生物脱氮除磷的原理与工艺设计 2..
《A~2-O工艺脱氮除磷的优化研究与工程设计》范文
《A~2-O工艺脱氮除磷的优化研究与工程设计》篇一A~2-O工艺脱氮除磷的优化研究与工程设计一、引言在废水处理过程中,尤其是对于工业和市政废水的处理,氮和磷的去除是关键环节。
A~2/O(厌氧-缺氧-好氧)工艺作为目前广泛应用的污水处理技术,其脱氮除磷效果直接关系到水资源的保护和再利用。
本文旨在研究A~2/O工艺的优化方法,并设计相应的工程方案,以提高其脱氮除磷的效率。
二、A~2/O工艺概述A~2/O工艺是一种生物脱氮除磷工艺,通过在厌氧、缺氧和好氧三种不同环境下,利用微生物的作用,达到去除废水中氮、磷的目的。
该工艺具有处理效率高、运行成本低等优点,广泛应用于城市污水处理及工业废水处理中。
三、A~2/O工艺脱氮除磷的优化研究(一)脱氮优化脱氮效果受多种因素影响,如污泥回流比、曝气量、pH值等。
针对这些因素,本研究通过实验和模拟,对A~2/O工艺的脱氮过程进行优化。
结果表明,适当提高污泥回流比和曝气量,同时控制pH值在适宜范围内,可以有效提高脱氮效率。
(二)除磷优化除磷效果主要受厌氧区、缺氧区和好氧区的时间分配和污泥循环的影响。
本研究通过调整各区段的运行时间及循环比例,发现通过合理分配各区段运行时间,并优化污泥循环比例,可有效提高除磷效果。
四、工程设计(一)设计思路根据上述优化研究结果,本工程设计方案以提高A~2/O工艺的脱氮除磷效率为目标,重点优化各区段的运行时间、污泥回流比、曝气量等参数。
同时,考虑到工程的可持续性和经济性,设计采用先进的自动化控制系统,以降低运行成本。
(二)工程设计1. 厌氧区设计:为保证厌氧环境,本设计采用密闭式构造,减少外界氧气干扰。
同时,设置适当的污泥停留时间和循环比例,以利于磷的释放。
2. 缺氧区设计:该区域主要负责反硝化过程,因此需保证足够的停留时间和适宜的污泥回流比,以利于硝酸盐的还原。
此外,还需设置合适的曝气量,以控制混合液的DO(溶解氧)浓度。
3. 好氧区设计:该区域主要通过好氧微生物的作用,完成硝化和磷的吸收过程。
生物脱氮除磷原理及工艺
(2)反应过程 (3)反硝化反应的控制指标
①碳源
污水中的碳源,BOD5/T—N>3-5时,勿需外加 外加碳源,CH3OH(反硝化速率高生成CO2+H2O),
②PH值
当BOD5/T—N<3-5时
适当的PH值(6.5-7.5) ——主要的影响因素
PH>8,或PH<6,反硝化速率下降
8
同化反硝化
+4H
+4H
缓慢搅拌池
沉淀池
21
三、 生物除磷原理
霍米尔(Holmers)提出活性污泥的化学式 C118H170O51N17P 或C:N:P=46:8:1
※ 生物除磷——就是利用聚磷菌一类的的微生物,能够过量 的,在数量上超过其生理需要,从外部摄取磷,并将磷以聚合 形式贮藏在菌体内,形成高磷污泥,排出系统外,达到从废水 中除磷的效果。
设内循环
产生碱度,3.75mg碱度/mgNO3—N 勿需建后曝气池
回流水含有NO3—N(沉淀池污泥反硝化生成)
要提高脱氮率,要增加回流比
(2)影响因素与主要工艺参数
水力停留时间:3 :1; 循环比:200%; MLSS值:大于3000mg/l; 污泥龄:30d; N/MLSS负荷率:0.03gN/gMLSS.d 进水总氮浓度:小于30mg/l。
活性污泥法的传统功能——去除水中溶解性有机物
1、同化作用
污水生物处理中,一部分氮备同化微生物细胞的 组分。按细胞干重计算,微生物中氮的含量约为 12.5%
4
2、氨化反应 与硝化反应 (1)氨化反应
RCHNH2COOH+O2氨化菌 RCOOH+CO2+NH3
3、硝化反应
(1)硝化过程
生物脱氮除磷原理及工艺
生物脱氮除磷原理及工艺 1 引言氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害;然而, 我国现有的城市污水处理厂主要集中于有机物的去除,污废水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物降解,大部分的可溶性含碳有机物被去除;同时产生N NH -3、N NO --3和-34PO 和-24SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准;因此研究开发经济、高效的, 适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要;2 生物脱氮除磷机理生物脱氮机理污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝态氮,即,将3NH 转化为N NO --2和N NO --3;在缺氧条件下通过反硝化作用将硝氮转化为氮气,即,将N NO --2经反亚硝化和N NO --3经反硝化还原为氮气,溢出水面释放到大气,参与自然界氮的循环;水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的1;错误!硝化——短程硝化:O H HNO O NH 22235.1+→+硝化——全程硝化亚硝化+硝化:O H HNO O NH 22235.1+−−−→−+亚硝酸菌错误!反硝化——反硝化脱氮:O H H CO N OH CH CH HNO 2222333][222+++→+ 反硝化——厌氧氨氧化脱氮:O H N HNO NH 22232+→+反硝化——厌氧氨反硫化脱氮:O H S N SO H NH 2242342++→+废水中氮的去除还包括靠微生物的同化作用将氮转化为细胞原生质成分;主要过程如下:氨化作用是有机氮在氨化菌的作用下转化为氨氮;硝化作用是在硝化菌的作用下进一步转化为硝酸盐氮;其中亚硝酸菌和硝酸菌为好氧自养菌,以无机碳化合物为碳源,从+4NH 或-2NO 的氧化反应中获取能量;其中硝化的最佳温度在纯培养中为25-35 ℃,在土壤中为30-40 ℃,最佳pH 值偏碱性;反硝化作用是反硝化菌大多数是异养型兼性厌氧菌,DO< mg/L 在缺氧的条件下,以硝酸盐氮为电子受体,以有机物为电子供体进行厌氧呼吸,将硝酸盐氮还原为2N 或-2NO ,同时降解有机物2;生物除磷原理磷在自然界以2 种状态存在:可溶态或颗粒态;所谓的除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离;废水在生物处理中,在厌氧条件下,聚磷菌的生长受到抑制,为了自身的生长便释放出其细胞中的聚磷酸盐,同时产生利用废水中简单的溶解性有机基质所需的能量,称该过程为磷的释放;进入好氧环境后,活力得到充分恢复,在充分利用基质的同时,从废水中摄取大量溶解态的正磷酸盐,从而完成聚磷的过程;将这些摄取大量磷的微生物从废水中去除,即可达到除磷的目的3;聚磷菌在厌氧条件下,分解体内的多聚磷酸盐产生ATP,利用ATP 