ANSYS谱分析的实例——板梁结构

合集下载

ANSYSWorkbench梁壳结构谱分析(二)模态分析

ANSYSWorkbench梁壳结构谱分析(二)模态分析

ANSYSWorkbench梁壳结构谱分析(二)模态分析ANSYS Workbench梁壳结构谱分析(二)模态分析1 概述模态分析是动力学分析基础,如响应谱分析、随机振动分析、谐响应分析等都需要在模态分析基础上进行。

模态分析简而言之就是分析模型的固有特性,包括频率、振型等。

模态分析求解出来的频率为结构的固有频率,与外界的激励没有任何关系,不管有无外界激励,结构的固有频率都是客观存在的,它只与刚度和质量有关,质量增大,固有频率降低,刚度增大,固有频率增大。

一般情况,当外界的激励频率等于固有频率时,结构抵抗变形能力小,变形很大(产生共振原因);当外界激励频率大于固有频率时,动刚度(动载荷力与位移之比)大,不容易变形;当外界激励频率小于固有频率时,动刚度主要表现为结构刚度;当外界激励频率为零时,动刚度等于静刚度。

2 模态分析该模型框架采用Beam188单元模拟,外表面采用Shell181单元模拟。

该结构的总重量为800kg,分析时将其他附件的质量均布在框架上。

边界条件为约束机柜与地面基础连接螺栓处的6个自由度(Remote Displacement)。

具体建模过程详见《ANSYS Workbench梁壳结构谱分析(一)梁壳建模》或点击下方阅读原文获取。

模态分析详细过程如下:(1)划分网格:单击【Mesh】,右键【Insert】=Sizing,设置【Scope】→【Geometry】=选取所有部件,【Definition】→【Type】→【Element Size】=20。

单击【Mesh】,右键【Generate Mesh】生成网格。

(2)边界条件:单击【Modal (B5)】,右键【Insert】→【Remote Displacement】,设置【Scope】→【Geometry】=分别选择框架4个立柱,并分别按照如下操作:【Definition】→【Define By】=Components,【X Component】=0mm,【YComponent】=0mm,【Z Component】=0mm,【X Remotion】=0°,【Y Remotion】=0°,【Z Remotion】=0°,其余默认。

用ANSYS对T梁和空心板梁桥进行结构仿真分析的研究

用ANSYS对T梁和空心板梁桥进行结构仿真分析的研究

V ol121 N o16公 路 交 通 科 技2004年6月JOURNA L OF HIGHWAY AND TRANSPORT ATION RESEARCH AND DEVE LOPMENT文章编号:1002Ο0268(2004)06Ο0069Ο04用ANSYS对T梁和空心板梁桥进行结构仿真分析的研究吴 炜1,翁 洋2,吕建鸣1(11交通部公路科学研究所,北京 100088;21杭州市公路管理局,浙江 杭州 310004)摘要:本文介绍桥梁三维造型系统Bridge3D软件和大型通用有限元软件ANSY S的接口程序的开发。

用接口程序能够将Bridge3D中的桥梁参数转换成用ANSY S进行结构三维仿真分析的三维实体单元结点数据,并对T梁桥和空心板梁桥进行全桥空间仿真分析。

通过ANSY S的计算结果与荷载横向分布理论的计算结果相比较,分析与讨论了简支T梁桥和空心板梁桥荷载横向分布计算方法的适用性及其精确性问题。

关键词:荷载横向分布;T梁桥和空心板梁桥;有限元;三维实体单元中图分类号:U4481212 文献标识码:AStudy on Simulation of TΟshaped Beam and Hollow Slab Bridge by ANSYSWU Wei1,WENG Yang2,LV JianΟming1(11Research Institute of Highway,M OC,Beijing 100088,China;21Hangzhou R oad Management Bureau,Zhejiang Hangzhou 310004,China)Abstract:An interchange program combines Bridge3D with ANSY S will be introduced in this paper1The interchange program can trans2 form the parameter in formation of Bridge3D into the in formation of element and node for structure simulation analysis with ANSY S1S ome numerical results from ANSY S are com pared with these from transverse distribution of load theory to reflect the applicability and accuracy of transverse distribution of load theory of TΟshaped beam bridge and hollow slab bridge1K ey words:T ransverse distribution of load;TΟshaped beam bridge and hollow slab bridge;Finite element;3ΟDimΟelement0 引言荷载横向分布在梁桥设计中是一个重要的概念,它有效的将梁桥设计中的空间问题简化成平面问题,为梁桥设计提供了方便。

Ansys-谱分析实例(地震位移谱分析)

Ansys-谱分析实例(地震位移谱分析)

二.地震位移谱分析如图所示为一板梁结构,试计算在Y方向地震位移谱作用下的构件响应情况。

板梁结构相关参数见下表所示。

板梁结构几何参数和材料参数相应谱板梁结构(模型图)进行题目2的分析。

第一步是建立实体模型(如图4),并选择梁单元和壳单元模拟梁和板进行求解。

建此模型并无特别的难处,只要定义关键点正确,还有就是在建模过程当中注意对全局坐标系的运用,很容易就能做出模型。

此题的难点在于对梁和板的分析求解。

进行求解,首先进行的就是模态分析,约束好六条梁,就可以进行模态的分析求解了。

模态分析后,相应的就进行频谱分析,在输入频率和位移后开始运算求解。

此后进行模态扩展分析,最后进行模态合并分析。

分析完后,再对结果进行查看。

通过命令Main Menu>General Postproc>List Results>Nodal Solution查看节点位移结果、节点等效应力结果(图5)及反作用力结果(图6)。

通过图片我们看清晰的看到梁和板的受力情况及变形情况,在板与梁的连接处,板所受的应力最大,这些地方较容易受到破坏,故可考虑对其进行加固。

而梁主要是中间两层变形较大,所以在设计时应充分考虑材料的选用及直径的大小。

1.指定分析标题1.选取菜单路径Utility Menu | File | Change Jobname,将弹出Change Jobname (修改文件名)对话框。

2.在Enter new jobname (输入新文件名)文本框中输入文字“CH”,为本分析实例的数据库文件名。

单击对话框中的“OK”按钮,完成文件名的修改。

3.选取菜单路径Utility Menu | File | Change Title,将弹出Change Title (修改标题)对话框。

4.在Enter new title (输入新标题)文本框中输入文字“response analysis of a beam-shell structure”,为本分析实例的标题名。

