人教版数学-江苏省数学竞赛第47讲角度与距离答案
数学勾股定理(讲义及答案)含答案

一、选择题1.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0) 2.如图,已知ABC 中,10,86,AB AC BC AB ===,的垂直平分线分别交,AC AB 于,,DE 连接BD ,则CD 的长为( )A .1B .54C .74D .2543.如图,已知AB 是⊙O 的弦,AC 是⊙O 的直径,D 为⊙O 上一点,过D 作⊙O 的切线交BA 的延长线于P,且DP⊥BP 于P.若PD+PA=6,AB=6,则⊙O 的直径AC 的长为( )A .5B .8C .10D .124.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,若CE=1,AB=42,则下列结论一定正确的个数是( )①2CD ;②BD>CE ;③∠CED+∠DFB=2∠EDF ;④△DCE 与△BDF 的周长相等; A .1个 B .2个 C .3个 D .4个5.如图所示,有一个高18cm ,底面周长为24cm 的圆柱形玻璃容器,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )A .16cmB .18cmC .20cmD .24cm6.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .200mB .300mC .400mD .500m7.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( )A .B .C .D .8.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形9.在△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列结论中不正确的是( ) A .如果∠A ﹣∠B =∠C ,那么△ABC 是直角三角形B .如果∠A :∠B :∠C =1:2:3,那么△ABC 是直角三角形C .如果 a 2:b 2:c 2=9:16:25,那么△ABC 是直角三角形D .如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠A =90°10.如图,在ABC ∆中,D 、E 分别是BC 、AC 的中点.已知90ACB ∠=︒,4BE =,7AD =,则AB 的长为( )A .10B .53C .213D .15二、填空题11.如图,RT ABC ,90ACB ∠=︒,6AC =,8BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则B FC '△的面积为______.12.如图,在四边形ABCD 中,22AD =,3CD =,45ABC ACB ADC ∠=∠=∠=︒,则BD 的长为__________.13.如图,△ABC 是一个边长为1的等边三角形,BB 1是△ABC 的高,B 1B 2是△ABB 1的高,B 2B 3是△AB 1B 2的高,……B n-1B n 是△AB n-2B n-1的高,则B 4B 5的长是________,猜想B n-1B n 的长是________.14.如图,Rt ABC 中,90A ∠=︒,8AC =,6AB =,DE AC ⊥,13CD BC =,13CE AC =,P 是直线AC 上一点,把CDP 沿DP 所在的直线翻折后,点C 落在直线DE 上的点H 处,CP 的长是__________15.Rt △ABC 中,∠BAC =90°,AB =AC =2,以 AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段 BD 的长为_____.16.如图,长方体纸箱的长、宽、高分别为50cm 、30cm 、60cm ,一只蚂蚁从点A 处沿着纸箱的表面爬到点B 处.蚂蚁爬行的最短路程为_______cm.17.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.18.如图,E 为等腰直角△ABC 的边AB 上的一点,要使AE =3,BE =1,P 为AC 上的动点,则PB +PE 的最小值为____________.19.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.20.如图,在等腰△ABC 中,AB =AC ,底边BC 上的高AD =6cm ,腰AC 上的高BE =4m ,则△ABC 的面积为_____cm 2.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图,△ABC 和△ADE 都是等腰三角形,其中AB =AC ,AD =AE ,且∠BAC =∠DAE . (1)如图①,连接BE 、CD ,求证:BE =CD ;(2)如图②,连接BE 、CD ,若∠BAC =∠DAE =60°,CD ⊥AE ,AD =3,CD =4,求BD 的长;(3)如图③,若∠BAC =∠DAE =90°,且C 点恰好落在DE 上,试探究CD 2、CE 2和BC 2之间的数量关系,并加以说明.23.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.24.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值;(2)若点P 恰好在∠BAC 的角平分线上,求t 的值;(3)在运动过程中,直接写出当t 为何值时,△BCP 为等腰三角形.25.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E .(1)根据题意用尺规作图补全图形(保留作图痕迹);(2)设,BC m AC n ==①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由.②若线段2AD EC =,求m n的值.26.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.27.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .(1)求证:CED ADB ∠=∠;(2)若=8AB ,=6CE . 求BC 的长 .28.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).29.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .(1)求证:∠ABE =∠CAD ;(2)如图2,以AD 为边向左作等边△ADG ,连接BG .ⅰ)试判断四边形AGBE 的形状,并说明理由;ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).30.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,∴P的坐标是(4,0)或(22,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A 的坐标是(2,2),∴OA= 22∴OA=AP=2∴P 的坐标是(-220).故选D .2.C解析:C【分析】先根据勾股定理的逆定理证明△ABC 是直角三角形,根据垂直平分线的性质证得AD=BD ,由此根据勾股定理求出CD.【详解】∵AB=10,AC=8,BC=6,∴2222228610AC BC AB +=+==,∴△ABC 是直角三角形,且∠C=90°,∵DE 垂直平分AB ,∴AD=BD ,在Rt △BCD 中,222BD BC CD =+ ,∴222(8)6CD CD -=+,解得CD=74, 故选:C. 【点睛】此题考查勾股定理及其逆定理,线段垂直平分线的性质,题中证得△ABC 是直角三角形,且∠C=90°是解题的关键,再利用勾股定理求解.3.C解析:C【解析】分析:通过切线的性质表示出EC 的长度,用相似三角形的性质表示出OE 的长度,由已知条件表示出OC 的长度即可通过勾股定理求出结果.详解:如图:连接BC ,并连接OD 交BC 于点E :∵DP ⊥BP ,AC 为直径;∴∠DPB=∠PBC=90°.∴PD ∥BC,且PD 为⊙O 的切线.∴∠PDE=90°=∠DEB,∴四边形PDEB 为矩形,∴AB ∥OE ,且O 为AC 中点,AB=6.∴PD=BE=EC.∴OE=12AB=3. 设PA=x ,则OD=DE-OE=6+x-3=3+x=OC ,EC=PD=6-x..在Rt △OEC 中:222OE EC OC +=,即:()()222363x x +-=+,解得x=2.所以AC=2OC=2×(3+x )=10.点睛:本题考查了切线的性质,相似三角形的性质,勾股定理. 4.D解析:D【分析】利用等腰直角三角形的相关性质运用勾股定理以及对应角度的关系来推导对应选项的结论即可.【详解】解:由2AC=BC=4,则AE=3=DE ,由勾股定理可得2, ①正确; 21>,②正确;由∠A=∠EDF=45°,则2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)= 135°-∠CDF=135°-(∠DFB+45°)= 90°-∠DFB ,故∠CED+∠DFB=90°=2∠EDF ,③正确; △DCE 的周长2,△BDF 的周长2+4-224个,故选:D.【点睛】本题主要考查等腰直角三角形的相关性质以及勾股定理的运用,本题涉及的等腰直角三角形、翻折、勾股定理以及边角关系,需要熟练地掌握对应性质以及灵活的运用.5.C解析:C【分析】首先画出圆柱的侧面展开图,进而得到SC=12cm,FC=18-2=16cm,再利用勾股定理计算出SF长即可.【详解】将圆柱的侧面展开,蜘蛛到达目的地的最近距离为线段SF的长,由勾股定理,SF2=SC2+FC2=122+(18-1-1)2=400,SF=20 cm,故选C.【点睛】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.6.D解析:D【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【详解】解:如图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC=22500AB BC m+=∴CE=AC-AE=200,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故选D.【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC≌△DEA,并能比较从B到E有两种走法.7.B解析:B【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.【详解】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选B.【点睛】本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.8.B解析:B【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【详解】如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.9.D解析:D【分析】根据直角三角形的判定和勾股定理的逆定理解答即可.【详解】选项A 中如果∠A ﹣∠B =∠C ,由∠A+∠B+∠C =180°,可得∠A =90°,那么△ABC 是直角三角形,选项正确;选项B 中如果∠A :∠B :∠C =1:2:3,由∠A+∠B+∠C =180°,可得∠A =90°,那么△ABC 是直角三角形,选项正确;选项C 中如果 a 2:b 2:c 2=9:16:25,满足a 2+b 2=c 2,那么△ABC 是直角三角形,选项正确;选项D 中如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠B =90°,选项错误; 故选D .【点睛】考查直角三角形的判定,学生熟练掌握勾股定理逆定理是本题解题的关键,并结合直角三角形的定义解出此题.10.C解析:C【分析】设EC=x ,DC=y ,则直角△BCE 中,x 2+4y 2=BE 2=16,在直角△ADC 中,4x 2+y 2=AD 2=49,由方程组可求得x 2+y 2,在直角△ABC 中,2244ABx y 【详解】解:设EC=x ,DC=y ,∠ACB=90°,∵D 、E 分别是BC 、AC 的中点,∴AC=2EC=2x ,BC=2DC=2y ,∴在直角△BCE 中,CE 2+BC 2=x 2+4y 2=BE 2=16在直角△ADC 中,AC 2+CD 2=4x 2+y 2=AD 2=49,∴2255164965x y ,即2213x y +=,在直角△ABC中,2244413213AB x y.故选:C.【点睛】本题考查了勾股定理的灵活运用,考查了中点的定义,本题中根据直角△BCE和直角△ADC 求得22x y+的值是解题的关键.二、填空题11.96 25【分析】将△B´CF的面积转化为求△BCF的面积,由折叠的性质可得CD=AC=6,∠ACE=∠DCE,∠BCF=∠B´CF,CE⊥AB,可证得△ECF是等腰直角三角形,EF=CE,∠EFC=45°,由等面积法可求CE的长,由勾股定理可求AE的长,进而求得BF的长,即可求解.【详解】根据折叠的性质可知,CD=AC=6,∠ACE=∠DCE,∠BCF=∠B´CF,CE⊥AB,∴∠DCE+∠B´CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,且CE⊥AB,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∵S△ABC=12AC•BC=12AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=10,∴CE=245,∴EF=245,∵AE 185,∴BF=AB−AE−EF=10-185-245=85,∴S△CBF=12×BF×CE=12×85×245=9625,∴S△CB´F=96 25,故填:96 25.【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等知识,根据折叠的性质求得相等的角是解决本题的关键.12.5【分析】作AD′⊥AD ,AD′=AD 构建等腰直角三角形,根据SAS 求证△BAD ≌△CAD′,证得BD=CD′,∠DAD′=90°,然后在Rt △AD′D 和Rt △CD′D 应用勾股定理即可求解.【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,∴∠BAD=∠CAD′,在△BAD 与△CAD′中,{BA CABAD CAD AD AD =∠=∠='',∴△BAD ≌△CAD′(SAS ),∴BD=CD′,∠DAD′=90°,由勾股定理得22()4AD AD +=',∵∠D′DA+∠ADC=90°,∴由勾股定理得22(')5DC DD +=,∴BD=CD′=5故答案为5.【点睛】本题考查了全等三角形的判定与性质,勾股定理,等腰直角三角形,正确引出辅助线构造等腰直角三角形是本题的关键.13.332 32n 【分析】根据等边三角形性质得出AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理求出BB 1=2,求出△ABC 的面积是4;求出113ABB BCB S S ==B 1B 2,由勾股定理求出BB 2,根据11221ABB BB B AB B S S S =+代入求出B 2B 3=,B 3B 4=B 4B 5=,推出B n ﹣1B n . 【详解】解:∵△ABC 是等边三角形,∴BA =AC ,∵BB 1是△ABC 的高,∴AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理得:BB 1=;∴△ABC 的面积是12×1=;∴1112ABB BCB S S ==⨯,12=×1×B 1B 2,B 1B 2,由勾股定理得:BB 234=,∵11221ABB BB B AB B S S S =+,2313112422B B =⨯⨯⨯,B 2B 3,B 3B 4=16,B 4B 5=32, …,B n ﹣1B n故答案为:332,32n . 【点睛】 本题考查了等边三角形的性质,勾股定理,三角形的面积等知识点的应用,关键是能根据计算结果得出规律.14.53或203【分析】 根据折叠后点C 的对应点H 与AC 的位置关系分类讨论,分别画出对应的图形,利用勾股定理求出各边的长,再根据折叠的性质与勾股定理列出对应的方程即可求出结论.【详解】 解:①当折叠后点C 的对应点H 在AC 的下方时,如下图所示∵Rt ABC 中,90A ∠=︒,8AC =,6AB =,根据勾股定理可得2210AB AC += ∵13CD BC =,13CE AC =, ∴13CD BC ==103,13CE AC ==83 ∵DE AC ⊥根据勾股定理可得222CD CE -=由折叠的性质可得:DH=CD=103,CP=PH ∴EH=DH -DE=43设CP=PH=x ,则EP=CE -CP=83-x在Rt △PEH 中,EP 2+EH 2=PH 2即(83-x )2+(43)2=x 2 解得:x=53即此时CP=53;②当折叠后点C的对应点H在AC的上方时,如下图所示根据折叠的性质可得DH=CD=103,CP=PH∴EH=DH+DE=16 3设CP=PH=y,则EP= CP-CE =y-8 3在Rt△PEH中,EP2+EH2=PH2即(y-83)2+(163)2=y2解得:y=20 3即此时CP=203.综上所述:CP=53或203.