以主动运输方式吸收产酸菌提供的三类基质进入细胞内合成PHB;与此同时释放出-34PO 于环境中1; 好氧吸磷过程聚磷菌在好氧条件下,分解机体内的PHB 和外源基质,产生质子驱动力将体外的-34PO 输送到体内合成ATP 和核酸,将过剩的 -34PO 聚合成细胞贮存物:多聚磷酸盐异染颗粒; 3 生物脱氮除磷工艺从生物脱氮除磷的机理分析来看,生物脱氮除磷工艺基本上包括厌氧、缺氧、好氧3 种状态,这3个不同的工作状态可以在空间上进行分离,也可以在时间上进行分离;近年来,随着对生物脱氮除磷的机理研究不断深入,以及各种新材料、新技术、新设备的不断运用,衍生出了许多新的生物脱氮除磷工艺,其中典型的几种处理工艺如下;SBR 工艺SBR 工艺是一种新近发展起来的新型处理废水的工艺,即为序批式好氧生物处理工艺,其去除有机物的机理在于充氧时与普通活性污泥法相同,不同点是其在运行时,进水、反应、沉淀、排水及空载5个工序,依次在一个反应池中周期性运行,所以该法不需要专门设置二沉池和污泥回流系统,系统自动运行及污泥培养、驯化均比较容易;该法处理焦化废水有着独有的优势:一是不要空间分割,时序上就能创造出缺氧和好氧的环境,即具有A /O 的功能,十分有利于氨氮和COD 的去除;二是该法的沉淀是一种静止的沉淀,对污泥沉淀性能不好的废水,固液分离效果非常明显;三是该法可以省去二沉池,其占地面积相对要小一些;自动控制系统的发展和完善,为SBR 工艺的应用提供的物质基础;但因为SBR 是间歇运行的,为了解决连续进水问题,至少需要设置两套SBR 设施,进行切换运行;SBR 工艺流程图见图14;CAST 工艺CAST 实际上是一种循环SBR 活性污泥法,应器中活性污泥不断重复曝气和非曝气过程,生物反应和泥水分离在同一池内完成,与SBR 同样使用滗水器;污水首先进入选择器,污水中溶解性的有机物通过生物作用得到去除,回流污泥中硝酸盐也此时得到反硝化;然后进入厌氧区,此时为微生物释磷提供条件;第三区为主曝气区,主要进行BOD 降解,同时硝化反硝化;CAST 选择器设置在池首,防止了污泥膨胀; 3.3 MSBR 工艺连续流序批式活性污泥法工艺ModifiedSequencing Batch Reactor,简称MSBR;首先,污水进入厌氧池,回流活性污泥中的聚磷菌在此充分释磷,然后混合液进入缺氧池反硝化;反硝化后的污水进入好氧池,有机物在好氧条件下被降解,活性污泥充分吸磷后再进入起沉淀作用的SBR,澄清后上清液排放;此时另一边的SBR 在回流量的条件下进行反硝化、硝化或静置预沉;回流污泥首先进入浓缩池浓缩,上清液直接进入好氧池,而浓缩污泥进入缺氧池;这样,一方面可以进行反硝化,另一方面可先消耗掉回流浓缩污泥中的溶解氧和硝酸盐,为随后进行的厌氧释磷提供更为有利的条件;CAST 综合了以往除磷脱氮工艺的优点,保证了各污染物质降解的最大速率环境,去除有机污染物效率更高,脱氮除磷效果更好A/2工艺OA/2工艺传统OA/2工艺或称AAO工艺,在一个处理系统中同时具有厌氧区、缺氧区、好氧区,能够同时作到脱氮、O除磷和有机物的降解,其工艺流程见图2;污水进入厌氧反应区,同时进入的还有从二沉池回流的活性污泥,聚磷菌在厌氧条件下释磷,同时转化易降解COD、VFA为PHB,部分含氮有机物进行氨化;污水经过第一个厌氧反应器以后进入缺氧反应器,本反应器的首要功能是进行脱氮;硝态氮通过混合液内循环由好氧反应器传输过来,通常内回流量为2~4倍原污水流量,部分有机物在反硝化菌的作用下利用硝酸盐作为电子受体而得到降解去除;混合液从缺氧反应区进入好氧反应区,混合液中的COD浓度已基本接近排放标准,在好氧反应区除进一不降解有机物外,主要进行氨氮的硝化和磷的吸收,混合液中硝态氮回流至缺氧反应区,污泥中过量吸收的磷通过剩余污泥排除;该工艺流程简洁,污泥在厌氧、缺氧、好氧环境中交替运行,丝状菌不能大量繁殖,污泥沉降性能好5;它将厌氧段、缺氧段放在工艺的第一级, 充分发挥了厌氧菌群承受高浓度、高有机负荷能力的优势, 处理效果较好, 产生的污泥较一般的生物法少;可用于处理工业废水比重较大城市污水, 另外, 由于它是在普通活性污泥法的基础上发展起来的, 因而也较容易用于生物法处理的老污水厂的改造;A/2工艺改良O改良O A /2工艺是中国市政工程华北设计研究院提出的,工艺综合了A/O 工艺和改良UCT 工艺的优点,即在厌氧池之前增设厌氧/缺氧池;首先回流污泥和10%的污水进入厌氧/缺氧池进行反硝化以去除回流污泥中的硝酸盐;90%的污水进入厌氧区与回流污泥混合,在兼性厌氧发酵菌的作用下将部分易生物降解的大分子有机物转化为VFA ;聚磷菌释磷,同时吸收VFA 以PHB 的形式贮存于胞内;在缺氧区,反硝化菌利用污水中的有机物和经混合液回流而带来的硝酸盐进行反硝化,同时去碳脱氮;在好氧区,有机物浓度相当低,有利于自养硝化菌生长繁殖,进行硝化反应,同时聚磷菌过量摄磷;通过沉淀、排除剩余污泥达到除磷的目的;该工艺降低回流污泥中硝态氮对后续厌氧池的不利影响,有利于厌氧池的聚磷菌释磷,改善了泥水分离性能6;3.5 UCT 改良工艺改良的UCT 工艺University of Cape Town 脱氮除磷工艺由厌氧池、缺氧1 池、缺氧2 池、好氧池、沉淀池系统组成,有2 个缺氧池;缺氧1 池只接受沉淀池的回流污泥,同时缺氧1 池有混合液回流至厌氧池,以补充厌氧池中污泥的流失;回流污泥携带的硝态氮在缺氧1 池中经反硝化被完全去除;在缺氧2池中接受来自好氧池的混合液回流,同时进行反硝化,缺氧1 池出水中的N NO --3 带进厌氧池使之保持较为严格的厌氧环境,从而提高系统的除磷效率7;立体循环一体化氧化沟氧化沟是一种而有效的污水处理技术,具有稳定的处理效果,是污水生物处理技术之一;特别是用于污水脱氮,氧化沟比其它生物脱氮工艺费用低、TN 去除效率高;然而,与活性污泥法相比,氧化沟占地面积较大,在土地紧张的城市或地区,氧化沟的应用受到限制8;针对常规氧化沟存在的问题,成功地研究出立体循环一体化氧化沟;其特点是:① 氧化沟采用立体循环,在循环过程中完成降解有机物和脱氮过程;与现有氧化沟相比,占地面积可减少约50%;② 沉淀区与氧化沟合建,沉淀的污泥可自动回流到氧化沟内,可节省投资和能耗;③ 结构紧凑,运行操作简便;新型立体循环一体化氧化沟既保留氧化沟设备和运行操作简单等优点,又可减少占地面积; 