常用积分公式
常用积分公式
13.
∫ ∫
x 2 dx = 2 (ax − 2b) ax + b + C 3a ax + b x2 2 dx = (3a 2 x 2 − 4abx + 8b2 ) ax + b + C 15a 3 ax + b
1 ln b ax + b − b + C (b > 0) ax + b + b
14.
⎧ ⎪ dx ⎪ =⎨ 15. ∫ x ax + b ⎪ ⎪ ⎩
∫
dx x2 − a 2
dx
x x arch + C1 = ln x + x 2 − a 2 + C x a
=−
46.
x a2 x2 − a2
( x 2 − a 2 )3
+C
47.
∫
∫
x x −a
2 2
dx = x 2 − a 2 + C 1 x − a2
2
48.
x (x − a )
2 2 3
dx = −
dx =
+C
63.
∫
∫
x2 a2 − x2
x2
dx = −
x 2 a2 x a − x 2 + arcsin + C 2 2 a
x a −x
2 2
64.
(a − x )
2
2 3
dx =
− arcsin
x +C a
65.
∫x ∫x
2
dx a2 − x2 dx
=
1 a − a2 − x2 ln +C a x
2
高等数学积分公式大全
高等数学积分公式大全高等数学是一门非常重要的学科,在很多领域都有应用。
其中,积分学是高等数学中的一个重要章节。
积分可以理解为求解曲线图形下面的面积,不同类型的积分公式有着不同的概念和应用,下面,就为大家整理了一份高等数学积分公式大全,让大家对这个知识点有一个更全面的认识。
1. 常数积分公式$$\int kdx=kx+C$$2. 幂函数积分公式$$\int x^ndx=\frac{x^{n+1}}{n+1}+C$$3. 指数函数积分公式$$\int e^xdx=e^x+C$$4. 对数函数积分公式$$\int \frac{1}{x}dx=\ln|x|+C$$5. 三角函数积分公式$$\int \sin xdx=-\cos x+C$$$$\int \cos xdx=\sin x+C$$6. 反三角函数积分公式$$\int \frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C$$$$\int \frac{1}{1+x^2}dx=\arctan x+C$$$$\int \frac{1}{\sqrt{x^2-1}}dx=\ln|x+\sqrt{x^2-1}|+C$$7. 换元法积分公式$$\int f(u)du=\int f(u(x))\frac{du}{dx}dx$$8. 分部积分公式$$\int u(x)v'(x)dx=u(x)v(x)-\int v(x)u'(x)dx$$9. 定积分公式$$\int_a^bf(x)dx=F(b)-F(a)$$10. 积分中值定理$$\int_a^bf(x)dx=f(c)(b-a)$$这便是几种高等数学积分公式的介绍,这些公式是数学中不可或缺的知识点,掌握这些公式不仅有助于学生学好数学,还对应用数学的工作有相当多的帮助。
除了这些基本的积分公式之外,高等数学还涉及到一些比较复杂的积分公式,如多重积分、线性代数积分、微积分方程等等。
1. 多重积分公式多重积分是指对多元函数的积分,通常被用于几何问题、概率论问题和物理学问题中。
常用积分公式
62.
x ( a 2 − x 2 )3 x2
dx =
+C
63.
x 2 a2 x 2 dx = − a − x + arcsin + C 2 2 2 2 a a −x x2 ( a 2 − x 2 )3 dx a2 − x2 dx
2
64.
dx =
x a2 − x2
− arcsin
x +C a
65.
=
1 a − a2 − x2 ln +C a x
dx x2 − a 2
dx
x x arch + C1 = ln x + x 2 − a 2 + C x a
=−
46.
x a2 x2 − a2
( x 2 − a 2 )3 x x −a
2 2
+C
47.
dx = x 2 − a 2 + C
48.
∫ ∫ ∫ ∫x ∫x
∫
x (x − a )
2 2 3
dx = −
∫ ax
2
x 1 dx = ln ax 2 + b + C +b 2a
x2 x b dx 24. ∫ 2 dx = − ∫ 2 a a ax + b ax + b dx 1 x2 25. ∫ = +C ln x ( ax 2 + b) 2b ax 2 + b
26.