故答案为:53或203.【点睛】此题考查的是勾股定理和折叠问题,掌握利用勾股定理解直角三角形、折叠的性质和分类讨论的数学思想是解决此题的关键.15.4或2510【分析】分三种情况讨论:①以A为直角顶点,向外作等腰直角三角形DAC;②以C为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.【详解】①以A为直角顶点,向外作等腰直角三角形DAC,如图1.∵∠DAC=90°,且AD=AC,∴BD=BA+AD=2+2=4;②以C为直角顶点,向外作等腰直角三角形ACD,如图2.连接BD,过点D作DE⊥BC,交BC的延长线于E.∵△ABC是等腰直角三角形,∠ACD=90°,∴∠DCE=45°.又∵DE⊥CE,∴∠DEC=90°,∴∠CDE=45°,∴CE=DE=2222⨯=.在Rt△BAC中,BC2222=+=22,∴BD22222222BE DE()()=+=++= 25;③以AC为斜边,向外作等腰直角三角形ADC,如图3.∵∠ADC=90°,AD=DC,且AC=2,∴AD=DC=AC sin45°=2222⨯=.又∵△ABC、△ADC是等腰直角三角形,∴∠ACB=∠ACD=45°,∴∠BCD=90°.又∵在Rt△ABC中,BC2222=+=22,∴BD222222210BC CD=+=+=()().故BD的长等于4或510.故答案为4或510.【点睛】本题考查了等腰直角三角形的性质、勾股定理等知识.解题的关键是分情况考虑问题,16.100【解析】蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线:第一种情况:如图1,把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是90cm和50cm,则所走的最短线段AB==10cm;第二种情况:如图2,把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是110cm和30cm,所以走的最短线段AB==10cm;第三种情况:如图3,把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是80cm和60cm,所以走的最短线段AB==100cm;三种情况比较而言,第三种情况最短.故答案为100cm.点睛:本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨. 17.169【解析】解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512+=169. 故答案为:169.点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.18.5【解析】试题分析:作点B 关于AC 的对称点F ,构建直角三角形,根据最短路径可知:此时PB +PE 的值最小,接下来要求出这个最小值,即求EF 的长即可,因此要先求AF 的长,证明△ADF ≌△CDB ,可以解决这个问题,从而得出EF =5,则PB +PE 的最小值为5.解:如图,过B 作BD ⊥AC ,垂足为D ,并截取DF =BD ,连接EF 交AC 于P ,连接PB 、AF ,则此时PB +PE 的值最小,∵△ABC 是等腰直角三角形,∴AB =CB ,∠ABC =90°,AD =DC ,∴∠BAC =∠C =45°,∵∠ADF =∠CDB ,∴△ADF ≌△CDB ,∴AF =BC ,∠FAD =∠C =45°,∵AE =3,BE =1,∴AB =BC =4,∴AF =4,∵∠BAF =∠BAC +∠FAD =45°+45°=90°,∴由勾股定理得:EF 22AF AE +2243+,∵AC 是BF 的垂直平分线,∴BP =PF ,∴PB +PE =PF +PE =EF =5,故答案为5.点睛:本题主要考查最短路径问题.解题的关键在于要利用轴对称知识,结合两点之间线段最短来求解.19.4913【解析】【分析】如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.【详解】如图,延长AD ,交BC 于点G AD 平分BAC ∠,,10AB AC BC ==,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=123223B ∠=∠+∠+∠=∠+∠∴CE AB ⊥,即90BFC ∠=︒390B ∴∠+∠=︒230239+∴∠∠=∠+︒,即2345∠+∠=︒CDG ∴∆是等腰直角三角形,且5DG CG ==7512AG AD DG ∴=+=+=在Rt ACG ∆中,13AC ===13CE AB AC ==∴= 由三角形的面积公式得1122ABC S BC AG AB CF ∆=⋅=⋅ 即1110121322CF ⨯⨯=⨯⋅,解得12013CF = 12049131313EF CE CF ∴=-=-= 故答案为:4913.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.20.2【分析】 根据三角形等面积法求出32AC BC = ,在Rt△ACD 中根据勾股定理得出AC 2=14BC 2+36,依据这两个式子求出AC 、BC 的值.【详解】 ∵AD 是BC 边上的高,BE 是AC 边上的高, ∴12AC•BE=12BC•AD, ∵AD=6,BE =4, ∴AC BC =32, ∴22AC BC =94, ∵AB=AC ,AD⊥BC,∴BD=DC =12BC , ∵AC 2﹣CD 2=AD 2,∴AC 2=14BC 2+36, ∴221364BC BC +=94, 整理得,BC 2=3648⨯, 解得:BC =32∴△ABC 的面积为12×32×6=92cm 2 故答案为:92.【点睛】本题考查了三角形的等面积法以及勾股定理的应用,找出AC 与BC 的数量关系是解答此题的关键.三、解答题21.(1)BE =1;(2)见解析;(3)()23y x =-【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM =3BM ,进而可得BE +CF =3(BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D 是线段BC 的中点,∴BD =DC =12BC =2. ∵DF ⊥AC ,即∠AFD =90°,∴∠AED =360°﹣60°﹣90°﹣120°=90°,∴∠BED =90°,∴∠BDE =30°,∴BE =12BD =1;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,则有∠AMD =∠BMD =∠AND =∠CND =90°.∵∠A =60°,∴∠MDN =360°﹣60°﹣90°﹣90°=120°.∵∠EDF =120°,∴∠MDE =∠NDF .在△MBD 和△NCD 中,∵∠BMD =∠CND ,∠B =∠C ,BD =CD ,∴△MBD ≌△NCD (AAS ),∴BM =CN ,DM =DN .在△EMD 和△FND 中,∵∠EMD =∠FND ,DM =DN ,∠MDE =∠NDF ,∴△EMD ≌△FND (ASA ),∴EM =FN ,∴BE +CF =BM +EM +CN -FN =BM +CN =2BM =BD =12BC =12AB ;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法可得:BM =CN ,DM =DN ,EM =FN .∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)证明见解析;(2)5;(3)CD2+CE2=BC2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论.(3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD2+CE2=2(AP2+CP2),再判断出CD2+CE2=2AC2.即可得出结论.【详解】解:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(2)如图2,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=12∠ADE=12×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD5.(3)CD2、CE2、BC2之间的数量关系为:CD2+CE2=BC2,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE 为等腰直角三角形,AP ⊥DE ,∴AP =EP =DP .∵CD 2=(CP +PD )2=(CP +AP )2=CP 2+2CP •AP +AP 2,CE 2=(EP ﹣CP )2=(AP ﹣CP )2=AP 2﹣2AP •CP +CP 2,∴CD 2+CE 2=2AP 2+2CP 2=2(AP 2+CP 2),∵在Rt △APC 中,由勾股定理可知:AC 2=AP 2+CP 2,∴CD 2+CE 2=2AC 2.∵△ABC 为等腰直角三角形,由勾股定理可知:∴AB 2+AC 2=BC 2,即2AC 2=BC 2,∴CD 2+CE 2=BC 2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD ,解(2)(3)的关键是判断出BE ⊥DE ,是一道中等难度的中考常考题.23.(1)90°;(2)证明见解析;(3)变化,234l +≤<.【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.24.(1)2516;(2)83t =或6;(3)当153,5,210t =或194时,△BCP 为等腰三角形. 【分析】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,求得194t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程2234352t --=⨯,即可得到结论. 【详解】 解:在Rt ABC 中,5AB cm =,3BC cm =,4AC cm ∴=,(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,在Rt PCB 中,222PC CB PB +=,即:222(42)3(2)t t -+=,解得:2516t =, ∴当2516t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,在Rt BEP 中,222PE BE BP +=,即:222(24)1(72)t t -+=-,解得:83t =, 当6t =时,点P 与A 重合,也符合条件,3(3)根据题意得:2AP t =,当P 在AC 上时,BCP 为等腰三角形,PC BC ∴=,即423t -=,12t ∴=, 当P 在AB 上时,BCP 为等腰三角形,CP PB =①,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,1322BE BC ∴==, 12PB AB ∴=,即52342t --=,解得:194t =, PB BC =②,即2343t --=,解得:5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,12BF BP ∴=, 90ACB ∠=︒,由射影定理得;2BC BF AB =⋅,即2234352t --=⨯, 解得:5310t =,2104【点睛】本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.25.(1)详见解析;(2)①线段AD 的长度是方程2220x mx n +-=的一个根,理由详见解析;②512m n = 【分析】(1)根据题意,利用尺规作图画出图形即可;(2)①根据勾股定理求出AD ,然后把AD 的值代入方程,即可得到答案;②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.【详解】(1)解:作图,如图所示:(2)解:①线段AD 的长度是方程2220x mx n +-=的一个根.理由如下:依题意得, BD BC m ==,在Rt ABC 中,90ACB ∠=︒222BC AC AB ∴=+22AB m n =+22AD AB BD m n m ∴=-=+222AD m AD n ∴+-)()2222222m n m m m n m n =+++- 222222222222m n m m n m m m n m n =+-+++-0=;∴线段AD 的长度是方程22 20x mx n +-=的一个根②依题意得:,,AD AE BD BC AB AD BD ====2AD EC =2233AD AE AC n ∴=== 在RT ABC 中,90ACB ∠=222BC AC AB ∴+=22223m n n m ⎛⎫+=+ ⎪⎝⎭ 22224493m n n mn m +=++ 25493n mn = 512m n ∴= 【点睛】本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.26.(1)见解析;(2)证明见解析;(3)25.【分析】(1)直接叙述勾股定理的内容,并用字母表明三边关系;(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.【详解】解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×12ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,即 a 2+b 2= c 2.(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.【点睛】本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.27.(1)见解析;(2)BC =.【分析】(1)由等边三角形的判定定理可得△ABD 为等边三角形,又由平行进行角度间的转化可得出结论.(2)连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF 是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC ,BC 的长.。
三年级上册数学《几何图形计数问题》竞赛试题-人教版(含答案)

几何图形计数问题☆基础题1、数一数下图中有多少条线段?2、从郑州到上海的一列火车,中间要停5站,那么在此次列车上,铁路部门要为旅客准备多少种不同的火车票?3、下图中有多少个三角形?4、下图中有多少个正方形?5、下图中有多少个长方形?☆☆提高题1、有20个钉子如图摆放,以钉子为顶点围成一个正方形,可以围成多少个正方形?2、下图中有多少个正方形?多少个三角形?3、下图中有多少个三角形?4、下图中,有多少个包含“★”的长方形。
5、下图中,有多少个长方形同时包含“★”和“☆”。
6、下图中梯形的个数与三角形的个数的差是多少?☆☆☆竞赛题1、如下图,边界上各条线段的长度依次是5厘米、12厘米、8厘米、1厘米、2厘米、4厘米、7厘米、3厘米。
(1)图中一共有多少个长方形?(2)这些长方形的面积和是多少平方厘米?2、下图中的正方形被分成了9个相同的小正方形,它们有16个顶点(共同的顶点算一个),以其中不在一条直线上的3个点为顶点,可以构成三角形,在这些三角形中,与阴影三角形的面积一样大的三角形有多少个?3、下图中有多少个正方形?4、一张长方形纸片,长是宽的2倍,先对折成正方形,再对折成长方形,再对折成正方形,……,共对折7次,将纸打开展平,数一数用折痕分割成的正方形共有多少个?参考答案☆基础题1、答案:36条解析:基本线段是指:只有一条线段组成的线段叫做基本线段,本题中基本线段的条数是8条,所有线段的条数是:8+7+6+5+4+3+2+1=36(条)2、答案:42种解析:去时要准备:6+5+4+3+2+1=21(种)一共要准备:21×2=42(种)3、答案:12个解析:可以把这个三角形分成两部分来看,上层红色部分有:3+2+1=6(个),下层蓝色部分有:3+2+1=6(个),所以一共有:6×2=12(个)4、答案:32个解析:如下图,把原长方形分成两个同样大小的正方形,(3×3+2×2+1×1)×2=28(个)在蓝色部分的长方形中,还有2个正方形,以蓝色长方形的长为边的正方形还有2个,所以正方形的总个数是:28+2+2=32(个)5、答案:150个解析:先沿着长的方向数:基本线段的条数数是5个,则所有线段的条数是:5+4+3+2+1=15(条);再沿着宽的方向数:基本线段的条数是4个,则所有线段的条数是:4+3+2+1=10(条),则在这个图中所有长方形的个数:15×10=150(个)☆☆提高题1、答案:21个解析:如下图,①形如玫红色正方形有:5+4=9(个);②形如黄色正方形有:4个;③形如黑色正方形有:4个;④形如蓝色正方形有:2个;⑤形如红色正方形有2个,所有正方形的总个数是:9+4+4+2+2=21(个)2、答案:正方形个数:10个;三角形个数:44个。
第十届全国大学生数学竞赛预赛非数学类参考答案官方版

1 cos x cos x(1 cos 2 x 3 cos 3x ) 1 cos x cos 2 x 3 cos 3x ) lim 2 x 0 x 0 x2 x2 x
1 cos 2 x 1 1 cos 2 x 3 cos 3 x 1 cos 2 x (1 3 cos 3x ) lim lim 2 x 0 x2 2 x 0 x2 x2 1 (cos 2 x 1) 1 1 3 (cos 3x 1) 1 1 lim 2 x 0 x2 x2
中 | AB | 表示线段 AB 的长度.