4 结语污水生物脱氮除磷是当今水处理的热点与难点;新的脱氮除磷理论的提出,为生物脱氮除磷工艺指引了方向;如:SND 同时硝化反硝化工艺、SHARON 工艺、氧限制自氧硝化—反硝化工艺、厌氧氨氧化工艺以及短程硝化—厌氧氨氧化组合工艺等;但是,生物脱氮除磷工艺的发展已不仅仅要求对N,P 去除率,而且要求处理效果稳定,可靠的运行工艺;今后对此技术的研究应集中在以下方面:第一、加深除磷机理的研究;反硝化聚磷菌的出现解决了硝化菌与聚磷菌争夺碳源,污泥龄不同等主要矛盾;为新型同步脱氮除磷工艺提供了理论依据;但是对于反硝化聚磷菌的了解还不够全面,尤其是其除磷机理还待于进一步研究;应突破传统理论,从微生物的角度来调控工艺;第二、随着脱氮除磷工艺的进一步发展,许多研究者在进行小试时,都驯化出颗粒污泥,而颗粒污泥的出现改善了污泥膨胀这一难题;同时发现颗粒污泥对N,P 的去除要远远优于絮状污泥;今后在对颗粒污泥的研究上应更加深入,研究了解颗粒污泥外部的胞外聚合物是否对N,P 有吸附作用,并进一步研究颗粒污泥的形成机理,调整现有反应器的运行参数,从而加速颗粒污泥的形成,提高脱氮除磷效率;。
污水处理中的脱氮除磷工艺
污水处理中的脱氮除磷工艺摘要:在陈述城市污水生物脱氮除磷机理的基础下,简单分析生物脱氮除磷的处理工艺。
关键词:脱氮除磷;机理;工艺1 前言城市污水中的氮、磷主要来自生活污水和部分工业废水。
氮、磷的主要危害:一是使受纳水体富营养化;二是影响水源水质, 增加给水处理成本;三是对人和生物产生毒害。
上述危害严重制约了城市水环境正常功能的发挥, 并使城市缺水状况加剧,而且随着人民生活水体的提高和环境的恶化,对水质的要求也越来越高。
为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。
2 生物脱氮原理【1】一般来说, 生物脱氮过程可分为三步: 第一步是氨化作用, 即水中的有机氮在氨化细菌的作用下转化成氨氮。
在普通活性污泥法中, 氨化作用进行得很快, 无需采取特殊的措施。
第二步是硝化作用, 即在供氧充足的条件下, 水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐, 然后再在硝酸菌的作用下进一步氧化成硝酸盐。
为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。
第三步是反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。
这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。
反应方程式如下:( 1) 硝化反应:硝化反应总反应式为:( 2) 反硝化反应:另外, 由荷兰Delft 大学Kluyver 生物技术实验室试验确认了一种新途径, 称为厌氧氨( 氮) 氧化。
即在厌氧条件下,以亚硝酸盐作为电子受体,由自养菌直接将氨转化为氮, 因而不必额外投加有机底物。
反应式为:NH4+NO2→N2+2H2O3 生物除磷原理【1】所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。
而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。
生物脱氮除磷的原理与工艺设计
生物脱氮除磷的原理与工艺设计生物脱氮除磷是一种通过生物转化过程,将废水中的氮和磷去除掉的方法。
生物脱氮除磷工艺的基本原理是利用特定微生物(硝化细菌、反硝化细菌和磷积累菌)的活性,分别将废水中的氨氮和亚硝酸氮氧化为亚硝酸盐和硝酸盐,然后利用反硝化微生物将硝酸盐还原为氮气;同时,磷酸盐通过生物转化过程被吸附于生物体内,从而实现废水中氮、磷的去除。
1.污水处理系统的设计:包括进水口、沉淀池(或消化池)、氧化池、沉砂池(或沉淀池)、出水口等。
不同的生物脱氮除磷工艺,需要设计不同的系统结构,以确保废水能够顺利流动,并进行相应的生物转化过程。
2.微生物的引进和培养:选择适当的微生物菌种,引进到废水处理系统中。
常见的微生物菌种包括:硝化细菌(如亚硝化细菌、硝化细菌等)、反硝化细菌和磷积累菌。
培养好的微生物菌种,能够提高废水处理系统的处理效果。
3.溶解氧供应:废水中的生物脱氮除磷过程需要一定的溶解氧供应,以维持微生物的正常活性。
通过增加氧气供应、搅拌设备等方式,提高溶解氧浓度,促进微生物的生长和代谢。
4.碳源的添加:废水处理过程需要适量的有机碳源(如甲烷、乙酸等)供给微生物菌种进行生长和代谢。
通过添加碳源,可以提高微生物的活性,增强废水中氮、磷的去除效果。
5.控制系统的建立:根据不同的废水处理系统要求,建立相应的监测和控制系统。
通过监测废水中氨氮、亚硝酸氮、硝酸盐和磷酸盐等指标的含量,调整废水处理过程中的操作参数,实现最佳的脱氮除磷效果。
6.污泥的处理和回用:生物脱氮除磷过程中会产生大量的污泥。
合理处理和回用污泥,可以降低处理成本,并减少对环境的污染。
通过科学的生物脱氮除磷工艺设计,可以高效地去除废水中的氮、磷污染物,实现废水的净化和资源化利用。
然而,不同的废水特性和处理需求可能需要不同的工艺设计,因此,需要根据实际情况进行具体的工艺优化和改进。
脱氮除磷的原理
脱氮除磷的原理随着人类社会的不断发展和城市化进程的加快,水污染问题越来越严重。
其中,氮和磷是水体中最主要的污染物之一。
它们的过量排放会导致水体富营养化,引发水华、赤潮等一系列环境问题,严重影响水生态环境和人类健康。
因此,脱氮除磷技术成为了当前水处理领域的重要研究方向之一。
一、氮的来源和危害氮是生命体中必不可少的元素,是构成细胞蛋白质、核酸、氨基酸等重要成分的基础。
但是,氮的过量排放会导致水体富营养化,引起一系列环境问题。
氮的主要来源包括农业、养殖业、城市污水等。
在农业生产中,化肥和农药的使用是氮的主要来源。
而在养殖业中,则是动物粪便和饲料中的氮排放。
城市污水中的氮则主要来自于人类排泄物和家庭用水中的洗涤剂等。
氮的主要危害包括以下几个方面:1. 导致水体富营养化,引发水华、赤潮等一系列环境问题。
2. 影响水生态环境,破坏水生生物群落结构。
3. 氮污染还会对人类健康造成威胁,例如通过饮用含氮污染的水会导致亚硝酸盐中毒。
二、磷的来源和危害磷是生命体中必不可少的元素,是构成细胞膜、核酸和骨骼等重要成分的基础。
但是,磷的过量排放会导致水体富营养化,引起一系列环境问题。
磷的主要来源包括农业、养殖业、城市污水等。
在农业生产中,化肥和农药的使用是磷的主要来源。
