最新人教版数学八年级下册17.1.3-利用勾股定理作图或计算ppt课件
合集下载
2024八年级数学下册第十七章勾股定理17.1勾股定理第3课时应用勾股定理解数学问题课件新版新人教版
网格(每个小正方形的边长均为1)画出相应的△ABC,并求
出它的面积;
【解】△ABC如图①,S△ABC= .
探索创新:
(3)若△ABC三边的长分别为 a,2 a, a(a>0),请利
用图③中的正方形网格(每个小正方形的边长均为a)画出相
应的△ABC,并求出它的面积;
【解】△ABC如图②,可得
∵∠ABC=120°,AB=BC,
∴∠BAC=∠BCA=30°, ∵∠AOB=90°,
∴OB= a,
∴OF=OB+BF= ,OA=OC= .
∴AC=CE= a.
易得∠PFO=∠OEM=90°.
∵点P的坐标为(-2 ,3),
∴ =3,即a=2.
∴OE=OC+CE=
=3
( − ) + 的最小值.
【解】如图,作BD=12,过点B作AB⊥BD,过点D作
ED⊥BD,使AB=2,ED=3,连接AE交BD于点C.则AE的长
即为代数式 + + ( − ) + 的最小值.
过点A作AF⊥DE交ED的延长线于点F,得到长方形ABDF,
则AB=DF=2,AF=BD=12,∴EF=ED+DF=3+2=5.
∴AE= + =13,即 +
+ ( − ) + 的最小值为13.
利用勾股定理探求格点三角形面积
11.[新考法 构图求面积法]问题背景:
在△ABC中,AB,BC,AC三边的长分别为 , ,
,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个
∴∠CAD=45°=∠ACD.
∴AD=CD=2 cm.
出它的面积;
【解】△ABC如图①,S△ABC= .
探索创新:
(3)若△ABC三边的长分别为 a,2 a, a(a>0),请利
用图③中的正方形网格(每个小正方形的边长均为a)画出相
应的△ABC,并求出它的面积;
【解】△ABC如图②,可得
∵∠ABC=120°,AB=BC,
∴∠BAC=∠BCA=30°, ∵∠AOB=90°,
∴OB= a,
∴OF=OB+BF= ,OA=OC= .
∴AC=CE= a.
易得∠PFO=∠OEM=90°.
∵点P的坐标为(-2 ,3),
∴ =3,即a=2.
∴OE=OC+CE=
=3
( − ) + 的最小值.
【解】如图,作BD=12,过点B作AB⊥BD,过点D作
ED⊥BD,使AB=2,ED=3,连接AE交BD于点C.则AE的长
即为代数式 + + ( − ) + 的最小值.
过点A作AF⊥DE交ED的延长线于点F,得到长方形ABDF,
则AB=DF=2,AF=BD=12,∴EF=ED+DF=3+2=5.
∴AE= + =13,即 +
+ ( − ) + 的最小值为13.
利用勾股定理探求格点三角形面积
11.[新考法 构图求面积法]问题背景:
在△ABC中,AB,BC,AC三边的长分别为 , ,
,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个
∴∠CAD=45°=∠ACD.
∴AD=CD=2 cm.
勾股定理课件(共19张PPT)人教版初中数学八年级下册
1
+2·
2
ab =
即:在Rt△ABC 中,∠C=90 °
c2 = a2 + b2
1 2
c +ab
2
伽
菲
尔
德
证
法
归纳小结
“赵爽弦图”通过图形的切割、拼接,巧妙地利用面积关系证实
了命题的正确性,命题与直角三角形的边有关,我国把它称为
勾股定理:直角三角形两直角边的平方和等于斜边的平方.
即a2+b2=c2.
勾股定理: 直角三角形两直角边a、b的平
方和,等于斜边c的平方。
即:a2+b2 =c2
谢谢观看
哲学家、数学家、天文学家
新知探究
思考
图17.1-2中三个正方形的面积有什么关系?等腰
直角三角形的三边之间有什么关系?
A
B
a
b
c
C
图17.1-2
三个正方形A、
B、C的面积有
什么关系?
新知探究
探究
等腰直角三角形有上述性质,其他
直角三角形是否也有这个性质?