证明:作辅助函数 (t ) f ( x1 t ( x2 x1 ), y1 t ( y2 y1 )) ,----------2 分 显然 (t ) 在[0,1]上可导.根据拉格朗日中值定理,存在 c (0,1) ,使得
f (u , v) f (u , v) ------8 分 ( x2 x1 ) ( y2 y1 ) u v f (u , v) f (u , v) | (1) (0) || f ( x2 , y2 ) f ( x1 , y1 ) || ( x2 x1 ) ( y2 y1 ) | u v
rdrd
0
2
1 9 r
r 2 dz d
0
2
2 2
0
2 2 r 3 ( 9 r 2 1)dr (124 35 ) 5 5 256 ------12 分 3
2
( x
(V )
2
y 2 )dV ( x 2 y 2 )dV ( x 2 y 2 )dV ( x 2 y 2 )dV
人教版A版高中数学必修4课后习题解答

第一章 三角函数 1.1任意角和弧度制 练习(P5)1、锐角是第一象限角,第一象限角不一定是锐角;直角不属于任何一个象限,不属于任何一个象限的角不一定是直角;钝角是第二象限角,第二象限角不一定是钝角.2、三,三,五说明:本题的目的是将终边相同的角的符号表示应用到其他周期性问题上. 题目联系实际,把教科书中的除数360换成每个星期的天数7,利用了“同余”(这里余数是3)来确定7k 天后、7k 天前也是星期三,这样的练习不难,可以口答. 3、(1)第一象限角; (2)第四象限角; (3)第二象限角; (4)第三象限角. 4、(1)305°42′第四象限角;(2)35°8′第一象限角;(3)249°30′第三象限角. 5、(1){130318+360,}k k Z ββ'=︒⋅︒∈,49642'-︒,13642'-︒,22318'︒; (2){225+360,}k k Z ββ=-︒⋅︒∈,585-︒,225-︒,135︒. 练习(P9)1、(1)8π; (2)76π-; (3)203π.2、(1)15°;(2)240-︒; (3)54°.3、(1){,}k k Z ααπ=∈; (2){,}k Z απ∈.4、(1)cos0.75cos0.75︒>; (2). 说明:体会同数值不同单位的角对应的三角函数值可能不同,并进一步认识两种单位制. 注意在用计算器求三角函数值之前,要先对计算器中角的模式进行设置. 如求cos0.75︒之前,要将角模式设置为DEG (角度制);求cos0.75之前,要将角模式设置为RAD (弧度制).5、3πm. 6、弧度数为1.2.习题1.1 A 组(P9) 1、(1)95°,第二象限; (2)80°,第一象限; (3)23650'︒,第三象限; (4)300°,第四象限. 2、{180,}S k k Z αα==⋅︒∈.3、(1){60360,}k k Z ββ=︒+⋅︒∈,300-︒,60︒; (2){75360,}k k Z ββ=-︒+⋅︒∈,75-︒,285︒;(3){82430360,}k k Z ββ'=-︒+⋅︒∈,10430'-︒,25530'︒; (4){75360,}k k Z ββ=-︒+⋅︒∈,75-︒,285︒; (5){90360,}k k Z ββ=︒+⋅︒∈,270-︒,90︒;(7){180360,}k k Z ββ=︒+⋅︒∈,180-︒,180︒; (8){360,}k k Z ββ=⋅︒∈,360-︒,0︒.说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角. 4、︒,所以0︒(2)D . 说明:因为36090360,k k k Z α⋅︒<<︒+⋅︒∈,所以18045180,2k k k Z α⋅︒<<︒+⋅︒∈当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角. 6、不等于1弧度. 这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.7、(1)5π; (2)56π-; (3)7312π; (4)8π.8、(1)210-︒;(2)600-︒;(3)80.21︒;(4)38.2︒. 9、64°. 10、14 cm.. 习题1.1 B 组(P10)1、(1)略; (2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-. 可得0.618(2)θπθ=-,则0.764140θπ=≈︒.说明:本题是一个数学实践活动,题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足120.618S S =2、(1)时针转了120-︒,等于23π-弧度;分针转了1440-︒,等于8π-弧度. (2)设经过t min 分针就与时针重合,n 为两针重合的次数.因为分针旋转的角速度为26030ππ=(rad ∕min ) 时针旋转的角速度为21260360ππ=⨯(rad ∕min ) 所以()230360t n πππ-=,即72011t n =因为时针旋转一天所需的时间为24601440⨯=(min )所以720144011n ≤,于是22n ≤.故时针与分针一天内只会重合22次. 2、864°,245π,151.2π cm.说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式. 当大齿轮转动一周时,小齿轮转动的角是4824360864205π⨯︒=︒=rad.由于大齿轮的转速为3 r ∕s所以小齿轮周上一点每1 s 转过的弧长是483210.5151.220ππ⨯⨯⨯= (cm )1.2任意角的三角函数练习(P15)1、71sin62π=-,7cos 62π=-,tan 2、5sin 13θ=,12cos 13θ=-,5tan 12θ=-. 345、(1)正; (2)负; (3)零; (4)负; (5)正; (6)正. 6、(1)①③或①⑤或③⑤; (2)①④或①⑥或④⑥; (3)②④或②⑤或④⑤; (4)②③或②⑥或③⑥.7、(1)0.8746; (2; (3)0.5; (4)1.练习(P17)1、终边在不同位置的角对应的三角函数值的情况,包括三角函数值的符号情况,终边相同正切线长分别为2.5cm ,4.3cm ,2.9cm ,其中5,2.5是准确数,其余都是近似数(图略).3.5sin 2250.75︒=-=-, 3.5cos 2250.75︒=-=-, tan 2251︒=;sin3300.5︒=-, 4.3cos3300.865︒==, 2.9tan 3300.585︒=-=-.4、三角函数线是三角函数的几何表示,它直观地刻画了三角函数的概念. 与三角函数的定义结合起来,可以从数和形两方面认识三角函数的定义,并使得对三角函数的定义域、函数值4、(1)原式=sin cos sin cos θθθθ⋅=;(2)原式=22222222222cos (cos sin )cos sin 1(cos sin )2sin cos sin αααααααααα-+-==+--. 5、(1)左边=222222(sin cos )(sin cos )sin cos αααααα+-=-; (2)左边=222222sin (sin cos )cos sin cos 1αααααα++=+=.习题1.2 A 组(P20)1、(1)17sin()32π-=,171cos()32π-=,17tan()3π-=(2)21sin42π=-21cos 42π=-,21tan 14π=;(3)231sin()62π-=,23cos()6π-=,23tan()6π-=;(4)sin1500︒=1cos15002︒=,tan1500︒=2、当0a >时,4sin 5α=,3cos 5α=,4tan α=;当0a <时,4sin 5α=-,cos α=43=.3、(1)10-; (2)15; (4)94-.4、(1)0; (2)2()p q -; (3)2()a b -; (4)0.5、(1)2-; (2)26、(1)负; (2)负; (3)负; (4)正; (5)负; (6)负.7、(1)正; (2)负; (3)负; (4)正.8、(1)0.9659; (2)1; (3)0.7857; (4)1.045.9、(1)先证如果角θ为第二或第三象限角,那么sin tan 0θθ⋅<.当角θ为第二象限角时,sin 0θ>,tan 0θ<,则sin tan 0θθ⋅<; 当角θ为第三象限角时,sin 0θ<,tan 0θ>,则sin tan 0θθ⋅<, 所以如果角θ为第二或第三象限角,那么sin tan 0θθ⋅<. 再证如果sin tan 0θθ⋅<,那么角θ为第二或第三象限角.因为sin tan 0θθ⋅<,所以sin 0θ>且tan 0θ<,或sin 0θ<且tan 0θ>,当sin 0θ>且tan 0θ<时,角θ为第二象限角; 当sin 0θ<且tan 0θ>时,角θ为第三象限角; 所以如果sin tan 0θθ⋅<,那么角θ为第二或第三象限角. 综上所述,原命题成立.(其他小题同上,略)(1)解: 由22sin cos 1αα+=得2221cos 1sin 1(4αα=-=-= ∵α为第四象限角 ∴1cos 2α=sin tan 2cos 2ααα==-=(2)解: 由22sin cos 1αα+= 得2225144sin 1cos 1()13169αα=-=--= ∵α为第二象限角 ∴12sin 13α=sin 121312tan ()cos 1355ααα==⨯-=-(3)解:∵tan 0α< ∴α是第二或第四象限角 ∵sin 3tan cos 4ααα==- ∴3sin cos 4αα=- ∵22sin cos 1αα+= ∴229cos cos 116αα+=∴216cos 25α=(1)当α是第二象限角时4cos 5α=-3343sin cos ()4455αα=-=-⨯-= (2)当α是第四象限角时4cos 5α=3343sin cos 4455αα=-=-⨯=-(4)解:∵cos 0α>且cos 1α≠ ∴α是第一或第四象限角∵22sin cos 1αα+=∴222sin 1cos 10.680.5376αα=-=-=(1)当α是第一象限角时sin 0.73α=≈sin 0.73tan 1.1cos 0.68ααα=≈≈(2)当α是第四象限角时sin 0.73α=≈-sin 0.73tan 1.1cos 0.68ααα-=≈≈-10、cos 34x13、(1)左边=2(cos sin )cos sin 1tan (cos sin )(cos sin 1tan x x x x xx x x x x---=+-+;(2)左边=222222221sin sin (1)sin sin sin tan cos cos x x x x x x x-==⋅=⋅; (3)左边=2212cos cos sin 22cos ββββ-++=-;(4)左边=2222222(sin cos )2sin cos 12sin cos x x x x x x +-⋅=-⋅.习题1.2 B 组(P22)1、原式=22222sin (1)cos cos sin 1cos ααααα+⋅=+=. 2、原式1sin 1sin cos cos αααα+--. ∵α为第二象限角.∴原式=1sin 1sin 11tan tan 2tan cos cos cos cos ααααααααα+--=--+-=---.3、∵tan 2α=,∴sin cos tan 1213sin cos tan 121αααααα+++===---.4、又如4422sin cos 12sin cos x x x x +=-⋅也是22sin cos 1x x +=的一个变形;211tan x =+是22sin cos 1x x +=和sin tan x x =的变形;等等.1、(1)4cos 9π-;(2)sin1-; (3)sin 5π-; (4)cos706'︒.2、(1)12; (2)12; (3)0.6428; (4)-3、(1)2sin cos αα-; (2)4sin α. 4、5、(1)2tan 5π-;(2)tan7939'-︒; (3)5tan 36π-; (4)tan3528'-︒.6、(1)-(2)2;(3)0.7587;(5(6)0.6475-.7、(1)2sin α; (2)2cos α+习题1.3 A 组(P29)1、(1)cos30-︒;(2)sin8342'-︒;(3)cos6π;(4)sin3π; (5)2cos9π-;(6)cos7534'-︒;(7)tan8736'-︒;(8)tan 6π-.2、(1)2;(2)0.7193-;(3)0.0151-;(4)0.6639;(5)0.9964-;(6)3、(1)0; (2)2cos α-4、(1)sin(360)sin()sin ααα︒-=-=-360; (2)(3)略 习题1.3 B 组(P29)1、(1)1; (2)0; (3)0.2、(1)12;(2)2αα⎨⎪-⎪⎩ 当为第一象限角当为第二象限角;(3)12-;(4)αα⎪⎩ 当为第一象限角当为第二象限角.1、可以用单位圆中的三角函数作出它们的图象,也可以用“五点法”作出它们的图象,还可以用图形计算器或计算机直接作出它们的图象. 两条曲线形状相同,位置不同,例如函数sin y x =,[0,2]x π∈的图象,可以通过将函数cos y x =,3[,]22x ππ∈-的图象向右平行移动2π个单位长度而得到.2、两个函数的图象相同. 练习(P36)1、成立. 但不能说120°是正弦函数sin y x =的一个周期,因为此等式不是对x 的一切值都成立,例如sin(20120)sin 20︒+︒≠︒.2、(1)83π; (2)2π; (3)2π; (4)6π. 3、可以先在一个周期的区间上研究函数的其他性质,再利用函数的周期性,将所研究的性质扩展到整个定义域. 练习(P40) 1、(1)(2,2),k k k Z πππ+∈; (2)(2,2),k k k Z πππ-+∈; (3)(2,2),22k k k Z ππππ-++∈; (4)3(2,2),2k k k Z ππππ++∈.2、(1)不成立. 3cos 12x =>.(2)成立. 因为2sin 0.5x =,即sin 2x [1,1]-,[1,1]2±∈-. 3、当{2,}2x x x k k Z ππ∈=+∈时,函数取得最大值2;当{2,}2x x x k k Z ππ∈=-+∈时,函数取得最大值2-.4、B .5、(1)sin 250sin 260︒>︒; (2)1514coscos89ππ>; (3)cos515cos530︒>︒; (4)5463sin()sin()78ππ->-.6、5[,],88k k k Z ππππ++∈ 练习(P45)1、在x 轴上任取一点1O ,以1O 为圆心,单位长为半径作圆. 作垂直于x 轴的直径,将1O e 分成左右两个半圆,过右半圆与x 轴的交点作1O e 的切线,然后从圆心1O 引7条射线把右半圆分成8等份,并与切线相交,得到对应于3π-,π-,π-,0,π,π,3π等角的正切线.相应地,再把x 轴上从2π-到2π这一段分成8等份.把角x 的正切线向右平行移动,使它的起点与x 轴上的点x 重合,再把这些正切线的终点用光滑的曲线连接起来,就得到函数tan y x =,(,)22x ππ∈-的图象.2、(1){,}2x k x k k Z πππ<<+∈;(2){,}x x k k Z π=∈;(3){,}2x k x k k Z πππ-+<<∈.3、{,}63k x x k Z ππ≠+∈ 4、(1)2π; (2)2π. 5、(1)不是. 例如0π<,但tan0tan 0π==.(2)不会. 因为对于任何区间A 来说,如果A 不含有()2k k Z ππ+∈这样的数,那么函数tan ,y x x A =∈是增函数;如果A 至少含有一个()2k k Z ππ+∈这样的数,那么在直线2x k ππ=+两侧的图象都是上升的(随自变量由小到大).6、(1)tan138tan143︒<︒; (2)1317tan()tan()45ππ-<-. 