而在养殖业中,则是动物粪便和饲料中的磷排放。
城市污水中的磷则主要来自于家庭用水中的洗涤剂等。
磷的主要危害包括以下几个方面:1. 导致水体富营养化,引发水华、赤潮等一系列环境问题。
2. 影响水生态环境,破坏水生生物群落结构。
3. 磷污染还会对人类健康造成威胁,例如通过饮用含磷污染的水会导致骨质疏松等疾病。
三、脱氮除磷技术的原理脱氮除磷技术是一种通过物理、化学或生物方法将水中的氮和磷去除的技术。
根据不同的原理和应用场景,可以分为以下几种脱氮除磷技术:1. 化学沉淀法化学沉淀法是指通过加入化学药剂使水中的氮和磷形成沉淀,从而去除氮和磷的技术。
常用的化学药剂包括氢氧化钙、氯化铁、聚合氯化铝等。
厌氧—缺氧—好氧生物脱氮除磷工艺设计计算
厌氧—缺氧—好氧生物脱氮除磷工艺设计计算生物脱氮除磷是一种通过厌氧菌和好氧菌共同作用来去除废水中的氮和磷的处理工艺。
该工艺主要包括厌氧反硝化除磷和好氧硝化除磷两个步骤,可以有效地减少废水中的氮和磷含量,达到环境排放标准。
下面将介绍该工艺的设计计算流程。
1.厌氧反硝化除磷设计计算1.1确定厌氧区域反硝化除磷装置的容积根据出水目标和进水水质参数,确定硝化除磷装置的容积。
厌氧区域反硝化除磷装置通常采用厌氧池或厌氧反应器,其容积可以根据以下公式计算:V_an = Q × HRT_an其中,V_an为厌氧区域反硝化除磷装置的容积(m3),Q为进水流量(m3/d),HRT_an为厌氧区域的停留时间(d)。
1.2确定厌氧菌的氮和磷去除效率根据厌氧反硝化除磷装置的设计目标和进水水质参数,确定厌氧区域的氮和磷去除效率。
根据实际情况,可以选择合适的厌氧菌类型和操作条件来实现预期的去除效果。
2.好氧硝化除磷设计计算2.1确定好氧区域硝化除磷装置的容积根据出水目标和进水水质参数,确定硝化除磷装置的容积。
好氧区域硝化除磷装置通常采用好氧池或好氧反应器,其容积可以根据以下公式计算:V_ao = Q × HRT_ao其中,V_ao为好氧区域硝化除磷装置的容积(m3),HRT_ao为好氧区域的停留时间(d)。
2.2确定好氧菌的氮和磷去除效率根据好氧硝化除磷装置的设计目标和进水水质参数,确定好氧区域的氮和磷去除效率。
根据实际情况,可以选择合适的好氧菌类型和操作条件来实现预期的去除效果。
3.总体设计计算根据上述步骤确定的厌氧区域和好氧区域的容积和停留时间,可以进行总体设计计算。
3.1确定总体反硝化除磷装置的容积厌氧区域和好氧区域的容积和停留时间可以按照一定比例确定,通常根据实践经验选择合适的比例。
总体反硝化除磷装置的容积可以根据以下公式计算:V_total = V_an + V_ao其中,V_total为总体反硝化除磷装置的容积(m3)。
简述生物脱氮除磷的原理
简述生物脱氮除磷的原理
生物脱氮除磷的原理是通过微生物在厌氧和好氧条件下的代谢作用,将废水中的氮和磷分别转化为气态和固态的形式,从而实现废水的净化。
具体来说,生物脱氮是通过硝化和反硝化过程实现的。
在硝化过程中,亚硝化单胞菌将废水中的NH3-N氧化为亚硝酸盐,然后再由硝化杆菌将其转化为更加稳定的硝酸盐。
在反硝化过程中,缺氧条件下污水中存在的硝酸盐被微生物还原为氮气,实现脱氮。
而生物除磷则是通过聚磷菌在厌氧条件下释放磷,有氧条件下摄取磷,通过排除富磷污泥达到除磷目的。
为了保证聚磷菌的繁殖以及有效的生物除磷作用,需要有充足的挥发性脂肪酸。
在污水处理厂的生物脱氮除磷系统中,一
般会采用A/A/O方法,即厌氧池-缺氧池-好氧池组成,以达到同时脱氮、除磷和降解有机物的目的。
4.3生物脱氮除磷技术
NO3-一类的化合态氧也不允许存在,但在聚磷菌吸氧的好氧反
应器内却应保持充足的氧 (2)污泥龄 生物除磷主要是通过排除剩余污泥而去除磷的,因此剩 余活泥多少将对脱磷效果产生影响,一般污泥龄短的系统产 生的剩余污泥量较多,可以取得较高的除磷效果。有报导称 :当污泥龄为30d时,除磷率为40%,污泥龄为17d时,除磷 率为50%,而当污泥龄降至5d时,除磷率高达87%。
(3) 后置缺氧-好氧生物脱氮工艺
可以补充外来碳源,也可以利用活性污泥的 内源呼吸提供电子供体还原硝酸盐,反硝化速率 仅是前置缺氧反硝化速率的1/3-1/8,需较长停留 时间。
进水 二沉池 出水
好氧/ 硝化
缺氧
回流污泥 污泥
二、生物除磷工艺
1.概述 来源:人体排泄物以及合成洗涤剂、牲畜饲养场 及含磷工业废水 危害:促进藻类等浮游生物的繁殖,破坏水体耗 氧和复氧平衡;水质恶化,危害水资源。 包括:有机磷(磷酸甘油酸、磷肌酸)和无机磷( 磷酸盐,聚合磷酸盐) 去除方法: 常规活性污泥法的微生物同化和吸附; 生物强化除磷; 投加化学药剂除磷。
二、生物除磷工艺
72年开创,生物除磷和化学 曝气池:含磷污水进入,还有由除 沉淀池(I):泥水分离, 4.生物除磷工艺 磷池回流的已经释放磷但含有聚磷 除磷相结合,除磷效果好. 含磷污泥沉淀,已除磷的 (2)弗斯特利普除磷工艺(Phostrip): 菌的污泥。使聚磷菌过量摄取磷, 上清液作为处理水排放。 去除有机物(BOD和COD), 可能还 有一定的硝化作用。
聚磷分解形成的无机磷释放回污水中—厌氧释磷。
好氧环境:进入好氧状态后,聚磷菌将贮存于体
内的PHB进行好氧分解并释放出大量能量供聚磷菌增
殖等生理活动,部分供其主动吸收污水中的磷酸盐,
sbr工艺脱氮除磷原理
sbr工艺脱氮除磷原理
SBR工艺是一种生物处理工艺,其主要原理是利用微生物降解污水中的有机物,在这个过程中,微生物需要大量的氧气来进行代谢作用,这样会使污水中的溶解氧减少,而氧气是氧化铵和氧化亚铁的唯一能
量来源,因此可以进一步使得氮和磷元素得到去除。
在SBR工艺中,氮和磷元素的去除主要是通过生物降解作用和生
物吸附作用来实现的。
在生物降解作用中,污水中的有机物通过微生
物的代谢作用被分解成二氧化碳、水和微生物的生物质,这个过程中
需要大量的氧气。
同时,微生物会利用污水中的氨氮、铵盐等无机氮
物质进行代谢作用,将其氧化为硝酸盐和亚硝酸盐。
在生物吸附作用中,微生物在代谢过程中会粘附在填料或污泥上面,从而进一步加速
污水中的氮和磷元素的去除速率。
总的来说,SBR工艺通过降解污水中的有机物,同时利用微生物对氮和磷元素的代谢作用和吸附作用来实现脱氮除磷的效果。
由于其操
作灵活、功能强大的特点,成为了一种非常有效的生物处理技术。
A2O生物脱氮除磷工艺原理
A2/O生物脱氮除磷工艺原理在首段厌氧池进行磷的释放使污水中P的浓度升高,溶解性有机物被细胞吸收而使污水中BOD浓度下降,另外NH3-N因细胞合成而被去除一部分,使污水中N H3-N浓度下降,但NO3--N浓度没有变化。