C
A
B
C'
图1
A'
B'
图17.1-3
图2
(图中每个小方格代表一个单位面积)
教 学 目 标 / Te a c h i n g a i m s
1
2
了解勾股定理文化背景,体验勾股定理的探究过
程。
理解不同勾股定理的证明方法,能够分析
它们的异同。
能够用勾股定理解决直角三角形的相关学习
3
和解决生活中的实际问题。
情景导入
图17.1-1
毕达哥拉斯(Pythagoras,约前
勾股定理的作图与计算-八年级数学下册课件(人教版)
斜边),以直角三角形的三边为直径,分别向外作半圆,已知 S 1 =
3,S2 =2,那么 S 3 =( B )
A.6
B.5
C.4
D.3
巩固练习
2.如图,图中所有的三角形都是直角三角形,所有的四边形都
是正方形,已知正方形 A,B,C,D 的面积分别为 12,16,9,12,那么图
49
中正方形 E 的面积为__________.
第17章
勾股定理
17.1.3勾股定理的作图与计算
教 学 目 标 / Te a c h i n g a i m s
会用勾股定理解决简单的实际问题,建立数形结
1
合的思想。
能利用勾股定理在数轴上作出表示无理数的
2
点。
情景导入
问题1:
数轴的三要素:
原点
正方向
、
问题2:
在数轴上表示: 2 2,
1
,
0.5
,300%(1) 4
单位长度
、
新知探究
利用勾股定理作长度是无理数的线段
数轴
-3 -2 -1
0
1
2
3
我们知道数轴上的点有的表示有理数,有
的表示无理数,你能在数轴上画出 13
吗?
新知探究
分析:在数轴上找表示的点:要在数轴上画出表示的点,只要画出长为的线段即可.利用勾股
定理,长为的线段是直角边为正整数2和3的直角三角形的斜边.
解:由折叠得 BC=BC'=5,EC=EC',
在 Rt△ABC'中,AC'= ' − =4,
∴C'D=AD-AC'=5-4=1.
在 Rt△DEC'中,设 EC=x=EC',则 DE=3-x.
3,S2 =2,那么 S 3 =( B )
A.6
B.5
C.4
D.3
巩固练习
2.如图,图中所有的三角形都是直角三角形,所有的四边形都
是正方形,已知正方形 A,B,C,D 的面积分别为 12,16,9,12,那么图
49
中正方形 E 的面积为__________.
第17章
勾股定理
17.1.3勾股定理的作图与计算
教 学 目 标 / Te a c h i n g a i m s
会用勾股定理解决简单的实际问题,建立数形结
1
合的思想。
能利用勾股定理在数轴上作出表示无理数的
2
点。
情景导入
问题1:
数轴的三要素:
原点
正方向
、
问题2:
在数轴上表示: 2 2,
1
,
0.5
,300%(1) 4
单位长度
、
新知探究
利用勾股定理作长度是无理数的线段
数轴
-3 -2 -1
0
1
2
3
我们知道数轴上的点有的表示有理数,有
的表示无理数,你能在数轴上画出 13
吗?
新知探究
分析:在数轴上找表示的点:要在数轴上画出表示的点,只要画出长为的线段即可.利用勾股
定理,长为的线段是直角边为正整数2和3的直角三角形的斜边.
解:由折叠得 BC=BC'=5,EC=EC',
在 Rt△ABC'中,AC'= ' − =4,
∴C'D=AD-AC'=5-4=1.
在 Rt△DEC'中,设 EC=x=EC',则 DE=3-x.
人教版八年级下册数学17.1 勾股定理 勾股定理的应用课件 (共15张PPT)
R·八年级数学下册 2020/6/19
10
课堂小结
Summing-up on Teaching
1、本节课我们学到了什么?
2、学了本节课后我们有什么感想?
实际问题 解决 利用勾 股定理
抽象
数学问题 归类
直角三角 形的问题
R·八年级数学下册 2020/6/19
11
课后作业
homework
一(必做题):教科书第28页第4,5,7,9题; 二(选做题):教科书第29页第13、14题;
,
则线段AB长为_____.
2、在△ABC中,∠C=30°,AC=4cm,AB=3cm,则BC长为_____.
C
A
B
D
A
(1)
B
D
C
(2)
方法导航:见特殊角作高构造直角三角形.
R·2八020/6/1年9 级数学化下非直册角三角形为直角三角形.
6
变式1、在△ABC中,∠B=120°,BC=4cm,AB=6cm,则AC长为_____. 变式2、如图,△ABC中,AC=4, ∠A=45°,∠B=60°,则AB长为_____. 变式3、如图,△ABC中,AB=15, BC=14, AC=13,则S△ABC =_____.
R·八年级数学下册 2020/6/19
2
学习目标
1.能应用勾股定理计算直角三角形的边长. 2.能应用勾股定理解决简单的实际问题.