ANSYS桥梁工程应用实例分析(详细)(图文)

ANSYS桥梁工程应用实例分析(详细)(图文)

本章介绍桥梁结构的模拟分析。

桥梁是一种重要的工程结构,精确分析桥梁结构在各种受力方式下的响应有较大的工程价值。

模拟不同类型的桥梁需要不同的建模方法,分析内容包括静力分析、动荷载响应分析、施工过程分析等等。

在本章中着重介绍桁架桥、刚架桥和斜拉桥三种类型桥梁。

内容 提要 第6章 ANSYS 桥梁工程应用实例分析本章重点结构分析具体步骤结构静力分析 桁架结构建模方法 结构模态分析本章典型效果图6.1 引言ANSYS通用有限元软件在土木工程应用分析中可发挥巨大的作用。

我们用它来分析桥梁工程结构,可以很好的模拟各种类型桥梁的受力、施工工况、动荷载的耦合等。

ANSYS程序有丰富的单元库和材料库,几乎可以仿真模拟出任何形式的桥梁。

静力分析中,可以较精确的反应出结构的变形、应力分布、内力情况等;动力分析中,也可精确的表达结构的自振频率、振型、荷载耦合、时程响应等特性。

利用有限元软件对桥梁结构进行全桥模拟分析,可以得出较准确的分析结果。

本章介绍桥梁结构的模拟分析。

作为一种重要的工程结构,桥梁的精确分析具有较大的工程价值。

桥梁的种类繁多,如梁桥、拱桥、钢构桥、悬索桥、斜拉桥等等,不同类型的桥梁可以采用不同的建模方法。

桥梁的分析内容又包括静力分析、施工过程模拟、动荷载响应分析等。

可以看出桥梁的整体分析过程比较复杂。

总体上来说,主要的模拟分析过程如下:(1) 根据计算数据,选择合适的单元和材料,建立准确的桥梁有限元模型。

(2) 施加静力或者动力荷载,选择适当的边界条件。

(3) 根据分析问题的不同,选择合适的求解器进行求解。

(4) 在后处理器中观察计算结果。

(5) 如有需要,调整模型或者荷载条件,重新分析计算。

桥梁的种类和分析内容众多,不同类型桥梁的的分析过程有所不同,分析侧重点也不一样。

在这里仅仅给出大致的分析过程,具体内容还要看具体实例的情况。

6.2 典型桥梁分析模拟过程6.2.1 创建物理环境建立桥梁模型之前必须对工作环境进行一系列的设置。

ANSYS简单框架问题及梁板

ANSYS简单框架问题及梁板

01简单框架问题及梁板复合计算(ANSYS)ANSYS 9.0版本启动的时候首先出现如下图所示的对话框,其中第一页提示用户选择需要的ANSYS功能模块,用户需要根据其购买的ANSYS模块和计算的问题内容来选择。

选择功能模块选择启动对话框的第二个页面,这里ANSYS提示用户给出操作所在的文件夹以及相应的任务名称。

而后ANSYS的计算过程及结果都存放在该文件夹中,一般都以任务命作为文件名,以扩展名表示文件的类型。

例如,在本次分析中,任务名为Case01,那么ANSYS的计算结果,一般会以Case01.rst文件的形式存放在D:\AnsysWork\Book\case01\文件夹中文件夹及任务名称以上设置好后点击“Run”按钮,就进入ANSYS的主操作界面,ANSYS操作界面主要包括以下4部分:(1)ANSYS窗口顶部菜单,提供一些常用功能开关选项;(2)ANSYS窗口顶部工具栏,提供一些常用功能件,比如打开文件、保存文件等;(3)在工具栏右侧为命令输入栏,ANSYS的所有操作都可以通过输入一定格式的命令来完成,ANSYS称其这套命令体系为APDL语言;(4)ANSYS窗口中央左侧为ANSYS的主菜单,ANSYS图形界面分析(GUI)的大部分功能都由这部分菜单完成。

主菜单中最常用的几个模块为前处理模块(Preprocessor),求解模块(Solution),通用后处理模块(General Postproc)和时程后处理模块(TimeHist Postproc);(5)ANSYS窗口中央右侧为ANSYS的显示窗口,GUI界面的各种操作和结果都在该窗口显示顶部菜单顶部工具栏命令输入栏主菜单显示窗口首先要选择分析所用的单元类型。

在本次分析中,我们将用到在土木工程中最常用的两种单元:三维梁单元Beam 188 和三维壳单元 Shell 63。

一般结构中梁柱可以用梁单元模拟,而剪力墙和楼板则可以用壳单元模拟。

AnsysWorkbench工程实例之——梁单元静力学分析

AnsysWorkbench工程实例之——梁单元静力学分析

AnsysWorkbench工程实例之——梁单元静力学分析本文可能是您能在网络上搜索到的关于Ansys Workbench梁单元介绍最详细全面的文章之一。

梁单元常用于简化长宽比超过10的梁与杆模型,比如建筑桁架、桥梁、螺栓、杠杆等。

Workbench中的梁单元有Beam188(默认)与Beam189两种,Beam188无中节点,Beam189有中节点。

在全局网格设置下,梁单元的中节点设置Element MIdside Nodes默认为dropped(无中节点),即默认使用Beam188单元,如果改为kept(有中节点),则将改变为Beam189单元。

类型单元形状中节点自由度形函数Beam188 3D梁无 6 线性Beam189 3D梁有 6 二次Beam188Beam1891 梁单元分析概要1.1 建模与模型导入线框模型可在DM中创建,也可导入stp/igs等模型。

以下分别介绍通过DM创建与通过CAD软件创建导入过程。

1.1.1 梁线体的创建方法1,简单的线体模型可以在DM中创建,一般在XY平面绘制草图或点,再通过Concept——Lines From Sketches、Lines From Points或3D Curve等创建。