在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中带入的大量NO3--N和NO2--N还原为N2释放至空气,因此BOD5浓度继续下降,NO3--N浓度大幅度下降,但磷的变化很小。
在好氧池中,有机物被微生物生化降解,其浓度继续下降;有机氮被氨化继而被硝化,使NH3-N浓度显著下降,NO3--N浓度显著增加,而磷随着聚磷菌的过量摄取也以较快的速率下降。
A2/O合建式工艺中,厌氧、缺氧、好氧三段合建,中间通过隔墙与孔洞相连。
厌氧段和缺氧段采用多格串连为混合推流式,好氧段则不分隔为推流式。
厌氧段、缺氧段,均采用水下搅拌器搅拌;好氧段采用鼓风曝气A2/O工艺影响因素1. 污水中可生物降解有机物的影响2. 污泥龄ts的影响3. DO的影响4. NS的影响5. TKN/MLSS负荷率的影响(凯氏氮-污泥负荷率的影响)6. R与RN的影响A2/O工艺存在的问题该工艺流程在脱氮除磷方面不能同时取得较好的效果。
其原因是:回流污泥全部进入到厌氧段。
好氧段为了硝化过程的完成,要求采用较大的污泥回流比,(一般R为60%~100%,最低也应>40%),NS较低硝化作用良好。
但由于回流污泥将大量的硝酸盐和DO带回厌氧段,严重影响了聚磷菌体的释放,同时厌氧段存在大量硝酸盐时,污泥中的反硝化菌会以有机物为碳源进行反硝化,等脱N 完全后才开始磷的厌氧释放,使得厌氧段进行磷的厌氧释放的有效容积大大减少,使出磷效果↓如果好氧段硝化不好,则随回流污泥进入厌氧段的硝酸盐减少,改变了厌氧环境,使磷能充分厌氧释放,∴ηP↑,但因硝化不完全,故脱氮效果不佳,使ηN↓A2/O工艺改进措施.1. 将回流污泥分两点加入,减少加入到厌氧段的回流污泥量,从而减少进入厌氧段的硝酸盐和溶解氧。
《A~2-O工艺脱氮除磷的优化研究与工程设计》范文
《A~2-O工艺脱氮除磷的优化研究与工程设计》篇一A~2-O工艺脱氮除磷的优化研究与工程设计一、引言随着经济的迅猛发展和人口的增长,城市污水治理与资源化已经成为一项重要课题。
A~2/O工艺(厌氧-缺氧-好氧工艺)作为污水处理中常用的生物脱氮除磷技术,其优化设计与工程实施对于提高污水处理效率、降低能耗、减少环境污染具有重要意义。
本文旨在探讨A~2/O工艺脱氮除磷的优化研究及工程设计,以期为相关工程实践提供参考。
二、A~2/O工艺概述A~2/O工艺是一种生物脱氮除磷技术,通过厌氧、缺氧和好氧三个阶段的交替运行,实现有机物去除、氮的去除和磷的去除。
该工艺具有结构简单、运行成本低、污泥产量少等优点,广泛应用于城市污水处理领域。
三、脱氮除磷的优化研究(一)优化运行参数针对A~2/O工艺的脱氮除磷效果,可以通过优化运行参数来提高处理效率。
例如,调整进水流量、进水负荷、污泥回流比等参数,使系统在最佳状态下运行。
此外,还可以通过控制曝气量,确保好氧阶段对硝化和反硝化过程的支持。
(二)强化生物反应为了提高生物反应器的处理效率,可以采用生物强化技术。
例如,通过投加具有特定功能的微生物或酶制剂,增强系统对氮、磷的去除能力。
此外,还可以通过优化污泥龄,使系统更好地适应不同水质条件下的脱氮除磷需求。
(三)内部循环与混合策略通过合理的内部循环与混合策略,可以提高系统的抗冲击负荷能力。
例如,在厌氧和缺氧阶段设置合理的内部循环,使有机物和氮在系统内部得到更好的转移和利用。
同时,通过混合策略,使好氧阶段对硝化和反硝化过程更加充分。
四、工程设计(一)工艺流程设计A~2/O工艺脱氮除磷的工程设计主要包括工艺流程设计、设备选型与配置、管道布置等方面。
首先,根据实际情况,设计合理的进水系统、预处理系统、A~2/O生物反应器、二次沉淀池等单元。
其次,根据处理规模和需求,选择合适的设备,如鼓风机、曝气器等。
最后,合理布置管道系统,确保系统的正常运行和维修便利。
A2O生物脱氮除磷工艺与MBR工艺简介及焚烧发电厂渗滤液处理
A2O是Anaeroxic-Anoxic-Oxic的英文缩写,A2O生物脱氮除磷工艺是传统活性污泥工艺、生物硝化及反硝化工艺和生物除磷工艺的综合。
工作原理其工艺流程图如下图,生物池通过曝气装置、推进器(厌氧段和缺氧段)及回流渠道的布置分成厌氧段、缺氧段、好氧段。
在该工艺流程内,BOD5、SS和以各种形式存在的氮和磷将一一被去除。
A2O生物脱氮除磷系统的活性污泥中,菌群主要由硝化菌和反硝化菌、聚磷菌组成。
在好氧段,硝化细菌将入流中的氨氮及有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入到大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷除去。
工艺特点(1)厌氧、缺氧、好氧三种不同的环境条件和种类微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能。
(2)在同时脱氧除磷去除有机物的工艺中,该工艺流程最为简单,总的水力停留时间也少于同类其他工艺。
(3)在厌氧—缺氧—好氧交替运行下,丝状菌不会大量繁殖,SVI一般小于100,不会发生污泥膨胀。
(4)污泥中磷含量高,一般为2.5%以上。
一、 MBR可提式暴起系统可提升式垃圾渗滤液MBR生化段微孔曝气装置由于垃圾渗滤液MBR段的曝气方式主要有微孔曝气和射流曝气两种,射流曝气相对于微孔曝气有三个缺点:1.投资成本高,2.能耗运行费用高,3.池内水温高。
水温的升高,(超过38摄氏度,造成硝化速率降低),还需要配套冷却系统。
另外射流曝气还存在曝气不均(曝气只向一个方向)的现象,有的区域曝气过量,有的区域曝气明显不足,这样可能造成生物膜被冲脱或因缺氧生物膜也者脱落,影响系统的生化性。
采用可提升式垃圾渗滤液MBR生化段微孔曝气装置,采用橡胶可变孔微空曝气,底盘设有止回阀装置,当管道系统停止供气时阻止混合液进入布气支管,这样可避免支管内进入混合液而被堵塞现在膜的材质,膜片具有抗附着表面的专用进口橡胶(EPDM)。
工艺流程及工艺原理
A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。
该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。
但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。
工艺流程及工艺原理1、A2/O工艺流程A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧—缺氧—好氧生物脱氮除磷工艺的简称。