∫ x (ax
2
dx
2
+ b)
=−
80.
x−a x−a x−a dx = ( x − b ) + (b − a ) arcsin +C b− x b− x b− x x−a dx = 2 arcsin +C b− x ( x − a )(b − x )
积分表常用公式
积分表常用公式积分表是数学中常用的一种工具,它可以将一系列的函数、图像或数据点映射到一个数学结构,从而使其可以高效地表示和分析。
积分表中使用的公式有很多,而最常用的几种就是拉格朗日积分,定积分和累积分。
拉格朗日积分是积分中最为基础的公式。
它的公式定义为:∫a~bf(x) dx = F(b)-F(a)其中,f(x)是在区间[a,b]上的一个函数,F(x)是函数f(x)的积分。
拉格朗日积分可以用于求解一个变量的定积分,也可用于求解一个变量的微分变换的积分。
定积分的公式定义为:∫a~b f(x) dx = F(b)-F(a)其中,f(x)是在区间[a,b]上的一个函数,F(x)是函数f(x)在区间[a,b]上的定积分。
定积分可以用于求解函数在一个固定的区间内的积分。
累积分的公式定义为:∫-∞~∞f(x) dx = F(∞)-F(-∞)其中,f(x)是在区间[-∞,∞]上的一个函数,F(x)是函数f(x)的累积分。
累积分可以用于求解函数在一个无限的区间内的积分。
拉格朗日积分、定积分和累积分是数学中常用的几种积分公式。
它们可以用于求解函数的不同类型的积分,从而方便数学分析。
例如,可以用这些公式来求解在某一特定区域内函数的积分,或者求解数据变换的积分。
对于不同的问题,可以根据需要使用不同的积分公式,从而更好地解决数学问题。
此外,积分表还包括存在的几种不同的变换方法,如傅立叶变换、哈尔变换等,这些变换方法都可以应用于积分表中的数据点,从而更方便地进行数据推断和建模。
总而言之,积分表的用途是无穷无尽的,它为数学研究提供了方便的工具。
上述拉格朗日积分、定积分和累积分是最常用的几种积分公式,它们各有不同的用途,可根据需要使用,从而更好地解决数学问题。
同时,积分表中不仅仅有这三种积分公式,还包括存在的几种变换方法,这些变换方法也可以应用于积分表中的数据点,从而更好地实现数据推断和建模。
因此,积分表是数学中非常有用的工具,是数学研究的基础。
高数积分公式大全
高数积分公式大全高等数学中的积分公式是解决多种数学问题的重要工具。
积分是微积分的核心概念之一,是对函数进行求和的过程。
下面将介绍一些常见的积分公式。
一、基本积分公式1. 幂函数积分:$\intx^ndx=\frac{1}{n+1}x^{n+1}+C$,其中$n$为常数,$C$为常数项。
2. 正弦函数积分:$\int \sin x dx=-\cos x+C$。
3. 余弦函数积分:$\int \cos x dx=\sin x+C$。
4. 指数函数积分:$\int e^x dx=e^x+C$。
5. 对数函数积分:$\int \frac{1}{x}dx=\ln |x|+C$。
6. 反正切函数积分:$\int\frac{1}{1+x^2}dx=\arctan x+C$。
7. 反正弦函数积分:$\int \frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C$。
8. 反余弦函数积分:$\int \frac{1}{\sqrt{1-x^2}}dx=\arccos x+C$。
二、常用积分公式1. 分部积分法:$\int u dv=uv-\int v du$,其中$u$和$v$是可导函数。
2. 三角函数积分:- $\int \sin^2 x dx=\frac{1}{2}(x-\sin x \cos x)+C$。
- $\int \cos^2 x dx=\frac{1}{2}(x+\sin x \cos x)+C$。
- $\int \sin^3 x dx=-\frac{1}{3}\cos^3 x+C$。
- $\int \cos^3 x dx=\frac{1}{3}\sin^3 x+C$。
3. 积化和差公式:$\int \sin(a+b)x dx=-\frac{\cos(a+b)x}{a+b}+C$。
$\int \cos(a+b)x dx=\frac{\sin(a+b)x}{a+b}+C$。
4. 积化导法:$\intf(ax+b)dx=\frac{1}{a}F(ax+b)+C$,其中$F$为$f$的一个原函数。
积分常用公式(最新整理)
积分常用公式一.基本不定积分公式:1. C x dx +=⎰2. ) 3.111++=⎰αααx dx x 1(-≠αC x dx x+=⎰ln 14.5.C aa dx a xx+=⎰ln )1,0(≠>a a C e dx e xx+=⎰6. 7.C x xdx +-=⎰cos sin C x xdx +=⎰sin cos 8.9.C x dx x xdx +==⎰⎰tan cos 1sec 22Cx dx x xdx +-==⎰⎰cot sin 1csc 2210. 11.C x xdx x +=⋅⎰sec tan sec Cx xdx x +-=⋅⎰csc cot csc 12.(或)C x dx x+=-⎰arcsin 11212arccos 11C x dx x+-=-⎰13.(或)C x dx x +=+⎰arctan 11212cot 11C x arc dx x +-=+⎰14.15.C x xdx +=⎰cosh sinh Cx xdx +=⎰sinh cosh 二.常用不定积分公式和积分方法:1.2.C x xdx +-=⎰cos ln tan Cx xdx +=⎰sin ln cot 3.4.C axa x a dx +=+⎰arctan 122C a x ax a ax dx ++-=-⎰ln 21225. 