学习重、难点 重点:运用勾股定理求直角三角形的边长. 难点:能应用勾股定理解决简单的实际问题.
R·八年级数学下册 2020/6/19
3
新课探究
例1 一个门框的尺寸如图所示,一块长3 m,宽2.2 m的长方形薄木 板能否从门框内通过?为什么?
人教版八年级数学 下册:17.1《勾股定理》(3)【课件】(共17张PPT)
∴ ∠BCD =∠ACE.
又 BC=AC, DC=EC,
E
∴ △ACE≌△BCD.
C
B
应用提高
例 如图,△ACB和△ECD都是等腰直角三角形,∠ACB =∠ECD =90°,D为AB边上一点.求证:AD2 +DB2 =DE2.
证明:∴ ∠B =∠CAE=45°,
A
∠DAE =∠CAE+∠BAC=45°+45°=90°.
∴ AD2 +AE2 =DE2.
D
∵ AE=DB , ∴ AD2 +DB2 =DE2.
E
C
B
板书
勾股定理(3)
一、证明“HL”
A
A′
C B C′ B′
课堂小结
(1)勾股定理有哪些方面的应用,本节课学习了勾 股定理哪几方面的应用?
(2)你能说说勾股定理求线段长的基本思路吗? (3)本节课体现出哪些数学思想方法?
人教版 八年级 下册
17.1 勾股定理(3)
人教版 八年级 下册
17.1 勾股定理(3)
证明“HL”
问题1 在八年级上册中,我们曾经通过画图得到结 论:斜边和一条直角边分别相等的两个直角三角形全等. 学习了勾股定理后,你能证明这一结论吗?
证明“HL”
已知:如图,在Rt△ABC 和Rt△A′B′C′中,∠C= ∠C′=90°,AB=A′B′,AC=A′C′.
课后作业
作业:教科书第27页第1,2题. 习题17.1剩下的没做的题目
证明:
A
∵ AB=A ′B ′,
AC=A′C′,
∴ BC=B′C′.
∴ △ABC≌△A′B′C′
(SSS). C
A′ B C′ B′
第十七章 勾股定理 单元解读 课件(共13张PPT)2024-2025学年人教版八年级数学下册
勾股定理
单元教材解 读
课标解读
教学内容
课标要求
17.1 勾股定理 17.2 勾股定理的逆定理
探索勾股定理及其逆定理,并能运用它们解决 一些简单的实际问题
学习目标
教学内容
学习目标
17.1 勾股定理
1.经历勾股定理的探索过程,了解关 于勾股定理的文化历史背景. 2.会运用勾股定理在数轴上确定无理 数对应的点. 3.能利用勾股定理解决一些简单问题.
直角三角形是一种极常见而特殊的三角形,它有许多性质.本章所研究的勾股 定理,就是直角三角形非常重要的性质之一,有极其广泛的应用.不仅在平面 几何中是重要的定理,而且在三角学、解析几何学、微积分学中都是理论的基 础,对现代数学的发展也产生了重要而深远的影响.本章教学时间约需9个课 时,具体安排如下(仅供参考):
互逆定理
一般的,如果一个定理的逆命题经过证明是正确的, 那么它也是一个定理,称这两个定理互为逆定理.
知识结构
内容
a2 b2 c(2 a , b, c为三角形的
三边长) 直角三角形
勾股定理 的逆定理
互逆定理
勾股定理
应用 勾股数
判断三角形是否为直角三角形
能够成为直角三角形三条边长 的三个正整数
课时安排
通过这一节内容的学习,可以培养 学生逻辑思维能力、分析问题和解 决问题的能力.
教材内容
勾股定理分为两节。第17.1节介绍勾股定理及其应用,第17.2节介绍勾 股定理的逆定理及其应用.
17.2 勾股定理的逆定出猜想,然后 通过全等三角形证明了勾股定理的逆定理.并在其中穿插介绍了逆命题、逆定理的概 念,通过举例说明原命题成立其逆命题不一定成立.
17.1 勾股定理 17.2 勾股定理的逆定理
单元教材解 读
课标解读
教学内容
课标要求
17.1 勾股定理 17.2 勾股定理的逆定理
探索勾股定理及其逆定理,并能运用它们解决 一些简单的实际问题
学习目标
教学内容
学习目标
17.1 勾股定理
1.经历勾股定理的探索过程,了解关 于勾股定理的文化历史背景. 2.会运用勾股定理在数轴上确定无理 数对应的点. 3.能利用勾股定理解决一些简单问题.