习题1.41、(1)2、(1)使y 取得最大值的集合是{63,}x x k k Z =+∈,最大值是32; 使y 取得最小值的集合是{6,}x x k k Z =∈,最小值是12; (2)使y 取得最大值的集合是{,}8x x k k Z ππ=+∈,最大值是3; 3π(3)使y 取得最大值的集合是{2(21),}3x x k k Z π=++∈,最大值是32; 使y 取得最小值的集合是{4,}3x x k k Z ππ=+∈,最小值是32-; (4)使y 取得最大值的集合是{4,}3x x k k Z ππ=+∈,最大值是12; 使y 取得最小值的集合是5{4,}3x x k k Z ππ=-+∈,最小值是12-. 3、(1)3π; (2)2π.4、(1)sin10315sin16430''︒>︒; (2)4744cos()cos()109ππ->-; (3)sin508sin144︒<︒; (4)cos760cos(770)︒>-︒. 5、(1)当[2,2],22x k k k Z ππππ∈-++∈时,1sin y x =+是增函数;当3[2,2],22x k k k Z ππππ∈++∈时,1sin y x =+是减函数. (2)当[2,2],x k k k Z πππ∈-+∈时,cos y x =-是减函数; 当[2,2],x k k k Z πππ∈+∈时,cos y x =-是增函数. 6、{,}3x k k Z ππ≠+∈. 7、2π8、(1)13tan()tan()57ππ->-; (2)tan1519tan1493︒>︒;(3)93tan 6)tan(5)1111ππ>-; (4)7tan tan 86πππ<.9、(1){,}42x k x k k Z ππππ-+≤<+∈; (2){,}32xk x k k Z ππππ+≤<+∈.10、由于()f x 以2为最小正周期,所以对任意x R ∈,有(2)()f x f x +=.于是:2(3)(12)(1)(11)0f f f =+==-=273331()(2)()(1)22224f f f =+==-= 11、由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(,0)k π,k Z ∈. 正弦曲线是轴对称图形,其对称轴的方程是,2x k k Z ππ=+∈.由余弦函数和正切函数的周期性可知,余弦曲线的对称中心坐标为(,0).2k k Z ππ+∈,xy-2-1214321O xy 3π4π2ππ-1-2-3-44321Ox yπ22π3π3π6-0.50.5-0.10.1O对称轴的方程是,x k k Z π=∈;正切曲线的对称中心坐标为(,0).2k k Z π∈. 正切曲线不是轴对称图形.习题1.4 B 组(P47) 1、(1)2{22,}33xk x k k Z ππππ+≤≤+∈;(2)33{22,}44x k x k k Z ππππ-+≤≤+∈.2、单调递减区间5(,),8282k k k Z ππππ++∈. 3、(1)2;(2)(1)y f x =+的图象如下:(3)2,[21,21],y x k x k k k Z =-∈-+∈.1.5函数sin()y A x ωϕ=+的图象练习(P55) 1 2、(1)C ; (2)B ; (3)C .3、23A =,4T π=,14f π=24231sin sin()sin()42421sin(324y x y x y x y x ππππ=−−−−→=-−−−−−−→=-−−−−−−→=-向右平移横坐标伸长到原来的倍,纵坐标不变个单位纵坐标缩短到原来的倍,横坐标不变4、12π. 把正弦曲线在区间[,)12π+∞的部分向左平移12π个单位长度,就可得到函数sin(),[0,]12y x x π=+∈+∞的图象.习题1.5 A 组(P57) 1、(1)C ; (2)A ; (3)D . 2、(1) (2)第3(2)题(3)(4)3、(1)8A =,8T π=,8πϕ=-48sin sin()sin()8488sin()8sin()[0,)4848y x y x y x y x x y y x πππππ=−−−−→=-−−−−−−→=-−−−−−−→=-−−−−→=-∈+∞向右平移横坐标伸长到原来的倍,纵坐标不变个单位纵坐标伸长到原来把轴左侧的8倍,横坐标不变的部分抹去,(2)13A =,23T π=,7πϕ=713sin sin(+)sin(3+)7711sin(3+)sin(3+)[0,)3737y y x y x y x y x y x x πππππ=−−−−→=→=−−−−−−→=−−−−→=∈+∞向左平移个单位纵坐标缩短到原来把轴左侧的部分抹去的倍,横坐标不变,4、(1)150T =,50f =,5A =,3πϕ= (2)0t =时,i =;1600t =时,5i =;1150t =时,0i =; 7600t =时,5i =-;160t =时,0i =; 5、(1)2T =; (2)约24.8cm 习题1.5 B 组(P58)1、根据已知数据作出散点图.由散点图可知,振子的振动函数解析式为020sin(),[0,)62x y x t ππ=-∈+∞ 2、函数2sin()4h t π=+在[0,2]π上的图象为点P 的运动周期和频率分别为2πω和2ωπ. 1.6三角函数模型的简单应用 练习(P65)1、乙点的位置将移至它关于x 轴的对称点处.2、如CCTV-1新闻联播节目播出的周期是1天.3、可以上网下载有关人体节律的软件,利用软件就能方便地作出自己某一时间段的三条人体节律曲线,它们都是正弦型函数图象. 根据曲线不难回答题中的问题. 习题1.6 A 组(P65) 1、(1)30︒或150︒; (2)135︒; (3)45︒; (4)150︒.2、(1)43π或53π; (2)32π; (3)2π或32π; (4)4π或54π.3、5.5天;约3.7等星;约4.4等星.4、先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.习题1.6 B 组(P66) 1、略; 2、略.第一章 复习参考题A 组(P69)1、(1)79{2,},,,4444k k Z ππππββπ=+∈-;(2)22410{2,},,,3333k k Z ββπππππ=-+∈-; (3)128212{2,},,,5555k k Z ββπππππ=+∈-;(4){2,},2,0,2k k Z ββπππ=∈-. 2、周长约44 cm ,面积约为21.110⨯2cm .3、(1)负; (2)正; (3)负;4、解:∵cos 0ϕ>且cos 1ϕ≠∴ϕ为第一或第四象限角 ∵22sin cos 1ϕϕ+= ∴2215sin 1cos 16ϕϕ=-= (1)当ϕ为第一象限角时6、222222224=sin (sin 1)cos sin (cos )cos cos (sin 1)cos ααααααααα-+=-+=-+=原式22222722sin 2cos 2sin cos 1sin cos 2sin 2cos 2sin cos (1sin )2cos (1sin )cos (1sin cos )αααααααααααααααα=-+-=++-+-=-+-+=-+=、(1)原式 右边222222222sin (1sin )sin cos cos cos (sin cos )sin 1αββαββααβ=-++=++==(2)原式 右边8、(1)4sin 2cos 4tan 243255cos 3sin 53tan 5337αααααα--⨯-===+++⨯;(2)2222sin cos tan 33sin cos sin cos tan 13110αααααααα====+++; (3)22222222(sin cos )(tan 1)(31)8(sin cos )sin cos tan 1315αααααααα++++====+++. 9、(1)0; (2)1.0771.10、(1)当α为第一象限角时,cos(2)πα-=,当α为第二象限角时,cos(2)πα-=;(2)当α为第一象限角时,tan(7)απ-=,当α为第二象限角时,tan(7)απ-=.11、(1)tan11110.601︒=,sin378210.315'︒=,cos642.50.216︒=; (2)sin(879)0.358-︒=-,33tan()0.4148π-=-,13cos()0.58810π-=-;(3)sin30.141=,cos(sin 2)0.614=.12、13、(1)因为cos x =或cos x =1>,1-,所以原式不能成立. (2)因为sin x =1<,所以原式有可能成立.14、(11π,此时x 的集合为{2,}2x x k k Z ππ=+∈.1π,此时x2,}2k k Z ππ=-+∈.(2)最大值为5,此时x 的集合为2,}k k Z π∈. 最小值为1,此时x 的集合为{2,}x x k k Z π=∈. 15、(1)3{2}2x x ππ≤≤;(2){}2x x ππ≤≤;(3){0}2x x π≤≤;(4)3{}2x x ππ≤≤.16、(1)(2)(3) (4)17、(1)(图略)(2)由sin()sin x x π-=,可知函数sin ,[0,]y x x π=∈的图象关于直线2x=对称,据此可得函数sin ,[,]2y x x ππ=∈的图象;又由sin(2)sin x x π-=-,可知sin ,[0,2]y x x π=∈的图象关于点(,0)π对称,据此可得出函数sin ,[,2]y x x ππ=∈的图象.(3)先把y 轴向右(当0ϕ>时)或向左(当0ϕ<时)平行移动ϕ个单位长度,再把x 轴向下(当0k >时)或向上(当0k <时)平行移动k 个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2]π之外的部分,便得出函数sin(),[0,2]y x k x ϕπ=++∈的图象.18、(1)21,,56A T ππϕ===. 165sin ,sin(+),sin(5+),67y x x R y x x R y x x R πππ=∈−−−−→=∈−−−−−−→=∈向左平移横坐标缩短到原来个单位的倍,纵坐标不变 (2)2,12,0A T πϕ===.621sin ,2sin ,6y x x R R y x x R =∈−−−−−−→∈−−−−−−→=∈横坐标伸长到原来纵坐标缩短到原来的倍,纵坐标不变的倍,横坐标不变第一章 复习参考题B 组(P71)1、(1)342k k παπππ+<<+,所以2α的终边在第二或第四象限; (2)9012030901203k k α︒+⋅︒<<︒+︒+⋅︒,所以3α的终边在第二、第三或第四象限; (3)34244k k ππαππ+<<+,所以2α的终边在第三或第四象限,也可在y 轴的负半轴上. 2、约143︒3、解:原式1sin 1cos cos sin cos sin cos sin αααααααα--==⋅+⋅∵α为第二象限角∴原式1sin 1cos cos ()sin 1sin 1cos sin cos cos sin αααααααααα--=⋅-+⋅=-++-=-. 4、(1)12sin 2cos tan 25315cos sin 5tan 165()3αααααα-+++===----;(2)2222221()11sin cos tan 110312sin cos cos 2sin cos cos 2tan 132()13αααααααααα-+++====+++⨯-+. 5、左边22sin cos sin cos 2sin cos 1sin cos αααααααα++++=++2(sin cos )sin cos 1sin cos (sin cos )(sin cos 1)1sin cos sin cos αααααααααααααα+++=+++++=++=+=右边. 6、将已知条件代入左边,得:左边=22222222222tan 1sin 1sin 1cos cos cos cos a b a b θθθθθθθ--=-== 7、将已知条件代入左边,得:左边=22222[(tan sin )(tan sin )]16tan sin θθθθθθ+--= 再将已知条件代入右边,得:右边=16(tan sin )(tan sin )θθθθ+-2216(tan sin )θθ=-2222222sin sin cos sin sin 1616cos cos θθθθθθθ-⋅=⨯=⨯ 2216tan sin θθ=⋅. 所以,左边=右边8、(1)2[,],63k k k Z ππππ++∈; (2)272[,],43123k k k Z ππππ++∈.9、(1)表示以原点为圆心,r 为半径的圆. (2)表示以(,)a b 为圆心,r 为半径的圆.第二章 平面向量2.1平面向量的实际背景及基本概念 练习(P77)1、略.2、AB u u u r ,BA u u u r. 这两个向量的长度相等,但它们不等.3、2AB =u u u r , 2.5CD =u u u r ,3EF =u u u r,GH =u u u r4、(1)它们的终点相同; (2)它们的终点不同. 习题2.1 A 组(P77) 1、(2). 3、与DE u u u r 相等的向量有:,AF FC u u u r u u u r ;与EF u u u r相等的向量有:,BD DA u u u r u u u r ; 与FD u u u r相等的向量有:,CE EB u u u r u u u r .4、与a r 相等的向量有:,,CO QP SR u u u r u u u r u u r ;与b r 相等的向量有:,PM DO u u u u r u u u r ; 与c r 相等的向量有:,,DC RQ ST u u u r u u u r uu u r5、2AD =u u u r .6、(1)×; (2)√; (3)√; (4)×.习题2.1 B 组(P78)1、海拔和高度都不是向量.2、相等的向量共有24对. 模为1的向量有18对. 其中与AM u u u u r 同向的共有6对,与AM u u u u r反向的也有6对;与AD u u u r 同向的共有3对,与AD u u u r反向的也有6的向量共有4对;模为2的向量有2对2.2平面向量的线性运算 练习(P84)1、图略.2、图略.3、(1)DA u u u r; (2)CB u u u r . 4、(1)c r ; (2)f u r ; (3)f u r ; (4)g u r . 练习(P87)1、图略.2、DB u u u r ,CA u u u r ,AC u u u r ,AD u u u r ,BA u u u r. 3、图略.水流方向CDA B 练习(P90) 1、图略.2、57AC AB =u u u r u u u r ,27BC AB =-u u u r u u u r .说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BC uuu r 与AB u u u r反向. 3、(1)2b a =r r ; (2)74b a =-r r ; (3)12b a =-r r ; (4)89b a =r r .4、(1)共线; (2)共线.5、(1)32a b -r r ; (2)111123a b -+r r; (3)2ya r . 6、图略.习题2.2 A 组(P91)1、(1)向东走20 km ; (2)向东走5 km ; (3)向东北走102km ; (4)向西南走52km ;(5)向西北走102km ;(6)向东南走102km.2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km.3、解:如右图所示:AB u u u r 表示船速,AD u u u r表示河水的流速,以AB 、AD 为邻边作□ABCD ,则 AC u u u r表示船实际航行的速度.