A2/O工艺于70年代由美国专家在厌氧—好氧磷工艺(A~/O)的基础上开发出来的,该工艺同时具有脱氮除磷的功能。
该工艺在好氧磷工艺(A/O)中加一缺氧池,将好氧池流出的一部分混合液回流至缺氧池前端,该工艺同时具有脱氮除磷的目的。
A2/O工艺流程图如图4.4.1所示。
2.工艺原理首段厌氧池,流入原污水及同步进入的从二沉池回流的含磷污泥,本池主要功能为释放磷,使污水中P的浓度升高,溶解性有机物被微生物细胞吸收而使污水中的BOD5浓度下降;另外,NH3-N因细胞的合成而被去除一部分,使污水中的NH3-N浓度下降,但NO3-N含量没有变化。
在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中带入大量NO3-N和NO2-N还原为N2释放至空气,因此BOD5浓度下降,NO3-N浓度大幅度下降,而磷的变化很小。
在好氧池中,有机物被微生物生化降解,而继续下降;有机氮被氨化继而被硝化,使NH3-N浓度显着下降,但随着硝化过程使NO3-N的浓度增加,P随着聚磷菌的过量摄取,也以较快的速度下降。
A2/O工艺它可以同时完成有机物的去除、硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NO3-N应完全硝化,好氧池能完成这一功能,缺氧池则完成脱氮功能。
A2O生物脱氮除磷工艺原理
A2O生物脱氮除磷工艺原理A2/O生物脱氮除磷工艺原理在首段厌氧池进行磷的释放使污水中P的浓度升高,溶解性有机物被细胞吸收而使污水中BOD浓度下降,另外NH3-N因细胞合成而被去除一部分,使污水中NH3-N浓度下降,但NO3--N浓度没有变化。
在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中带入的大量NO3--N和NO2--N还原为N2释放至空气,因此BOD5浓度继续下降, NO3--N浓度大幅度下降,但磷的变化很小。
在好氧池中,有机物被微生物生化降解,其浓度继续下降;有机氮被氨化继而被硝化,使NH3-N浓度显著下降, NO3--N浓度显著增加,而磷随着聚磷菌的过量摄取也以较快的速率下降。
A2/O合建式工艺中,厌氧、缺氧、好氧三段合建,中间通过隔墙与孔洞相连。
厌氧段和缺氧段采用多格串连为混合推流式,好氧段则不分隔为推流式。
厌氧段、缺氧段,均采用水下搅拌器搅拌;好氧段采用鼓风曝气A2/O工艺影响因素1. 污水中可生物降解有机物的影响2. 污泥龄ts的影响3. DO的影响4. NS的影响5. TKN/MLSS负荷率的影响(凯氏氮,污泥负荷率的影响)6. R与RN的影响A2/O工艺存在的问题该工艺流程在脱氮除磷方面不能同时取得较好的效果。
其原因是:回流污泥全部进入到厌氧段。
好氧段为了硝化过程的完成,要求采用较大的污泥回流比,(一般R为60%,100%,最低也应,40%),NS较低硝化作用良好。
但由于回流污泥将大量的硝酸盐和DO带回厌氧段,严重影响了聚磷菌体的释放,同时厌氧段存在大量硝酸盐时,污泥中的反硝化菌会以有机物为碳源进行反硝化,等脱N完全后才开始磷的厌氧释放,使得厌氧段进行磷的厌氧释放的有效容积大大减少,使出磷效果?如果好氧段硝化不好,则随回流污泥进入厌氧段的硝酸盐减少,改变了厌氧环境,使磷能充分厌氧释放,?ηP ?,但因硝化不完全,故脱氮效果不佳,使ηN?A2/O工艺改进措施.1. 将回流污泥分两点加入,减少加入到厌氧段的回流污泥量,从而减少进入厌氧段的硝酸盐和溶解氧。
a2o工艺脱氮除磷原理
a2o工艺脱氮除磷原理A2O工艺是一种常见的污水处理工艺,它通过生物反应器中的微生物对污水中的氮和磷进行去除,是一种高效、节能的污水处理方法。
在A2O工艺中,脱氮除磷是其中的重要环节,本文将就A2O工艺脱氮除磷原理进行详细介绍。
首先,我们来了解一下A2O工艺的基本原理。
A2O工艺是指“Anaerobic-Anoxic-Oxic”工艺,即厌氧-缺氧-好氧工艺。
在A2O工艺中,污水首先进入厌氧区,通过厌氧菌的作用,有机物质被分解成有机酸和氨氮。
然后,污水进入缺氧区,有机酸和氨氮被进一步氧化成无机物质。
最后,污水进入好氧区,通过好氧菌的作用,氨氮和有机物质被氧化成硝态氮和亚硝态氮,最终通过硝化反应和反硝化反应完成氮的去除。
在A2O工艺中,脱氮除磷是通过生物反应器中的微生物完成的。
在好氧区,硝态氮和亚硝态氮会被硝化细菌氧化成硝酸盐,完成氮的去除。
而在缺氧区,硝酸盐会被反硝化细菌还原成氮气,从而实现氮的彻底去除。
这样,A2O工艺通过厌氧、缺氧和好氧三个区域内的微生物协同作用,实现了对污水中氮的高效去除。
除了氮的去除,A2O工艺也可以实现对磷的去除。
在厌氧区,磷会和有机物质结合成为无机磷,然后在缺氧区和好氧区,无机磷会被微生物吸附并沉淀,从而实现了对磷的去除。
这样,A2O工艺不仅可以高效去除污水中的氮,还可以实现对磷的去除,达到了污水处理的双重效果。
总的来说,A2O工艺脱氮除磷原理是通过生物反应器中的厌氧、缺氧和好氧三个区域内的微生物协同作用,实现了对污水中氮和磷的高效去除。
这种工艺不仅能够高效处理污水,还具有节能、环保的特点,是目前污水处理领域中被广泛应用的一种工艺方法。
希望通过本文的介绍,能够让大家对A2O工艺脱氮除磷原理有更深入的了解,为污水处理工作提供一定的参考和帮助。
生物膜法脱氮除磷原理
生物膜法脱氮除磷原理
生物膜法脱氮除磷是一种相对较新的处理废水的技术,将生物膜巧妙地应用在废水处理过程中,可以除去有害物质,保护环境。
生物膜法脱氮除磷是一种有效的方法,它将具有污染物质的废水经过生物技术处理后,可以彻底把有害物质(主要是氮和磷类物质)移除,达到净水的效果。
生物膜法脱氮除磷是由一层生物活性物质夹层叠加和穿孔生物膜而形成的。
穿孔生物膜可以阻滞胞外污染物,而生物活性物质夹层在形成生物膜夹层的同时,也可以吸附污染物并将其阻滞。
由于水分子和有机物分子的大小穿过穿孔生物膜的比例不同,水分子的穿过速度往往快于有机物分子,有机分子则得不到有效的清除。
同时,由于生物夹层上表面能位的存在,可以有效的吸附污染物,进一步减少污染物的浓度。
生物膜法脱氮除磷不但占用空间少,耗能量低,而且可以有效的除去氮和磷类物质,不会造成二次污染。
随着环境保护意识的增强,人们对污染物处理技术提出了更高的要求。
生物膜法脱氮除磷技术能够有效地去除水中的污染物,在废水处理领域有着崭新而有效地技术。
生物脱氮除磷原理
生物脱氮除磷原理 It was last revised on January 2, 2021生物脱氮除磷原理国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。