直角三角形是一种极常见而特殊的三角形,它有许多性质.本章所研究的勾股 定理,就是直角三角形非常重要的性质之一,有极其广泛的应用.不仅在平面 几何中是重要的定理,而且在三角学、解析几何学、微积分学中都是理论的基 础,对现代数学的发展也产生了重要而深远的影响.本章教学时间约需9个课 时,具体安排如下(仅供参考):
互逆定理
一般的,如果一个定理的逆命题经过证明是正确的, 那么它也是一个定理,称这两个定理互为逆定理.
知识结构
内容
a2 b2 c(2 a , b, c为三角形的
三边长) 直角三角形
勾股定理 的逆定理
互逆定理
勾股定理
应用 勾股数
判断三角形是否为直角三角形
能够成为直角三角形三条边长 的三个正整数
课时安排
通过这一节内容的学习,可以培养 学生逻辑思维能力、分析问题和解 决问题的能力.
教材内容
勾股定理分为两节。第17.1节介绍勾股定理及其应用,第17.2节介绍勾 股定理的逆定理及其应用.
17.2 勾股定理的逆定出猜想,然后 通过全等三角形证明了勾股定理的逆定理.并在其中穿插介绍了逆命题、逆定理的概 念,通过举例说明原命题成立其逆命题不一定成立.
17.1 勾股定理 17.2 勾股定理的逆定理
人教版八年级下册数学17.1 勾股定理 (运用勾股定理解决几何问题)第3课时课件 (共15张PPT)
还学会了利用勾股定理建立方程求直角 三角形中线段的长.
在没找到重新开始的理由前,别给自己太多退却的借口。就在那一瞬间,我仿佛听见了全世界崩溃的声音。因为穷人很多,并且穷人没有钱,所以,他们才会在网络上聊 了答应自己要做的事情,别忘了答应自己要去的地方,无论有多难,有多远。分手后不可以做朋友,因为彼此伤害过;不可以做敌人,因为彼此深爱过,所以只好成了最 只有站在足够的高度才有资格被仰望。渐渐淡忘那些过去,不要把自己弄的那么压抑。往往原谅的人比道歉的人还需要勇气。因为爱,割舍爱,这种静默才是最深情的告 时光已成过往,是我再也回不去的远方。不要把自己的伤口揭开给别人看,世界上多的不是医师,多的是撒盐的人。这世界,比你不幸的人远远多过比你幸运的人,路要 的那一步很激动人心,但大部分的脚步是平凡甚至枯燥的,但没有这些脚步,或者耐不住这些平凡枯燥,你终归是无法迎来最后的'那些激动人心。一个人害怕的事,往往 都会有乐观的心态,每个人也会有悲观的现状,可事实往往我们只能看到乐观的一面,却又无视于悲观的真实。从来没有人喜欢过悲观,也没有人能够忍受悲观,这就是 就会缅怀过去,无论是幸福或是悲伤,苍白或是绚烂,都会咀嚼出新的滋味。要让事情改变,先改变我自己;要让事情变得更好,先让自己变得更好。当日子成为照片当 背对背行走的路人,沿着不同的方向,固执的一步步远离,再也没有回去的路。想要别人尊重你,首先就要学会尊重别人。所有的胜利,与征服自己的胜利比起来,都是 与失去自己的失败比起来,更是微不足道。生命不在于活得长与短,而在于顿悟的早与晚。既不回头,何必不忘。既然无缘,何须誓言。感谢上天我所拥有的,感谢上天 千万条,成功的人生也有千万种,选对适合自己的那条路,走好自己的每段人生路,你一定会是下一个幸福宠儿。活在别人的掌声中,是禁不起考验的人。每一次轻易的 笔。什么时候也不要放弃希望,越是险恶的环境越要燃起希望的意志。现实会告诉你,没有比记忆中更好的风景,所以最好的不要故地重游。有些记忆就算是忘不掉,也 满,现实很骨感。我落日般的忧伤就像惆怅的飞鸟,惆怅的飞鸟飞成我落日般的忧伤。舞台上要尽情表演,赛场上要尽力拼搏,工作中要任劳任怨,事业上要尽职尽责。 乐,今天的抗争为了明天的收获!积德为产业,强胜于美宅良田。爱情永远比婚姻圣洁,婚姻永远比爱情实惠。爱有两种,一种是抓住,你紧张他也紧张;一种是轻松拖 人无忧,智者常乐。并不是因为所爱的一切他都拥有了,而是所拥有的一切他都爱。原来爱情不是看见才相信,而是相信才看得见。磨难是化了妆的幸福。如果你明明知 者选择说出来,或者装作不知道,万不要欲言又止。有时候留给别人的伤害,选择沉默比选择坦白要痛多了。我爱自己的内心,慢慢通过它,慢慢抵达世界,或者,抵达 我忘记一切,时间不会改变痛,只会让我适应痛。人生不容许你任性,接受现实,好好努力。曾经以为爱情是甜蜜,幸福的,不知道它也会伤人,而且伤的很痛,很痛。 出的代价却是好些年的失败。时间几乎会愈合所有事情,请给时间一点时间。蚁穴虽小,溃之千里。多少人要离开这个世间时,都会说出同一句话,这世界真是无奈与凄 孵出来的却是失败。太完美的爱情,我不相信,途中聚聚散散难舍难分,终有一天会雨过天晴。我分不清东南西北,却依然固执的喜欢乱走。若是得手,便是随手可丢; 爱情不是寻找共同点,而是学会尊重不同点。总有一天我会从你身边默默地走开,不带任何声响。我错过了狠多,我总是一个人难过,3、戏路如流水,从始至终,点滴不 未变,终归大海。一步一戏,一转身一变脸,扑朔迷离。真心自然流露,举手投足都是风流戏。一旦天幕拉开,地上再无演员。 相信自己有福气,但不要刻意拥有;相信
在没找到重新开始的理由前,别给自己太多退却的借口。就在那一瞬间,我仿佛听见了全世界崩溃的声音。因为穷人很多,并且穷人没有钱,所以,他们才会在网络上聊 了答应自己要做的事情,别忘了答应自己要去的地方,无论有多难,有多远。分手后不可以做朋友,因为彼此伤害过;不可以做敌人,因为彼此深爱过,所以只好成了最 只有站在足够的高度才有资格被仰望。渐渐淡忘那些过去,不要把自己弄的那么压抑。往往原谅的人比道歉的人还需要勇气。因为爱,割舍爱,这种静默才是最深情的告 时光已成过往,是我再也回不去的远方。不要把自己的伤口揭开给别人看,世界上多的不是医师,多的是撒盐的人。这世界,比你不幸的人远远多过比你幸运的人,路要 的那一步很激动人心,但大部分的脚步是平凡甚至枯燥的,但没有这些脚步,或者耐不住这些平凡枯燥,你终归是无法迎来最后的'那些激动人心。一个人害怕的事,往往 都会有乐观的心态,每个人也会有悲观的现状,可事实往往我们只能看到乐观的一面,却又无视于悲观的真实。从来没有人喜欢过悲观,也没有人能够忍受悲观,这就是 就会缅怀过去,无论是幸福或是悲伤,苍白或是绚烂,都会咀嚼出新的滋味。要让事情改变,先改变我自己;要让事情变得更好,先让自己变得更好。当日子成为照片当 背对背行走的路人,沿着不同的方向,固执的一步步远离,再也没有回去的路。想要别人尊重你,首先就要学会尊重别人。所有的胜利,与征服自己的胜利比起来,都是 与失去自己的失败比起来,更是微不足道。生命不在于活得长与短,而在于顿悟的早与晚。既不回头,何必不忘。既然无缘,何须誓言。感谢上天我所拥有的,感谢上天 千万条,成功的人生也有千万种,选对适合自己的那条路,走好自己的每段人生路,你一定会是下一个幸福宠儿。活在别人的掌声中,是禁不起考验的人。每一次轻易的 笔。什么时候也不要放弃希望,越是险恶的环境越要燃起希望的意志。现实会告诉你,没有比记忆中更好的风景,所以最好的不要故地重游。有些记忆就算是忘不掉,也 满,现实很骨感。我落日般的忧伤就像惆怅的飞鸟,惆怅的飞鸟飞成我落日般的忧伤。舞台上要尽情表演,赛场上要尽力拼搏,工作中要任劳任怨,事业上要尽职尽责。 乐,今天的抗争为了明天的收获!积德为产业,强胜于美宅良田。爱情永远比婚姻圣洁,婚姻永远比爱情实惠。爱有两种,一种是抓住,你紧张他也紧张;一种是轻松拖 人无忧,智者常乐。并不是因为所爱的一切他都拥有了,而是所拥有的一切他都爱。原来爱情不是看见才相信,而是相信才看得见。磨难是化了妆的幸福。如果你明明知 者选择说出来,或者装作不知道,万不要欲言又止。有时候留给别人的伤害,选择沉默比选择坦白要痛多了。我爱自己的内心,慢慢通过它,慢慢抵达世界,或者,抵达 我忘记一切,时间不会改变痛,只会让我适应痛。人生不容许你任性,接受现实,好好努力。曾经以为爱情是甜蜜,幸福的,不知道它也会伤人,而且伤的很痛,很痛。 出的代价却是好些年的失败。时间几乎会愈合所有事情,请给时间一点时间。蚁穴虽小,溃之千里。