高考数学一轮总复习 第八章 第4节 双曲线课件

合集下载

2025年高考数学一轮复习-8.6.1双曲线的定义、方程与性质【课件】

2025年高考数学一轮复习-8.6.1双曲线的定义、方程与性质【课件】

1关于点 N 的对称点为 M ,线段 F 1 M 的中
垂线与直线 F 2 M 相交于点 P ,则点 P 的轨迹是(
A. 椭圆
B. 双曲线
C. 抛物线
D. 圆

目录
高中总复习·数学(提升版)
解析:如图,连接 ON ,由题意可得|
ON |=1,且 N 为 MF 1的中点,又 O 为 F 1 F 2
的中点,所以| MF 2|=2.因为点 F 1关于点 N
第1课时 双曲线的定义、方程与性质
目录
C O N T E N T S
1
2
考点 分类突破
课时 跟踪检测
课堂演练
考点 分类突破
PART
1
目录
高中总复习·数学(提升版)
双曲线的定义及标准方程
【例1】 (1)已知定点 F 1(-2,0), F 2(2,0), N 是圆 O : x
2+ y 2=1上任意一点,点 F
合|| PF 1|-| PF 2||=2 a ,运用平方的方法,建立关
于| PF 1|·| PF 2|的方程.
目录
高中总复习·数学(提升版)
2. 求双曲线标准方程的两种方法
(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,
列出参数 a , b , c 的方程(组)并求出 a , b , c 的值;
1
1 2
|2 |2 +|2 |2 =
1
( )2 +(
2
21
2
5) =
.
2
目录
高中总复习·数学(提升版)
双曲线的几何性质
考向1 双曲线的渐近线问题
【例2】
2
(1)设 F 1, F 2是双曲线 C : 2

高考数学一轮总复习课件:双曲线

高考数学一轮总复习课件:双曲线
∴|PF1|-|PF2|=|CF1|-|BF2|=|AF1|-|AF2|=2a, 又|AF1|+|AF2|=2c, ∴|AF1|=a+c,则|OA|=|AF1|-|OF1|=a. ∵M的横坐标和A的横坐标相同,∴圆心的横坐标为a.
(2)在△ABC中,B(4,0),C(-4,0),动点A满足条件sinB -sinC=12sinA,则点A的轨迹方程为__x4_2_-__1y_22 _=_1_(_x_>_2_)__.
y2 3
=λ(λ≠0),将点(2,3)代
入,得λ=1,所以该双曲线的标准方程为x2-y32=1,故选C.
5.若过双曲线
x2 4

y2 3
=1的左焦点F1的直线交双曲线的左支
于M,N两点,F2为其右焦点,则|MF2|+|NF2|-|MN|的值为
____8____.
解析 由双曲线的定义知道|MF2|+|NF2|-|MN|的值为4a=8.
解析
双曲线C的标准方程为
x2 6

y2 3
=1,a=
6,b=
3,则c
= a2+b2 =3,则双曲线C的右焦点坐标为(3,0),双曲线C的渐近
线方程为y=±
2 2
x,即x±
2 y=0,所以,双曲线C的焦点到其渐近
线的距离为 123+2= 3.
3.若双曲线E:x92-1y62 =1的左、右焦点分别为F1,F2,点P
第7课时 双曲线
[复习要求] 1.了解双曲线的定义、标准方程,能够根据 条件利用待定系数法求双曲线方程.2.知道双曲线的几何性质.3. 了解双曲线的一些实际应用.
课前自助餐
双曲线的定义 平 面 内 与 两 个 定 点 F1 , F2 的 距 离 之 差 的 绝 对 值 ___等_于__常_数__2_a_(2_a_<_|F_1_F_2_|)____的点的轨迹叫做双曲线.

高考数学一轮复习 8.6双曲线课件 文

高考数学一轮复习 8.6双曲线课件 文

精品
24
(1)在解决与双曲线的焦点有关的距离问题时,通常考虑利用 双曲线的定义;(2)在运用双曲线的定义解题时,应特别注意定义 中的条件“差的绝对值”,弄清楚是指整条双曲线还是双曲线的 一支.
精品
25
【拓展探究】 本例题(2)中若将条件“∠F1PF2=60°”改为 “P→F1·P→F2=0”,则结果如何?
a、b 只限制 a>0,b>0,二者没有大小要求,若 a>b>0,a= b>0,0<a<b,双曲线哪些性质受影响?
提示:离心率受到影响.∵e=ac=
1+ba2,故当 a>b>0
时,1<e< 2,当 a=b>0 时,e= 2(亦称等轴双曲线),当 0<a<b
时,e> 2.
精品
9
1.已知双曲线 C:ax22-by22=1(a>0,b>0)的焦距为 10,点 P(2,1)
近线方程为 mx±3y=0,
其中一个顶点到一条渐近线的距离 d= m12+9=15, ∴m2=16. 又∵m>0,∴m=4.故选 D.
答案:D
精品
14
3.已知双曲线的渐近线方程为 y=±34x,则此双曲线的离心 率为________.
精品
15
解析:当焦点在 x 轴上时,其渐近线方程为 y=±bax,依题意, 得ba=34,b=34a,所以 e=54;


平面解析几何

精品
1
第六节
双曲线
精品
2
高考导航
精品
3
基础
知识回顾
精品
4
1.双曲线的定义 平面内与定点 F1、F2 的距离的 差的绝对值 等于常数(小于 |F1F2|)的点的轨迹叫做双曲线,定点叫做双曲线的 焦点 ,两焦 点之间的距离叫做双曲线的焦距

高三数学第一轮复习:双曲线的定义、性质及标准方程 知识精讲

高三数学第一轮复习:双曲线的定义、性质及标准方程 知识精讲

高三数学第一轮复习:双曲线的定义、性质及标准方程【本讲主要内容】双曲线的定义、性质及标准方程双曲线的定义及相关概念、双曲线的标准方程、双曲线的几何性质【知识掌握】【知识点精析】1. 双曲线的定义:(1)第一定义:平面内与两定点F1、F2的距离之差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做焦距。

(2)第二定义:平面内到一个定点F的距离与到一条定直线l的距离的比等于常数(e>1)的点的轨迹叫做双曲线,定点F为焦点,定直线l称为准线,常数e称为离心率。

说明:(1)若2a等于2c,则动点的轨迹是射线(即F1F2、F2F1的延长线);(2)若2a大于2c,则动点轨迹不存在。

2. 双曲线的标准方程、图形及几何性质:标准方程)0b,0a(1byax2222>>=-中心在原点,焦点在x轴上yaxba b2222100-=>>(,)中心在原点,焦点在y轴上图形几何性质X围x a≤-或x a≥y a≤-或y a≥对称性关于x轴、y轴、原点对称(原点为中心)顶点()()1200A a A a-,、,()()1200A a A a-,、,轴实轴长122A A a=,虚轴长122B B b=离心率ecae=>()1准线2212:,:a al x l xc c=-=2212:,:a al y l yc c=-=实轴、虚轴长相等的双曲线称为等轴双曲线,焦点在x 轴上,标准方程为()2220x y a a -=≠;焦点在y 轴上,标准方程为()2220y x a a -=≠。

其渐近线方程为y=±x 。

等轴双曲线的离心率为e =4. 基础三角形:如图所示,△AOB 中,,,,tan b OA a AB b OB c AOB a===∠=。

5. 共渐近线的双曲线系方程:与双曲线x a y b22221-=(a>0,b>0)有相同渐近线的双曲线系可设为()22220x y a b λλ-=≠,若λ>0,则双曲线的焦点在x 轴上;若λ<0,则双曲线的焦点在y 轴上。

高考数学一轮复习 第八章 平面解析几何 8.6 双曲线课件

高考数学一轮复习 第八章 平面解析几何 8.6 双曲线课件

= 实虚轴
;线段B1B2叫做双曲线的虚轴,它
的长|B1B2|= a;2+ab2叫做双曲线的实半轴长,
答案
知识拓展
巧设双曲线方程 (1)与双曲线ax22-by22=1 (a>0,b>0)有共同渐近线的方程可表示为ax22-by22 =t (t≠0). (2)过已知两个点的双曲线方程可设为xm2+yn2=1 (mn<0).
答案
(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ ) (5)若双曲线ax22-by22=1(a>0,b>0)与bx22-ay22=1(a>0,b>0)的离心率分别是 e1,e2,则e121+e122=1(此结论中两条双曲线称为共轭双曲线).( √ )
答案
2
考点自测
1.若双曲线ax22-by22=1 (a>0,b>0)的焦点到其渐近线的距离等于实轴长,则
解析答案
命题点2 利用待定系数法求双曲线方程
解 设双曲线的标准方程为 ax22-by22=1 或ay22-bx22=1(a>0,b>0). 由题意知,2b=12,e=ac=54.∴b=6,c=10,a=8. ∴双曲线的标准方程为6x42 -3y62 =1 或6y42 -3x62 =1.
解析答案
(2)焦距为26,且经过点M(0,12); 解 ∵双曲线经过点M(0,12),∴M(0,12)为双曲线的一个顶点,故焦点 在y轴上,且a=12. 又2c=26,∴c=13,∴b2=c2-a2=25. ∴双曲线的标准方程为1y424-2x52 =1.
思考辨析
判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨 迹是双曲线.( × ) (2)方程xm2-yn2=1(mn>0)表示焦点在 x 轴上的双曲线.( × ) (3)双曲线方程mx22-ny22=λ(m>0,n>0,λ≠0)的渐近线方程是mx22-ny22=0,即 mx ±ny=0.( √ )