区别在于Lines From Sketches是提取草图所有的线条,如果线条是相连接的,提取的结果为一个线几何体。

Lines From Points或3D Curve用于将草图的点(可以是草图线条的端点)连接成为线体,结合Add Frozen选项,可以创建多个线几何体。

操作3次后多个线条可以通过From New Part功能组合为一个几何体,组合后两条线共节点,相当于焊接在一起。

选中后右击方法2,通过CAD软件创建后导入。

如果读者使用的是creo建模,可在草图中创建点,退出草图后选择基准——曲线——通过点的曲线。

操作3次后输出时需要注意,可另存为stp或igs格式,在输出对话框中必须勾选基准曲线和点选项。

梁ansys分析实例讲解

梁ansys分析实例讲解
该例为梁的弯曲问题 工字梁→标准型材 在分析过程中简化为下图所示几何模型 使用Ansys中的梁单元(Beam)进行求解。 简化了3D模型复杂的建模过程和求解步骤。
挠度——弯曲变形时横截面形心沿与轴线 垂直方向的线位移称为挠度,用y表示。简 言之就是指梁、桁架等受弯构件在荷载作 用下的最大变形,通常指竖向方向y轴的,就 是构件的竖向变形。 挠度与荷载大小、构件截面尺寸以及构件 的材料物理性能有关。
Preprocessor→Meshing(划分网格)→Size Cntrls(大小控制)→ManualSize(手动控制大 小)→Lines→Pick Lines(拾取) 在ANSYS显示窗口选中编号为L1的直线,然后在 ANSYS L1 NDIV(分段数)输入栏中输入10. Preprocessor→Meshing→Mesh→Lines 拾取L1, 划分网格结束! File→Save as (存盘)。
有限元课程中使用Ansys 进行结构分析案例
梁分析实例讲解号为32a的工字梁,其跨度为1.0m, 如图所示,求其在集中力P1和P2作用下O 点的挠度。该工字梁材料的弹性模量为 220GPa,泊松比为0.3,集中力P1=8000N, P2=5000N。
问题分析
PltoCtrls→Style(样式) →Colors→Reverse Video(反色),设置 显示颜色,如底色为黑色→白色;底色为 白色→黑色。 File→Change Title 再输入栏中输入 Geometric Model(几何模型) 到这里几何模型 几何模型创建完毕!下面划分网格 几何模型 划分网格
5.加载求解: 选择Main Menu→Solution→Analysis Type→New Analysis,在New Analysis中 选择Static(静态)

ANSYS一种结构瞬态分析实例

ANSYS一种结构瞬态分析实例

一个瞬态分析的例子练习目的:熟悉瞬态分析过程练习过程:瞬态(FULL)完全法分析板-梁结构实例如图1所示板-梁结构,板件上表面施加随时间变化的均布压力,计算在下列已知条件下结构的瞬态响应情况。

全部采用A3钢材料,特性:杨氏模量=2e112/m N 泊松比=0.3 密度=7.8e33/m Kg板壳: 厚度=0.02m四条腿(梁)的几何特性:截面面积=2e-42m 惯性矩=2e-84m 宽度=0.01m 高度=0.02m压力载荷与时间的关系曲线如图2所示。

图1 质量梁-板结构及载荷示意图20 1 2 4 6 时间(s )图 2 板上压力-时间关系分析过程第1步:设置分析标题1. 选取菜单途径Utility Menu>File>Change Title 。

2. 输入“ The Transient Analysis of the structure ”,然后单击OK 。

第2步:定义单元类型单元类型1为SHELL63,单元类型2为BEAM4第3步:定义单元实常数实常数1为壳单元的实常数1,输入厚度为0.02(只需输入第一个值,即等78厚度壳)实常数2为梁单元的实常数,输入AREA 为2e-4惯性矩IZZ=2e-8,IYY =2e-8宽度TKZ=0.01,高度TKY=0.02。

第5步:杨氏模量EX=2e112/m N 泊松比NUXY=0.3 密度DENS=7.8e33/m Kg 第6步:建立有限元分析模型1. 创建矩形,x1=0,x2=2,y1=0,y2=12. 将所有关键点沿Z 方向拷贝,输入DZ =-13. 连线。

将关键点1,5;2,6;3,7;4,8分别连成直线。

4. 设置线的分割尺寸为0.1,首先给面划分网格;然后设置单元类型为2,实常数为2,对线5到8划分网格。

第7步:瞬态动力分析1. 选取菜单途径Main Menu>Solution>-Analysis Type-New Analysis ,弹出New Analysis对话框。

Ansys梁分析实例

Ansys梁分析实例

工程介绍:某露天大型玻璃平面舞台的钢结构如图1所示,每个分格(图2中每个最小的矩形即为一个分格)x 方向尺寸为1m ,y 方向尺寸为1m 。

列数为8,行数为5。

钢结构的主梁(图1中黄色标记单元)为高140宽120厚14的方钢管,其空间摆放形式如图3所示;次梁(图1中紫色标记单元)为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间(如不是正处于X 方向正中间,偏X 坐标小处布置)的次梁的两端,如图2中标记为xyz xyz U R 处。

主梁和次梁之间是固接的。

玻璃采用四点支撑与钢结构连接(采用四点支撑表明垂直作用于玻璃平面的面载荷将传递作用于玻璃所在钢结构分格四周的节点处,表现为点载荷;试对在垂直于玻璃平面方向的42/KN m 的面载荷(包括玻璃自重、钢结构自重、活载荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析。

(每分格面载荷对于每一支撑点的载荷可等效于1KN 的点载荷)。

作业提交的内容至少应包括下面几项:(1) 屏幕截图显示该结构的平面布置结构,图形中应反映所使用软件的部分界面,如图2; (2) 该结构每个支座的支座反力;(3) 该结构节点的最大位移及其所在位置;(4) 对该结构中最危险单元(杆件)进行强度校核。

图1图2图3题目分析:本操作中选用的单位为:(N,mm,MPa)。

具体操作及分析求解:1.更该工作文件和标题。

如图1.1-1.5所示图1.1图1.2图1.3图1.4图1.5图1.62.选择单元类型。

根据题目要求,选择单元类型为beam-3D-2node-188单元。

执行Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add ,选择beam-3D-2node-188。

如图2.1所示。

图2.13.定义材料属性该钢结构材料为碳素结构钢Q235,则将弹性模量设置为200GPa,泊松比设置为0.3。

ANSYS有限元分析——ANSYS梁问题实例

ANSYS有限元分析——ANSYS梁问题实例

41
荷载 加施 梁给
束 约 的 向 方 y和 x加 施1 点 节 给
51
61
KO→ smeti llA tceles → ulos noitcaer→ stluseR tsil→ corptsoP lareneG :uneM niaM SYSNA 力束约、01
71
KO→ demrofednU + feD tceles → …epahS demrofeD→ stluseR tolP→ corptsoP lareneG :uneM niaM SYSNA 图形变的构结、11
2
。 切 剪 虑 考 不 般 一 � 梁 称 对 面 截 等 性 弹 维 二 、2 。移位角的轴Z绕及移位线的向方y,x沿即�度由自 个 三 有 点 节 个 每 的 元 单 。 元 单 轴 单 的 用 作 弯 、 压 、 拉 受 承 可 、1 3MAEB •
3
。 切 剪 虑 考 不 般 一 � 梁 称 对 面 截 等 性 弹 维 三 、2 。移位角的轴个三z,y,x绕 和 移 位 线 的 向 方 个 三 z 、y 、 x � 度 由 自 个 六 有 上 点 节 个 每 在 元 单 种 这 。 元 单 力 受 轴 单 的 扭 、 弯 、 压 、 拉 受 承 于 用 可 种 一 是 、1 4MAEB •
11
KO→ 02:VIDN tupni→ teS :labolG )slortnoC eziS( → looT hseM→ gnihseM→ rossecorperP :uneM niaM SYSNA 元单分划、7 KO→ )0,02(2 ,)0,0(1�点键关个两接连次依→ senil thgiartS→ senil→ seniL→ etaerC→ gniledoM→ rossecorperP :uneM niaM SYSNA 梁成生 KO→)0,02(2,)0,0(1:tupni�标坐的点个两入输次依→ SC evitcA nI→ stniopyeK→ etaerC→ gniledoM→ rossecorperP :uneM niaM SYSNA 点键关成生 型模何几成生6

梁ansys分析实例讲解课件

梁ansys分析实例讲解课件
在Model模块中选择“Material Props”选项卡
ansys软件操作流程
定义弹性模量、泊松比、密度等材料属性 建立几何体
在Model模块中选择“Model”选项卡
ansys软件操作流程
• 创建梁的几何体,输入梁的截面尺寸等信息
ansys软件操作流程
网格划分 在Model模块中选择“Mesh”选项卡 设置网格大小、网格类型等参数
定义约束和载荷
在简支梁的两个端点上定义约束和 载荷。
边界条件与载荷施加
固定约束
在简支梁的两个端点施加固定约 束,以模拟简支边界条件。
均布载荷
在简支梁的跨中施加均布载荷, 以模拟简支梁受到的集中力。
网格划分与求解
网格划分
对简支梁进行网格划分,可以选 择合适的网格密度以提高求解精
度。
求解设置
在“Solution”菜单下进行求解 设置,包括迭代次数、收敛准则
减少模型规模:减小 模型的规模,降低内 存需求;
如何设置ANSYS软 件中的单位制?
升级硬件:增加物理 内存或使用更好的计 算机配置。
a型时, 选择合适的单位制,如米制或英
制;
在模型树中选择模型名称,进入 Model模块,在Model模块中选 择“Model”选项卡,在弹出的 对话框中选择“Units”选项卡
求解设置
进行求解设置,包括迭代次数、收敛标准等。
求解过程
进行求解,得到桥梁结构的应力分布、位移分布等结果。
06
ansys软件操作流程及常见问题 解答
ansys软件操作流程
建立模型 启动ANSYS软件,选择Workbench模式
创建新的模型文件,命名并保存
ansys软件操作流程

ansys梁的受力分析

ansys梁的受力分析

在整个体的范围内划分网格。
方便对比,考虑将集中力都加载在端点中心处的情况。 如图
CUST
网格划分效果图
Element Type Beam Shell Solid
Umax[mm] 0.20000 0.20061 0.19898
CUST
2.在板壳和实体模型中,加载不同的节点上的情况。
3.实体模型上拉下压的 情况:
CUST
梁承受均布载荷:1.0e5 Pa
10m
w1=0.1,w2=0.1,w3=0.2, t1=0.0114 ,t2=0.0114,t3=0.007 弹性模量为2.2e11Pa,泊松比为0.3
CUST
• 最左端节点加约束 ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement → On Nodes →pick the node at (0,0) → OK → select UX, UY,UZ,ROTX → OK • 最右端节点加约束 ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement → On Nodes →pick the node at (10,0) → OK → select UY,UZ,ROTX → OK • 施加y方向的载荷 ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure → On Beams →Pick All →VALI:100000 → OK
CUST
1.分析问题。
分析该物理模型可知,截面边长/梁长度=0.1是一个较小的

ANSYS在梁_板壳结构随机振动分析中的应用

ANSYS在梁_板壳结构随机振动分析中的应用

图 2 施加谱载荷后的有限元模型
谱分析计算出了每一阶扩展模态在结构中的最 大响应, 即计算出了每一阶扩展模态产生的最大位 移和最大应力。通过模态合并 , 可以计算出各阶扩 展模态最大响应时的总体响应结果。
3
ANSYS 后处理分析结果
在 ANSYS 后处理中可以对多种结果进行观察
4
随机疲劳计算
每次随机振动循环都对累积损伤具有贡献 , 当
和打印输出, 限于篇幅本文仅对一些重要的结果进 行简要分析。在时间历程后处理器中, 经过软件计 算处理后 , 可以得出某一节点的位移、 速度和加速度 响应谱。本文选取框架顶层左前节点 108, 其坐标 位置 ( 0, 1 8, 0 5) 。图 3~ 图 5 分别为节点 108 在 Z 向上的位移、 速度和加速度响应谱 , 可以看出结构 发生共振的频率值 , 这就是工程结构设计时要力求 避让的频率, 对于本框架结构 , 就是要避免其固有频 率落在 0 8 H z、 2 4 H z 和 3 7 H z 附近的频段内。 40 新技术新工艺
i
环的次数。 利用 1 、 2 和 3 应力和统计平均频率计算随 机疲劳是一个有效的过程。注意, 统计平均频率等 于载荷步 4( 1 sigm a 速度 ) 除以载荷步 3( 1 sig ma 位 移 ) 结果的商。这样随机疲劳计算的一般过程如下。 1) 计算感兴趣应力分量的统计平均频率 ( 应力 速度/ 应力) ; 2) 假定 68 3% 的时间处于 1 水平, 95 73% 68 3% = 27 43% 的时间 处于 2 水平 , 99 73% 95 4% = 4 33% 的时间处于 3 水平 ; 3) 基于期望寿命和统计平均频率 , 计算 1 、 2 和 3 水平下的循环次数; 4) 基于 S -N 曲线计算疲劳寿命使用系数。 注意 , 上 面所 述只是 为了 说明 如何 利用 ANSYS 随机振动结果进行随机疲劳计算, 仅仅介绍部 分应用途径。 用户还可以根据其他随机振动疲劳计算理论进 行计算 , 这里不一一罗列。在 ANSYS 中不能直接 实现上述计算过程。 而本例从 ANSYS 的分析结果中可以知道, 载 荷步( L oad St ep) 3 第 1 子步的 1 最大 Von Mises 应力值为 66 7 M P a, 位置 就在 节点 27 处。 根据 St einberg 提出的 基于高斯 分布的三 区间法 , 利用 M iner 定律就可以进行疲劳计算。假设结构振动时 间 T = 3E+ 5 s, 振动平均频率 v 0 = 15 次 , 那么就of ANSYS on the Random Vibration Analysis of Beam -shell Structure

ANSYS谱分析报告地实例——板梁结构

ANSYS谱分析报告地实例——板梁结构

谱分析的实例——板梁结构一单点响应谱分析的算例某板梁结构如图3所示,计算在Y方向的地震位移响应谱作用下整个结构的响应情况。

板梁结构结构的基本尺寸如图 3所示,地震谱如表5所示,其它数据如下:1.材料是A3钢,相关参数如下:杨氏模量=2e11N/m 2泊松比=0.3密度=7.8e 3Kg/m 32.板壳:厚度=2e-3m3.梁几何特性如下:截面面积=1.6e-5 m 2惯性矩=64/3e-12 m 4宽度=4e-3m高度=4e-3m图3板梁结构模型(mm)谱表1 GUI方式分析过程第1步:指定分析标题并设置分析范畴1、取菜单途径Utility Menu>File>Change Title。

2、输入文字“Single-point response analysis of a shell-beam structure”,然后单击OK。

第2步:定义单元类型1、选取菜单途径Main Menu>Preprocessor>ElementType>Add/Edit/ Delete,弹出Element Types对话框。

2、单击Add,弹出Library of Element Types对话框。

3、在左边的滚动框中单击“Structural Shell”。

4、在右边的滚动框中单击“shell63”。

5、单击Apply。

6、在右边的滚动框中单击“beam4”。

7、单击OK。

8、单击Element Types对话框中的Close按钮。

第3步:定义单元实常数1、选取菜单途径Main Menu>Preprocessor>Real Constants,弹出Real Constants对话框。

2、单击Add,弹出Element Type for Real Constants对话框。

3、选择1号单元,单击OK,弹出Real Constants for Shell63对话框。

4、在TK(I)处输入2e-3。

基于ANSYS Workbench的板梁结构抗震分析

基于ANSYS Workbench的板梁结构抗震分析
地区的板梁结构进行抗震分析。比较相同截 面积下不同截 面形状的板梁结 构 的等 效 应 力等参 数 , 得 出环 形截 面的板 梁 结 构 变形最 小。 研 究结 果可 为板 梁 结构 的抗 震 设 计提 供 依据 。
1 . 2 地震响应谱的选取 参照 “ 建 筑抗震设 计规范 ( G B 5 0 0 1 1 -2 0 1 0 ) ” , 依据 郑州地 区的场 地特征周期 、 水平地震影响 系数及结 构的阻尼 比, 得 到加 速度频率 响应 谱如 图1 . 2 所示, 其 中郑州地 区的场 地特 征周期在 中国地 震动参数 区划 图( G B 1 8 3 0 6 -2 0 0 1 ) 中查取 。
1 l e —l 3


1 7 e —l 2
4 . 7 4 e -2
3 . 2 9
7 . 2 8 e -1 2
不同截面形 状的板 粱结 构的等 效应 力等参数 , 得 出环形 截面积下, 圆形 的等效应 力最 大, 回形的次 之, 圆环形 的最小 ; X 方向最大位移、 速度也 满足此规 律 , X 方向最大加
7 8-7 9 .

[ 6 】 王德玲 , 沈 疆海, 张系 斌. A N S Y S 在结构动力学和工程抗震教学中的 应用[ J 】 . 水利与建筑工程学报, 2 0 1 0 , 8 ( 1 ):3 9 — 4 1 .
表1 . 1各梁截面尺寸( 单位 : m m)
参 考文献
[ 】 】 傅 学怡 . 实用高层建 筑 结构 设计f M】 . 北 京: 中国建 筑工 业 出版
a ) - 层板梁结构图

b ) 网格示意图
社 . 20 1 0.
图’ . 1几1 可 模型及网格分布示意 图

基于ANSYSWorkbench的板梁结构抗震分析

基于ANSYSWorkbench的板梁结构抗震分析

基于ANSYSWorkbench的板梁结构抗震分析【摘要】利用有限元分析软件ANSYS Workbench作为仿真平台,对郑州地区的板梁结构进行抗震分析。

比较相同截面积下不同截面形状的板梁结构的等效应力等参数,得出环形截面的板梁结构变形最小。

研究结果可为板梁结构的抗震设计提供依据。

【关键词】ANSYS Workbench;板梁结构;抗震设计引言由梁和板组成的钢筋混凝土梁板结构如楼盖、屋盖、阳台、雨篷和楼梯等,在建筑中应用十分广泛。

因此,板梁结构选型和布置的合理性以及计算和构造的正确性,对建筑的安全使用有着非常重要的意义。

地震是一种常见的自然灾害,地震波从震源传播至地表层引起地面变形,地面变形进一步引起建筑结构及设备的变形。

地震荷载以动态荷载的作用方式作用于建筑结构及设备,为了确保建筑系统的安全和稳定运行,必须对建筑结构进行抗震设计以保证地震时装置安全地运行。

本文通过响应谱法的计算原理及模拟方法,分析了相同截面积下不同截面形状的板梁结构的等效应力等参数,得出环形截面为最优形式。

1.有限元模型的建立1.1物理模型及网格划分本文研究的对象为三层板梁结构的简化模型,对四种不同梁截面形状的板梁结构进行分析。

板面为正方形,边长为600mm,板厚度为3mm,板间隔为600mm。

梁截面分别为相同面积的正方形、回形、圆形、环形。

四种梁截面尺寸如表1.1。

利用ANSYS软件对板梁结构进行建模,其几何模型见图1.1(a)。

对面体划分四边形网格,网格节点数67920,单元数592400。

网格分布如图1.1(b)。

1.2地震响应谱的选取参照“建筑抗震设计规范(GB50011—2010)”,依据郑州地区的场地特征周期、水平地震影响系数及结构的阻尼比,得到加速度频率响应谱如图1.2所示,其中郑州地区的场地特征周期在中国地震动参数区划图(GB18306—2001)中查取。

2.结果分析通过对不同截面梁进行响应谱分析,计算结果如表2.1所示。

ANSYS中的有限应变梁单元和子结构技术在板梁组合结构分析中的应用

ANSYS中的有限应变梁单元和子结构技术在板梁组合结构分析中的应用

406中国造船学术论文前两种简化模型的不足,与实际工程模型的差异最大。

总结以上提出的三种简化方法存在的不足,主要为a、结构的连续性差;b、单元刚度的降低;c、形心轴的位置降低。

这些不足都会导致在板梁组合结构分析中计算的结构变形和应力增大,使计算结果偏于保守。

因此,本文提出一种可行的方法,即将甲板板简化为弹性壳元,骨架梁简化为三维线性有限应变梁单元。

将两种单元按照实际的工程模型进行组合。

这种组合方法大大增加了整体板梁组合结构的单元和节点数量,因而也增加了程序的计算时间。

因此在对整个平台结构进行有限元分析时,将对板梁组合结构采用子结构分析,以降低模型规模,节省计算时间。

下面以有限元程序ANSYS中提供的的简化模型为例作以介绍。

(二)三维线性有限应变梁--BEAMl88单元1.BEAMl嬲单元特性ANSYS有限元程序单元库中提供的BEAMl88单元是一种三维线性(2节点)有限应变梁单元。

这种单元基于Timkoshenko梁理论,支持剪切变形效应。

它适合分析适当厚度的各种梁结构,并且支持线性、大扭转或大应变的非线性分析。

BEAMl88在每个节点处有六个或七个自由度。

采用缺省值时,与普通梁单元一样每个节点存在六个自由度。

当需要翘曲分析时,考虑第七个自由度(翘曲值)‘。

在整体坐标系统中,BEAMl88单元(图1)由节点I和J定义。

通常要求以节点K定义单元的方向。

节点K称为方向节点,它指定了单元横截面的方向,是BEAMl88梁单元的一个突出特点。

④Z图1BEAMl88单元模型图BEAMl88梁单元的突出特点之二是可以由用户定义梁横截面的形状和尺寸,由ANSYS程序自动计算梁的截面参数。

单元的横截面可以由一种或多种材料组合而成。

横截面的ID号是一个独立的单元属性,在模型中梁单元的网格划分过程中,通过指定截面的ID号将截面和梁单元联系起来。

与普通梁单元一样,其节点荷载和单元荷载包括集中力、分布力、体力和惯性力。

集中力施加在节点上(这些节点定义了单元的X轴)。

ansys梁结构受力分析

ansys梁结构受力分析

ANSYS梁结构受力分析介绍ANSYS是一款功能强大的工程仿真软件,可用于多种工程领域的仿真分析,包括结构、流体、电磁和系统仿真。

在结构仿真方面,ANSYS可用于实现复杂的受力分析,帮助工程师设计更具稳定性和安全性的结构。

本文将介绍如何使用ANSYS进行梁结构受力分析。

环境准备在进行梁结构受力分析前,需要先准备好以下环境:•安装ANSYS软件•准备梁结构的CAD模型步骤导入CAD模型将准备好的梁结构CAD模型导入到ANSYS软件中。

在ANSYS主界面上,选择“File”->“Import”->“Geometry”->“From File”选项,选择对应的CAD文件进行导入。

定义材料属性在ANSYS软件中,需要对材料的物理性质进行定义,以便进行受力分析。

在ANSYS主界面上,选择“Engineering Data”->“Material Libraries”选项,可以在材料库中选择对应的材料属性进行定义。

若需要自定义材料属性,则选择“Add”选项,输入材料密度、弹性模量等相关参数,即可添加自定义材料属性。

定义边界条件在进行梁结构受力分析前,需要确定结构的受力边界条件。

在ANSYS软件中,选择“Modeling”->“Analysis Settings”->“Define Loads”选项,可以定义梁结构受力的边界条件。

具体的边界条件包括:•约束条件:对某些点或线进行约束,避免发生移动或旋转现象;•荷载条件:施加上升、下降、顺时针或逆时针扭矩力等负载形式。

进行受力分析在定义好材料属性和边界条件后,即可进行受力分析。

在ANSYS软件中,选择“Modeling”->“Solution”->“Solve”选项,即可进行受力分析计算。

在计算完成后,可以通过“Solution”->“Results”选项查看分析结果。

分析结果解读在查看分析结果时,需要关注以下几个方面:•不同点和线上的应力和变形情况:可以通过选中不同的点或线,查看其在不同负载情况下的应力和变形情况;•材料本身的应力和变形情况:可以通过选择材料,查看其在不同负载情况下的应力和变形情况;•结构总体稳定性:根据分析结果,判断结构在不同负载情况下的稳定性,以便对结构进行优化和改进。

ansys_静力分析实例_板材

ansys_静力分析实例_板材

如卜却1一0所示的平而钢板-板卑aom.左瑞尚定,右瑞作用5uk皿的均布我殊试对孔进行般力分析-弹件模fi为2100甌・们松比为0・25.分析步骤⑴启动ANSYS.进入ANSYS界面• ⑵定义匸作文件名进入ANSYS/Mul 1 iphysics 的ff序界面后•单由I'l i I i ly Uciu 菜甲下Fi Io 屮Change Jobnanic 的按fib 会弹出Change Jobnanic 对话柩,输入waiigjiqiao 作为」作文件名,单击UK.(3)定义分析标题选择菜甲Utility Menu — Fi Ic — Change Title 在弹出的对话楼中,输入Plane Model作为分析标題•单击OK.(4)童新显示选择菜单ItiHty Menu —Plot — Keplot单由该按口I麻,所命名的分析标«相工作文ft名会岀现征州ANSYS中・(5)选扔分析类塑在弹出的对话框中.选择分析类轧由于此例W于结构分析.选择菜单Main Uenu! Pre Terences •故选Sli uctuial 这一顶$ 单击OK.(6)定义单元类翌选择菜单Uai n Menu — Preprocessor — Element Type — Add/Edi t/Delete 单Ji#山对话欄中的Mi按也•弹山单元町对话柜•在材料的单元H沖选l*lanc82 单元.即在左剑的窗I」中选取Solid单元,在右侧选择8苹点的82单元•然启单击0K.(7)选样分析类和定义完单元決熨忌Element Tyt>c对话世中的0|山5按钊被激活,单击后弹出•个对话Element behavior 中选择lUanc sirs v / thk. Kxlra Rtcnicnt output 中・选择Nod丹I stress^单击OK.址后单击close.关闭单元类甲对话框•0) • (8)定义实常数迭样菜单 Main Menu — Preprocessor — Real Conslaiits Add/lidil/l)clclc执行该命令后,在弹出K CM I Constants 对话柜+单击Add 按HI. 4ft 认单兀无误 后・单常 0K.弹Hi Real Constants Set Number 1. for Plane 82 对话椎•在 thickness 路麻而输入仮的用度0. 01单击OK,號击close. (9)定义力苧参数迭择菜单 Main Menu — Preprocessor — Material Props — Material Moilel衣评出的对话柝中右边一样依次双it ; structures- Linear^ Elastic.Isotropic 押出定义材料属性对话框.在Ex 后输入艸牡模fi210c9・在PRxY 历面输入泊松 比0.25-单击UK,然后关闭泄义村料居性对话權• (IU)存盘连抒菜单 ANSYS Toolhar —SAVE-DR(11)运义关《山逸掙束单 Main Menu — Prcproccssor Model ing Great Keypoint — In active CS创建点的对话柝中•输入关键点編号1.在创建虑的对话彳€屮.输入X. y. Z 坐杯0. -0H5.0,选择Amly.如卜图"I 所示分别输入关犍点2 (0. 25, -0. 15. 0).关键点3 t (0・75・-0.05, 0),关谴点□ (0・75・ 0.05, 0).关忧点 6 (0・75, 0.05,0),关健点 7 CO. 25.0- 15, 0),关键A 8 <0,25.0. 15,U2)建立ft 线选择蕖甲 Main Menu — Preproccssor — Modeling — Croat — Lines —Lincs — Straight Lincs(0・5・-0.05. 0) •关键点在关墮点1和2. 2和3. 3和4, i和筑5和6. 6和7. 7和匕8和iZ间建立血纵生威结果如图1・2所示1-2(13)建立半面选择菜单Uain Menu — Preprocessor — McxleIing — Great — Areas —Arbitraly — By Lincs执仃该命令坊,弾出一淞取対话楸,分别恰取心域的八条.任红<甲山%・生咸一个半面舛下图1-3所晶(11).^示T作平而选择菜单Utility — Workl^laiic — Display Working Plane丄作平面坐杯显示在绘图区域屮• (G)移动丄作平而选择菜m Uti 1 ity — WorkPlanc — OFfset WP by IncrcBCnts执行该命令厉•弹出OffsHWP制话框.在X. Y. Z Offsets屮输入0・25,0・6 单击06工作平面塑标移动到(0.25.0.0)位置•341—306)创建関迭择菜•单 Hain Menu — Preproccssor — Modeling — Great — Areas — Circle? — Sol id Ci relc右逊出的刖诂fU 屮输入刿r=0・》PY=Ch Kadius=0_025>单击OK.生城如卜' W l- i 所示•POINTS AN51—4U7)<h 尔據作逸 Tf 東申 Mriin Uenti — Preprocessor — Morlel ing — Opt'rale — booleans — Subtract — Areas执行该命令后.在用形区城用U 杯迭中平板華依单占然后迭择绘制的实 体圈.m 击沐・??^到的用形如闾卜•用1一5所示• |“8)竹盐选tf 菜单 A\SYS Toolbar —SAVE-IJK |(19)划分网格选择菜单 Ulin Menu — Preprexessor — Meshinfi — Meshing Tool 执行该命令tb 布艸川的対话枢中单击Globe 面的Set. Hi Globe EkineM SiM 对话松•曲 Eloncnt edge length 设程为 0. 01.琳击 OK I 叫到 Mosh Tool 对话耗屮.於厉单ili Mesh.弹出 个拾収刈话框•单th Pick All 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谱分析的实例——板梁结构一单点响应谱分析的算例某板梁结构如图3所示,计算在Y方向的地震位移响应谱作用下整个结构的响应情况。

板梁结构结构的基本尺寸如图 3所示,地震谱如表5所示,其它数据如下:1.材料是A3钢,相关参数如下:杨氏模量=2e11N/m 2泊松比=0.3密度=7.8e 3Kg/m 32.板壳:厚度=2e-3m3.梁几何特性如下:截面面积=1.6e-5 m 2惯性矩=64/3e-12 m 4宽度=4e-3m高度=4e-3m图3板梁结构模型(mm)谱表1GUI方式分析过程第1步:指定分析标题并设置分析范畴1、取菜单途径Utility Menu>File>Change Title。

2、输入文字“Single-point response analysis of a shell-beam structure”,然后单击OK。

第2步:定义单元类型1、选取菜单途径Main Menu>Preprocessor>Element Type>Add/Edit/ Delete,弹出Element Types对话框。

2、单击Add,弹出Library of Element Types对话框。

3、在左边的滚动框中单击“Structural Shell”。

4、在右边的滚动框中单击“shell63”。

5、单击Apply。

6、在右边的滚动框中单击“beam4”。

7、单击OK。

8、单击Element Types对话框中的Close按钮。

第3步:定义单元实常数1、选取菜单途径Main Menu>Preprocessor>Real Constants,弹出Real Constants对话框。

2、单击Add,弹出Element Type for Real Constants对话框。

3、选择1号单元,单击OK,弹出Real Constants for Shell63对话框。

4、在TK(I)处输入2e-3。

单击OK,关闭Real Constants for Shell63对话框。

5、重复2、过程。

6、选择2号单元,单击OK,弹出Real Constants for Beam4对话框。

7、分别输入下列数据:AREA为1.6E-5,IZZ和IYY均为21.333E-12,TKZTKY均为4E-3。

单击OK,关闭Real Constants for Beam4对话框。

8、单击Close,关闭Real Constants对话框。

第4步:指定材料性能1、选取菜单途径Main Menu>Preprocessor>Material Props>-Constant-Isotropic,弹出Isotropic Material Properties对话框。

2、指定材料号为1,单击OK弹出第二个对话框。

3、输入EX为2e11。

4、输入DENS为7.8e3。

5、输入NUXY为0.3。

6、单击OK。

第5 步:建立有限元模型(过程省略。

此时,完成了几何模型的建立、单元划分网格和施加边界条件。

)第6步:模态求解1、选取菜单途径Main Menu>Solution>-Analysis Type-New Analysis,弹出New Analysis对话框。

2、选择Modal,然后单击OK。

3、选取菜单途径Main Menu>Solution>Analysis Options,弹出Modal Analysis对话框。

4、选中Subspace模态提取法。

5、在No. of modes to extract处输入10(模态提取数目)。

6、单击OK,弹出Subspace Modal Analysis对话框。

单击OK接受缺省值。

7、选取菜单途径Main Menu > Solution >-Solve-Current LS。

弹出Solve Current Load Step对话框,同时弹出/STAT Command窗口。

8、仔细阅读/STAT Command窗口中的信息,然后单击Close关闭/STAT Command窗口。

9、单击Solve Current Load Step对话框中的OK,开始求解计算。

10、当求解结束时,弹出“Solution is done!”对话框,关闭之。

第7步获得谱解1、选取菜单途径Main Menu>Solution>-Analysis Type-New Analysis,弹出New Analysis对话框。

同时弹出警告对话框“Changing the analysis type is only valid within the first load step. Pressing OK will cause you to exit and re-enter SOLUTION. This willreset load step count to 1.”,单击CLOSE关闭警告对话框。

2、选择Spectrum,然后单击OK。

3、选取菜单途径Main Menu > Solution > Analysis Options,弹出Spectrum Analysis对话框。

4、选择缺省的谱分析类型Single-pt resp(单点响应谱),输入10为求解的模态数。

5、单击单元应力计算选择按钮,指定为YES。

单击OK键,关闭Spectrum Analysis对话框。

6、选取菜单途径Main Menu > Solution > -Load Step Opts-Spectrum > -Single-Point-Settings。

弹出Setting for Single-Point Response Spectrum(单点响应谱选项设置)对话框。

7、选择响应谱类型中的“Seismic displ ac”。

8、激励方向SEDX,SEDY,SED分别输入0,1,0。

然后,单击OK键。

9、选取菜单途径Main Menu > Solution > -Load Step Opts-Spectrum > -Single-Point-Freq Table,弹出Frequency Table(频率-谱值表中)频率输入对话框。

10、依次输入0.5、1.0、2.4、3.8、17、18、20和32给FREQ1、FREQ2、……和FREQ8,然后单击OK。

11、选取菜单途径Main Menu > Solution > -Load Step Opts-Spectrum > -Single-Point-Spectr Values,弹出Spectrum Values-Damping Ratio(谱值-阻尼比)对话框。

12、单击OK,此时设置为缺省状态,即无阻尼。

同时,弹出SpectrumValues对话框。

13、依次输入对应上述频率的谱值SV1、SV2……SV8为:1.0e-3、0.5 e-3、0.9 e-3、0.8 e-3、1.2 e-3、0.75 e-3、0.86 e-3和0.2 e-3。

单击OK,关闭谱值输入对话框。

14、选取菜单途径Main Menu > Solution >-Solve-Current LS。

弹出Solve Current Load Step对话框,同时弹出/STAT Command窗口。

15、仔细阅读/STAT Command窗口中的信息,然后单击Close。

16、单击Solve Current Load Step对话框中的OK,开始求解计算。

17、当求解结束时,弹出“Solution is done!”对话框,关闭之。

第8步扩展模态1、选取菜单途径Main Menu>Solution>-Analysis Type-New Analysis,弹出New Analysis对话框。

2、选择Modal,然后单击OK。

3、选取菜单途径Main Menu>Solution>-Analysis Type-ExpansionPass,弹出Expansion pass对话框,单击Expansion pass按钮,设置成on。

单击OK,关闭Expansion pass对话框。

4、选取菜单途径Main Menu>Solution>-Load Step Opts-ExpansionPass>-Single Expand-Expand Modes,弹出Expand Modes扩展模态对话框。

5、在number of modes to expand处输入扩展模态数为10,输入0.005给significant threshold。

6、单击calculate element results钮,设置为YES,即计算单元结果。

单击OK关闭Expand Modes对话框。

7、选取菜单途径Main Menu > Solution >-Solve-Current LS。

弹出Solve Current Load Step对话框,同时弹出/STAT Command窗口。

8、仔细阅读/STAT Command窗口中的信息,然后单击Close。

9、单击Solve Current Load Step对话框中的OK,开始求解计算。

10、当求解结束时,弹出“Solution is done!”对话框,关闭之。

第9步模态叠加1、选取菜单途径Main Menu>Solution>-Analysis Type-New Analysis。

New Analysis对话框将出现。

同时弹出警告对话框“Changing theanalysis type is only valid within the first load step. Pressing OK will cause you to exit and re-enter SOLUTION. This will reset load step count to 1。

”,单击CLOSE,关闭警告对话框。

2、选择Spectrum,然后单击OK。

3、选取菜单途径Main Menu > Solution > Analysis Options。

弹出Spectrum Analysis对话框。

4、选择缺省时的谱分析类型Single-pt resp (单点响应谱)。

单击OK键,关闭Spectrum Analysis对话框。

5、选取菜单途径Main Menu > Solution > -Load Step Opts-Spectrum > -Single-Point-Mode Combine,弹出Mode Combine Methods (模态叠加方法)对话框。

相关文档
最新文档