千米? (交换乘客的时间略去不 计)
22. 一桶油连桶重 10 千克,倒出一半后,连桶还重 5.5 千克,原来有油多少千克?
23. 用一只水桶装水, 把水加到原来的 2 倍,连桶重 10 千克, 如果把水加到原来 的 5 倍,连桶重 22 千克。桶里原有水多少千克?
24. 小红和小华共有故事书 36 本。如果小红给小华 5 本,两人故事书的本数就相 等,原来小红和小华各有多少本?
最新小升初奥数必考真题及答案
1. 已知一张桌子的价钱是一把椅子的 10 倍,又知一张桌子比一把椅子多 288 元, 一张桌子和一把椅子各多少元?
2、3 箱苹果重 45 千克。一箱梨比一箱苹果多 5 千克, 3 箱梨重多少千克?
3. 甲乙二人从两地同时相对而行, 经过 4 小时,在距离中点 4 千米处相遇。 甲比 乙速度快,甲每小时比乙快多少千米?
13. 某厂运来一堆煤, 如果每天烧 1500 千克, 比计划提前一天烧完, 如果每天烧 1000 千克,将比计划多烧一天。这堆煤有多少千克?
14. 妈妈让小红去商店买 5 支铅笔和 8 个练习本,按价钱给小红 3.8 元钱。结果 小红却买了 8 支铅笔和 5 本练习本,找回 0.45 元。求一支铅笔多少元?
8. 甲、乙两队共同修一条长 400 米的公路, 甲队从东往西修 4 天,乙队从西往东 修 5 天,正好修完,甲队比乙队每天多修 10 米。甲、乙两队每天共修多少米?
9. 学校买来 6 张桌子和 5 把桌子和椅子的单价各是多少元?
10. 一列火车和一列慢车, 同时分别从甲乙两地相对开出。 快车每小时行 75 千米,
6. 学校组织两个课外兴趣小组去郊外活动。 第一小组每小时走 4.5 千米,第二小 组每小时行 3.5 千米。两组同时出发 1 小时后,第一小组停下来参观一个果园, 用了 1 小时,再去追第二小组。多长时间能追上第二小组?
7. 有甲乙两个仓库,每个仓库平均储存粮食 32.5 吨。甲仓的存粮吨数比乙仓的 4 倍少 5 吨,甲、乙两仓各储存粮食多少吨?
17. 某鞋厂生产 1800 双鞋,把这些鞋分别装入 12 个纸箱和 4 个木箱。如果 3 个 纸箱加 2 个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?
18. 某工地运进一批沙子和水泥, 运进沙子袋数是水泥的 2 倍。每天用去 30 袋水 泥, 40 袋沙子,几天以后,水泥全部用完,而沙子还剩 120 袋,这批沙子和水 泥各多少袋?
15. 学校组织外出参观,参加的师生一共 360 人。一辆大客车比一辆卡车多载 10 人,6 辆大客车和 8 辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要 几辆?
16. 某筑路队承担了修一条公路的任务。原计划每天修 720 米,实际每天比原计 划多修 80 米,这样实际修的差 1200 米就能提前 3 天完成。这条公路全长多少米?
相关文档
最新文档