2024届高考一轮复习数学课件(新教材人教A版):解析几何

2024届高考一轮复习数学课件(新教材人教A版):解析几何
1234
当m=-k时,直线PQ的方程为y=kx-k=k(x-1). 此时直线PQ过定点(1,0). 当直线PQ的斜率不存在时, 若直线PQ过定点(1,0), P,Q 的坐标分别为1,32,1,-32. 满足 kAP·kAQ=-14. 综上,直线PQ过定点(1,0).
1234
②求△APQ面积的最大值.
1234
则 x1·x2 + 2(x1 + x2) + 4 + 4(kx1 + m)(kx2 + m) = (1 + 4k2)x1x2 + (2 + 4km)(x1+x2)+4m2+4=1+4k32+44mk22-12+(2+4km)·3-+84kmk2+4m2+ 4=0, 则m2-km-2k2=0, ∴(m-2k)(m+k)=0,∴m=2k或m=-k. 当m=2k时,直线PQ的方程为y=kx+2k=k(x+2), 此时直线PQ过定点(-2,0),显然不符合题意;
1234
设l1的方程为x=my+1,M(x1,y1),N(x2,y2), x=my+1,
联立x42+y32=1, 消去 x 得(3m2+4)y2+6my-9=0, 易知 Δ>0 恒成立,由根与系数的关系得 y1+y2=3-m26+m4,y1y2=3m-2+9 4,
由直线 A1M 的斜率为kA1M=x1y+1 2,得直线 A1M 的方程为 y=x1y+1 2(x+2),
第八章 直线和圆、圆锥曲线
必刷大题17 解析几何
1.(2022·南通模拟)已知P为抛物线C:y2=4x上位于第一象限的点,F为C 的焦点,PF与C交于点Q(异于点P).直线l与C相切于点P,与x轴交于点M. 过点P作l的垂线交C于另一点N. (1)证明:线段MP的中点在定直线上;
1234
设 P(x0,y0),则 y20=4x0,

双曲线(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

双曲线(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

专题9.4 双曲线(知识点讲解)【知识框架】【核心素养】1.考查双曲线的定义,求轨迹方程及焦点三角形,凸显数学运算、直观想象的核心素养.2.考查双曲线几何性质(范围、对称性、顶点、离心率、渐近线),结合几何量的计算,凸显逻辑推理、数学运算的核心素养.3.考查直线与双曲线的位置关系,凸显逻辑推理、数学运算、数学应用的核心素养.【知识点展示】(一)双曲线的定义及标准方程1.双曲线的定义满足以下三个条件的点的轨迹是双曲线(1)在平面内;(2)动点到两定点的距离的差的绝对值为一定值;(3)这一定值一定要小于两定点的距离.2.双曲线的标准方程标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形(二)双曲线的几何性质 双曲线的几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形性质范围 x ≥a 或x ≤-a ,y ∈Rx ∈R ,y ≤-a 或y ≥a对称性 对称轴:坐标轴 对称中心:原点 顶点 A 1(-a,0),A 2(a,0) A 1(0,-a ),A 2(0,a ) 渐近线y =±b axy =±a bx离心率 e =ca,e ∈(1,+∞),其中c =a 2+b 2 实虚轴线段A 1A 2叫作双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫作双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫作双曲线的实半轴长,b 叫作双曲线的虚半轴长.a 、b 、c 的关系c 2=a 2+b 2(c >a >0,c >b >0)(三)常用结论 1.等轴双曲线及性质(1)等轴双曲线:实轴长和虚轴长相等的双曲线叫做等轴双曲线,其标准方程可写作:x 2-y 2=λ(λ≠0). (2)等轴双曲线⇔离心率e =2⇔两条渐近线y =±x 相互垂直. 2.双曲线中的几个常用结论(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a . (3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a,异支的弦中最短的为实轴,其长为2a .(4)设P ,A ,B 是双曲线上的三个不同的点,其中A ,B 关于原点对称,直线P A ,PB 斜率存在且不为0,则直线P A 与PB 的斜率之积为b 2a2.(5)P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则S △PF 1F 2=b 2·1tan θ2,其中θ为∠F 1PF 2.【常考题型剖析】题型一:双曲线的定义及其应用例1.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =234x -|OP |=( )A .222B 410C 7D 10【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413bc a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数234y x =-由()22210334y x x y x ⎧⎪⎨->-==⎪⎩,解得1333x y ⎧=⎪⎪⎨⎪=⎪⎩,即13271044OP =+= 故选:D.例2.(2017·上海·高考真题)设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =________ 【答案】11【详解】由双曲线的方程2221(0)9x y b b -=>,可得3a =,根据双曲线的定义可知1226PF PF a -=±=±,又因为15PF =,所以2||11PF =. 【总结提升】1.双曲线定义的主要应用(1)判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.2.用定义法求双曲线方程,应依据条件辨清是哪一支,还是全部曲线. 3.与双曲线两焦点有关的问题常利用定义求解.4.如果题设条件涉及动点到两定点的距离,求轨迹方程时可考虑能否应用定义求解. 题型二:双曲线的标准方程例3.(2021·北京高考真题)双曲线2222:1x y C a b -=过点2,3,且离心率为2,则该双曲线的标准方程为( ) A .2221x y -= B .2213y x -=C .22531x y -=D .22126x y -=【答案】B 【分析】分析可得3b a =,再将点2,3代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a ==,则2c a =,223b c a a -=,则双曲线的方程为222213x y a a-=,将点2,3的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故3b =因此,双曲线的方程为2213y x -=.故选:B例4. (2022·全国·高三专题练习)已知双曲线的上、下焦点分别为()10,3F ,()20,3F -,P 是双曲线上一点且124PF PF -=,则双曲线的标准方程为( ) A .22145x y -=B .22154x y -=C .22145y x -=D .22154y x -=【答案】C【分析】设双曲线的标准方程为()222210,0y x a b a b -=>>,由双曲线的定义知3c =,2a =,即可求出双曲线的标准方程.【详解】设双曲线的标准方程为()222210,0y x a b a b -=>>,半焦距为c ,则由题意可知3c =,24a =,即2a =,故222945b c a =-=-=,所以双曲线的标准方程为22145y x -=.故选:C .例5.【多选题】(2020·海南·高考真题)已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C n C .若mn <0,则C 是双曲线,其渐近线方程为my x n=±- D .若m =0,n >0,则C 是两条直线 【答案】ACD【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=, 此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确;故选:ACD. 【规律方法】1.求双曲线方程的思路(1)如果已知双曲线的中心在原点,且确定了焦点在x 轴上或y 轴上,则设出相应形式的标准方程,然后根据条件确定关于a ,b ,c 的方程组,解出a 2,b 2,从而写出双曲线的标准方程(求得的方程可能是一个,也有可能是两个,注意合理取舍,但不要漏解). (2)当焦点位置不确定时,有两种方法来解决:一是分类讨论,注意考虑要全面;二是注意巧设双曲线:①双曲线过两点可设为221(0)mx ny mn -=>,②与22221x y a b -=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.2.利用待定系数法求双曲线标准方程的步骤如下:(1)定位置:根据条件判定双曲线的焦点在x 轴上还是在y 轴上,不能确定时应分类讨论.(2)设方程:根据焦点位置,设方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0),焦点不定时,亦可设为mx 2+ny 2=1(m ·n <0);(3)寻关系:根据已知条件列出关于a 、b (或m 、n )的方程组;(4)得方程:解方程组,将a 、b 、c (或m 、n )的值代入所设方程即为所求. 3.双曲线方程的几种形式:(1)双曲线的一般方程:当ABC ≠0时,方程Ax 2+By 2=C可以变形为x 2C A +y 2C B=1,由此可以看出方程Ax 2+By 2=C 表示双曲线的充要条件是ABC ≠0,且A ,B 异号.此时称方程Ax 2+By 2=C 为双曲线的一般方程.利用一般方程求双曲线的标准方程时,可以将其设为Ax 2+By 2=1(AB <0),将其化为标准方程,即x 21A +y 21B=1.因此,当A >0时,表示焦点在x 轴上的双曲线;当B >0时,表示焦点在y 轴上的双曲线.(2)共焦点的双曲线系方程:与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有公共焦点的双曲线的方程为x 2a 2+λ-y 2b 2-λ=1(a >0,b >0);与双曲线y 2a 2-x 2b 2=1(a >0,b >0)有公共焦点的双曲线的方程为y 2a 2+λ-x 2b 2-λ=1(a >0,b >0).题型三:双曲线的实际应用例6.(2023·全国·高三专题练习)江西景德镇青花瓷始创于元代,到明清两代达到了顶峰,它蓝白相映怡然成趣,晶莹明快,美观隽永.现有某青花瓷花瓶的外形可看成是焦点在x 轴上的双曲线的一部分绕其虚轴旋转所形成的曲面,如图所示,若该花瓶的瓶身最小的直径是4,瓶口和底面的直径都是8,瓶高是6,则该双曲线的标准方程是( )A .221169x y -=B .2214x y -=C .22189x y -=D .22143x y -=【答案】D【分析】由已知得双曲线的焦点在x 轴上,设该双曲线的方程为()222210,0x y a b a b -=>>,代入建立方程组,求解即可得双曲线的标准方程.【详解】由题意可知该双曲线的焦点在x 轴上,实轴长为4,点()4,3在该双曲线上.设该双曲线的方程为()222210,0x y a b a b-=>>,则222224,431,a a b =⎧⎪⎨-=⎪⎩解得2a =,3b =,故该双曲线的标准方程是22143x y -=.故选:D.例7.(2021·长丰北城衡安学校高二月考(理))如图为陕西博物馆收藏的国宝——唐⋅金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.该杯的主体部分可以近似看作是双曲线2222:x y C a b-=1(a >0,b >0)的右支与y 轴及平行于x 轴的两条直线围成的曲边四边形ABMN 绕y 轴旋转一周103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍,则杯身最细之处的周长为( )A .2B .3πC .3D .4π【分析】103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍, 可设5339(2),()M m N m , 代入方程,即可解得23,3a a == 3,从而得解. 【详解】103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍, 可设5339(2),()M m N m 代入双曲线方程可得 22222225134331,1m m a b a b -=-= , 即22222213251312,14m m a b a b-=-=,作差可得2273124a =,解得23,3a a ==,所以杯身最细处的周长为23π . 故选:C 【总结提升】解答实际应用问题时,要注意先将实际问题数学化,条件中有两定点,某点与这两定点的距离存在某种联系,解题时先画出图形,分析其关系,看是否与椭圆、双曲线的定义有关,再确定解题思路、步骤. 题型四 已知双曲线的方程,研究其几何性质例8.(2018·浙江·高考真题)双曲线221 3x y -=的焦点坐标是( )A .()2,0-,)2,0B .()2,0-,()2,0C .(0,2-,(2D .()0,2-,()0,2【分析】根据双曲线方程确定焦点位置,再根据222c a b =+求焦点坐标.【详解】因为双曲线方程为2213x y -=,所以焦点坐标可设为(,0)c ±,因为222314,2c a b c =+=+==,所以焦点坐标为(20),选B.例9.(2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________. 5【分析】先求出右焦点坐标,再利用点到直线的距离公式求解. 【详解】由已知,22543c a b ++,所以双曲线的右焦点为(3,0), 所以右焦点(3,0)到直线280x y +-=225512==+ 5例10.(2020·北京·高考真题)已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________. 【答案】 ()3,0 3【分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,6a =,3b =,则223c a b =+=,则双曲线C 的右焦点坐标为()3,0, 双曲线C 的渐近线方程为22y x =±,即20x y ±=, 所以,双曲线C 的焦点到其渐近线的距离为23312=+. 故答案为:()3,0;3.例11.(2021·全国·高考真题(理))已知双曲线22:1(0)x C y m m -=>30x my +=,则C 的焦距为_________. 【答案】4【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解.【详解】由渐近线方程30x my +=化简得3y x m=-,即3b a m =,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4.例12.(2021·全国·高考真题)若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.【答案】3y x =±【分析】根据离心率得出2c a =,结合222+=a b c 得出,a b 关系,即可求出双曲线的渐近线方程. 【详解】解:由题可知,离心率2ce a ==,即2c a =, 又22224a b c a +==,即223b a =,则3ba=, 故此双曲线的渐近线方程为3y x =±. 故答案为:3y x =±. 【总结提升】1.已知双曲线方程讨论其几何性质,应先将方程化为标准形式,找出对应的a 、b ,利用c 2=a 2+b 2求出c ,再按定义找出其焦点、焦距、实轴长、虚轴长、离心率、渐近线方程.2.画双曲线图形,要先画双曲线的两条渐近线(即以2a 、2b 为两邻边的矩形对角线)和两个顶点,然后根据双曲线的变化趋势,就可画出双曲线的草图.3.双曲线的标准方程中对a 、b 的要求只是a >0,b >0易误认为与椭圆标准方程中a ,b 的要求相同. 若a >b >0,则双曲线的离心率e ∈(1,2); 若a =b >0,则双曲线的离心率e =2; 若0<a <b ,则双曲线的离心率e > 2.4.注意区分双曲线中的a ,b ,c 大小关系与椭圆a 、b 、c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.5.等轴双曲线的离心率与渐近线关系双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直(位置关系). 6.双曲线的焦点到渐近线的距离等于虚半轴长b 7.渐近线与离心率()222210,0x y a b a b -=>>的一条渐近线的斜率为2222221b b c a e a a a-===-可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.8.与双曲线有关的范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接转化求解.(2)若条件中没有不等关系,要善于发现隐含的不等关系,如借助双曲线上点的坐标范围,方程中Δ≥0等来解决.题型五 由双曲线的性质求双曲线的方程例11. (2022·天津·高考真题)已知抛物线21245,,y x F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=【答案】C【分析】由已知可得出c 的值,求出点A 的坐标,分析可得112AF F F =,由此可得出关于a 、b 、c 的方程组,解出这三个量的值,即可得出双曲线的标准方程.【详解】抛物线245y x =的准线方程为5x =-,则5c =,则()15,0F -、()25,0F ,不妨设点A 为第二象限内的点,联立b y x a x c ⎧=-⎪⎨⎪=-⎩,可得x c bc y a =-⎧⎪⎨=⎪⎩,即点,bc A c a ⎫⎛- ⎪⎝⎭,因为112AF F F ⊥且124F F A π∠=,则12F F A △为等腰直角三角形,且112AF F F =,即2=bc c a ,可得2ba=, 所以,22225ba c c ab ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得125a b c ⎧=⎪=⎨⎪=⎩,因此,双曲线的标准方程为2214y x -=.故选:C.例12.(2021·北京·高考真题)若双曲线2222:1x y C a b -=离心率为2,过点2,3,则该双曲线的方程为( )A .2221x y -= B .2213y x -=C .22531x y -=D .22126x y -=【答案】B【分析】分析可得3b a =,再将点()2,3代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a ==,则2c a =,223b c a a =-=,则双曲线的方程为222213x y a a-=,将点()2,3的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故3b =,因此,双曲线的方程为2213y x -=.故选:B例13.(2018·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为( )A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=【答案】A 【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b-=可得:2b y a =±,不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得:22122bc b bc b d c a b --==+,22222bc b bc b d c a b++==+, 则12226bcd d b c+===,则23,9b b ==, 双曲线的离心率:2229112c b e a a a ==+=+=, 据此可得:23a =,则双曲线的方程为22139x y -=.本题选择A 选项. 【规律总结】1.由双曲线的几何性质求双曲线的标准方程,一般用待定系数法,同样需要经历“定位→定式→定量”三个步骤.当双曲线的焦点不明确时,方程可能有两种形式,此时应注意分类讨论,为了避免讨论,也可设双曲线方程为mx 2-ny 2=1(mn >0),从而直接求得.2.根据双曲线的渐近线方程可设出双曲线方程.渐近线为y =n m x 的双曲线方程可设为:x 2m 2-y 2n 2=λ(λ≠0);如果两条渐近线的方程为Ax ±By =0,那么双曲线的方程可设为A 2x 2-B 2y 2=m (m ≠0);与双曲线x 2a 2-y 2b 2=1共渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).题型六 求双曲线的离心率(或范围)例13.(2019·全国·高考真题(文))设F 为双曲线C :22221x y a b -=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A 2B 3C .2 D 5【答案】A【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.2e ∴=,故选A .例14.(2021·湖北恩施土家族苗族自治州·高三开学考试)双曲线2222:1x y C a b -=(0a >,0b >)的左顶点为A ,右焦点为F ,过点A 的直线交双曲线C 于另一点B ,当BF AF ⊥时满足2AF BF >,则双曲线离心率e 的取值范围是( ) A .12e << B .312e <<C .322e << D .331e +<<【答案】B 【分析】设双曲线半焦距c ,再根据给定条件求出|BF |长,列出不等式即可得解. 【详解】设双曲线半焦距为c ,因BF AF ⊥,则由22221x c x ya b =⎧⎪⎨-=⎪⎩得2||||b y B a F ==,而AF a c =+, 于是得22b a c a +>⋅,即222c a a c a-+>⋅,整理得23a c >,从而有32c e a =<,又1e >,所以双曲线离心率e 的取值范围是312e <<. 故选:B例15.(2022·浙江·高考真题)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________. 【答案】364【分析】联立直线AB 和渐近线2:bl y x a=方程,可求出点B ,再根据||3||FB FA =可求得点A ,最后根据点A 在双曲线上,即可解出离心率.【详解】过F 且斜率为4ba 的直线:()4b AB y xc a =+,渐近线2:b l y x a=,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率36e 4=. 故答案为:364.例16.(2020·全国·高考真题(文))设双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线为y 2,则C 的离心率为_________. 【答案】3【分析】根据已知可得2ba=,结合双曲线中,,a b c 的关系,即可求解. 【详解】由双曲线方程22221x y a b -=可得其焦点在x 轴上,因为其一条渐近线为2y x =,所以2b a =,2213c be a a==+=.故答案为:3 1.在解析几何中,求“范围”问题,一般可从以下几个方面考虑:①与已知范围联系,通过求值域或解不等式来完成;②通过判别式Δ求解;③利用点在双曲线内部形成的不等关系求解;④利用解析式的结构特点,如a ,a ,|a |等非负性求解.2.求双曲线离心率的取值范围,关键是根据题目条件得到不等关系,并想办法转化为关于a ,b ,c 的不等关 系,结合c 2=a 2+b 2和ca =e 得到关于e 的不等式,然后求解.在建立不等式求e 时,经常用到的结论:双曲线上一点到相应焦点距离的最小值为c -a .双曲线的离心率常以双曲线的渐近线为载体进行命题,注意二者参数之间的转化.3.与双曲线离心率、渐近线有关问题的解题策略(1)双曲线的离心率e =c a是一个比值,故只需根据条件得到关于a ,b ,c 的一个关系式,利用b 2=c 2-a 2消去b ,然后变形成关于e 的关系式,并且需注意e >1.(2)双曲线()222210,0x y a b a b -=>>的渐近线是令22220x y a b-=,即得两渐近线方程x a ±y b =0.(3)渐近线的斜率也是一个比值,可类比离心率的求法解答.注意应用21c b e a a ⎛⎫==+ ⎪⎝⎭题型七:与双曲线有关的综合问题例17.(2022·江西·丰城九中高三开学考试(文))已知12,F F 分别为双曲线22:1412x y C -=的左、右焦点,E 为双曲线C 的右顶点.过2F 的直线与双曲线C 的右支交于,A B 两点(其中点A 在第一象限),设,M N 分别为1212,AF F BF F 的内心,则ME NE -的取值范围是( )A .4343,∞∞⎛⎫-⋃+ ⎪ ⎪⎝⎭⎝⎭ B .4343⎛ ⎝⎭C .3333⎛ ⎝⎭D .55⎛ ⎝⎭【答案】B【分析】由内心的性质,可知M ,N 的横坐标都是a ,得到MN ⊥x 轴,设直线AB 的倾斜角为θ,有22,22-∠=∠=EF M EF N πθθ,将ME NE -表示为θ的三角函数,结合正切函数的性质可求得范围.【详解】设1212,,AF AF F F 上的切点分别为H 、I 、J , 则1122||||,,===AH AI F H F J F J F I .由122AF AF a -=,得()()12||||2+-+=AH HF AI IF a , ∴122-=HF IF a ,即122-=JF JF a .设内心M 的横坐标为0x ,由JM x ⊥轴得点J 的横坐标也为0x ,则()()002c x c x a +--=, 得0x a =,则E 为直线JM 与x 轴的交点,即J 与E 重合. 同理可得12BF F △的内心在直线JM 上, 设直线AB 的领斜角为θ,则22,22-∠=∠=EF M EF N πθθ,||||()tan()tan22--=---ME NE c a c a πθθcos sin 2cos 222()()()sin tan sin cos 22⎛⎫ ⎪=-⋅-=-=-⎪ ⎪⎝⎭c a c a c a θθθθθθθ, 当2πθ=时,||||0ME NE -=; 当2πθ≠时,由题知,2,4,3===ba c a, 因为A ,B 两点在双曲线的右支上, ∴233ππθ<<,且2πθ≠,所以tan 3θ<-或tan 3θ>, ∴3133tan 3θ-<<且10tan θ≠, ∴44343||||,00,tan 33⎛⎫⎛⎫-=∈- ⎪ ⎪⎝⎭⎝⎭ME NE θ,综上所述,44343||||,tan 33⎛⎫-=∈- ⎪⎝⎭ME NE θ. 故选:B.例18.(2018·全国·高考真题(理))已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M、N .若OMN 为直角三角形,则|MN |=( ) A .32B .3C .3D .4【答案】B【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到30FON ︒∠=,根据直角三角形的条件,可以确定直线MN 的倾斜角为60︒或120︒,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60︒,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得33(3,3),(,)22M N -,利用两点间距离公式求得MN 的值.详解:根据题意,可知其渐近线的斜率为33±,且右焦点为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒, 可以得出直线MN 的方程为3(2)y x =-, 分别与两条渐近线33y x =和33y x =-联立, 求得33(3,3),(,)22M N -,所以2233(3)(3)322MN =-++=,故选B.例19.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______. 【答案】21+【分析】利用抛物线的性质,得到M 的坐标,再带入到双曲线方程中,即可求解. 【详解】由题意知: ,2,2pc p c -=-∴= ∴抛物线方程为:224,y px cx =-=-M 在抛物线上,所以(,2),M c c -M 在双曲线上,222241,c c a b ∴-=2224224,60c a c a c a b =-∴-+=2322e ∴=±,又()1,e ∈+∞,2 1.e ∴=+故答案为:21+例20.(2020·全国·高考真题(理))已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2【分析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【详解】联立2222222{1x cx y a b c b a =-==+,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223bc a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2. 故答案为:2.例21. (2022·全国·高考真题(理))若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =_________. 【答案】33【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.【详解】解:双曲线()22210x y m m-=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离2211m d m==+,解得33m =或33m =-(舍去). 故答案为:33.例22. (2022·全国·高三专题练习)已知双曲线2222:1(0,0)x y C a b a b -=>>43F 且斜率为0k >的直线交C 的两支于,A B 两点.若||3||FA FB =,则k =________________. 【答案】33【分析】由题意设双曲线的方程为22223113x y a a -=,直线为1x y c k =-,即1433x y a k =-,联立方程,设()()1122,,,A x y B x y ,由||3||FA FB =,得123y y =,由根与系数的关系求解即可 【详解】因为22224316,33c a c a b a ==+=, 所以22313b a =,双曲线的方程为22223113x y a a -=,设过左焦点F 且斜率为0k >的直线为1x y c k =-,即1433x y a k =-, 与双曲线222231131433x y a a x y ak ⎧-=⎪⎪⎨⎪=-⎪⎩联立得2221310431693033y ay a k k ⎛⎫--+= ⎪⎝⎭, 设()()1122,,,A x y B x y ,则()()221212221043169,31333133ak a k y y y y k k +=⋅=--,因为||3||FA FB =, 所以123y y =,所以()()222222210431694,331333133ak a k y y k k ==--,消去2y 得()222221696433169163133a k a k k ⨯⨯⨯=-, 化简得2121133k =-,即213k =, 因为0k >, 所以33k =, 故答案为:33例23.(2022·广东·广州市真光中学高三开学考试)设1F ,2F 分别是双曲线2222:1(0,0)x ya b a bΓ-=>>的左、右两焦点,过点2F 的直线:0l x my t --=(,R m t ∈)与Γ的右支交于M ,N 两点,Γ过点(2,3)-,且它的7(1)求双曲线Γ的方程;(2)当121MF F F =时,求实数m 的值;(3)设点M 关于坐标原点O 的对称点为P ,当2212MF F N =时,求PMN 面积S 的值. 【答案】(1)2213y x -=; (2)1515m =±; (3)9354. 【分析】(1)根据点在双曲线上及两点距离列方程组求双曲线参数,即可得方程;(2)由点在直线上求得2t =,根据1F 到直线:20l x my --=与等腰三角形12F MF 底边2MF 上的高相等,列方程求参数m ;(3)设11(,)M x y ,22(,)N x y ,联立双曲线与直线方程,应用韦达定理得1221213m y y m +=-,122913y y m =--,由向量的数量关系可得2135m =,根据对称点、三角形面积公式1222OMN S S y y ==-求PMN 面积. (1)由Γ过点(2,3)-,且它的虚轴的端点与焦点的距离为7,所以()222224917a b b a b ⎧-=⎪⎨⎪++=⎩,即2213a b ⎧=⎨=⎩, 则所求的双曲线Γ的方程为2213y x -=. (2)因为直线:0l x my t --=过点2(2,0)F ,所以2t =,由121MF F F =得:等腰三角形12F MF 底边2MF 上的高的大小为22112()152MF MF --=, 又1F 到直线:20l x my --=的距离等于等腰三角形12F MF 底边上的高,则2202151m ---=+, 即2115m =,则1515m =±. (3)设11(,)M x y ,22(,)N x y ,由221320y x x my ⎧-=⎪⎨⎪--=⎩得:22(31)1290m y my -++=, 则1221213m y y m +=-,122913y y m=--,又2212MF F N =,即212y y =-, 则121213m y m -=-,2129213y m =-,即22122()13m m =-2913m-,则2135m =, 又M 关于坐标原点O 的对称点为P ,则2121212222()4OMN S S y y y y y y ==-=+-222221*********()4()1313134m m m m m +=--==---. 则所求的PMN 面积为9354. 【总结提升】 双曲线的综合问题常常涉及双曲线的离心率、渐近线、范围与性质,与圆、椭圆、抛物线、向量、三角函数、不等式等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立联系求解.(2)当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系求解.。

高考数学一轮复习双曲线培优课ppt课件

高考数学一轮复习双曲线培优课ppt课件
因为 P(2,1)在 C 的一条渐近线上,
所以ba=12,解得 a=2,b=1, 故双曲线 C 的方程为x42-y2=1.
索引
(2)(2023·潍坊调研)已知双曲线的离心率 e= 25,且该双曲线经过点(2,2 5),则 该双曲线的标准方程为____y4_2_-__x_2=__1_____.
解析 由题意,知 e=ac= 解得a=2b,
索引
感悟提升
在焦点三角形中,常利用正弦定理、余弦定理,结合||PF1|-|PF2||=2a,运 用平方的方法,建立与|PF1|·|PF2|的联系.
索引
训练1 (1)已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与
圆C1及圆C2相外切,则动圆圆心M的轨迹方程为__x_2_-__y8_2=__1_(_x_≤__-__1_)__.
索引
角度2 离心率
索引
3.(选修一P121T1改编)经过点A(3,-1),且对称轴都在坐标轴上的等轴双曲线 方程为__x_82_-__y8_2_=__1__. 解析 设双曲线方程为x2-y2=λ(λ≠0), 把点A(3,-1)代入,得9-1=λ,λ=8, 故所求双曲线方程为x82-y82=1.
索引
4.(2020·北京卷)已知双曲线 C:x62-y32=1,则 C 的右焦点的坐标为__(_3_,__0_)___; C 的焦点到其渐近线的距离是____3______. 解析 由x62-y32=1,得 c2=a2+b2=9,
索引
考点二 双曲线的标准方程
例 2 (1)(2023·泉州质检)已知双曲线 C:xa22-by22=1(a>0,b>0)的焦距为 2 5,点
P(2,1)在 C 的一条渐近线上,则 C 的方程为( B )

【优化设计】高考数学(人教版,文科)一轮总复习精品课件:8.6 双曲线(共24张PPT)

【优化设计】高考数学(人教版,文科)一轮总复习精品课件:8.6 双曲线(共24张PPT)

A.3
B.2
C. 3
D. 2
解析:由题意可知椭圆的长轴长 2a1 是双曲线实轴长 2a2 的 2 倍,即 a1=2a2, 而椭圆与双曲线有相同的焦点.
������
故离心率之比为
������2 ������
������1
=
������������12=2.
第八章
8.6 双曲线
-21-
1234
2.(2013 湖南高考)设 F1,F2 是双曲线 C:������������22 − ������������22=1(a>0,b>0)的两个焦点,P 是 C 上一点.若|PF1|+|PF2|=6a,且△PF1F2 的最小内角为 30°,则 C 的离心率为
-17-
(2)设 P 为直线 y=3������������x 与双曲线������������22 − ������������22=1(a>0,b>0)左支的交点,F1 是左
焦点,PF1 垂直于 x 轴,则双曲线的离心率 e=
32 4
.
解析:因为 F1 为左焦点,PF1 垂直于 x 轴,
所以 P 点坐标为
点的轨迹叫做 双曲线 .这两个定点叫做双曲线的 焦点 ,两焦点间 的距离叫做双曲线的 焦距 .
想一想双曲线定义中,为什么要规定||PF1|-|PF2||<|F1F2|?
答案:(1)在双曲线的定义中,除了满足||PF1|-|PF2||=定值,还要满 足||PF1|-|PF2||<|F1F2|且不等于零这一条件,动点 P 的轨迹才是双曲 线;若||PF1|-|PF2||=|F1F2|,则动点 P 的轨迹是以 F1,F2 为端点的两条 射线(包括端点);若||PF1|-|PF2||=0,则动点 P 的轨迹为线段 F1F2 的垂 直平分线;若||PF1|-|PF2||>|F1F2|,则动点 P 的轨迹不存在.(2)若定义 中的“绝对值”去掉后,则动点 P 的轨迹为双曲线的一支.若 |PF1|-|PF2|=定值,则动点 P 的轨迹为双曲线靠近 F2 的一支;若 |PF2|-|PF1|=定值,则动点 P 的轨迹为双曲线靠近 F1 的一支.

高三数学一轮复习 第8篇 第4节 双曲线课件 理

高三数学一轮复习 第8篇 第4节 双曲线课件 理

3.等轴双曲线的定义及性质 实轴和虚轴等长的双曲线叫做等轴双曲线,其标准方程为 x2-y2=λ(λ≠
0),离心率 e= 2 .渐近线方程为 y=±x .它们互相 垂直 ,并且平分实
轴和虚轴所成的角.
基础自测
1.已知方程 x2 + y2 =1 表示双曲线,则 k 的取值范围为( B )
k 3 k 5
(3)已知圆 C:(x-3)2+y2=4,定点 A(-3,0),求过定点 A 且和圆 C 外切的动圆圆心 M 的轨迹
方程为
.
解析:(1)设双曲线的右焦点为 F, 则 F(c,0)(其中 c= a2 b2 ), 且 c=|OF|=r=4,
不妨将直线 x=a 代入双曲线的一条渐近线方程 y= b x,得 y=b, a
x2 - y 2 =1 的( A )
16 k 5
(A)焦距相等
(B)离心率相等
(C)虚半轴长相等 (D)实半轴长相等
解析:因为 0<k<5,所以 5-k>0,16-k>0,这两个方程表示的是双曲线.焦距 都是 2 21 k .故选 A.
4.已知双曲线 x2 - y 2 =1 的一个焦点坐标为(- 3 ,0),则其渐近线 a2
(提示:只有当0<2a<|F1F2|时,动点的轨迹才是双曲线,当2a=0时,动 点的轨迹是线段F1F2的中垂线;当2a=|F1F2|时,动点的轨迹是以F1、 F2为端点的两条射线;当2a>|F1F2|时,动点的轨迹不存在)
2.双曲线的标准方程及简单几何性质 见附表
质疑探究2:方程Ax2+By2=1表示双曲线的条件是什么? (提示:若A>0,B<0表示焦点在x轴上的双曲线;若A<0,B>0表示焦点 在y轴上的双曲线,当上述两种条件都不满足时,不表示双曲线,所以 Ax2+By2=1表示双曲线的条件是AB<0)

高考数学一轮总复习教学课件第八章 平面解析几何第4节 直线与圆、圆与圆的位置关系

高考数学一轮总复习教学课件第八章 平面解析几何第4节 直线与圆、圆与圆的位置关系
则直线与圆相切.( √ )
2.直线3x+4y-5=0与圆x2+y2=1的位置关系是(
A.相交

C.相离
D.无法判断
)
B.相切
解析:圆心(0,0)到直线3x+4y-5=0的距离 d=
与圆相切.故选B.
|-|
,所以直线
=1=r

+
3.直线x-y+3=0被圆(x+2)2+(y-2)2=2截得的弦长等于(
A.


B.
C.2
)
D.


解析:圆心(-2,2)到直线 x-y+3=0 的距离 d= ,圆的半径 r= ,

解直角三角形得,半弦长为 ,所以弦长等于 .故选 D.
4.圆O1:(x-1)2+y2=1与圆O2:x2+(y+2)2=4的位置关系是(
A.外离
B.外切
C.相交
D.内切
故选C.
判断直线与圆的位置关系常见的方法:
(1)几何法:利用d与r的关系.
(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.
(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直
线与圆相交;若点在圆上,直线与圆可能相切,也可能相交.
上述方法中最常用的是几何法,点与圆的位置关系法更适用于动直
A.x-2y+3=0
B.2x+y-4=0

D.2x-y-4=0
C.x+2y-5=0
)
解析:圆心为O(0,0),kOP=2,故切线的斜率为
y-2=- (x-1) ,即x+2y-5=0.故选C.

双曲线高三数学一轮复习考点课件

双曲线高三数学一轮复习考点课件

03
双曲线与圆关系
圆与双曲线交点问题
交点个数判断
通过联立圆与双曲线的方程,消元后得到一元二次方程,根据判别式判断交点个 数。
交点坐标求解
利用求根公式或韦达定理求解交点坐标。
切线长公式及应用
切线长公式
切线长公式为$|TA| cdot |TB| = |OP|^2 - r^2$,其中$TA, TB$为切 点,$OP$为圆心到直线的距离,$r$ 为圆半径。
标准方程
双曲线的标准方程为$frac{x^2}{a^2} - frac{y^2}{b^2} = 1$(焦点在x轴上)或$frac{y^2}{a^2} - frac{x^2}{b^2} = 1$(焦点在y轴上),其中a、b分别为双曲线的实半轴和虚 半轴。
焦点、准线与离心率
焦点
双曲线的两个焦点到曲线上任意 一点的距离之差等于常数,且这
双曲线高三数课学件一轮复习考点
汇报人:XX 2024-01-13
目 录
• 双曲线基本概念与性质 • 双曲线与直线关系 • 双曲线与圆关系 • 双曲线综合应用 • 历年高考真题回顾与模拟测试
01
双曲线基本概念与性质
双曲线定义及标准方程
定义
双曲线是由在平面内满足“从两个定点F1和F2出发的线段长 度之差等于常数(且小于两定点间距离)的点的轨迹”构成 的曲线。
知识梳理
题型训练
建议学生对双曲线的相关知识点进行全面 梳理,形成完整的知识体系。
针对不同类型的题目进行专项训练,提高 解题速度和准确性。
错题总结
考前冲刺
鼓励学生建立错题本,对做错的题目进行 总结和反思,避免重复犯错。
在考试前进行模拟测试和针对性复习,巩 固所学知识,提高应试能力。

2024年高考数学一轮复习课件(新高考版) 第8章 §8.6 双曲线

2024年高考数学一轮复习课件(新高考版)  第8章 §8.6 双曲线
是双曲线.( × ) (2)方程xm2-yn2=1(mn>0)表示焦点在 x 轴上的双曲线.( × ) (3)双曲线mx22-ny22=1(m>0,n>0)的渐近线方程是mx ±ny=0.( √ ) (4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )
教材改编题
1.已知曲线 C 的方程为k+x21+5-y2 k=1(k∈R),若曲线 C 是焦点在 y 轴上
(2)(2023·连云港模拟)在平面直角坐标系中,已知双曲线ax22-by22=1(a>0,
b>0)的右焦点为 F,点 A 在双曲线的渐近线上,△OAF 是边长为 2 的等
边三角形,则双曲线的标准方程为
A.x42-1y22 =1 C.x32-y2=1
B.1x22 -y42=1
√D.x2-y32=1
性质
对称性 顶点

对称轴:_坐__标__轴__;对称中心:_原__点___
_A__1(_-__a_,0_)_,__A_2_(_a_,0_)_
_A_1_(_0_,__-__a_),__A_2_(_0_,__a_)_
实轴:线段__A_1_A_2__,长:__2_a_;虚轴:线段B1B2,
长:__2_b__,实半轴长:_a__,虚半轴长:_b__
4.若 P 是双曲线上不同于实轴两端点的任意一点,F1,F2 分别为双曲线
的左、右焦点,则 S△

PF1F2
b2θ,其中 θ 为∠F1PF2.
tan 2
常用结论
5.与双曲线ax22-by22=1(a>0,b>0)有共同渐近线的方程可表示为ax22-by22 =t(t≠0).
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内到点F1(0,4),F2(0,-4)的距离之差的绝对值等于8的点的轨迹

人教版高中总复习一轮数学精品课件 第8章 解析几何 8.6 双曲线

人教版高中总复习一轮数学精品课件 第8章 解析几何 8.6 双曲线
C. − =1
2
8
2
2
D. −
=1
44 176
根据题意,设双曲线的方程为
将点(4,4√3)的坐标代入方程,
解得
2

x2- =k(k≠0),
4
2
k=4.因此双曲线的标准方程为 4
2
− 16=1.
(2)已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2
a,c为常数,且a>0,c>0,则有如下结论:(1)当2a<|F1F2|时,点M的轨迹是双曲
线;(2)当2a=|F1F2|时,点M的轨迹是两条射线;(3)当2a>|F1F2|时,点M的轨迹
不存在.
2.双曲线的标准方程和几何性质
标准方程
x2
a2

y2
b2
=1(a>0,b>0)
y2
a2

x2
b2
=1(a>0,b>0)
所以动圆圆心M的轨迹为双曲线的左支.
又a=1,c=3,则b2=8.
故动圆圆心 M 的轨迹方程为 x
2
- =1(x≤-1).
8
2
解题心得求双曲线标准方程的方法
(1)定义法.
(2)待定系数法.
①当双曲线的焦点位置不确定时,设双曲线方程为Ax2+By2=1(AB<0);
2 2
2 2
②与双曲线 2 − 2 =1(a>0,b>0)共渐近线的双曲线方程设为 2 − 2 =λ(λ≠0);
所以- =- ,所以 2
2

√5
=
2 -2 2

中职高考数学一轮复习讲练测专题8-5 双曲线 (讲)(含详解)

中职高考数学一轮复习讲练测专题8-5  双曲线 (讲)(含详解)

专题8.5双曲线【考纲要求】1.理解双曲线的定义和双曲线的标准方程,能够根据条件写出双曲线的标准方程;2.了解双曲线的性质:范围、对称性、顶点、实轴和虚轴、渐近线方程、离心率;3.了解等轴双曲线的概念和特点.【考向预测】1. 双曲线定义的应用2. 求双曲线的标准方程3. 求双曲线的离心率【知识清单】1.双曲线的定义平面内与两个定点F1、F2的__距离的差的绝对值等于常数(小于|F1F2|)__的点的轨迹叫做双曲线.这两个定点叫做双曲线的__焦点__,两焦点间的距离叫做双曲线的__焦距__.注:设集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数,且a>0,c>0;(1)当a<c时,P点的轨迹是__双曲线__;(2)当a=c时,P点的轨迹是__两条射线__;(3)当a>c时,集合P是__空集__.2.双曲线的标准方程和几何性质3.等轴双曲线实轴和虚轴等长的双曲线,标准方程为__x2-y2=±a2__考点一双曲线的定义及其应用例. 已知两定点F1(-3,0)、F2(3,0),在满足下列条件的平面内动点P的轨迹中,是双曲线的是() A.||PF1|-|PF2||=5B.||PF1|-|PF2||=6C.||PF1|-|PF2||=7D.||PF1|-|PF2||=0【变式探究】P是双曲线x2-y2=16的左支上一点,F1,F2分别是左、右焦点,则|PF1|-|PF2|=__ _.考点二双曲线的标准方程例1.求适合下列条件的双曲线的标准方程:(1)两个焦点的坐标分别是(-5,0)、(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)焦点在x轴上,经过点P(4,-2)和点Q(26,22).例2.根据下列条件,求双曲线的标准方程.(1)已知双曲线的焦点在y 轴上,实轴长与虚轴长之比为2:3,且经过点P (6,2); (2)已知双曲线的焦点在x 轴上,离心率为53,且经过点M (-3,23);(3)若双曲线的渐近线方程为2x ±3y =0,且两顶点间的距离是6. 【方法归纳】利用待定系数法求双曲线标准方程的步骤如下:(1)定位置:根据条件判定双曲线的焦点在x 轴上还是在y 轴上,不能确定时应分类讨论;(2)设方程:根据焦点位置,设方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0),焦点不定时,亦可设为mx 2+ny 2=1(m ·n <0);(3)寻关系:根据已知条件列出关于a 、b (或m 、n )的方程组;(4)得方程:解方程组,将a 、b 、c (或m 、n )的值代入所设方程即为所求. 【变式探究】1.根据下列条件,求双曲线的标准方程. (1)与双曲线x 216-y 24=1有相同的焦点,且经过点(32,2);(2)过点P (3,154),Q (-163,5)且焦点在坐标轴上.2. 已知双曲线过点(4,3)且渐近线方程为y =±12x ,则该双曲线的标准方程是__ __.考点三 双曲线的简单几何性质求双曲线的性质时,应把双曲线方程化为标准方程,注意分清楚焦点的位置,这样便于直观地写出a ,b 的数值,进而求出c ,求出双曲线的长轴和短轴的长、离心率、焦点和顶点的坐标、渐近线方程等几何性质.例.求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程. 【变式探究】 把本例中的双曲线方程改为9y 2-4x 2=36,再求顶点坐标、焦点坐标、离心率、渐近线方程.考点四 双曲线的离心率例1. 双曲线的渐近线方程为y =±34x ,则离心率为( )A .54B .52 C .53或54D .52或153【变式探究】1.渐近线方程为x ±y =0的双曲线的离心率是( )A .22B .1C .2D .22. “m =1”是“双曲线x 2m -y 23=1的离心率为2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件专题8.5双曲线【考纲要求】1.理解双曲线的定义和双曲线的标准方程,能够根据条件写出双曲线的标准方程;2.了解双曲线的性质:范围、对称性、顶点、实轴和虚轴、渐近线方程、离心率;3.了解等轴双曲线的概念和特点.【考向预测】1. 双曲线定义的应用2. 求双曲线的标准方程3. 求双曲线的离心率【知识清单】1.双曲线的定义平面内与两个定点F1、F2的__距离的差的绝对值等于常数(小于|F1F2|)__的点的轨迹叫做双曲线.这两个定点叫做双曲线的__焦点__,两焦点间的距离叫做双曲线的__焦距__.注:设集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数,且a>0,c>0;(1)当a<c时,P点的轨迹是__双曲线__;(2)当a=c时,P点的轨迹是__两条射线__;(3)当a>c时,集合P是__空集__.2.双曲线的标准方程和几何性质3.等轴双曲线实轴和虚轴等长的双曲线,标准方程为__x2-y2=±a2__考点一双曲线的定义及其应用例. 已知两定点F1(-3,0)、F2(3,0),在满足下列条件的平面内动点P的轨迹中,是双曲线的是(A) A.||PF1|-|PF2||=5B.||PF1|-|PF2||=6C.||PF1|-|PF2||=7D.||PF1|-|PF2||=0[解析]A中,∵|F1F2|=6,∴||PF1|-|PF2||=5<|F1F2|,故动点p的轨迹是双曲线;B中,∵||PF1|-|PF2||=6=|F1F2|,∴动点P的轨迹是以F1或F2为端点的射线(含端点);C中,∵||PF1|-|PF2||=7>|F1F2|,∴动点P的轨迹不存在;D中,∵||PF1|-|PF2||=0,即|PF1|=|PF2|,根据线段垂直平分线的性质,动点P的轨迹是线段F1F2的垂直平分线,故选A.【变式探究】P是双曲线x2-y2=16的左支上一点,F1,F2分别是左、右焦点,则|PF1|-|PF2|=__-8__.[解析] 双曲线方程为x 216-y 216=1,∴a =4,∴||PF 1|-|PF 2||=2a =8, 又∵P 在左支上,F 1为左焦点, ∴|PF 1|-|PF 2|=-8. 考点二 双曲线的标准方程例1.求适合下列条件的双曲线的标准方程:(1)两个焦点的坐标分别是(-5,0)、(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8; (2)焦点在x 轴上,经过点P (4,-2)和点Q (26,22). [解析] (1)由已知得,c =5,2a =8,即a =4. ∵c 2=a 2+b 2,∴b 2=c 2-a 2=52-42=9. ∵焦点在x 轴上,∴所求的双曲线标准方程是x 216-y 29=1.(2)设双曲线方程为mx 2+ny 2=1(m >0,n <0),则⎩⎪⎨⎪⎧16m +4n =124m +8n =1,∴⎩⎨⎧m =18n =-14,∴双曲线方程为x 28-y 24=1.例2.根据下列条件,求双曲线的标准方程.(1)已知双曲线的焦点在y 轴上,实轴长与虚轴长之比为2:3,且经过点P (6,2); (2)已知双曲线的焦点在x 轴上,离心率为53,且经过点M (-3,23);(3)若双曲线的渐近线方程为2x ±3y =0,且两顶点间的距离是6.[解析] (1)设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0).由题意知a b =23.又∵双曲线过点P (6,2),∴4a 2-6b 2=1,依题意可得⎩⎨⎧a b =234a 2-6b 2=1,解得⎩⎪⎨⎪⎧a 2=43b 2=3.故所求双曲线方程为y 243-x 23=1.(2)设所求双曲线方程为 x 2a 2-y 2b 2=1(a >0,b >0).∵e =53,∴e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=259,∴b a =43.由题意得⎩⎨⎧b a =439a 2-12b 2=1,解得⎩⎪⎨⎪⎧a 2=94b 2=4.∴所求的双曲线方程为x 294-y 24=1.(3)设双曲线方程为4x 2-9y 2=λ(λ≠0),即x 2λ4-y 2λ9=1(λ≠0),由题意得a =3. 当λ>0时,λ4=9,λ=36,双曲线方程为x 29-y 24=1;当λ<0时,-λ9=9,λ=-81,双曲线方程为y 29-4x 281=1.故所求双曲线方程为x 29-y 24=1或y 29-4x 281=1.【方法归纳】利用待定系数法求双曲线标准方程的步骤如下:(1)定位置:根据条件判定双曲线的焦点在x 轴上还是在y 轴上,不能确定时应分类讨论;(2)设方程:根据焦点位置,设方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0),焦点不定时,亦可设为mx 2+ny 2=1(m ·n <0);(3)寻关系:根据已知条件列出关于a 、b (或m 、n )的方程组;(4)得方程:解方程组,将a 、b 、c (或m 、n )的值代入所设方程即为所求.【变式探究】1.根据下列条件,求双曲线的标准方程.(1)与双曲线x 216-y 24=1有相同的焦点,且经过点(32,2);(2)过点P (3,154),Q (-163,5)且焦点在坐标轴上.[解析] (1)因为焦点相同,所以所求双曲线的焦点也在x 轴上,且c 2=a 2+b 2=16+4=20,利用待定系数法求解,或设出统一方程求解.(2)已知双曲线经过两个已知点,因焦点位置不确定,需分类讨论求解,或设出一般方程求解.(1)解法一:∵焦点相同,∴设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),∴c 2=16+4=20,即a 2+b 2=20,① ∵双曲线经过点(32,2), ∴18a 2-4b2=1.② 由①②得a 2=12,b 2=8, ∴双曲线的标准方程为x 212-y 28=1.解法二:设所求双曲线的方程为x 216-λ-y 24+λ=1(-4<λ<16).∵双曲线过点(32,2), ∴1816-λ-44+λ=1, 解得λ=4或λ=-14(舍去). ∴双曲线的标准方程为x 212-y 28=1.(2)设双曲线的方程为x 2m +y 2n=1,mn <0.∵点P ,Q 在双曲线上,∴⎩⎨⎧9m +22516n =1,2569m +25n =1,解得⎩⎪⎨⎪⎧m =-16,n =9.∴双曲线的标准方程为y 29-x 216=1.2. 已知双曲线过点(4,3)且渐近线方程为y =±12x ,则该双曲线的标准方程是__x 24-y 2=1__.[解析] 设双曲线方程为y 2-14x 2=λ,代入点(4,3),可得3-14×16=λ,∴λ=-1,∴双曲线的标准方程是x 24-y 2=1.故答案为x 24-y 2=1.考点三 双曲线的简单几何性质求双曲线的性质时,应把双曲线方程化为标准方程,注意分清楚焦点的位置,这样便于直观地写出a ,b 的数值,进而求出c ,求出双曲线的长轴和短轴的长、离心率、焦点和顶点的坐标、渐近线方程等几何性质.例.求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程.[解析] 将9y 2-4x 2=-36变形为x 29-y 24=1,即x 232-y 222=1,所以a =3,b =2,c =13,因此顶点坐标为(-3,0),(3,0),焦点坐标为(-13,0),(13,0),实轴长是2a =6,虚轴长是2b =4,离心率e =ca =133,渐近线方程y =±b a x =±23x . 【变式探究】 把本例中的双曲线方程改为9y 2-4x 2=36,再求顶点坐标、焦点坐标、离心率、渐近线方程.[解析]把方程9y 2-4x 2=36化为标准形式为y 24-x 29=1,∴a =2,b =3,c =13,∴顶点为(0,-2),(0,2),焦点坐标为(0,-13),(0,13),离心率e =c a =132.渐近线方程为y =±23x . 考点四 双曲线的离心率例1. 双曲线的渐近线方程为y =±34x ,则离心率为( C )A .54 B .52C .53或54D .52或153[解析] 当焦点在x 轴上时b a =34,∴e =ca =1+b 2a 2=54,当焦点在y 轴上时,a b =34,∴e =c a =1+b 2a 2=53,故选C .【变式探究】1.渐近线方程为x ±y =0的双曲线的离心率是( C )A .22 B .1C .2D .2 [解析] 由题意可得b a =1,∴ e =1+b 2a 2=1+12= 2.故选C .2. “m =1”是“双曲线x 2m -y 23=1的离心率为2”的( C )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析]∵双曲线x 2m -y 23=1的离心率为2,∴a 2=m >0,b 2=3.∵e =ca =1+b 2a 2=1+3m =2,∴m =1.∴“m =1”是“双曲线x 2m -y 23=1的离心率为2”的充要条件.故选C .。

双曲线-高三数学(新高考)一轮复习优质ppt课件

双曲线-高三数学(新高考)一轮复习优质ppt课件

e=2

e=2
3
3 .
【 名 校 课 堂 】获奖 PPT-双 曲线-高 三数学 (新高 考)推 荐一轮 复习课 件(共 PPT)( 最新版 本)推 荐
【 名 校 课 堂 】获奖 PPT-双 曲线-高 三数学 (新高 考)推 荐一轮 复习课 件(共 PPT)( 最新版 本)推 荐
三、走进高考 5.[2019·全国Ⅰ卷]双曲线 C:ax22-by22=1(a>0,b>0)的一条渐近 线的倾斜角为 130°,则 C 的离心率为( ) A.2sin 40° B.2cos 40° C.sin150° D.cos150°
【 名 校 课 堂 】获奖 PPT-双 曲线-高 三数学 (新高 考)推 荐一轮 复习课 件(共 PPT)( 最新版 本)推 荐
【 名 校 课 堂 】获奖 PPT-双 曲线-高 三数学 (新高 考)推 荐一轮 复习课 件(共 PPT)( 最新版 本)推 荐
6.[2019·全国Ⅲ卷]设 F 为双曲线 C:ax22-by22=1(a>0,b>0)的右 焦点,O 为坐标原点,以 OF 为直径的圆与圆 x2+y2=a2 交于 P,Q 两点.若|PQ|=|OF|,则 C 的离心率为( )
近线的方程为 y=±bax,由题意可得ab=tanπ3= 3,b= 3a,可得 c=2a,则 e=ac=2;若双曲线的焦点在 y 轴上,设双曲线的方程为ay22-bx22=1,则渐近
线的方程为 y=±bax,由题意可得ab=tan3π= 3,a= 3b,可得 c=2 3 3a,则
e=2
3
3.综上可得
【 名 校 课 堂 】获奖 PPT-双 曲线-高 三数学 (新高 考)推 荐一轮 复习课 件(共 PPT)( 最新版 本)推 荐
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为 y=±43x,即 4x+3y=0 或 4x-3y=0.
[答案] 4x+3y=0或4x-3y=0
5.给出下列命题: ①平面内到点 F1(0,4),F2(0,-4)距离之差等于 6 的点的 轨迹是双曲线. ②平面内到点 F1(0,4),F2(0,-4)距离之差的绝对值等于 8 的点的轨迹是双曲线. ③方程xm2-yn2=1(mn>0)表示焦点在 x 轴上的双曲线.
ay22-bx22=1 (a>0,b>0)
图形
范围
x∈R,y≤-a 或 x≥a 或 x≤-a,y∈R
y≥a
性 对称性 质 顶点
对称轴:坐标轴 对称中心:原点
A1(-a,0),A2(a,0)
A1(0,-a),A2(0, a)
渐近线
y=±bax
y=±abx
离心率 e=ac,e∈(1,+∞),其中 c= a2+b2
(2)如图所示,设动圆M与圆C1及圆C2分别外切于A和B. 根据两圆外切的条件,得|MC1|-|AC1|=|MA|, |MC2|-|BC2|=|MB|, 因为|MA|=|MB|,
⑤正确.等轴双曲线:x2-y2=a2(a>0)的渐近线方程为 x2 -y2=0,即 y=±x,显然两直线互相垂直,其实轴、虚轴长均 为 2a,所以 c= 2a,
所以 e=ac= a2a= 2. [答案] ④⑤
[典例透析]
考向一 双曲线的定义及应用
例1 (1)(2015·陕西师大附中模拟)设过双曲线x2-y2=9左
P 在双曲线上,且|PF1|=5,则|PF2|=( )
A.5
B.3
C.7
D.3 或 7
[解析] 因为||PF1|-|PF2||=2,所以|PF2|=7 或 3. 故选 D. [答案] D
3.(2014·新课标高考全国卷Ⅰ) 已知双曲线ax22-y32=1(a>
0)的离心率为 2,则 a=( )
A.2
思路点拨 (1)利用双曲线定义|PF2|-|QF2|=2a及三角形周 长的计算求解.
(2) 根据双曲线的定义求轨迹方程.
[解析] (1)如图,由双曲线的定义 可得||PQFF22||--||PQFF11|=|=22aa,, 将两式相加得|PF2|+|QF2|-|PQ|=4a, ∴△F2PQ 的周长为|PF2|+|QF2|+|PQ| =4a+|PQ|+|PQ|=4×3+2×7=26.
[基础自测]
1.若 k∈R,则方程k+x23+k+y22=1 表示焦点在 x 轴上的双
曲线的充要条件是( )
A.-3<k<-2
B.k<-3
C.k<-3 或 k>-2
D.k>-2
[解析] 由题意可知,kk++23<>00,, 解得-3<k<-2. [答案] A
2.设 F1,F2 分别是双曲线 x2-y92=1 的左、右焦点.若点
④双曲线方程mx22-ny22=1(m>00,即mx ±ny=0.
⑤等轴双曲线的渐近线互相垂直,离心率等于 2. 其中正确的是________.( 写出所有正确命题的序号 ) [解析] ①错误.由双曲线的定义知,应为双曲线的一支, 而非双曲线的全部. ②错误.因为||MF1|-|MF2||=8=|F1F2|,表示的轨迹为两条 射线.
③错误.当 m>0,n>0 时表示焦点在 x 轴上的双曲线, 而 m<0,n<0 时则表示焦点在 y 轴上的双曲线.
④正确.因为ax22-by22=1(a>0,b>0)的渐近线方程为即ax22- by22=0, 所以当 λ>0 时,λxm22-λyn22=1(m>0,n>0)的渐近线方 程为λxm22-λyn22=0,即mx22-ny22=0,即mx ±ny=0.同理当 λ<0 时,仍 成立,故结论正确.
提示:只有当0<2a<|F1F2|时,动点的轨迹才是双曲线, 当 2a = 0 时 , 动 点 的 轨 迹 是 线 段 F1F2 的 中 垂 线 ; 当 2a = |F1F2| 时,动点的轨迹是以F1、F2为端点的两条射线;当2a>|F1F2| 时,动点的轨迹不存在.
2.双曲线的标准方程和几何性质 标准方程 ax22-by22=1 (a>0,b>0)
第八章 平面解析几何
第4节 双曲线
1.了解双曲线的定义、几何图形和标准方程,知道其简 单的几何性质(范围、对称性、顶点、离心率、渐近线).
2.了解双曲线的实际背景及双曲线的简单应用. 3.理解数形结合的思想.
[要点梳理] 1.双曲线的概念 平面内动点P与两个定点F1、F2(|F1F2|=2c>0)的距离的差 的绝对值为常数2a(2a<2c),则点P的轨迹叫_双__曲__线__.这两个 定点叫双曲线的_焦__点__,两焦点间的距离叫_焦__距__. 质疑探究:与两定点F1,F2的距离之差的绝对值等于常数 2a的动点的轨迹一定为双曲线吗?
B.
6 2
5 C. 2 [解析]
D.1 因为 c2=a2+3,所以 e=ac=
a2a+2 3=2,得 a2
=1,所以 a=1.故选 D.
[答案] D
4

(2015·天



)


线
x2 9

y2 16

1
的渐近线方程为
________. [解析] 因为双曲线方程为x92-1y62 =1,所以其渐近线方程
焦点F1的直线交双曲线的左支于点P,Q,F2为双曲线的右焦
点.若|PQ|=7,则△F2PQ的周长为( )
A.19
B.26
C.43
D.50
(2)已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动 圆 M 同 时 与 圆 C1 及 圆 C2 相 外 切 , 则 动 圆 圆 心 M 的 轨 迹 方 程 为 ________.
线段 A1A2 叫做双曲线的实轴,它的长|A1A2|
性 实虚轴 =2a;线段 B1B2 叫做双曲线的虚轴,它的

长|B1B2|=2b;a 叫做双曲线的实半轴长,b
叫做双曲线的虚半轴长
a、b、c 的关系
c2=a2+b2 (c>a>0,c>b>0)
3.等轴双曲线 _实__轴__和虚__轴___等长的双曲线叫做等轴双曲线,其标准方程 为 x2-y2=λ(λ≠0),离心率 e= 2,渐近线方程为_y_=__±__x_,它 们互相_垂__直__,并且_平__分__实轴和虚轴所成的角.
相关文档
最新文档