在Rt △ABC 中,8AB =u u u r ,2AD =u u u r,所以222282217AC AB AD =+=+=u u u r u u u r u u u r因为tan 4CAD ∠=,由计算器得76CAD ∠≈︒所以,实际航行的速度是217km/h ,船航行的方向与河岸的夹角约为76°.4、(1)0r ; (2)AB u u u r ; (3)BA u u u r; (4)0r ; (5)0r ; (6)CB u u u r ; (7)0r . 5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略. 8、(1)略; (2)当a b ⊥r r 时,a b a b +=-r r r r9、(1)22a b --r r ; (2)102210a b c -+r r r ; (3)132a b +r r; (4)2()x y b -r .10、14a b e +=r r u r ,124a b e e -=-+r r u r u u r ,1232310a b e e -=-+r r u r u u r .11、如图所示,OC a =-u u u r r ,OD b =-u u u r r,DC b a =-u u u r r r ,BC a b =--u u u r r r .12、14AE b =u u u r r ,BC b a =-u u u r r r ,1()4DE b a =-u u u r r r ,34DB a =u u u r r,(第11题)34EC b =u u u r r ,1()8DN b a =-u u u r r r ,11()48AN AM a b ==+u u u r u u u u r r r .13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点,所以EF AC //且12EF AC =, 即12EF AC =u u u r u u u r ;同理,12HG AC =u u u r u u u r,所以EF HG =u u u r u u u r .习题2.2 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b r r不共线时它们不相等.3、证明:因为MN AN AM =-u u u u r u u u r u u u u r ,而13AN AC =u u u r u u u r ,13AM AB =u u u u r u u u r ,所以1111()3333MN AC AB AC AB BC =-=-=u u u u r u u u r u u u r u u u r u u u r u u u r.4、(1)四边形ABCD 为平行四边形,证略 (2)四边形ABCD 为梯形.证明:∵13AD BC =u u u r u u u r,∴AD BC //且AD BC ≠ ∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形.证明:∵AB DC =u u u r u u u r,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =u u u r u u u r∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形.证明:因为OA OB BA -=u u u r u u u r u u u r ,OD OC CD -=u u u r u u u r u u u r而OA OC OB OD +=+u u u r u u u r u u u r u u u r所以OA OB OD OC -=-u u u r u u u r u u u r u u u r 所以BA CD =u u u r u u u r,即AB ∥.因此,四边形ABCD 为平行四边形.2.3平面向量的基本定理及坐标表示 练习(P100)(第1题)(第4题(2))(第4题(3))(第5题)1、(1)(3,6)a b +=r r ,(7,2)a b -=-r r ; (2)(1,11)a b +=r r ,(7,5)a b -=-r r; (3)(0,0)a b +=r r ,(4,6)a b -=r r ; (4)(3,4)a b +=r r ,(3,4)a b -=-r r. 2、24(6,8)a b -+=--r r ,43(12,5)a b +=r r.3、(1)(3,4)AB =u u u r ,(3,4)BA =--u u u r ; (2)(9,1)AB =-u u u r ,(9,1)BA =-u u u r; (3)(0,2)AB =u u u r ,(0,2)BA =-u u u r ; (4)(5,0)AB =u u u r ,(5,0)BA =-u u u r4、AB ∥CD . 证明:(1,1)AB =-u u u r ,(1,1)CD =-u u u r,所以AB CD =u u u r u u u r .所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3-7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =u u u r u u u r ,得32AP PB =-u u u r u u ur(,)(2,3)(2,3)AP x y x y =-=--u u u r ,(4,3)(,)(4,3)PB x y x y =--=---u u u r∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题2.3 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题. 2、123(8,0)F F F ++=u u r u u r u u r3、解法一:(1,2)OA =--u u u r ,(53,6(1))(2,7)BC =---=u u u r而AD BC =u u u r u u u r ,(1,5)OD OA AD OA BC =+=+=u u u r u u u r u u u r u u u r u u u r. 所以点D 的坐标为(1,5). 解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++u u u r,(53,6(1))(2,7)BC =---=u u u r由AD BC =u u u r u u u r 可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =u u u r ,(2,4)AB =-u u u r.1(1,2)2AC AB ==-u u u r u u u r ,2(4,8)AD AB ==-u u u r u u u r ,1(1,2)2AE AB =-=-u u u r u u ur .(0,3)OC OA AC =+=u u u r u u u r u u u r,所以,点C 的坐标为(0,3); (3,9)OD OA AD =+=-u u u r u u u r u u u r,所以,点D 的坐标为(3,9)-; (2,1)OE OA AE =+=-u u u r u u u r u u u r,所以,点E 的坐标为(2,1)-. 5、由向量,a b r r 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-.6、(4,4)AB =u u u r ,(8,8)CD =--u u u r ,2CD AB =-u u u r u u u r ,所以AB u u u r 与CD uuur 共线. 7、2(2,4)OA OA '==u u u r u u u r ,所以点A '的坐标为(2,4); 3(3,9)OB OB '==-u u u r u u u r ,所以点B '的坐标为(3,9)-; 故 (3,9)(2,4)(5,5)A B ''=--=-u u u u r习题2.3 B 组(P101)1、(1,2)OA =u u u r ,(3,3)AB =u u u r.当1t =时,(4,5)OP OA AB OB =+==u u u r u u u r u u u r u u u r,所以(4,5)P ;当12t =时,157(1,2)(,)222OP OA AB =+=u u u r u u u r u u u r ,所以57(,)22P ;当2t =-时,2(1,2)5,4)OP OA AB =-=-u u u r u u u r u u u r,所以(5,4)P --; 当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=u u u r u u u r u u u r ,所以(7,8)P . 2、(1)因为(4,6)AB =--u u u r ,(1,1.5)AC =u u u r,所以4AB AC =-u u u r u u u r ,所以A 、B 、C 三点共线; (2)因为(1.5,2)PQ =-u u u r ,(6,8)PR =-u u u r ,所以4PR PQ =u u u r u u u r,所以P 、Q 、R 三点共线;(3)因为(8,4)EF =--u u u r ,(1,0.5)EG =--u u u r,所以8EF EG =u u u r u u u r ,所以E 、F 、G 三点共线. 3、证明:假设10λ≠,则由11220e e λλ+=u r u u r r ,得2121e e λλ=-u r uu r .所以12,e e u r u u r 是共线向量,与已知12,e e u r u u r是平面内的一组基底矛盾,因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)OP =u u u r (2)对于任意向量12OP xe ye =+u u u r u r u u r,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积 练习(P106)1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=u r r u r r u r r .2、当0a b ⋅<r r 时,ABC ∆为钝角三角形;当0a b ⋅=r r时,ABC ∆为直角三角形.3、投影分别为0,-图略练习(P107)1、5a ==r ,b ==r 35427a b ⋅=-⨯+⨯=-r r .2、8a b ⋅=r r ,()()7a b a b +-=-r r r r ,()0a b c ⋅+=r r r ,2()49a b +=r r .3、1a b ⋅=r r ,a =r b =r88θ≈︒.习题2.4 A 组(P108)1、a b ⋅=-r r222()225a b a a b b +=+⋅+=-r r r r r r a b +=r r 2、BC uuu r 与CA u u u r 的夹角为120°,20BC CA ⋅=-u u u r u u u r.3、a b +==r r a b -==r r .4、证法一:设a r 与b r的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λr 与b r ,a r 与b λr的夹角都为θ,所以 ()cos cos a b a b a b λλθλθ⋅==r r r r r r ()cos a b a b λλθ⋅=r r r r()cos cos a b a b a b λλθλθ⋅==r r r r r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;(3)当0λ<时,a λr 与b r ,a r 与b λr的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-r r r r r r()cos cos a b a b a b λλθλθ⋅==-r r r r r r()cos(180)cos a b a b a b λλθλθ⋅=︒-=-r r r r r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r; 综上所述,等式成立.证法二:设11(,)a x y =r ,22(,)b x y =r,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+r r112212121212()(,)(,)()a b x y x y x x y y x x y y λλλλλ⋅=⋅=+=+r r11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--u u u r ,(3,4)(5,2)(2,2)BC =-=-u u u r∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=u u u r ,(1,6)(2,3)(1,3)AC =-----=-u u u r∴2117(3)0AB AC ⋅=⨯+⨯-=u u u r u u u r∴AB AC ⊥u u u r u u u r,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-u u u r ,(10,7)(5,2)(5,5)BC =-=u u u r∴35350BA BC ⋅=-⨯+⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=r r r r r r r r ,于是可得6a b ⋅=-r r ,1cos 2a b a bθ⋅==-r r r r ,所以120θ=︒.8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-u u u r ,(8,4)(5,2)(3,6)BC =--=u u u r, (8,4)(4,6)(4,2)DC =-=-u u u r∴AB DC =u u u r u u u r ,43(2)60AB BC ⋅=⨯+-⨯=u u u r u u u r∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =r,则2292x y yx ⎧+=⎪⎨=⎪⎩,解得5x y ⎧=⎪⎪⎨⎪=⎪⎩5x y ⎧=-⎪⎪⎨⎪=⎪⎩.于是(55a =r或(,55a =--r . 11、解:设与a r 垂直的单位向量(,)e x y =r,则221420x y x y ⎧+=⎨+=⎩,解得5x y ⎧=⎪⎪⎨⎪=⎪⎩或5x y ⎧=-⎪⎪⎨⎪=⎪⎩.于是)55e =-r或(55e =-r . 习题2.4 B 组(P108) 1、证法一:0()0()a b a c a b a c a b c a b c ⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥-r r r r r r r r r r r r r r证法二:设11(,)a x y =r ,22(,)b x y =r ,33(,)c x y =r.