6.C x x xdx ++=⎰tan sec ln sec C x x xdx +-=⎰cot csc ln csc 7.8.C axx a dx +=-⎰arcsin22Ca x x a x dx +±+=±⎰2222ln 9.C a x a x a x dx x a ++-=-⎰arcsin 222222210.Ca x x a a x xdx a x +±+±±=±⎰2222222ln 2211.第一类换元积分法(凑微分法):Cx F x t x d x f dx x x f dx x g +=='=⎰⎰⎰)]([)(])([)]([)()]([)(ϕϕϕϕϕϕ为为为为为为为为为为为为12.第二类换元积分法(典型代换:三角代换、倒代换、根式代换):Cx F C t F dt t f dt t t g t x dxx g +=+=='=-⎰⎰⎰)]([)()()()]([)()(1ϕϕϕϕ为注:要求代换单调且有连续的导数,且“换元须还原”)(t ϕ13.分部积分法(典型题特征:被积函数是两类不同函数的乘积,且任何一个函数不能为另一个函数凑微分)⎰⎰-=vduuv udv 14.万能置换公式(针对三角有理函数的积分。
24个基本积分公式
24个基本积分公式24个基本积分公式是数学中常用的工具,它能帮助我们快速解决复杂的积分问题。
1.一个公式:恒积分公式,它是所有积分公式中最基本也是最重要的公式,它表示对某一函数$f(x)$的某一闭区间$[a,b]$进行积分,其公式如下:$$int_a^bf(x)dx=F(b)-F(a)$$其中$F(x)$是$f(x)$的上原函数。
2.二个公式:幂积分公式,它也是一种常用的公式,它描述了当变量$x$的幂次为$n$时,$f(x)$的积分的公式如下:$$int x^nf(x)dx=frac{x^{n+1}}{n+1}f(x)-frac{n}{n+1}int x^{n-1}f(x)dx$$3.三个公式:复合公式,有时候积分可能会变得更加复杂,它描述了一种复合积分形式,其公式如下:$$int int_Rf(x,y)dydx=iint_Rf(x,y)dxdy$$其中$R$表示一个积分区域,$f(x,y)$表示函数。
4.四个公式:变量替代公式,当我们积分时,有时可能会用到变量替代的方法。
此时对于积分$int f(x)dx$,用变量$t$替代$x$,变量$t$的关于$x$的函数表达式为$t=t(x)$,当$x$的范围从$[a,b]$变为$[t_a,t_b]$时,这时需要用到变量替代公式,其公式如下:$$int_a^bf(x)dx=int_{t_a}^{t_b}f(t(x))t(x)dx$$ 其中$t(x)$表示$t$关于$x$的微分。
5.五个公式:指数积分公式,当我们积分某一函数$f(x)$关于$x$的幂为$n$时,能够用到指数积分公式,其公式如下:$$int x^ne^xdx=x^ne^x-nint x^{n-1}e^xdx$$6.六个公式:对数积分公式,当我们积分某一函数$f(x)$的流函数是一个对数函数的时候,可以用到对数积分公式,它的公式如下: $$int frac{1}{x}dx=ln|x|+C$$其中$C$是常量。
常 用 积 分 公 式
常 用 积 分 公 式(一)含有ax b +的积分(0a ≠) 1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a +-++ 4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()x x ax b +⎰=1ln ax bC b x +-+6.2d ()x x ax b +⎰=21ln a ax b C bx b x+-++ 7.2d ()xx ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b +-+-++ 9.2d ()x x ax b +⎰=211ln ()ax b C b ax b b x+-++的积分10.x C +11.x ⎰=22(3215ax b C a -12.x x ⎰=22232(15128105a x abx b C a-+13.x⎰=22(23ax b C a -14.2x=22232(34815a x abx b C a -+ 15.(0)(0)C b C b ⎧+>+<16.2a b - 17.x=b 18.x=2a +(三)含有22x a ±的积分 19.22d x x a +⎰=1arctan xC a a+ 20.22d ()n xx a +⎰=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+⎰21.22d x x a -⎰=1ln 2x aC a x a-++(四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>+<23.2d x x ax b +⎰=21ln 2ax b C a++24.22d x x ax b+⎰=2d x b x a a ax b -+⎰ 25.2d ()xx ax b +⎰=221ln 2x C b ax b++ 26.22d ()xx ax b +⎰=21d a x bx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx+-+ 28.22d ()xax b +⎰=221d 2()2x x b ax b b ax b +++⎰(五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac C b ac +<+> 30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分 31.=1arshxC a+=ln(x C ++ 32.C +33.xC34.x=C +35.2x 2ln(2a x C ++36.2x ⎰=ln(x C +++37.1C a +38.2C a x -+39.x 2ln(2a x C ++40.x =2243(25ln(88x x a a x C +++41.x ⎰C42.xx ⎰=422(2ln(88x a x a x C +++43.x a C +44.2d x x ⎰=ln(x C x-+++(0)a >的积分45.=1arch x xC x a+=ln x C ++ 46.C +47.x C48.x =C +49.2x 2ln 2a x C ++50.2x ⎰=ln x C +++51.1arccos aC a x+52.C +53.x 2ln 2a x C +54.x =2243(25ln 88x x a a x C -++55.x ⎰C56.xx ⎰=422(2ln 88x a x a x C -++57.x arccos a a C x -+58.2d x x ⎰=ln x C x-+++(0)a >的积分 59.=arcsinxC a+ 60.C +61.x =C +62.x C +63.2x =2arcsin 2a x C a + 64.2x ⎰arcsinxC a-+65.1C a +66.C +67.x 2arcsin 2a x C a+68.x =2243(52arcsin 88x x a x a C a -+69.x ⎰=C70.xx ⎰=422(2arcsin 88x a x x a C a-++71.d x x⎰a C72.x =arcsin xC a-+(0)a >的积分73.2ax b C +++74.x2n 2a x b c C++++75.xn 2a x b c C-+++ 76.=C +77.x 2C ++78.x =C +79.x =((x b b a C --+80.x =((x b b a C --81.C()a b <82.x 2()4b a C -()a b < (十一)含有三角函数的积分 83.sin d x x ⎰=cos x C -+84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C + 87.sec d x x ⎰=ln tan()42xC π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+ 91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++95.sin d nx x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d nx x ⎰=1211cos sin cos d n n n x x x x n n ---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x ----⋅+--⎰98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰ 99.cos sin d m nx x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n -+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tan xa b C ++22()a b >104.d sin x a b x +⎰C+22()a b <105.d cos x a b x +⎰)2xC +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a + 108.2222d cos sin x a x b x -⎰=1tan ln 2tan b x a C ab b x a ++-109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin x x C a114.arcsin d x x x a ⎰=22()arcsin 24x a x C a -+115.2arcsin d x x x a ⎰=3221arcsin (239x x x a C a ++116.arccos d x x a ⎰=arccosxx C a-117.arccos d x x x a ⎰=22()arccos 24x a x C a --118.2arccos d x x x a ⎰=3221arccos (239x x x a C a -+119.arctand x x a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+121.2arctan d x x x a ⎰=33222arctan ln()366x x a a x a x C a -+++ (十三)含有指数函数的积分122.d xa x ⎰=1ln xa C a + 123.e d axx ⎰=1e ax C a +124.e d axx x ⎰=21(1)e ax ax C a-+125.e d n axx x ⎰=11e e d n ax n ax n x x x a a--⎰126.d xxa x ⎰=21ln (ln )x x x a a C a a -+ 127.d nxx a x ⎰=11d ln ln n x n xn x a x a x a a --⎰ 128.e sin d axbx x ⎰=221e (sin cos )ax a bx b bx C a b -++ 129.e cos d axbx x ⎰=221e (sin cos )ax b bx a bx C a b+++130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e sin d ax n n n b bx x a b n --++⎰131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d ax n n n b bx x a b n--++⎰ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+ 133.d ln x x x ⎰=ln ln x C +134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++ 135.(ln )d n x x ⎰=1(ln )(ln )d n n x x n x x --⎰ 136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰(十五)含有双曲函数的积分137.sh d x x ⎰=ch x C +138.ch d x x ⎰=sh x C +139.th d x x ⎰=ln ch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0 144.cos cos d mx nx x π-π⎰=0,,m n m n≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩ 146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩ 147. n I =20sin d n x x π⎰=20cos d n x x π⎰ n I =21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅- (n 为正偶数),0I =2π。
二十四个基本积分公式
二十四个基本积分公式积分是微积分的基本概念之一,它是对函数曲线下其中一区间的面积进行求解的操作。
在求解积分时,我们可以利用一些基本的积分公式来简化计算。
下面将介绍二十四个常用的基本积分公式。
1. $\int x^ndx = \frac{1}{n+1}x^{n+1} + C$ (其中$n\neq -1$)这是幂函数的积分公式,对幂函数进行求积分时,指数加一后再乘以系数并且指数要除以新系数。
2. $\int \frac{1}{x}dx = \ln,x, + C$这是倒数函数的积分公式,对倒数函数求积分时,结果是该函数的自然对数的绝对值。
3. $\int e^xdx = e^x + C$这是指数函数的积分公式,对指数函数求积分时,结果是该函数本身。
4. $\int a^xdx = \frac{a^x}{\ln a} + C$ (其中$a>0, a\neq 1$)这是以底数为常数的指数函数的积分公式,对这种函数进行求积分时,结果是该函数除以对数的底数再加上常数。
5. $\int \sin xdx = -\cos x + C$这是正弦函数的积分公式,对正弦函数求积分时,结果是该函数的负余弦。
6. $\int \cos xdx = \sin x + C$弦。
7. $\int \tan xdx = -\ln,\cos x, + C$这是正切函数的积分公式,对正切函数求积分时,结果是该函数的负对数的余弦的绝对值。
8. $\int \sec xdx = \ln,\sec x + \tan x, + C$这是正割函数的积分公式,对正割函数求积分时,结果是该函数的对数的正割加正切的绝对值。
9. $\int \cot xdx = \ln,\sin x, + C$这是余切函数的积分公式,对余切函数求积分时,结果是该函数的对数的正弦的绝对值。
10. $\int \csc xdx = \ln,\csc x - \cot x, + C$这是余割函数的积分公式,对余割函数求积分时,结果是该函数的对数的余割减余切的绝对值。
常见函数的积分公式
常见函数的积分公式积分是微积分的一个重要概念,它是求解函数面积、曲线长度、体积等问题的基本工具。
在求解函数的积分时,常用的函数积分公式可以帮助我们简化计算,提高效率。
本文将介绍一些常见的函数积分公式,并解释它们的意义和用途,以帮助读者更好地理解和应用。
1. 常数函数积分公式:常数函数的积分公式非常简单,即∫a dx = ax + C,其中a为常数,C为积分常数。
这个公式表示,对于常数函数来说,其积分结果是函数的系数乘以自变量,并加上一个常数C。
这个常数C表示积分后函数的不确定性,因为对一个函数来说,存在无数个原函数。
2. 幂函数积分公式:幂函数的积分公式是微积分中最基本且常用的公式。
对于幂函数f(x) = x^n,其中n不等于-1,其积分公式为∫x^n dx = (1/(n+1)) x^(n+1) + C。
这个公式表示,对于幂函数来说,其积分结果是函数的指数加一的倒数乘以自变量的指数加一次幂,并加上一个常数C。
这个公式可以帮助我们计算多项式函数的积分,以及求解定积分问题。
3. 正弦函数和余弦函数积分公式:正弦函数的积分公式是∫sin(x) dx = -cos(x) + C,余弦函数的积分公式是∫cos(x) dx = sin(x) + C。
这两个公式表示,对于正弦函数和余弦函数来说,其积分结果是函数的相反函数,并加上一个常数C。
这些公式可以帮助我们求解周期性函数的积分,以及解决与波动、振动相关的问题。
4. 指数函数和对数函数积分公式:指数函数的积分公式是∫e^x dx = e^x + C,对数函数的积分公式是∫1/x dx = ln|x| + C。
这两个公式表示,对于指数函数和对数函数来说,其积分结果是函数本身,并加上一个常数C。
这些公式可以帮助我们求解与增长、衰减、复利等问题相关的函数积分。
除了以上这些常见的函数积分公式外,还有其他一些特殊函数的积分公式,如三角函数的积分、反三角函数的积分、双曲函数的积分等。
常用的24个不定积分公式及证明
常用的24个不定积分公式及证明一、基本积分公式。
1. ∫ kdx = kx + C(k为常数)- 证明:根据求导公式(kx + C)'=k,所以∫ kdx = kx + C。
2. ∫ x^n dx=frac{x^n + 1}{n+1}+C(n≠ - 1)- 证明:对frac{x^n + 1}{n+1}+C求导,根据求导公式(x^m)'=mx^m - 1,可得(frac{x^n+1}{n + 1}+C)'=frac{(n + 1)x^n+1-1}{n+1}=x^n,所以∫ x^n dx=frac{x^n +1}{n+1}+C(n≠ - 1)。
3. ∫(1)/(x)dx=lnx+C- 证明:当x>0时,(ln x)'=(1)/(x);当x < 0时,[ln(-x)]'=(1)/(-x)×(-1)=(1)/(x)。
所以∫(1)/(x)dx=lnx+C。
4. ∫ e^x dx=e^x+C- 证明:因为(e^x)' = e^x,所以∫ e^x dx=e^x+C。
5. ∫ a^x dx=(a^x)/(ln a)+C(a>0,a≠1)- 证明:设y = a^x,则ln y=xln a,y = e^xln a。
对y=(a^x)/(ln a)+C求导,((a^x)/(ln a)+C)'=(1)/(ln a)× a^xln a=a^x,所以∫ a^x dx=(a^x)/(ln a)+C(a>0,a≠1)。
6. ∫sin xdx=-cos x + C- 证明:因为(-cos x)'=sin x,所以∫sin xdx =-cos x+C。
7. ∫cos xdx=sin x + C- 证明:因为(sin x)'=cos x,所以∫cos xdx=sin x + C。
8. ∫(1)/(cos^2)xdx=tan x + C- 证明:因为(tan x)'=sec^2x=(1)/(cos^2)x,所以∫(1)/(cos^2)xdx=tan x + C。
常用积分公式及解析(32个)
(5)反三角函数:
arcsin xdx x arcsin x 1 x2 C
【解析】
a r c c oxsd x x a r c cxo s 2 x1 C
arcsin xdx x arcsin x x dx x arcsin x
1 d (1 x2 ) x arcsin x 1 x2 C
csc xdx
1 sin
x
dx
2 sin
1 x cos
x
dx
tan
1 x cos2
x
d
x 2
1 tan
x
d
tan
x 2
ln
tan
x 2
C
22
22
2
sin x ln 2 C ln
2sin2 x 2
C ln 1 cos x C ln csc x cot x C
1 2
x
1 4
sin
2x
C
cos2
xdx
1 2
x
1 4
sin
2x
C
【解析】
sin 2
xdx
1 2
1
cos
2xdx
1 2
x
1 4
sin
2x
C
cos2
xdx
1 2
1
cos
2xdx
1 2
x
1 4
sin
常用函数积分公式表
常用函数积分公式表常用函数积分公式是数学中的重要内容,它们用于计算各种函数的积分结果。
在下面的回答中,我将提供一些常见的函数积分公式,并用易于理解的术语解释它们。
1. 常数函数积分公式:对于常数函数f(x) = C,其中C 是一个常数,它的积分结果是F(x) = Cx + K,其中K 是常数。
2. 幂函数积分公式:对于幂函数f(x) = x^n,其中n 是实数,且n ≠-1,它的积分结果是F(x) = (1/(n+1))x^(n+1) + K,其中K 是常数。
3. 指数函数积分公式:对于指数函数f(x) = e^x,它的积分结果是F(x) = e^x + K,其中K 是常数。
4. 对数函数积分公式:对于自然对数函数f(x) = ln(x),其中x > 0,它的积分结果是F(x) = xln(x) - x + K,其中K 是常数。
5. 三角函数积分公式:对于正弦函数f(x) = sin(x) 和余弦函数f(x) = cos(x),它们的积分结果分别是F(x) = -cos(x) + K 和F(x) = sin(x) + K,其中K 是常数。
6. 反三角函数积分公式:对于反正弦函数f(x) = arcsin(x),它的积分结果是F(x) = xarcsin(x) + sqrt(1-x^2) + K,其中K 是常数。
类似地,对于反余弦函数f(x) = arccos(x) 和反正切函数f(x) = arctan(x),它们的积分结果也有相应的公式。
7. 指数型积分公式:对于指数型函数f(x) = e^(ax+b),其中a 和b 是常数,它的积分结果是F(x) = (1/a)e^(ax+b) + K,其中K 是常数。
8. 分部积分法:分部积分法是一种常用的积分技巧,用于求解两个函数的乘积的积分。
它的公式是∫u dv = uv -∫v du,其中u 和v 是函数,而du 和dv 是它们的微分。
这些是一些常见的函数积分公式,它们在数学中的应用非常广泛。
常用147条积分公式
32.
dx (x a )
2 2 3
=
x a
2
x2 a2
C
33.
x x a
2 2
dx = x 2 a 2 C 1 x2 a2
34.
x ( x 2 a 2 )3
dx =
C
3
35.
x x
x2 x2 a2 x2
dx =
x 2 a2 x a 2 ln( x x 2 a 2 ) C 2 2 x x a
49.
x2 x2 a2 x2
dx =
x 2 a2 x a 2 ln x x 2 a 2 C 2 2 x x a
2 2
50.
(x a )
2
2 3
dx =
ln x x 2 a 2 C
51.
dx x2 a2 dx
2
=
1 a arccos C a x x2 a2 C a2 x
2 2
36.
(x a )
2
2 3
dx =
ln( x x 2 a 2 ) C
37.
dx x2 a2 dx
=
1 x2 a2 a ln C a x
38.
2
x2 a2 = C a2 x x2 a2
2 2
39.
x 2 a2 2 x a dx = x a ln( x x 2 a 2 ) C 2 2
1 a dx 2 bx b ax b
ax 2 b dx a 1 27. 3 = 2 ln C 2 2 x 2bx 2 x ( ax b) 2b
28.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常 用 积 分 公 式(一)含有ax b +的积分(0a ≠) 1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a +-++4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()xx ax b +⎰=1ln ax b C b x +-+6.2d ()xx ax b +⎰=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b+-+-++ 9.2d ()xx ax b +⎰=211ln ()ax b C b ax b b x +-++的积分10.x C +11.x ⎰=22(3215ax b C a -12.x x ⎰=22232(15128105a x abx b C a-+13.x⎰=22(23ax b C a -14.2x ⎰=22232(34815a x abx b C a -+ 15.⎰(0)(0)C b C b ⎧+><16.⎰2a b - 17.d x x ⎰=b ⎰18.2d x x ⎰=2a + (三)含有22x a ±的积分 19.22d x x a +⎰=1arctan xC a a+ 20.22d ()n x x a +⎰=2221222123d 2(1)()2(1)()n n x n xn a x a n a x a ---+-+-+⎰ 21.22d xx a -⎰=1ln 2x a C a x a -++(四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>+<23.2d x x ax b +⎰=21ln 2ax b C a ++24.22d x x ax b +⎰=2d x b xa a axb -+⎰25.2d ()x x ax b +⎰=221ln 2x C b ax b++26.22d ()x x ax b +⎰=21d a xbx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx+-+ 28.22d ()x ax b +⎰=221d 2()2x xb ax b b ax b +++⎰(五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac Cb ac +<+>30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分 31.⎰=1arshxC a+=ln(x C ++ 32.C +33.x ⎰C34.x=C +35.2x 2ln(2a x C +36.2x =ln(x C +++37.⎰1ln aC a x -+38.⎰C +39.x 2ln(2a x C ++40.x =2243(25ln(88x x a a x C ++41.x ⎰C +42.xx ⎰=422(2ln(88x a x a x C +++43.x ⎰a C +44.x ⎰=ln(x C +++(0)a >的积分45.⎰=1arch x xC x a+=ln x C ++ 46.C +47.x ⎰C48.x =C +49.2x 2ln 2a x C +++50.2x =ln x C +++51.⎰1arccos aC a x+52.⎰2C a x +53.x 2ln 2a x C -++54.x =2243(25ln 88x x a a x C -++55.x ⎰C56.xx ⎰=422(2ln 88x a x a x C -+57.x ⎰arccos a a C x -+58.x ⎰=ln x C +++(0)a >的积分 59.⎰=arcsinxC a+ 60.C +61.x ⎰=C +62.x C +63.2x =2arcsin 2a x C a + 64.2x arcsinxC a-+65.⎰1C a +66.⎰2C a x -+67.x 2arcsin 2a x C a+68.x =2243(52arcsin 88x x a x a C a-+69.x ⎰=C70.xx ⎰=422(2arcsin 88x a x x a C a-+71.x ⎰ln a a C x ++72.x ⎰=arcsin xC a-+(0)a >的积分73.⎰2ax b C +++74.x22ax b C ++++75.x ⎰2ax b C -+++76.⎰=C +77.x 2C +78.x ⎰=C ++79.x ⎰=((x b b a C --+80.x ⎰=((x b b a C -+-81.⎰=C ()a b <82.x 2()arcsin 4b a C -+ ()a b < (十一)含有三角函数的积分83.sin d x x ⎰=cos x C -+ 84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C + 87.sec d x x ⎰=ln tan()42xC π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+ 91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++95.sin d n x x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰ 99.cos sin d m nx x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n -+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tanxa b C ++22()a b >104.d sin x a b x +⎰C+22()a b <105.d cos xa b x +⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a + 108.2222d cos sin xa xb x -⎰=1tan ln 2tan b x a C ab b x a ++-109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsinxx C a++114.arcsin d xx x a ⎰=22()arcsin 24x a x C a -+115.2arcsin d x x x a⎰=3221arcsin (239x x x a C a ++116.arccos d xx a ⎰=arccosxx C a117.arccos d xx x a ⎰=22()arccos 24x a x C a -118.2arccos d x x x a⎰=3221arccos (239x x x a C a -+119.arctand x x a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+121.2arctan d xx x a⎰=33222arctan ln()366x x a a x a x C a -+++ (十三)含有指数函数的积分122.d xa x ⎰=1ln xa C a + 123.e d axx ⎰=1e ax C a +124.e d ax x x ⎰=21(1)e axax C a-+125.e d n axx x ⎰=11e e d n ax n ax n x x x a a--⎰126.d xxa x ⎰=21ln (ln )x x x a a C a a -+ 127.d nxx a x ⎰=11d ln ln n x n x nx a x a x a a --⎰ 128.e sin d ax bx x ⎰=221e (sin cos )axa bxb bx C a b-++129.e cos d axbx x ⎰=221e (sin cos )ax b bx a bx C a b+++ 130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n --+ 22222(1)e sin d ax n n n b bx x a b n --++⎰131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d ax n n n b bx x a b n--++⎰ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+ 133.d ln x x x ⎰=ln ln x C +134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++ 135.(ln )d n x x ⎰=1(ln )(ln )d n n x x n x x --⎰136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰ (十五)含有双曲函数的积分 137.sh d x x ⎰=ch x C +138.ch d x x ⎰=sh x C +139.th d x x ⎰=lnch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩ 145.sin sin d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩ 146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩ 147. n I =20sin d n x x π⎰=20cos d n x x π⎰ n I =21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅-(n 为正偶数),0I =2π。