因此,城市污水处理厂一般不推荐采用。
从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。
我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步实现工业化流程。
目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。
生物脱氮原理生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。
随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。
整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。
在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。
反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。
由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件:(1)硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。
(2)反硝化阶段:硝酸盐的存在,缺氧条件DO值在L左右,充足碳源(能源),合适的PH条件。
生物除磷原理磷常以磷酸盐(H2PO4-、HPO42-和H2PO43-)、聚磷酸盐和有机磷的形式存在于废水中,生物除磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。
生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。
生物脱氮除磷工艺控制
生物脱氮除磷工艺控制一、脱氮污水中的氮要紧以氨氮和有机氮的形式存在,通常不含或仅含有少量的亚硝酸盐氮和硝酸盐氮。
在未经处理的污水中,氮有可溶性的或颗粒状的。
可溶性有机氮要紧以尿素和氨基酸的形式存在。
一部分颗粒型有机氮在初沉池中能够去除。
在生物处理的过程中,大部分颗粒性有机氮转化成氨氮和其它无机氮。
生物脱氮要紧是靠一些专性菌实现氮的形状转化,最终生成无害的氮气从水中脱出。
1、氨化在氨化菌的作用下,有机氮化合物分解,转化为NH3-N,以氨基酸为例,其反应式为:RCHNH2COOH+O2→RCOOH+CO2+NH32、硝化生物硝化作用是利用化能自养微生物将氨氮氧化成硝酸盐的一种生化反应过程。
硝化作用由两类化能自养菌参与,亚硝化单胞菌第一将氨氮(NH3-N)氧化成亚硝酸盐(NO2--N),硝化杆菌再将亚硝酸盐(NO2--N)氧化成稳固状态的硝酸盐(NO3--N)。
后一反应较快,一样可不能造成亚硝酸盐(NO2--N)的积存。
反应过程如下:第一步、氨转化为亚硝酸盐:NH4++3/202→NO2-+2H++H2O-△E △E=278.42KJ第二步、亚硝酸盐转化为硝酸盐:NO2-+1/202→NO3-+2H+-△E △E=72.58 KJ这两个过程差不多上开释能量的过程,亚硝酸盐菌和硝酸菌确实是利用这两个过程开释的能量来合成新的细菌体和坚持正常的生命活动。
总反应式为:NH4++202→NO3-+2H++ H2O-△E △E=351 KJ综合氨氧化和细胞体合成反应式如下:NH4++1.83O2+1.98HCO3-→0.02C5H7O2N+0.98NO3-+1.88H2+1.04H2O3、反硝化生物硝化工艺能够去除污水中的有机氮和氨氮,出水中的氮以硝酸盐的形式存在,然而在工程中不仅要去除有机氮和氨氮还要去除硝酸盐氮,因此必须在生物硝化工艺的基础上采纳生物反硝化工艺,即A/O工艺。
生物反硝化系指污水中的硝酸盐在缺氧的条件下被微生物还原为氮气的生化反应过程,参与这一生化反应的微生物是反硝化细菌,这是一类大量存在于活性污泥中的兼性异养菌,如产碱杆菌、假单胞菌等菌属均能进行生物反硝化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响硝化反应的环境因素 (3) pH 在pH值 7.0~8.0范围内,pH值变化对活性污泥硝化速率 的影响甚少。当pH值降到5.0~5.5时,硝化反应几乎停 止。生物脱氮的硝化阶段,通常控制pH值为7.2~8.0。 (4) C/N 研究表明,有机物对于硝化菌的影响并非是具有毒害作 用,更为可能的是有机物的存在刺激了异养菌迅速生长, 从而与硝化菌争夺DO、氨氮和微量营养物质,使得硝化 菌群生长受到限制,而有机物本身并不直接影响硝化菌 的生长和硝化作用 一般认为处理系统的BOD负荷小于0.15gBOD5/gMLSS· d 时,处理系统的硝化反应才能正常进行。
有硝化功能的活性污泥法
硝化过程一般出现在泥龄较长的活性污泥系统中, 硝酸盐是这类活性污泥系统出水中的主要形式。
曝气池 类型 符号 传统 推流式 阶段 曝气式 吸附- 再生式 延时 曝气式 传统完全 混合式 高负荷活 性污泥过程 BOD 污泥负荷 (kgBOD5/kgMLVSSd) Ns 0.2~0.4 0.2~0.4 0.2~0.6 0.05~0.15 0.2~0.6 1.5~5.0 污泥龄(d) θc 5~15 5~15 5~15 20~30 5~15 0.2~2.5 污泥浓度(mg/L) MLSS 1500~3000 2000~3500 吸附池 1000~ 3000 再生池 4000~ 10000 3000~6000 3000~6000 200~500 MLVSS 1200~2400 1600~2800 吸附池 800~2400 再生池 3200~8000 2400~4800 2400~4800 160~400 污泥回流比 (%) R 0.25~0.50 0.25~0.75 0.25~1.0 0.75~1.50 0.25~1.0 0.05~0.15 曝气时间 (d) t 4~8 3~5 吸附池 0.5~1.0 再生池 3~6.0 20~36~ 48 —— 1.5~3.0
NO3--N
(硝化作用)
(氨化作用)
(亚硝化作用)
反硝化菌+ 有机碳
(反硝化作用)
N2
BNR工艺 ——生物脱氮工艺 影响生物反硝化的环境因素 环境因素 温度 溶解氧 pH C/N 微生物对生化环境的要求 20~35℃ <0.2mg/L 7.0~8.5 BOD/TN>3~5 BOD/TKN>4~6 COD/TKN>7~9 Ni<0.5mg/L NO2--N ≦30mg/L 工程参数 15~35 ℃ <0.5mg/L 7.3~8.5 <7.3产生N2O BOD/TKN>4