先证()a b a c a b c ⋅=⋅⇒⊥-r r r r r r r1212a b x x y y ⋅=+r r ,1313a c x x y y ⋅=+r r由a b a c ⋅=⋅r r r r得12121313x x y y x x y y +=+,即123123()()0x x x y y y -+-= 而2323(,)b c x x y y -=--r r,所以()0a b c ⋅-=r r r 再证()a b c a b a c ⊥-⇒⋅=⋅r r r r r r r由()0a b c ⋅-=r r r得 123123()()0x x x y y y -+-=,即12121313x x y y x x y y +=+,因此a b a c ⋅=⋅r r r r2、cos cos cos sin sin OA OBAOB OA OB αβαβ⋅∠==+u u u r u u u r u u u r u u u r .3、证明:构造向量(,)u a b =r ,(,)v c d =r.cos ,u v u v u v ⋅=<>r r r r r r,所以,ac bd u v +<>r r∴2222222222()()()cos ,()()ac bd a b c d u v a b c d +=++<>≤++r r4、AB AC ⋅u u u r u u u r的值只与弦AB 的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB =u u u u r u u u r又cos AB AC AB AC BAC ⋅=∠u u u r u u u r u u u r u u u r,而AM BAC AC∠=u u u u r u u u r所以212AB AC AB AM AB ⋅==u u u r u u u r u u u r u u u u r u u u r5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=u u u r u u u r u u u r证明:∵AB CB CA =-u u u r u u u r u u u r∴2222()2AB CB CA CB CA CB CA =-=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r .由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅=u u u r u u u r∴222CA CB AB +=u u u r u u u r u u u r(2)菱形ABCD 中,求证:AC BD ⊥证明:∵AC AB AD =+u u u r u u u r u u u r ,,DB AB AD =-u u u r u u u r u u u r∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -=u u u r u u u r∴0AC DB ⋅=u u u r u u u r,所以AC BD ⊥(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=u u u r u u u r∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∴22()()AB AD AB AD +=-u u u r u u u r u u u r u u u r ,所以22AC BD =u u u r u u u r ,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可. 2.5平面向量应用举例 习题2.5 A 组(P113) 1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--u u u r,(,)(1,0)(1,0)AP x y x =-=-u u u r由2RA AP =u u u r u u u r 得11(1,)2(1,)x y x y --=-,即11232x x y y=-+⎧⎨=-⎩(第4题)代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2y x =. 2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =. 2211()()3323AO BO BA BF a b a a a b =-=+=-+=+u u u r u u u r u u u r u u u r r r r r r r(2)因为1()2AE a b =+u u u r r r所以23AO AE =u u u r u u u r ,因此,,A O E 三点共线,而且2AO OE =同理可知:2,2BO CO OF OD ==,所以2AO BO COOE OF OD===3、解:(1)(2,7)B A v v v =-=-r u u r u u r;(2)v r 在A v u u r方向上的投影为135A Av v v ⋅=r u u ru u r .4、解:设1F u u r ,2F u u r 的合力为F u r ,F u r 与1F u u r的夹角为θ,则31F =+u r ,30θ=︒; 331F =+u u r ,3F u u r 与1F u u r的夹角为150°.习题2.5 B 组(P113)1、解:设0v u u r 在水平方向的速度大小为v u u r ,竖直方向的速度的大小为y v u u r,则0cos x v v θ=u u r u u r ,0sin y v v θ=u u r u u r.设在时刻t 时的上升高度为h ,抛掷距离为s ,则001sin ,()2cos h v t gt g s v t θθ⎧=-⎪⎨⎪=⎩u u r u u r为重力加速度 所以,最大高度为220sin 2v gθu u r ,最大投掷距离为20sin 2v gθu u r .2、解:设1v u r 与2v u u r 的夹角为θ,合速度为v r ,2v u u r 与v r的夹角为α,行驶距离为d .则1sin 10sin sin v v vθθα==u rrr ,0.5sin 20sin v d αθ==r . ∴120sin d v θ=r . 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短. 3、(1)(0,1)-解:设(,)P x y ,则(1,2)AP x y =--u u u r . (2,22)AB =-u u u r.ODFEAB C(第2题)(第4题)将AB u u u r 绕点A 沿顺时针方向旋转4π到AP u u u r ,相当于沿逆时针方向旋转74π到AP u u u r ,于是7777(2cos 22sin ,2sin 22cos )(1,3)4444AP ππππ=+-=--u u u r所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==-(2)32y x=-解:设曲线C 上任一点P 的坐标为(,)x y ,OP u u u r 绕O 逆时针旋转4π后,点P 的坐标为(,)x y ''则cos sin 44sin cos44x x y y x y ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即2()22()x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x=-第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-u u u r r r,1()2AD a b =+u u u r r r4、略解:213DE BA MA MB a b ==-=-+u u u r u u u r u u u r u u u r r r2233AD a b =+u u u r r r,1133BC a b =+u u u r r r1133EF a b =--u u u r r r,1233FA DC a b ==-u u u r u u u r r r1233CD a b =-+u u u r r r ,2133AB a b =-u u ur r rCE a b =-+u u u r r r 5、(1)(8,8)AB =-u u u r ,82AB =u u u r;(2)(2,16)OC =-u u u r ,(8,8)OD =-u u u r ; (3)33OA OB ⋅=u u u r u u u r.6、AB u u u r 与CD u u ur 共线.证明:因为(1,1)AB =-u u u r ,(1,1)CD =-u u u r ,所以AB CD =u u u r u u u r . 所以AB u u u r 与CD u u ur 共线.7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C ===(第4题)。
苏教版必修四第一章三角函数1.1 任意角、弧度(学案含答案)

苏教版必修四第一章三角函数1.1 任意角、弧度(学案含答案)角,按顺时针方向旋转所形成的角叫做负角,如果射线没有做任何旋转,那么也把它看成一个角,叫做零角。
注意:角的方向影响角的正负。
2. 象限角:以角的顶点为坐标原点,角的始边为x轴非负半轴,建立平面直角坐标系。
这样,角的终边(除端点外)在第几象限,就说这个角是第几象限角。
注意:(1)角的始边“与x轴的非负半轴重合”不能说成是“与x轴的正半轴重合”。
因为x轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线。
(2)如果角的顶点不与坐标原点重合,或者角的始边不与x轴正半轴重合,则不能判断角在哪一个象限,也就是说不能称之为象限角。
(3)如果一个角的终边落在坐标轴上,我们称该角为轴线角。
3. 终边相同的角:一般地,与角α终边相同的角的集合为{β|β=k·360°+α,k∈Z}。
注意:(1)其中α为任意角。
(2)相等的角,终边一定相同;终边相同的角不一定相等,终边相同的角有无数个,它们相差360°的整数倍。
(3)k Z∈这一条件不可少。
易错点:准确区分锐角、0︒到90︒的角、小于90︒的角、第一象限角(1)锐角α是指(0,90)a ∈︒︒。
(2)0︒到90︒的角是指090α︒≤≤︒。
(3)小于90︒的角是指90α<︒,显然包括0︒角和负角。
(4)第一象限角是指{}36036090,k k k Z αα⋅︒<<⋅︒+︒∈。
二、弧度制的概念、弧度与角度的互化以及弧度制下的扇形的弧长及面积公式1. 弧度制:长度等于半径的圆弧所对的圆心角叫做1弧度的角,记作1rad ,用弧度作为角的单位来度量角的单位制称为弧度制。
【核心归纳】当角α的大小一定时,不论这个角所对的圆弧的半径是多少,弧长与半径的比值总是一个定值,它仅与圆心角的大小有关,所以我们可以用弧长与半径的比值来度量角的大小。
即|α|=r l 。
人教版四年级数学竞赛奥数讲义-例题

人教版四年级数学竞赛奥数讲义-例题一、拓展提优试题1.买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,那么,每斤西红柿的价格是元角.2.100只老虎和100只狐狸分别为100组,每组两只动物,老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸吗?”结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有组.3.一个两位数除723,余数是30,满足条件的两位数共有个,分别是.4.粮店里有6袋面粉,分别重15、16、18、19、20、31千克,食堂分两次买走了其中5袋,已知第一次买走得重量是第二次的两倍,剩下的一袋重量为千克.5.两数相除,商是12,余数是3,被除数最小是.6.一辆公共汽车有78个座位,空车出发,第一站上一位乘客,第二站上二位乘客,第三站上三位乘客,依次下去,多少站以后,车上坐满乘客?7.喜羊羊等一群小羊割了一堆青草准备过冬吃.他们算了一下,平均每只小羊割了45千克.如果除了他们自己外,再分给慢羊羊村长一份,那么每只小羊可分得36千克.回到村里,懒羊羊走来,也要分一份.这样一来,每只小羊就只能分得千克草了.8.五个人站成一排,每个人戴一顶不同的帽子,编号为1、2、3、4、5.每人只能看到前面的人的帽子.小王一顶都看不到;小孔只看到4号帽子;小田没有看到3号帽子,但看到了1号帽子;小严看到了有3顶帽子,但没有看到3号帽子;小韦看到了3号帽子和2号帽子,小韦戴号帽子.9.定义运算:A△B=2A+B,已知(3△2)△x=20,x=.10.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生名.11.(7分)有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.12.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.13.如图,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形ABCD的面积是.【分析】如图所示:添加辅助线,因为阴影小正方形的边长是2,最外边的大正方形的边长是6,则大正方形被分成了9个小正方形,其中大正方形每个角上的三角形的面积相当于边长是2的小正方形的面积,所以正方形ABCD的面积相当于5个阴影小正方形的面积,然后利用正方形的面积公式即可求解.14.一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是秒.【分析】坐在慢车上的人看见快车驶过的时间是21秒:既为人与快车的相遇问题,人此15.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.16.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?17.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有天..18.教室里有若干学生,他们的平均年龄是8岁.如果加上李老师的年龄,他们的平均年龄就是11岁.已知李老师的年龄是32岁.那么,教室里一共有人.19.(8分)杨树、柳树、槐树、桦树和梧桐树各一棵树种成一排,相邻两颗树之间的距离都是1米.杨树与柳树、槐树之间的距离相等,桦树与杨树、槐树之间的距离相等.那么梧桐树与桦树之间的距离是米.20.豆豆全家有4口人.今年豆豆哥哥比豆豆大3岁,豆豆妈妈比豆豆爸爸小2岁.5年前,全家年龄为59岁,5年后,全家年龄和为97岁,豆豆妈妈今年岁.21.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b最大是,a﹣b最小是,a﹣b最大是.22.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.23.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.24.如图,把一个边长是5cm的正方形纸片沿虚线分成5个长方形,然后按照箭头标记的方向移动其中的4个长方形,则所得图形的周长是cm.25.(8分)小红去买水果,如果买5千克苹果则少4元,如果买6千克梨则少3元,已知苹果比梨每500克贵5角5分,那么小红买水果共带了元.26.有一个学生在做计算题时,最后一步应当除以20,但却错误地加上20,因而得到错误的结果是180.请问这道计算题的正确得数应是.27.某列车通过285米的隧道用24秒,通过245米的大桥用22秒.若该车与另一列长135米,速度为每秒10米的货车相遇,两列车从碰上到全错开用秒.28.将一张长11厘米,宽7厘米的长方形纸沿直线剪开,每次必须剪出正方形,这样最多能剪出个正方形.29.给出3、3、8、8,请你按“24点”的游戏规则,写出一个得数等于24的等式,.30.少先队员计划做一些幸运星送给幼儿园的小朋友.如果每人做10个,还差6个没完成计划;如果其中4人各做8个,其余每人各做12个,就正好完成计划.问一共计划做颗幸运星.31.(8分)传说,能在三叶草中找到四叶草的人,都是幸运之人.一天,佳佳在大森林中摘取三叶草,当她摘到第一颗四叶草时,发现摘到的草刚好共有100片叶子,那么,她已经有颗三叶草.32.一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有种.33.某个学习小组由男生和女生共8位同学,其中女生比男生多,那么男生的人数可能是.34.只能被1和它本身整除的自然数叫做质数,如:2,3,5,7等.那么,比40大并且比50小的质数是,小于100的最大的质数是.35.在一个长方形内,任意画一条直线,长方形被分成两部分(如图),如果画三条互不重合的直线,那么长方形至少被分成部分,最多被分成部分.36.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.37.有一筐桃子,4个4个地数,多2个;6个6个地数,多4个;8个8个地数,少2个.已知这筐桃子的个数不少于120,也不多于150,共有个.38.在□中填上适当的数,使竖式成立.39.一条大河,河中间(主航道)水的流速为每小时10千米,沿岸边水的流速为每小时8千米.一条船在河中间顺流而下,10小时行驶360千米,这条船沿岸边返回原地需要小时.40.把50颗巧克力分给4个小朋友,每个小朋友分得的巧克力的颗数各不相同.分得最多的小朋友至少可以得颗巧克力.【参考答案】一、拓展提优试题1.【分析】先根据买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,求出西红柿买需要的钱数,再根据单价=总价÷数量即可解答.解:11元8角=11.8元,1元4角=1.4元(11.8+1.4)÷4=13.2÷4=3.3(元);3.3元=3元3角;答:每斤西红柿的价格是3元3角.故答案为:3,3.【点评】本题主要考查学生依据单价,数量以及总价之间数量关系解决问题的能力.2.解:128÷2=64(组)100﹣64=36(组)36÷2=18(组)答:那么同组2只动物都是狐狸的共有18组.故答案为:18.3.解:723﹣30=693,693=3×3×7×11,所以一个两位数除723,除数大于30的两位数因数有:11×3=33,11×7=77,3×3×7=63,11×3×3=99,共4个;故答案为:33、63、77、99.4.解:15+16+18+19+20+31=119(千克),食堂共买走的总量是:119﹣20=99(千克),99÷3=33(千克),第二次买走得重量是:15+18=33(千克),第一次买走得重量是:16+31+19=66(千克);答:剩下的一袋重量为20千克.故答案为:20.5.解:除数最小为:3+1=412×4+3=48+3=51故答案为:51.6.解:设第n站以后车上坐满了乘客,可得:[1+1+(n﹣1)×1]×n÷2=78[2+n﹣1]×n÷2=78,[1+n]×n÷2=78,(1+n)×n=156,由于12×13=156,即n=12.答:12站以后,车上坐满乘客.7.解:设割草的小羊有x只,则它们一共割草45x千克,45x=36(x+1)45x=36x+369x=36x=445×4÷(4+1+1)=180÷6=30(千克)答:这样一来,每只小羊就只能分得30千克草了.故答案为:30.8.解:根据分析,首先从“小王一顶都看不到”判断出小王排在第一位的位置上;然后从“小孔只看到4号帽子”判断出小孔排在第二的位置上;接着从“小严看到了有3顶帽子”判断出小严在第四的位置上;结合小田没看到3,小韦看到3对比可知小田在第三位,小韦在第五位;由于第二位的小孔只看到4,所以小王的帽子编号为4;由第三位的小田看到1,可知第二位的小孔的帽子编号为1;因为第四位的小严没看到3,而第五位的小韦看到了3和2,所以小田帽子编号为2,小严帽子编号为3,小韦帽子编号为5.故答案是:5.9.解:(3△2)△x=20,(2×3+2)△x=20,8△x=20,2×8+x=20,16+x=20,x=20﹣16,x=4;故答案为:4.10.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.解:(730﹣16)÷17=714÷17=42(名);答:这个班共有学生42名.故答案为:42.【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.11.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.解:2007÷3=669,又因为,每一个循环周期中有2个奇数,1个偶数,所以前2007个数中偶数的个数是:1×669=669;答:前2007个数中,有699是偶数.故答案为:699.12.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生 18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.13.解:2×2×5=20答:正方形ABCD的面积是20.故答案为:20.【点评】解答此题的关键是:将原图形进行分割,然后利用正方形的面积公式求解.14.时具有慢车的速度,相遇路程为快车的车长315米,相遇时间为21秒,即人与慢车的速度和为快车与慢车的速度和为:315÷21=15(米/秒);那么坐在快车上的人看见慢车驶过的时间,既为人与慢车的相遇问题,人此时具有快车的速度,相遇路程为慢车的车长300米,由于两车为相向而行,所以坐在车上的人看到车通过的速度为两车的速度和.用快车车长除以快车与慢车的速度和即可.解:根据题意可得:快车与慢车的速度和:315÷21=15(米/秒);坐在快车上的人看见慢车驶过的时间是:300÷15=20(秒);答:坐在快车上的人看见慢车驶过的时间是20秒.故答案为:20.【点评】完成本题的关键是根据坐在慢车上的人见快车通过的时间求出两车的速度和,然后再根据相遇问题进一步解答即可.15.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.解:设第一次相遇用的时间是x分钟70x=90×(x﹣4)70x=90x﹣36090x﹣70x=36020x=360x=360÷20x=18(52+70)×18=122×18=2196(米)答:两家相距2196米.【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.16.【分析】一个质数的2倍一定是偶数,一个质数的5倍一定是5的倍数,而36要拆成两个数的和,要么都是偶数,要么都是奇数,本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,当是10时,36﹣10=26,26÷2=13当是20时,4×5=20,4不是质数当是30时,5×6=30,6不是质数,据此解答.解:根据分析可得:符合题意的5的倍数只能是10,20,305×2=10,5×4=20,5×6=30,4和6不是质数,所以只能是2,36﹣10=26.答:这两个质数的乘积是26.【点评】本题考查了质数的定义及其奇数与偶数的性质.17.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期每一周期有一天重合,那么100周期共有100天重合.故答案为:100.【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.18.解:(32﹣11)÷(11﹣8)+1=21÷3+1=8(人)答:教室里一共有 8人.故答案为:8.19.解:杨树与柳树、槐树之间的距离相等,所有三种树的位置有可能是:柳□杨□槐,柳杨槐□□,□柳杨槐□,□□柳杨槐,其中□表示暂时不知道.而桦树与杨树、槐树之间的距离相等,所以只有可能是:柳□杨桦槐,剩余的一个位置是梧桐树,所以梧桐树和桦树间的距离是2米.故答案为:2.20.解:10×4﹣(97﹣59)=40﹣38=2(岁)所以豆豆是3年前出生的,即今年豆豆应该是3岁,今年豆豆的哥哥的年龄为:3+3=6(岁),今年全家的年龄和为:97﹣5×4=77(岁),今年爸爸妈妈的年龄和为:77﹣3﹣6=68(岁),豆豆的妈妈今年的年龄为:(68﹣2)÷2=33(岁).答:豆豆妈妈今年33岁.故答案为:33.21.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.22.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.23.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).24.【分析】本题考察图形边长的平移.解:画出移动后的图,所得图形的周长是5×2+(5+1×2+2×2+3×2+4×2+5)=10+30=40cm.【点评】本题主要抓住平移后的图形每条边边长为多少即可求解.25.解:设梨每千克x元,则每千克苹果x+0.55×2=(x+1.1)元6x﹣3=5×(x+1.1)﹣46x﹣3=5x+5.5﹣46x﹣5x=1.5+3x=4.56×4.5﹣3=27﹣3=24(元)答:小红买水果共带了24元.故答案为:24.26.解:设最后一步之前运算的结果是a,a+20=180,那么:a=180﹣20=160;正确的计算结果是:a÷20=160÷20=8;故答案为:8.27.解:列车速度为:(285﹣245)÷(24﹣22)=40÷2,=20(米);列车车身长为:20×24﹣285=480﹣285,=195(米);列车与货车从相遇到离开需:(195+135)÷(20+10),=330÷30,=11(秒).答:列车与货车从相遇到离开需11秒.28.解:根据题干分析可得:答:一共可以剪出6个正方形.故答案为:6.29.解:8÷(3﹣8÷3),=8÷(3﹣),=8÷,=24.故答案为:8÷(3﹣8÷3).30.解:[(12﹣8)×4+6]÷(12﹣10),=[16+6]÷2,=22÷2,=11(人);10×11+6=116(个);答:一共计划做116颗幸运星.故答案为:116.31.解:(100﹣4)÷3=96÷3=32(棵)答:她已经有了32棵三叶草.故答案为:32.32.【分析】从5角的硬币进行分析讨论:首选从袋中摸出6枚全是5角的硬币;(2)从袋中摸出6枚中5枚面值5角的硬币和1枚面值1元的硬币;(3)从袋中摸出6枚中4枚面值5角的硬币和2枚面值1元的硬币;(4)从袋中摸出6枚中3枚面值5角的硬币和3枚面值1元的硬币;(5)从袋中摸出6枚中2枚面值5角的硬币和4枚面值1元的硬币;(6)从袋中摸出6枚中1枚面值5角的硬币和5枚面值1元的硬币.解:由以上分析,得出下列情况:这6枚硬币的面值的和有6种.故答案为:6.【点评】解答此题可从5角的硬币考虑,逐一分析探讨得出结论.33.【分析】先假设男生和女生一样多,则男生有4人,女生有4人,因为女生比男生多,所以男生的人数一定小于4人,然后写出即可.解:8÷2=4(人),因为女生比男生多,所以男生的人数一定小于4人,所以男生可能是1人,2人或3人;故答案为:1人,2人或3人.【点评】解答此题的关键:先假设男、女生一样多,求出男生人数,进而根据题意,进行分析、继而得出结论.34.【分析】根据质数的概念:指在一个大于1的自然数中,除了1和此整数自身外,没其它约数的数;然后列举出比40大并且比50小的质数;求小于100的最大的质数,应从100以内的最大数找起:99、98是合数;进而得出结论.解:比40大比50小的质数有:41、43、47;小于100的最大质数是97;故答案为:41、43、47,97.【点评】解答此题的关键:根据质数的定义,并结合题意,进行例举即可.35.【分析】三条线不重合,不相交时,把长方形分成的部分最少;三条线不重合,但在长方形内两两相交,有3个交点,把长方形分成的部分最多,如下图所示,因此得解.解:由分析可得:故答案为:4,7.【点评】认真分析题意,找出规律是解决此题的关键,线的交点越多,图形被分的部分越多.36.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.37.【分析】可以看做4个4个地数,少2个;6个6个地数,少2个;8个8个地数,也是少2个.也就是4、6、8的公倍数减2.[4、6、8]=24.可以记作24x﹣2,120<24x﹣2<150.x是整数,x=6.这筐桃子共有24×6﹣2,计算即可.解:[4、6、8]=24.这筐桃子的数量可以记作24x﹣2,120<24x﹣2<150.x是整数,所以x=6,这筐桃子共有:24×6﹣2=142(个).答:这筐桃子共有142个.故答案为:142.【点评】关键是通过把原题转化,运用了求最小公倍数以及解不等式的方法解决问题.38.解:根据题干分析可得:39.解:船的静水速度为:360÷10﹣10,=36﹣10,=26(千米/时);返回原地需要:360÷(26﹣8),=360÷18,=20(小时);答:这条船沿岸边返回原地需要20小时.故答案为:20.40.解:因为要使每个小朋友分得的巧克力的颗数各不相同,第一次先分给这4个小朋友的巧克力数依次为:1、2、3、4,从这里可以看出最后那个人是分得鲜花最多的人;那么还剩下50﹣(1+2+3+4)=40颗巧克力;如果这40颗巧克力全给最后这个人,那么他最多可分得4+40=44颗,要想让他分得的巧克力数少,那么剩下的40颗朵,可以再分给每个人10,由此可得出这时每个人的巧克力数为:11、12、13、14,答:分得最多的小朋友至少可以得14颗巧克力;故答案为:14.。
(教师版)小学奥数4-1-3 角度计算.专项检测题及答案解析

4-1-3.角度计算知识点拨一、角1、角的定义:自一点引两条射线所成的图形叫角2、表示角的符号:∠3、角的分类:锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种(1)锐角:大于0°,小于90°的角叫做锐角。
(2)直角:等于90°的角叫做直角。
(3)钝角:大于90°而小于180°的角叫做钝角。
(4)平角:等于180°的角叫做平角。
(5)优角:大于180°小于360°叫优角。
(6)劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。
(7)周角:等于360°的角叫做周角。
(8)负角:按照顺时针方向旋转而成的角叫做负角。
(9)正角:逆时针旋转的角为正角。
(10)0角:等于零度的角。
4、角的大小:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。
二、三角形1、三角形的定义:由三条边首尾相接组成的封闭图形叫做三角形2、内角和:三角形的内角和为180度;外角:(1)三角形的一个外角等于另外两个内角的和;(2)三角形的一个外角大于其他两内角的任一个角。
3、三角形的分类(1)按角分:锐角三角形:三个角都小于90度。
直角三角形:有一个角等于90度。
钝角三角形:有一个角大于90度。
注:锐角三角形和钝角三角形可统称为斜三角形(2)按边分:不等腰三角形;等腰三角形(含等边三角形)。
模块一、角度计算【例1】有下列说法:(1)一个钝角减去一个直角,得到的角一定是锐角,(2)一个钝角减去一个锐姥,得到的角不可能还是钝角.(3)三角形的三个内麓中至多有一个钝角.(4)三角形的三个内角中至少有两个锐角.(5)三角形的三个内角可以都是锐角.(6)直角三角形中可胄邕有钝角.(7)25︒的角用10倍的放大镜看就变成了250︒其中,正确说法的个数是【考点】角度计算【难度】3星【题型】填空【解析】几何问题(1)、(3)、(4)、(5)是正确的说法.【答案】(1)、(3)、(4)、(5)是正确的说法【例2】下图是3×3的正方形方格,∠1与∠2相比,较大的是_____。
江苏省初中数学竞赛题(含答案)

第十五届江苏省初中数学竞赛试题初一年级第一试一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内)1.在-I一3|3,-(-3)3,(-3)3,-33中,最大的是(B).(A)-|・3|3(B)-(-3)3(C)(-3)3(D)-332.“a的2倍与b的一半之和的平方,减去a、b两数平方和的4倍”用代数式表示应为()(A)2a+(—b2)-4(a+b)2(B)(2a+—b)2-a+4b22 2(c)(2a+b)2-4(a2+b2)(D)(2a+-^-b)2-4(a2+b2)23.若a是负数,则a+|-a|(C),(A)是负数(B)是正数(C)是零(D)可能是正数,也可能是负数4.如果n是正整数,那么表示“任意负奇数”的代数式是().(A)2n+1(B)2n-1(C)-2n+l(D)-2n-l5.已知数轴上的三点A、B、C分别表示有理数a、1、-1,那么|a+l|表示().(A)A、B两点的距离(B)A、C两点的距离(C)A、B两点到原点的距离之和(D)A、C两点到燎点的距离之和6.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对应的数分别是整数a、b、c、d,且d-2a=10,那么数轴的原点应是().(A)A点(B)B点(C)C点(D)D点b a7.已知a+b=O,a#b»则化简一(a+1)—0+1)得().a b(A)2a(B)2b(C)+2(D)-28.已知m<0»-l<n<0,则m,mn»mn?由小到大排列的顺序是().(A)m,mn.mn2(B)mn,mn2,m(C)mn2,mn,m(D)m,mn2,mn二、填空题(每小题?分,共84分)9.计算:—a—(ia—4b—6c)+3(—2c+2b)=_______324 35I10.计算:0.7xl—+2—x(—15)+0.7x-+-x(-i5)=______9 4 94IL某班有男生a(a>20)人,女生20人,a-20表示的实际意义是12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号表示的数是__________梨梨苹果苹果30梨型梨梨28荔枝香蕉苹果梨20香蕉香蕉荔枝苹果1920253014.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是_________.15.在数轴上,点A、B分别表示和!,则线段AB的中点所表示的数是.16.已知2a'bn-i与-3a2b2m(m是正整数)是同类项,那么(2m-n)x=17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2088,则王恒出生在年月.18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1000元,2000年12月3日支取时本息和是元,国家利息税税率是20%,交纳利息税后还有元.19.有一列数a”a?,a,,…,a n»其中ai=6x2+l:32=6x3+2:a3=6x4+3:a4=6x5+4:则第n个数an=:当an=2001时,n=.20.已知三角形的三个内角的和是180。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7讲 角度与距离答案1. 答案:5.2. 答案:D3. 答案:B4. 答案:245. 答案:C6. 解:(1)证明:∵BC →=AC →-AB →=(m 2,3m 2,0), ∴|BC →|=m ,又AB →=(m 2,-32,0),AC →=(m ,0,0) ∴|AB →|=m ,|AC →|=m ,∴△ABC 为正三角形.又AB →·AA →1=0,即AA 1⊥AB ,同理AA 1⊥AC ,∴AA 1⊥平面ABC ,从而三棱柱ABC —A 1B 1C 1是正三棱柱.(2)解:取AB 中点O ,连结CO 、A 1O .∵CO ⊥AB ,平面ABC ⊥平面ABB 1A 1,∴CO ⊥平面ABB 1A 1,即∠CA 1O 为直线CA 1与平面A 1ABB 1所成的角.在Rt △CA 1O 中,CO =32m ,CA 1=m 2+n 2, ∴sin ∠CA 1O =CO CA 1=22,即∠CA 1O =45°. 7. 解:(1)以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系. 由已知,得A (0,0,0),B (0,a ,0),A 1(0,0,2a ),C 1(-32a ,a 2,2a ). (2)取A 1B 1的中点M ,于是M (0,a 2,2a ),连AM ,MC 1有 MC →1=(-32a ,0,0),且AB →=(0,a ,0),AA →1=(0,0,2a ) 由于MC →1·AB →=0,MC →1·AA →1=0,所以MC 1⊥面ABB 1A 1.∴AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.∵AC →1=(-32a ,a 2,2a ),AM →=(0,a 2,2a ), ∴AC →1·AM →=0+a 24+2a 2=94a 2.而|AC →1|=3a 24+a 24+2a 2=3a .|AM →|=a 24+2a 2=32a . ∴cos <AC →1,AM →>=32. 所以AC →1与AM →所成的角,即AC 1与侧面ABB 1A 1所成的角为30°.8. 解:以B 1为原点建立平面直角坐标系,则A (1,0,1),C (0,1,1),A 1(1,0,0),D (1,1,1),则A 1A →=(0,0,1),AC →=(-1,1,0),A 1D→=(0,1,1)设n →=(x ,y ,z)同时与AC →和A 1D →垂直,则 ⎩⎨⎧-x +y =0y +z =0,故⎩⎨⎧x =y z =-y ,取y =1,则n →=(1,1,-1),d =|A 1A →·n →||n →|=33. 习题七9. 答案:A10. 答案:B11. 答案:B12. 解:(1)证明:因为CB ⊥平面A 1B ,所以A 1C 在平面A 1B 上的射影为A 1B . 由A 1B ⊥AE ,AE ⊂平面A 1B ,得A 1C ⊥AE .同理可证A 1C ⊥AF .因为A 1C ⊥AF ,A 1C ⊥AE ,所以A 1C ⊥平面AEF .(2)解:过A 作BD 的垂线交CD 于G ,因为D 1D ⊥AG ,所以AG ⊥平面D 1B 1BD .设AG 与A 1C 所成的角为α,则α即为平面AEF 与平面D 1B 1BD 所成的角.由已知,计算得DG =94. 建立如图直角坐标系,则得点A (0,0,0),G (94,3,0),A 1(0,0,5),C (4,3,0).AG ={94,3,0},A 1C ={4,3,-5}. 因为AG 与A 1C 所成的角为α,所以cos α=12225,α=arccos 12225. 由定理知,平面AEF 与平面D 1B 1BD 所成角的大小为arccos 12225. 如果不用向量法也可用下面的方法求二面角的平面角:解法一:设AG 与BD 交于M ,则AM ⊥面BB 1D 1D ,再作AN ⊥EF 交EF 于N ,连接B D 1D 111MN ,则∠ANM 即为面AEF 与D 1B 1BD 所成的角α,用平面几何的知识可求出AM 、AN 的长度.解法二:用面积射影定理cos α=S △ABD S △AEF. 13. 解:(1)过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB=30°,BC =2,得BD =1,CD =3,∴DE =CD ·sin30°=32. OE =OB -BE =OB -BD ·cos60°=1-12=12. ∴D 点坐标为(0,-12,32),即向量OD →的坐标为(0,-12,32). (2)依题意:OA →=(32,12,0),OB →=(0,-1,0),OC →=(0,1,0) 所以AD →=OD →-OA →=(-32,-1,32),BC →=OC →-OB →=(0,2,0) 设向量AD →和BC →的夹角为θ,则cos θ=-1510. 14. 解法一:由于SB =BC ,且E 是SC 的中点,因此BE 是等腰三角形SBC 底边SC 的中线,所以SC ⊥BE .又已知SC ⊥DE ,BE ∩DE =E ,∴SC ⊥面BDE ,∴SC ⊥BD . 又∵SA ⊥底面ABC ,BD 在底面ABC 上, ∴SA ⊥BD .而SC ∩SA =S ,∴BD ⊥面SAC . ∵DE =面SAC ∩面BDE ,DC =面SAC ∩面BDC ,∴BD ⊥DE ,BD ⊥DC .∴∠EDC 是所求的二面角的平面角.∵SA ⊥底面ABC ,∴SA ⊥AB ,SA ⊥AC .设SA =a ,则AB =a ,BC =SB =2a .又因为AB ⊥BC ,∴AC =3a .在Rt △SAC 中,tan ∠ACS =SA AC =13,∴∠ACS =30°. 又已知DE ⊥SC ,所以∠EDC =60°,即所求的二面角等于60°.解法二:由于SB =BC ,且E 是SC 的中点,因此BE 是等腰三角形SBC 的底边SC的中线,所以SC ⊥BE .又已知SC ⊥DE ,BE ∩DE =E ∴SC ⊥面BDE ,∴SC ⊥BD .由于SA ⊥底面ABC ,且A 是垂足,∴AC 是SC 在平面ABC 上的射影.由三垂线定理的逆定理得BD ⊥AC ;又因E ∈SC ,AC 是SC 在平面ABC 上的射影,∴E 在平面ABC 上的射影在AC 上,由于D ∈AC ,∴DE 在平面ABC 上的射影也在AC 上,根据三垂线定理又得BD ⊥DE .∵DE 面BDE ,DC 面BDC , ∴∠EDC 是所求的二面角的平面角.以下同解法一.15. 解:如图,连结EG 、FG 、EF 、BD 、AC 、EF 、BD 分别交AC 于H 、O . 因为ABCD 是正方形,E 、F 分别为AB 和AD 的中点,故EF ∥BD ,H 为AO 的中点.BD 不在平面EFG 上.否则,平面EFG 和平面ABCD 重合,从而点G 在平面的ABCD 上,与题设矛盾.由直线和平面平行的判定定理知BD ∥平面EFG ,所以BD 和平面EFG 的距离就是点B 到平面EFG 的距.∵BD ⊥AC , ∴ EF ⊥HC .∵GC ⊥平面ABCD ,∴ EF ⊥GC ,∴ EF ⊥平面HCG .∴ 平面EFG ⊥平面HCG ,HG 是这两个垂直平面的交线.作OK ⊥HG 交HG 于点K ,由两平面垂直的性质定理知OK ⊥平面EFG ,所以线段OK 的长就是点B 到平面EFG 的距离.∵ 正方形ABCD 的边长为4,GC =2,∴ AC =42,HO =2,HC =32.∴ 在Rt △HCG 中,HG =22+(32)2=22.由于Rt △HKO 和Rt △HCG 有一个锐角是公共的,故Rt △HKO ∽△HCG .∴ OK =HO ·GC HG =21111,即点B 到平面EFG 的距离为21111. 16. 解法一:设经过b 与a 平行的平面为α,经过a 和AA 1的平面为β,α∩β=c ,则c ∥a . 因而b ,c 所成的角等于θ,且AA 1⊥c (如图).∵AA 1⊥b , ∴AA 1⊥α.根据两个平面垂直的判定定理,β⊥α.在平面β内作EG ⊥c ,垂足为G ,则EG =AA 1.并且根据两个平面垂直的性质定理,EG ⊥α.连结FG ,则EG ⊥FG .在Rt △EFG 中,EF 2=EG 2+FG 2.∵AG =m ,∴在△AFG 中,FG 2=m 2+n 2-2mn cos θ.∵EG 2=d 2,∴EF 2=d 2+m 2+n 2-2mn cos θ.如果点F (或E )在点A (或A 1)的另一侧,则EF 2=d 2+m 2+n 2+2mn cos θ.因此d 2+m 2+n 2±2mn cos θ.解法二:过点A 作直线c ∥a ,则c 、b 所成的角等于θ,且AA 1⊥c .根据直线和平面垂直的判定定理,AA 1垂直于b 、c 所确定的平面a .在两平行直线a 、c 所确定的平面内,作EG ⊥c ,垂足为G ,则EG 平行且等于AA 1,从而EG ⊥α.连结FG ,则根据直线和平面垂直的定义,EG ⊥FG .在Rt △EFG 中,EF 2=EG 2+FG 2.(下同解法一)17. 解:(1)∵∠C 1CB =∠C 1CD∴C 1在平面ABCD 上的射影H 在∠BCD 的平分线上∵ABCD 是菱形∴直线C 1C 在平面ABCD 上的射影即为直线AC∵AC ⊥BD ,∴C 1C ⊥BD .(2)连接BD 交AC 于O ,由△C 1CD ≌△C 1CB 得C 1O ⊥BD又AC ⊥BD ,∴∠C 1OC 是二面角α-BD -β的平面角.由余弦定理C 1B 2=22+⎝⎛⎭⎫322-2×2×32×cos60°=134 ∵∠OCB =60°,∴OB =12BC =1 ∴C 1O 2=C 1B 2-OB 2=134-1=94∴C 1O =32,即C 1O =C 1C 作C 1H ⊥OC ,垂足为H ,则H 为OC 中点,且OH =32,∴cos ∠C 1OC =33. (3)当CD CC 1=1时,A 1C ⊥平面C 1BD . 由(1)知BD ⊥平面ACC 1A 1,故BD ⊥A 1C .若CD CC 1=1,同理BC 1⊥A 1C ,∴A 1C ⊥平面C 1BD .说明:本题考察空间线面关系,二面角的概念,要有较好的空间想像能力和运算能力.18. 解 (1)作BH ⊥B 1F 于H ,连接EH ,则由EB ⊥平面BB 1F 可知,EH ⊥B 1F .于是∠EHB 是二面角B -FB 1-E 的平面角.在Rt △BB 1F 中,BH =BF ·BB 1B 1F =a ·12a a 2+14a 2=55a ∴tan ∠EHB =EB BH =52. (2)易证△DEF ≌△B 1EF ,∴由V B 1-DEF =V D -B 1EF 可得,点D 到平面B 1EF 的距离等于点B 1到平面DEF 的距离,等于a .(3)设EF 与BD 的交点为G .连接B 1G ,则由EF ⊥BD 以及EF ⊥B 1B ,知EF ⊥平面BB 1D 1D ,于是面B 1EF ⊥面BB 1D 1D ,在面BB 1D 1D 内过B 作BK ⊥B 1G 于K ,延长后交D 1D 所在的直线于点M ,则BM ⊥平面B 1EF .在平面BB 1D 1D 内,由△B 1BG ∽△BDM ,知B 1B BG =BD DM ,又B 1B =a ,BG =24a ,BD =2a ,∴DM =a 2.这说明点M 在正方体的棱D 1D 上,且恰好为D 1D 的中点.19. 解 以CA 为x 轴,CB 为y 轴,CC 1为z 轴建立空间直角坐标系.设CA =a ,则A (2a ,0,0),B (0,2a ,0),D (0,0,1),A 1(2a ,0,2),E (a ,A Ba ,1),G (2a 3,2a 3,13),∴CE →=(a 3,a 3,23),BD →=(0,-2a ,1),∴GE →·BD →=-2a 23+23=0,解得a =1.∴BA →1=(2,-2,2)BG →=(23,-43,13),∴cos ∠A 1BG =BA 1,→·BG →|BA 1→|·|B G→|=73. (2)由(1)有A (2,0,0),A 1(2,0,2),E (1,1,1),D (0,0,1) AE →·ED →=0,AA →1·ED →=0,∴ED ⊥平面AA 1E ,∴平面AED ⊥平面AA 1E ,∴点A 1在平面AED 的射影K 在AE 上.设AK →=λAE →,则A 1K →=A 1A →+AK →=(-λ,λ,λ-2),由A 1K →·AE →=0,即λ+λ+λ-2=0得λ=23.∴A 1K →=(-23,23,-43),∴|A 1K →|=263.即A 1到平面AED 的距离为263. 20. (Ⅰ)解:作A 1D ⊥AC ,垂足为D ,由面A 1ACC 1⊥面ABC ,得A 1D ⊥面ABC ,∴∠A 1AD 为A 1A 与面ABC 所成的角.∵AA 1⊥A 1C ,AA 1=A 1C ,∴∠A 1AD =450为所求.(Ⅱ)解:作DE ⊥AB ,垂足为E ,连A 1E ,则由A 1D ⊥面ABC ,得A 1E ⊥AB ,∴∠A 1ED 是面A 1ABB 1与面ABC 所成二面角的平面角.由已知,AB ⊥BC ,得ED ∥BC .又D 是AC的中点,BC =2,AC =23,∴DE =1,AD =A 1D =3,tan ∠A 1ED =A 1D DE=3. 故∠A 1ED =60°为所求.(Ⅲ)解法一:由点C 作平面A 1ABB 1的垂线,垂足为H ,则CH 的长是C 到平面A 1ABB 1的距离.连结HB ,由于AB ⊥BC ,得AB ⊥HB .又A 1E ⊥AB ,知HB ∥A 1E ,且BC ∥ED ,∴∠HBC =∠A 1ED =60°.∴CH =BC sin60°=3为所求.解法二:连结A 1B .根据定义,点C 到面A 1ABB 1的距离,即为三棱锥C -A 1AB 的高h ,由V C -A 1AB =V A 1-ABC 得,313111D A S h S ABC B AA ∆∆=即13×22h =13×22×3,∴h =3为所求.。