多少人要离开这个世间时,都会说出同一句话,这世界真是无奈与凄 孵出来的却是失败。太完美的爱情,我不相信,途中聚聚散散难舍难分,终有一天会雨过天晴。我分不清东南西北,却依然固执的喜欢乱走。若是得手,便是随手可丢; 爱情不是寻找共同点,而是学会尊重不同点。总有一天我会从你身边默默地走开,不带任何声响。我错过了狠多,我总是一个人难过,3、戏路如流水,从始至终,点滴不 未变,终归大海。一步一戏,一转身一变脸,扑朔迷离。真心自然流露,举手投足都是风流戏。一旦天幕拉开,地上再无演员。 相信自己有福气,但不要刻意拥有;相信
八年级下册PPT课件17利用勾股定理作图与计算(人教版)
l
也可以使
13 2
B
13
2
OA=2,AB=3, 同样可以求 出C点.
3
O 0
1
2
A• 3
13
C4
练习 1.你能在数轴上画出表示 17 的点吗?
l B
17
4
17 ?
16 4
1
A•
17
0 1 2 3 4C
练习 2. 如图,点A表示的实数是 __________
3. 如图,数轴上点A所表示的数为a,求a的值.
程思想
练一练 如图,在矩形ABCD中,AB=8,BC=4,将矩 形沿AC折叠,点D落在点D′处,求重叠部分 △AFC的面积.
用勾股定理求最短路径的长
例4 在一个圆柱石凳上,若小明在吃东西时留下了一
点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,
于是它想从A处爬向B处,蚂蚁怎么走最近?已知圆柱
体高为12 cm,底面半径为3 cm,π取3.
如图,点A表示的实数是 __________ 如图,点A表示的实数是 __________
例4 在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,蚂蚁怎么走最近?已知圆柱体高为12 cm,底面
半径为3 cm,π取3.
是1,点A、B、C都在格点上,求:
B
数学思想: 立体图形
转化 展开
A
平面图形
变式1:有一个圆柱形油罐,要以A点环绕油罐建梯子, 正好建在A点的正上方点B处,问梯子最短需多少米 (已知油罐的底面半径是2 m,高AB是5 m,π取3)?
B
A
变式2:如图,圆柱形玻璃杯高为14 cm,底面周长 为32 cm,在杯内壁离杯底5 cm的点B处有一滴蜂蜜, 此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜 相对的点A处,问蚂蚁从外壁A处到内壁B处的最短 距离为多少?(杯壁厚度不计)
人教版数学八年级下册:17.1 勾股定理 课件(共35张PPT)
探究 如图,以Rt△ 的三边为边向外作正方形,
其面积分别为 S1 、S2、S3,请同学们想一想
S1 、S2、S3 之间有何关系呢?
S2 + S3 =a2+b2
S1=c2
B
S1c a S2
b
A S3 C
∵a2+b2=c2
S2 + S3 = S1
探究S1、S2、S3之间的关系
S2
S3
1 2
a 2
2
1 2
b 2
2
1 a2 1 b2
8
8
S1
1 2
c 2
2
1
8
c2
由勾股定理得 a2+b2=c2
∴S2+S3=S1
S2
c
SS3 2
A
S1
S1
动手操作:例2如图,Rt△ABC中
,AC=8,BC=6,∠C=90°,分别 以AB、BC、AC为直径作三个半圆 ,那么阴影部分的面积为__24_ .
A
E
D
B
F
C
A
A =625
225
400
81
B =144
225
2、如图所示的图形中,所 有的四边形都是正方形,所 有的三角形都是直角三角形 ,其中最大的正方形的边长 是8厘米,则正方形A,B, C,D的面积之和是 __6_4_____平方厘米
利用勾股定理解决平面几何问题3——折叠中的计算问题
能算好算直接算,不能算不好算,设未知数,列方程(勾股定理、全等、相似等)
利用勾股定理解决平面几何问题1— —最短路径问题