生物脱氮基本原理
硝化作用(Nitrification)
氨氮和亚硝酸盐氮的生物转化和细胞合成的反应式:
55NH4++76O2+109HCO3+57H2O+104H2CO3 C5H7NO2+54NO2C5H7NO2+3H2O+400NO3-
400NO2-+NH4++4H2CO3+HCO3-+195O2 NH4++1.83O2+1.98HCO3-
2H+OH2O
BNR工艺 ——生物脱氮工艺
1molH=0.5molO(以BOD表示)
生物反硝化的总反应式如下:
NO2- + 3H (电子供体有机物) 0.5N2 + H2O + OHNO3- + 5H (电子供体有机物) 0.5N2 + H2O + OH由第一式计算,转化1g NO2−-N为N2时,需要有机物(以 BOD表示)1.71g [3×16/(2×14)=1.71]。 由第二式计算,转化1g NO3−-N为N2时,需要有机物(以 BOD表示)2.86g [5×16/(2×14)=2.86]
生物脱氮基本原理
亚硝酸菌+O2 氨化菌 硝酸菌+O2
有机氮
NH4+-N
NO2--N
NO3--N
(硝化作用)
(氨化作用)
(亚硝化作用)
反硝化菌+ 有机碳
(反硝化作用)
N2
生物脱氮基本原理
氨化作用(Ammonification)
氨化菌
有机氮
NH4+-N
(氨化作用) 氨化作用无论在好氧还是厌氧,中性、酸性还是 碱性环境中都能进行,只是作用的微生物种类不 同、作用的强弱不一。
NO3--N
NO2--N
NO
N2O
N2
反硝化细菌大量存在于污水处理系统中。 反硝化细菌是兼性细菌
通常反硝化菌群优先选择分子氧而不是硝酸盐为电子 受体,但如果无分子态氧存在,则利用硝酸盐进行无 氧呼吸。
2018年10月4日
生物除磷基本原理
聚磷酸是一种高能化合物,水解时能放出能量。因此,在厌 氧池中聚磷菌利用这部分能量摄取有机物并放出水解产生的 磷酸,结果厌氧池中的磷浓度上升。同时,废水中的有机物 因被聚磷菌摄取而减少。但聚磷酸水解放出的能量还达不到 菌体增殖所需的能量,所以摄取的有机物只能变成细胞内暂 时贮存积蓄物质。 到了好氧池,聚磷菌将体内积蓄的有机物通过好氧呼吸氧化 分解,合成ATP,用这部分能量进行菌体的增殖和合成聚磷 酸。由于其摄取合成聚磷酸的磷量比厌氧时放出的多,因此 废水中的磷被不断净化。
生物除磷基本原理
聚磷菌(polyphosphate accumulation organisms,PAOs) ——是指具有聚磷能力的一类细菌 厌氧条件下,因废水中没有DO和缺乏硝态氮,一般无 聚磷能力的好氧菌及反硝化细菌不能产生ATP,故这 类细菌不能摄取细胞外的有机物合成菌体。
有试验资料表明,厌氧状态下每释放1mg磷,进入好氧 状态后就可吸收2.0一2.4mg磷。细胞内吸收了大量磷的 高磷污泥最后以剩余污泥的形式排出系统,从而完成除 磷过程。
影响硝化反应的环境因素
硝化段中含碳有机基质浓度与总氮(TKN)的比例将直接影响活性 污泥中硝化菌所占的比例. BOD5/TKN与活性污泥中硝化细菌含量的关系 活性污泥中硝 化细菌所占比 例(%) 35 21 活性污泥中硝 化细菌所占比 例(%) 5.4 4.3
BOD5/TKN 0.5 1
BOD5/TKN 5 6
如果不考虑硝化过程中硝化细菌的增殖,硝化过程的氧 化反应式为:
NH 4 1.5O2 NO2 0.5O2
亚硝酸菌 硝酸菌
NO2 H 2O 2 H
NO3 NO3 2 H H 2 O
总反应式为:
NH 2O2
4
硝化细菌
生物脱氮基本原理
缺氧反硝化过程
有硝化功能的活性污泥法
低BOD 低NH4+ 高NO3-
BOD TKN 好氧BOD 氧化,硝化 SRT〉15d 曝气池
污泥回流
排泥
单污泥系统
有硝化功能的活性污泥法
低BOD 高NH4+ 好氧BOD 氧化 SRT=约5d 曝气池 曝气池 SRT〉15d 硝化 低BOD 低NH4+ 高NO3-
BOD TKN
0.02C5H7NO2+0.98NO3-+1.04H2O+1.88H2CO3
生物脱氮基本原理
硝化作用(Nitrification)
氨氮和亚硝酸盐氮的生物转化和细胞合成的反应式:
NH4++1.83O2+1.98HCO30.02C5H7NO2+0.98NO3-+1.04H2O+1.88H2CO3
有机氮
亚硝态氮(NO2- -N) 硝态氮(NO3--N)
生物脱氮基本原理
氮在水体中的存在形态 水污染控制中经常提到的几个术语 有机氮 总氮 (TN)
氨氮(NH3-N, NH4+-N)
无机氮 硝态氮(NO3--N) 亚硝态氮(NO2- -N)
凯氏氮 (TKN) = 有机氮 + 氨氮 TN = TKN + NOx-N
Ⅱ
Ⅲ
回流污泥 剩余污泥 注:虚线表示可引入部分原污水作为碳源
回流污泥 剩余污泥
回流污泥
剩余污泥
优点:有机物降解菌、硝化菌和反硝化菌分别在各自反应 器内生长繁殖,环境条件适宜,反应速度快而且比较彻底, 可以获得相当好的BOD5去除效果和脱氮效果。 缺点:该流程构筑物和设备多,造价高,运行管理复杂, 且需要外加碳源,运行费较高,一般应用不多。
BNR工艺 ——生物脱氮工艺
生物脱氮工艺
悬浮污泥系统 (Suspended System) 膜法系统 (Attached System)
BNR工艺 ——生物脱氮工艺
三级 多级污泥系统
生物脱氮工艺
单级污泥系统
二级 A/O,
氧化沟,
SBR
多级污泥系统生物脱氮工艺
沉淀池 原污水 曝气池 (去除 BOD) Ⅰ 碱 硝化池 (硝化) 沉淀池 CH3OH 反硝化 反应器 沉淀池 处理水
污泥回流 排泥
污泥回流 排泥
双污泥系统
污水生物脱氮除磷工艺
BNR工艺 BNR=biological nutrient removal 生物法去除营养盐
生物脱氮工艺 BNR工艺 生物除磷工艺 生物脱氮除磷工艺
BNR工艺
——生物脱氮工艺
亚硝酸菌+O2 氨化菌 硝酸菌+O2
有机氮
NH4+-N
NO2--N
两级生物脱氮系统
沉淀池 原污水 去除 BOD、 氨化、硝化 (硝化) 回流污泥 剩余污泥 注:虚线表示可引入部分原污水作为碳源 回流污泥 Ⅰ CH3OH 反硝化 反应器 沉淀池 Ⅱ 处理水
剩余污泥
主要缺点: 该流程仍然较复杂,出水有机物浓度也不能保证十分理想。
单级污泥系统生物脱氮工艺 缺氧(Anoxic)/好氧(Oxic)脱氮工艺 简称A/O脱氮工艺: