高考数学压轴题(理科)
高考数学填空选择压轴题试题汇编
高考数学填空选择压轴题试题汇编(理科)目录(120题)第一部分函数导数(47题)······································2/23第二部分解析几何(23题)······································9/29第三部分立体几何(11题)·····································12/31第四部分三角函数及解三角形(10题)··························14/32第五部分数列(10题)········································15/33第六部分概率统计(6题)·····································17/35第七部分向量(7题)·········································18/36第八部分排列组合(6题)······································19/37第九部分不等式(7题)········································20/38第十部分算法(2题)··········································21/40第十一部分交叉部分(2题)·····································22/40第十二部分参考答案············································23/40【说明】:汇编试题来源河南五年高考真题5套;郑州市2011年2012年一模二模三模试题6套;2012年河南省各地市检测试题12套;2012年全国高考文科试题17套。
2023-2024学年高考数学专项复习——压轴题(附答案)
决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。
高考数学压轴题100题汇总(含答案)
高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。
2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。
答案:an = 2n + 1。
3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。
答案:三角形ABC的面积为12。
4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。
答案:k = ±√3/3,b = ±√6/3。
5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。
答案:f'(x) = 2x/(x^2 + 1)ln2。
6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。
答案:向量a和向量b的夹角为arccos(1/√5)。
7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。
答案:矩阵A的逆矩阵为[4 2; 3 1]。
8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。
答案:f(x)的零点为x = 1和x = 3。
9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。
答案:f(x)在区间[0, π/2]上的最大值为√2。
10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。
答案:f(x)的顶点坐标为(2, 0)。
高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。
答案:f'(x) = e^x 2。
12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 2,极值为f(2) = 0。
届高考数学理-必做36道压轴题
2017届高考数学理-必做36道压轴题(总88页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除给力2017届高考数学理 必做36道压轴题近几年的高考数学试题收集起来进行分析,发现近三年高考数学压轴题最常见的考点是解析几何题或函数与导数题,只要找到了解压轴题 的窍门,几乎所有高考压轴题都都 有一个突破口,可以 依照固定的思路来解决,因此我们精心挑选了“36道必做的压轴题” 进行了深刻剖析,深层次解密压轴题精髓,高效培养自主解题能力。
做太多压轴题会严重占用对基 础知识、基本技能的掌握时间,做少了又会缺乏对压轴题的自信和驾驭能力,做偏了更是一种灾难。
为了很好地巩固,本书教给你如何将复杂的问题简单化,如何做到不会也能得三分。
压轴题虽然变 化多端,但万变不离其宗,都可以从这36道题中找到影子。
让你切身体会到一切压轴题都是纸老虎。
轻松搞定高考压轴题!第一部分 2017年高考数学理科真题压轴题精选解析几何1、(2017新课标卷1)已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为32,F 是椭圆的焦点,直线AF 的斜率为233,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【解析】:(Ⅰ) 设(),0F c ,由条件知2233c =,得3c = 又3c a =, 所以a=2,2221b a c =-= ,故E 的方程2214x y +=. ……….6分(Ⅱ)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y将2y kx =-代入2214x y +=,得()221416120k x kx +-+=,当216(43)0k ∆=->,即234k >时,21,28243k k x ±-=从而2221241431k k PQ k x x +-=+-=又点O 到直线PQ 的距离21d k =+∆OPQ 的面积221443214OPQk S d PQ k ∆-==+ , 243k t -=,则0t >,244144OPQ t S t t t∆==≤++, 当且仅当2t =,72k =±0∆>,所以当∆OPQ 的面积最大时,l 的方程为:722y x =- 或722y x =--. …………………………12分2、(2017新课标卷2)设1F ,2F 分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .【答案】 (1) 21(2)72,7==b a【解析】 (1).21∴.2102-32.,4321∴4322222211的离心率为解得,联立整理得:且由题知,C e e e c b a c a b F F MF ==++==•=(2)72,7.72,7.,,1:4:)23-(,:.23-,,.4,.42222211111122====+===+=+====•=b a b a c b a ace NF MF c e a NF ec a MF c c N M m MF m N F ab MF 所以,联立解得,且由焦半径公式可得两点横坐标分别为可得由两直角三角形相似,由题可知设,即知,由三角形中位线知识可3、(2017辽宁卷)圆x 2+y 2=4的切线与x 轴正半轴,y 轴正半轴围成—个三角形,当该三角形面积最小时,切点为P (如图16所示).双曲线C 1:x 2a 2-y 2b2=1过点P 且离心率为 3.图16(1)求C 1的方程;(2)椭圆C 2过点P 且与C 1有相同的焦点,直线l 过C 2的右焦点且与C 2交于A ,B 两点.若以线段AB 为直径的圆过点P ,求l 的方程.【解析】解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y-y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时两个坐标轴的正半轴与切线的交点分别为⎝⎛⎭⎪⎫4x 0,0,⎝⎛⎭⎪⎫0,4y 0.故其围成的三角形的面积S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知,当且仅当x 0=y 0=2时x 0y 0有最大值2,此时S 有最小值4,因此点P 的坐标为(2,2).由题意知⎩⎨⎧2a 2-2b 2=1,a 2+b 2=3a 2,解得a 2=1,b 2=2,故C 1的方程为x 2-y 22=1.(2)由(1)知C 2的焦点坐标为(-3,0),(3,0),由此可设C 2的方程为x 23+b 21+y 2b 21=1,其中b 1>0.由P (2,2)在C 2上,得23+b 21+2b 21=1, 解得b 21=3,因此C 2的方程为x 26+y 23=1.显然,l 不是直线y =0.设直线l 的方程为x =my +3,点A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧x =my +3,x 26+y 23=1,得(m 2+2)y 2+2 3my -3=0.又y 1,y 2是方程的根,因此 ⎩⎪⎨⎪⎧y 1+y 2=-2 3m m 2+2, ①y 1y 2=-3m 2+2,②由x 1=my 1+3,x 2=my 2+3,得⎩⎪⎨⎪⎧x 1+x 2=m (y 1+y 2)+2 3=4 3m 2+2 , ③x 1x 2=m 2y 1y 2+3m (y 1+y 2)+3=6-6m 2m 2+2. ④因为AP →=(2-x 1,2-y 1),BP →=(2-x 2,2-y 2),由题意知AP →·BP →=0,所以x 1x 2-2(x 1+x 2)+y 1y 2-2(y 1+y 2)+4=0,⑤ 将①②③④代入⑤式整理得 2m 2-2 6m +4 6-11=0, 解得m =3 62-1或m =-62+1. 因此直线l 的方程为x -(3 62-1)y -3=0或x +(62-1)y -3=0.4、(2017上海卷)在平面直角坐标系xOy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔。
2018年高考数学压轴题
1
2018 年高考全国 III 卷压轴题(文科)
2018 年高考全国 III 卷压轴题(文科)
√ 1. 设 A, B, C, D 是同一个半径为 4 的球的球面上四点, △ABC 为等边三角形且其面积为 9 3 ,则三棱
锥 D − ABC 体积的最大值为( )
√ A. 12 3
√ B. 18 3
√ C. 24 3
则 △ABC 的面积为
.
3. 设抛物线 C : y2 = 2x ,点 A(2, 0) , B(−2, 0) ,过点 A 的直线 l 与 C 交于 M, N 两点. (1)当 l 与 x 轴垂直时,求直线 BM 的方程; (2)证明: ∠ABM = ∠ABN .
4. 已知函数 f (x) = aex − ln x − 1 .
是
C
的左顶点,点
P
在过
A
且斜率为
3 6
的直线上, △P F1F2
为等腰三角形, ∠F1F2P = 120◦ ,则
C
的离心率为(
)
A. 2
B. 1
C. 1
D. 1
3
2
3
4
2.
已知圆锥的顶点为
S ,母线
SA, SB
所成角的余弦值为
7 ,SA
与圆锥底面所成角为
45◦ .若
△SAB
√
8
的面积为 5 15 ,则该圆锥的侧面积为
为
C
上一点,且
−−→ FP
+
−→ FA
+
−−→ FB
=
−→0
,证明:2|FP来自|=|F
A|
+
|F
B|
高考数学压轴题大全
高考数学压轴题大全高考数学压轴题大全1.(本小题满分14分)如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C 的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求△APB的重心G的轨迹方程.(2)证明PFA=PFB.解:(1)设切点A、B坐标分别为,切线AP的方程为:切线BP的方程为:解得P点的坐标为:因此△APB的重心G的坐标为,因此,由点P在直线l上运动,从而得到重心G的轨迹方程为:(2)方法1:因为由于P点在抛物线外,则同理有AFP=PFB.方法2:①当因此P点坐标为,则P点到直线AF的距离为:即因此P点到直线BF的距离为:因此d1=d2,即得AFP=PFB.②当时,直线AF的方程:直线BF的方程:因此P点到直线AF的距离为:,同理可得到P点到直线BF的距离,因此由d1=d2,可得到AFP=PF B.2.(本小题满分12分)设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.(Ⅰ)确定的取值范畴,并求直线AB的方程;(Ⅱ)试判定是否存在如此的,使得A、B、C、D四点在同一个圆上?并说明理由.(此题不要求在答题卡上画图)本小题要紧考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(Ⅰ)解法1:依题意,可设直线AB的方程为,整理得①设是方程①的两个不同的根,且由N(1,3)是线段AB的中点,得解得k=-1,代入②得,的取值范畴是(12,+).因此,直线AB的方程为解法2:设则有依题意,∵N(1,3)是AB的中点,又由N(1,3)在椭圆内,的取值范畴是(12,+).直线AB的方程为y-3=-(x-1),即x+y-4=0.(Ⅱ)解法1:∵CD垂直平分AB,直线CD的方程为y-3=x-1,即x-y+ 2=0,代入椭圆方程,整理得又设CD的中点为是方程③的两根,因此由弦长公式可得④将直线AB的方程x+y-4=0,代入椭圆方程得⑤同理可得⑥∵当时,假设存在12,使得A、B、C、D四点共圆,则CD必为圆的直径,点M为圆心.点M到直线AB的距离为⑦因此,由④、⑥、⑦式和勾股定理可得故当12时,A、B、C、D四点匀在以M为圆心,为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A、B、C、D共圆△ACD为直角三角形,A为直角|AN|2=|CN||DN|,即⑧由⑥式知,⑧式左边由④和⑦知,⑧式右边⑧式成立,即A、B、C、D四点共圆.解法2:由(Ⅱ)解法1及12,∵CD垂直平分AB,直线CD方程为,代入椭圆方程,整理得将直线AB的方程x+y-4=0,代入椭圆方程,整理得解③和⑤式可得不妨设运算可得,A在以CD为直径的圆上.又B为A关于CD的对称点,A、B、C、D四点共圆.(注:也可用勾股定理证明ACAD)3.(本小题满分14分)已知不等式为大于2的整数,表示不超过的最大整数. 设数列的各项为正,且满足(Ⅰ)证明(Ⅱ)推测数列是否有极限?假如有,写出极限的值(不必证明);(Ⅲ)试确定一个正整数N,使得当时,对任意b0,都有本小题要紧考查数列、极限及不等式的综合应用以及归纳递推的思想.(Ⅰ)证法1:∵当即因此有所有不等式两边相加可得由已知不等式知,当n3时有,证法2:设,第一利用数学归纳法证不等式(i)当n=3时,由知不等式成立.(ii)假设当n=k(k3)时,不等式成立,即则即当n=k+1时,不等式也成立.由(i)、(ii)知,又由已知不等式得(Ⅱ)有极限,且则有故取N=1024,可使当nN时,都有4.如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A 1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P为l上的动点,求F1PF2最大值.本题要紧考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的差不多思想方法和综合解题能力.满分14分.解:(Ⅰ)设椭圆方程为,半焦距为,则5.已知函数和的图象关于原点对称,且.(Ⅰ)求函数的解析式;(Ⅱ)解不等式;(Ⅲ)若在上是增函数,求实数的取值范畴.本题要紧考查函数图象的对称、二次函数的差不多性质与不等式的应用等基础知识,以及综合运用所学知识分析和解决问题的能力.满分14分.解:(Ⅰ)设函数的图象上任意一点关于原点的对称点为,则∵点在函数的图象上(Ⅱ)由当时,,现在不等式无解.当时,,解得.因此,原不等式的解集为.6.(本题满分16分)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分.对定义域分别是Df、Dg的函数y=f(x) 、y=g(x),f(x)g(x) 当xDf且xDg规定: 函数h(x)= f(x) 当xDf且xDgg(x) 当xDf且xDg若函数f(x)=,g(x)=x2,xR,写出函数h(x)的解析式;求问题(1)中函数h(x)的值域;(3)若g(x)=f(x+), 其中是常数,且[0,],请设计一个定义域为R的函数y=f (x),及一个的值,使得h(x)=cos4x,并予以证明.[解] (1)h(x)= x(-,1)(1,+)1 x=1(2) 当x1时, h(x)= =x-1++2,若x1时, 则h(x)4,其中等号当x=2时成立若x1时, 则h(x) 0,其中等号当x=0时成立函数h(x)的值域是(-,0] {1}[4,+)(3)令f(x)=sin2x+cos2x,=则g(x)=f(x+)= sin2(x+)+cos2(x+)=cos2x-sin2x,因此h(x)= f(x)f(x+)= (sin2x+co2sx)( cos2x-sin2x)=cos4x.另解令f(x)=1+sin2x, =,g(x)=f(x+)= 1+sin2(x+)=1-sin2x,因此h(x)= f(x)f(x+)= (1+sin2x)( 1-sin2x)=cos4x..(本题满分18分)本题共有3个小题,第1小题满分4分, 第2小题满分8分, 第3小题满分6分.在直角坐标平面中,已知点P1(1,2),P2(2,22),,Pn(n,2n),其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点, A2为A1关于点P2的对称点, , AN为AN-1关于点PN的对称点.(1)求向量的坐标;(2)当点A0在曲线C上移动时, 点A2的轨迹是函数y=f(x)的图象,其中f(x)是以3为周期的周期函数,且当x(0,3]时,f(x)=lgx.求以曲线C为图象的函数在(1,4]上的解析式;(3)对任意偶数n,用n表示向量的坐标.[解](1)设点A0(x,y), A0为P1关于点的对称点A0的坐标为(2-x,4-y), A1为P2关于点的对称点A2的坐标为(2+x,4+y),={2,4}.(2) ∵={2,4},f(x)的图象由曲线C向右平移2个单位,再向上平移4个单位得到.因此, 曲线C是函数y=g(x)的图象,其中g(x)是以3为周期的周期函数,且当x(-2,1]时,g(x)=lg(x+2)-4.因此,当x(1,4]时,g(x)=lg(x-1)-4.另解设点A0(x,y), A2(x2,y2),因此x2-x=2,y2-y=4,若36,则0 x2-33,因此f(x2)=f(x2-3)=lg(x2-3).当14时, 则36,y+4=lg(x-1).当x(1,4]时,g(x)=lg(x-1)-4.(3) =,由于,得13分)如图,已知双曲线C:的右准线与一条渐近线交于点M,F是双曲线C 的右焦点,O为坐标原点.(I)求证:;(II)若且双曲线C的离心率,求双曲线C的方程;(III)在(II)的条件下,直线过点A(0,1)与双曲线C右支交于不同的两点P、Q且P在A、Q之间,满足,试判定的范畴,并用代数方法给出证明.解:(I)右准线,渐近线3分(II)双曲线C的方程为:7分(III)由题意可得8分证明:设,点由得与双曲线C右支交于不同的两点P、Q11分,得的取值范畴是(0,1)13分2.(本小题满分13分)已知函数,数列满足(I)求数列的通项公式;(II)设x轴、直线与函数的图象所围成的封闭图形的面积为,求;(III)在集合,且中,是否存在正整数N,使得不等式对一切恒成立?若存在,则如此的正整数N共有多少个?并求出满足条件的最小的正整数N;若不存在,请说明理由.(IV)请构造一个与有关的数列,使得存在,并求出那个极限值.解:(I)1分将这n个式子相加,得3分(II)为一直角梯形(时为直角三角形)的面积,该梯形的两底边的长分别为,高为16分(III)设满足条件的正整数N存在,则又均满足条件它们构成首项为2021,公差为2的等差数列.设共有m个满足条件的正整数N,则,解得中满足条件的正整数N存在,共有495个,9分(IV)设,即则明显,其极限存在,同时10分注:(c为非零常数),等都能使存在.19. (本小题满分14分)设双曲线的两个焦点分别为,离心率为2.(I)求此双曲线的渐近线的方程;(II)若A、B分别为上的点,且,求线段AB的中点M的轨迹方程,并说明轨迹是什么曲线;(III)过点能否作出直线,使与双曲线交于P、Q两点,且.若存在,求出直线的方程;若不存在,说明理由.解:(I),渐近线方程为4分(II)设,AB的中点则M的轨迹是中心在原点,焦点在x轴上,长轴长为,短轴长为的椭圆.(9分)(III)假设存在满足条件的直线设由(i)(ii)得k不存在,即不存在满足条件的直线.14分3. (本小题满分13分)已知数列的前n项和为,且对任意自然数都成立,其中m为常数,且.(I)求证数列是等比数列;(II)设数列的公比,数列满足:,试问当m为何值时,成立?解:(I)由已知(2)由得:,即对任意都成立事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。
压轴题05 立体几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用-理)
压轴题05立体几何压轴题题型/考向一:点、线、面间的位置关系和空间几何体的体积、表面积题型/考向二:外接球、内切球等相关问题题型/考向三:平行关系、垂直关系、二面角等相关问题一、空间几何体的体积、表面积热点一空间几何体的侧面积、表面积柱体、锥体、台体和球的表面积公式:(1)若圆柱的底面半径为r,母线长为l,则S侧=2πrl,S表=2πr(r+l).(2)若圆锥的底面半径为r,母线长为l,则S侧=πrl,S表=πr(r+l).(3)若圆台的上、下底面半径分别为r′,r,则S侧=π(r+r′)l,S表=π(r2+r′2+r′l +rl).(4)若球的半径为R,则它的表面积S=4πR2.热点二空间几何体的体积柱体、锥体、台体和球的体积公式:(1)V柱体=Sh(S为底面面积,h为高);Sh(S为底面面积,h为高);(2)V锥体=13(S上+S下+S上S下)h(S上、S下分别为上、下底面面积,h为高);(3)V台体=13(4)V球=4πR3.3二、外接球、内切球问题类型一外接球问题考向1墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a,b,c,外接球半径为R.则(2R)2=a2+b2+c2,即2R=a2+b2+c2.常见的有以下三种类型:考向2对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R )2=a 2+b 2+c 2(长方体的长、宽高分别为a ,b ,c ),即R 2=18(x 2+y 2+z 2),如图.考向3汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2的连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h 2,所以R 2=r 2+h 24.考向4垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O 的位置是△CBD 的外心O 1与△AB 2D 2的外心O 2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.类型二内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r,建立等式V P-ABC=V O-ABC+V O-P AB+V O-P AC+V O-PBC⇒V P-ABC=13S△ABC·r+13S△P AB·r+13S△P AC·r+13S PBC·r=13(S△ABC+S△P AB+S△P AC+S△PBC)r;第三步:解出r=3V P-ABCS△ABC+S△P AB+S△P AC+S△PBC.类型三球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).三、平行关系和垂直关系的证明、二面角等热点一空间线、面位置关系的判定判断空间线、面位置关系的常用方法(1)根据空间线面平行、垂直的判定定理和性质定理逐项判断,解决问题.(2)利用直线的方向向量、平面的法向量判断.(3)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线、面的位置关系,并结合有关定理进行判断.热点二几何法证明平行、垂直1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.热点三空间向量法证明平行、垂直1.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,在平面α内的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.2.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.四、空间角、距离问题热点一异面直线所成的角求异面直线所成角的方法方法一:综合法.步骤为:①利用定义构造角,可固定一条直线,平移另一条直线,或将两条直线同时平移到某个特殊的位置;②证明找到(或作出)的角即为所求角;③通过解三角形来求角.方法二:空间向量法.步骤为:①求出直线a ,b 的方向向量,分别记为m ,n ;②计算cos 〈m ,n 〉=m ·n|m ||n |;③利用cos θ=|cos 〈m ,n 〉|,以及θ,π2,求出角θ.热点二直线与平面所成的角求直线与平面所成角的方法方法一:几何法.步骤为:①找出直线l 在平面α上的射影;②证明所找的角就是所求的角;③把这个角置于一个三角形中,通过解三角形来求角.方法二:空间向量法.步骤为:①求出平面α的法向量n 与直线AB 的方向向量AB →;②计算cos 〈AB →,n 〉=AB →·n |AB →||n |;③利用sin θ=|cos 〈AB →,n 〉|,以及θ∈0,π2,求出角θ.热点三平面与平面的夹角求平面与平面的夹角方法方法一:几何法.步骤为:①找出二面角的平面角(以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角就是二面角的平面角);②证明所找的角就是要求的角;③把这个平面角置于一个三角形中,通过解三角形来求角.求二面角的平面角的口诀:点在棱上,边在面内,垂直于棱,大小确定.方法二:空间向量法.步骤为:①求两个平面α,β的法向量m ,n ;②计算cos 〈m ,n 〉=m ·n|m |·|n |;③设两个平面的夹角为θ,则cos θ=|cos 〈m ,n 〉|.热点四距离问题1.空间中点、线、面距离的相互转化关系2.空间距离的求解方法有:(1)作垂线段;(2)等体积法;(3)等价转化;(4)空间向量法.一、单选题1.在正方体1111ABCD A B C D -中,直线m 、n 分别在平面ABCD 和11ABB A 内,且m n ⊥,则下列命题中正确的是()A .若m 垂直于AB ,则n 垂直于AB B .若m 垂直于AB ,则n 不垂直于ABC .若m 不垂直于AB ,则n 垂直于ABD .若m 不垂直于AB ,则n 不垂直于AB【答案】C【详解】AB 选项,若m 垂直于AB ,由面ABCD ⊥面11ABB A ,面ABCD ⋂面11ABB A AB =,可得m 垂直于面11ABB A ,即面11ABB A 内的所有直线均与m 垂直,而n 可能垂直于AB ,也可能不垂直于AB ,故A 错误,B 错误;CD 选项,若m 不垂直于AB ,则,BC m 为面ABCD 内的两条相交直线,由题可知BC n ⊥,m n ⊥,则n 垂直面ABCD ,又AB ⊂面ABCD ,所以n 垂直于AB ,故C 正确,D 错误.故选:C2.在中国古代数学经典著作《九章算术》中,称图中的多面体ABCDEF 为“刍甍”.书中描述了刍甍的体积计算方法:求积术曰,倍下袤,上袤从之,以广乘之,又以高乘之,六而一,即()216V AB EF AD h =+⨯⨯,其中h 是刍甍的高,即点F 到平面ABCD 的距离.若底面ABCD 是边长为4的正方形,2EF =,且//EF AB ,ADE V 和BCF △是等腰三角形,90AED BFC ∠=∠= ,则该刍甍的体积为()A .3B .3C .D .403【答案】B【详解】如图所示,设点F 在底面的射影为G ,,H M 分别为,BC AD 的中点,连接,,EM FH MH ,则FG 即为刍甍的高,-P ABC 面积恰为该容器的表面积)展开后是如图所示的边长为10的正方形123APP P (其中点B 为23P P 中点,点C为12PP 中点),则该玩具的体积为()A .6253B .1253C .125D .2503【答案】B【详解】该玩具为三棱锥-P ABC ,即三棱锥A PBC -,则PA ⊥底面PBC ,且10PA =,PBC 面积为252,所以12512510323P ABC V -=⨯⨯=.故选:B.4.攒尖是中国古代建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖.通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.如图所示的建筑屋顶是圆形攒尖,可近似看作一个圆锥,已知其轴截面(过圆锥旋转轴的截面)是底边长为6m ,腰长为5m 的等腰三角形,则该屋顶的体积约为()A .38πmB .39πmC .310πmD .312πm 【答案】D【详解】如图所示为该圆锥轴截面,由题知该圆锥的底面半径为15.已知为两条不同的直线,,为两个不同的平面,则下列命题中正确的是()A .若//,//a b b α,则//a αB .若//,,//a b a b αβ⊥,则αβ⊥C .若//,//,//a b αβαβ,则//a bD .若//,//,a b αβαβ⊥,则a b⊥【答案】B【详解】对于A ,若//,//a b b α,则//a α或a α⊂,故A 错误;对于B ,若//,//a b b β,则a β⊂或//a β,若a β⊂,因为a α⊥,则αβ⊥,若//a β,如图所示,则在平面β一定存在一条直线//m a ,因为a α⊥,所以m α⊥,又m β⊂,所以αβ⊥,综上若//,,//a b a b αβ⊥,则αβ⊥,故B 正确;对于C ,若//,//,//a b αβαβ,则直线,a b 相交或平行或异面,故C 错误;对于D ,若//,//,a b αβαβ⊥,则直线,a b 相交或平行或异面,故D 错误.故选:B.6.在直三棱柱111ABC A B C -中,ABC 为等腰直角三角形,若三棱柱111ABC A B C -的体积为32,则该三棱柱外接球表面积的最小值为()A .12πB .24πC .48πD .96π7.已知三棱锥-P ABC 中,底面ABC 是边长为的正三角形,点P 在底面上的射影为底面的中心,且三棱锥-P ABC 外接球的表面积为18π,球心在三棱锥-P ABC 内,则二面角P AB C --的平面角的余弦值为()A .12B .13C 22D 即PDC ∠为二面角P AB C --的平面角,由23AB =,得22OC OD ==,显然三棱锥线段PO 上,由三棱锥-P ABC 的外接球的表面积为8.已知三棱锥-P ABC 的四个顶点都在球O的球面上,4PB PC AB AC ====,2PA BC ==,则球O 的表面积为()A .316π15B .79π15C .158π5D .79π5而,,AB AC A AB AC =⊂ 平面ABC ,因此在等腰ABC 中,4,2AB AC BC ===,则215sin 1cos ABC ABC ∠=-∠=,二、多选题9.已知直线a ,b ,c 两两异面,且a c ⊥,b c ⊥,下列说法正确的是()A .存在平面α,β,使a α⊂,b β⊂,且c α⊥,c β⊥B .存在平面α,β,使a α⊂,b β⊂,且c α∥,c β∥C .存在平面γ,使a γ∥,b γ∥,且c γ⊥D .存在唯一的平面γ,使c γ⊂,且a ,b 与γ所成角相等【答案】ABC【详解】对于A,平移直线b 到与直线a 相交,设平移后的直线为b ',因为b c ⊥,所以b c '⊥,设直线,a b '确定的平面为α,则a c ⊥,b c '⊥,直线b '和a 相交,所以c α⊥,同理可得:c β⊥,故A 对;对于B,平移直线c 到与直线a 相交,设平移后的直线为c ',设直线,a c '确定的平面为α,因为c //c ',且α⊄c ,所以c α∥,同理可得:c β∥,故B 对;对于C,同时平移直线b 和直线a ,令平移后的直线相交,设平移后的直线为,a b '''',因为a c ⊥,b c ⊥,所以a c ''⊥,b c ''⊥,设直线,a b ''''确定的平面为γ,则a γ∥,b γ∥,且c γ⊥,故C 对;对于D ,由对称性可知,存在两个平面γ,使c γ⊂,且a ,b 与γ所成角相等,故D 错误;故选:ABC.10.已知正方体1111ABCD A B C D -的外接球表面积为12π,,,M N P 分别在线段1BB ,1CC ,1DD 上,且,,,A M N P 四点共面,则().A .AP MN=B .若四边形AMNP 为菱形,则其面积的最大值为C .四边形AMNP 在平面11AAD D 与平面11CC D D 内的正投影面积之和的最大值为6D .四边形AMNP 在平面11AA D D 与平面11CC D D 内的正投影面积之积的最大值为4设正方体1111ABCD A B C D -依题意,234π()12π2a ⋅=,解得因为平面11BCC B ∥平面ADD则M 在平面11AA D D 上的投影落在设为H ,则四边形AGHP 为四边形AMNP 由于,AM PN GM HN ==,则(当1x y ==时取“=”),故C 错误,D 正确,故选:ABD三、解答题11.如图,四棱锥S ABCD -的底面为菱形,60BAD ∠=︒,2AB =,4SD =,SD ⊥平面ABCD ,点E 在棱SB 上.(1)证明:AC DE ⊥;(2)若三棱锥E ABC -,求点E 到平面SAC 的距离.【详解】(1)证明:如图,连接BD ,因为四边形ABCD 为菱形,所以AC BD ⊥,因为SD ⊥平面ABCD ,AC ⊂平面ABCD ,所以SD AC ⊥,又因为SD BD D = ,所以AC ⊥平面SBD ,又因为DE ⊂平面SBD ,所以AC DE ⊥.(2)解:设点E 到平面ABC 则三棱锥E ABC -的体积V (11sin 18032AB BC =⨯⨯⨯⨯︒-12.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,,AB AD O =为BD 的中点.(1)证明:OA CD ⊥;(2)已知OCD 是边长为1的等边三角形,已知点E 在棱AD 的中点,且二面角E BC D --的大小为45 ,求三棱锥A BCD -的体积.【详解】(1)证明:AB AD = ,O 为BD 的中点,AO BD ∴⊥,又平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,AO ⊂平面BCD ,所以AO ⊥平面BCD ,又CD ⊂平面BCD ,AO CD ∴⊥.(2)取OD 的中点F ,因为OCD 为等边三角形,所以CF OD ⊥,过O 作//OM CF ,与BC 交于M ,则OM OD ⊥,由(1)可知OA ⊥平面BCD ,设OA a =,因为OA ⊥平面BCD ,所以设平面BCE 的一个法向量为n =3300x y n BC ⎧+=⎪⎧⋅= ○热○点○题○型二外接球、内切球等相关问题一、单选题1.已知ABC 是边长为3的等边三角形,其顶点都在球O 的球面上,若球O 的体积为323π,则球心O 到平面ABC 的距离为()A B .32C .1D 因为ABC 是边长为3的等边三角形,且所以13O B =,又因为球O 的体积为32π2.已知三棱锥-P ABC 的底面ABC 是边长为1的正三角形,侧棱,,PA PB PC 两两垂直,若此三棱锥的四个顶点都在同一个球面上,则该球的表面积是()A .3πB .πC .3π4D .3π23.一个圆锥的底面圆和顶点都恰好在一个球面上,且这个球的半径为5,则这个圆锥的体积的最大值时,圆锥的底面半径为()A .103B .2C .3D 【答案】C【详解】解:如图,设圆锥的底面半径为r ,球半径5R =,球心为O .过圆锥的顶点P 作底面的垂线2125OO r =-.所以圆锥的高h PO =4.已知圆锥的侧面积为2π,母线与底面所成角的余弦值为2,则该圆锥的内切球的体积为()A .4π3B .43π9C.27D5.如图,几何体Ω为一个圆柱和圆锥的组合体,圆锥的底面和圆柱的一个底面重合,圆锥的顶点为A ,圆柱的上、下底面的圆心分别为B 、C ,若该几何体Ω存在外接球(即圆锥的顶点与底面圆周在球面上,且圆柱的底面圆周也在球面上).已知24BC AB ==,则该组合体的体积等于()A .56πB .70π3C .48πD .64π【答案】A【详解】设该组合体外接球的球心为O ,半径为R ,易知球心在BC 中点,则224R AO ==+=.6.已知矩形ABCD的顶点都在球心为的体积为43,则球O的表面积为()A.76πB.112πC D.3故球的表面积为:2476πR π=,故选:A .7.水平桌面上放置了4个半径为2的小球,4个小球的球心构成正方形,且相邻的两个小球相切.若用一个半球形的容器罩住四个小球,则半球形容器内壁的半径的最小值为()A .4B .2C .2D .6此时,如上图示,O 为半球的球心,体的体对角线,且该小球与半球球面上的切点与8.已知三棱锥-PABC的四个顶点均在球的球面上,,PB AC== PC AB=Q为球O的球面上一动点,则点Q到平面PAB 的最大距离为()A2211BC2211D2223BD BE AB∴+==,BD2226BD BE BF∴++=,∴球在PAB中,cosABABP∠=二、填空题9.在三棱锥-P ABC 中,PA ⊥平面ABC ,14AB AC PA AB AC ⊥=+=,,,当三棱锥的体积最大时,三棱锥-P ABC 外接球的体积为______.则三棱锥-P ABC 外接球的直径为2R PA =因此,三棱锥-P ABC 外接球的体积为34π3R10.如图,在直三棱柱111中,1.设为1的中点,三棱锥D ABC -的体积为94,平面1A BC ⊥平面11ABB A ,则三棱柱111ABC A B C -外接球的表面积为______.【答案】27π【详解】取1A B 的中点E ,连接AE ,如图.因为1AA AB =,所以1AE A B ⊥.又面1A BC ⊥面11ABB A ,面1A BC ⋂面111ABB A A B =,且AE ⊂面11ABB A ,所以⊥AE 面1A BC ,BC ⊂面1A BC ,所以AE BC ⊥.在直三棱柱111ABC A B C -中,1BB ⊥面ABC ,BC ⊂面ABC ,所以1BB BC ⊥.又AE ,1BB ⊂面11ABB A ,且AE ,1BB 相交,所以BC ⊥面11ABB A ,AB ⊂面11ABB A ,所以BC AB ⊥.11.如图,直三棱柱111的六个顶点都在半径为1的半球面上,,侧面11BCC B 是半球底面圆的内接正方形,则直三棱柱111ABC A B C -的体积为___________.12.如图所示的由4个直角三角形组成的各边长均相等的六边形是某棱锥的侧面展开图,若该六边形的面积为12+,则该棱锥的内切球半径为___.由题意,侧面展开图的面积由,PD AD PD DC ⊥⊥,○热○点○题○型三平面关系、垂直关系、二面角等相关问题1.已知多面体ABCDEF 中,四边形CDEF 是边长为4的正方形,四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,36BE AB ==,4=AD .(1)求证:平面ADF ⊥平面BCE ;(2)求直线AF 与平面BCF 所成角的正弦值.【详解】(1)因为四边形CDEF 是边长为4的正方形,所以CE ⊥DF ,ED ⊥DC ,因为四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,所以AD ⊥CD ,AB ⊥AD ,故直线AF与平面BCF所成角的正弦值为-PA 2.如图,在四棱锥P ABCD平面PAD⊥平面ABCD.Array(1)证明:平面CDM⊥平面PAB;(2)若AD BC ∥,2AD BC =,2AB =,直线PB 与平面MCD ,求三棱锥P MCD -的体积.【详解】(1)取AD 中点为N ,连接PN ,因为PAD 为等边三角形,所以PN AD ^,且平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PN ⊂面PAD ,所以PN ^平面ABCD ,又AB ⊂平面ABCD ,所以PN AB ⊥,又因为PD AB ⊥,PN PD P = ,,PN PD ⊂平面PAD ,所以AB ⊥平面PAD ,又因为DM ⊂平面PAD ,所以AB DM ⊥,因为M 为AP 中点,所以DM PA ⊥,且PA AB A = ,,PA PB ⊂平面PAD ,所以DM ⊥平面PAB ,且DM ⊂平面CDM ,所以平面CDM ⊥平面PAB .(2)由(1)可知,PN AB ⊥且PD AB ⊥,PN PD P = ,所以AB ⊥平面PAD ,△为边长为6的等边三角形,E为BD的中点,F为AE的三等分点,且2AF FE ABD=.(1)求证://FM 面ABC ;(2)若二面角A BD C --的平面角的大小为23π,求直线EM 与面ABD 所成角的正弦值.【详解】(1)在BE 上取一点N ,使得12BN NE =,连接FN ,NM ,∵6BD =,∴116BN BD ==,2NE =,3ED =,∵12AF FE =,∴12BN AF NE FE ==,则FN AB ∥,又FN ⊄面ABC ,AB ⊂面ABC ,∴FN ∥面ABC ,∵15BN CM ND MD ==,∴NM BC ∥.∵NM ⊄面ABC ,BC ⊂面ABC ,∴NM ∥面ABC ,∵FN NM N = ,,FN NM ⊂面FNM ,∴面FNM ∥面ABC ,又FM ⊂面FNM ,4.已知底面是正方形,平面,,,点E 、F 分别为线段PB 、CQ 的中点.(1)求证://EF平面PADQ ;(2)求平面PCQ 与平面CDQ 夹角的余弦值;(3)线段PC 上是否存在点M ,使得直线AM 与平面PCQ 所成角的正弦值是7,若存在求出PM MC的值,若不存在,说明理由.【详解】(1)证明:法一:分别取AB 、CD 的中点G 、H ,连接EG 、GH 、FH ,由题意可知点E 、F 分别为线段PB 、CQ 的中点.所以//EG PA ,//FH QD ,因为//PA DQ ,所以//EG FH ,所以点E 、G 、H 、F 四点共面,因为G 、H 分别为AB 、CD 的中点,所以//GH AD ,因为AD ⊂平面ADQP ,GH ⊄平面ADQP ,所以//GH 平面ADQP ,又因为//FH QD ,QD ⊂平面ADQP ,FH ⊄平面ADQP ,所以//FH 平面ADQP ,法二:因为ABCD 为正方形,且以点A 为坐标原点,以AB 、空间直角坐标系,则()0,0,3P 、()3,3,0C 、()0,3,1Q 所以()0,3,1EF =- ,易知平面PADQ 所以0a EF ⋅= ,所以E F a ⊥ ,EF ⊄ADQP EF所在平面和圆所在的平面互相垂直,已知2,1AB EF ==.(1)求证:平面DAF ⊥平面CBF ;(2)当AD 的长为何值时,二面角C EF B --的大小为60︒?设()0AD t t =>,则(1,0,C -∴(1,0,0)EF = ,33,22CF ⎛= ⎝6.如图,在三棱柱111中,四边形11是边长为4的菱形,AB BC =,点D 为棱AC 上的动点(不与A 、C 重合),平面1B BD 与棱11AC 交于点E .(1)求证1BB DE //;(2)若平面ABC ⊥平面11AAC C ,160A AC ∠= ,判断是否存在点D 使得平面11A ABB 与平面1B BDE 所成的锐二面角为π3,并说明理由.【详解】(1)11//BB CC ,且1BB ⊂/平面11ACC A ,1CC ⊂平面11ACC A ,∴1//BB 平面11ACC A ,又∵1BB ⊂平面1B BD ,且平面1B BD 平面11ACC A DE =,∴1BB DE //;(2)连接1AC ,取AC 中点O ,连接1AO ,BO ,在菱形11ACC A 中,160A AC ∠=︒,∴1A AC △是等边三角形,又∵O 为AC 中点,∴1A O ⊥∵平面ABC ⊥平面11ACC A ,平面ABC ⋂平面11ACC A AC =∴1A O ⊥平面ABC ,OB ⊂平面。
高中数学函数压轴题(精制)
高考数学函数压轴题:1. 已知函数 f (x)1 x 3 ax b(a, b R) 在 x2 处取得的极小值是4 . 33(1) 求 f (x) 的单调递增区间;(2) 若 x[ 4,3] 时,有 f ( x) m 2m10恒成立,求实数m 的取值范围 .32. 某造船公司年最高造船量是20 艘 . 已知造船 x 艘的产值函数 R (x)=3700x + 45x2– 10x 3( 单位:万元 ), 成本函数为 C (x) = 460x + 5000 ( 单位:万元 ). 又在经济学中,函数 f(x) 的边际函数 Mf (x) 定义为 : Mf (x) = f (x+1)– f(x). 求 : (提示:利润 = 产值 – 成本)(1) 利润函数 P(x) 及边际利润函数 MP(x);(2) 年造船量安排多少艘时 , 可使公司造船的年利润最大 ?(3)边际利润函数 MP(x) 的单调递减区间 , 并说明单调递减在本题中的实际意义是什么?3. 已知函数(x) 5x 25x 1 ( x R) ,函数 yf ( x) 的图象与 (x) 的图象关于点 (0, 1) 中心对称。
2( 1)求函数 yf ( x) 的解析式;( 2)如果( )( ) , ,试求出使( ) 0 成 g 1 xf xg n (x) f [ g n 1 ( x)]( n N ,n 2) g 2 x立的 x 取值范围;( 3)是否存在区间E ,使 Ex f ( x) 0对于区间内的任意实数x ,只要 nN ,且 n2 时,都有g n (x) 0 恒成立?4.已知函数: f ( x)x 1 a(a R 且 x a)a x(Ⅰ)证明: f(x)+2+f(2a- x)=0 对定义域内的所有x 都成立 .(Ⅱ)当 f(x) 的定义域为 [a+1,a+1] 时,求证: f(x) 的值域为 [ - 3,- 2] ;2(Ⅲ)设函数 g(x)=x 2+|(x - a)f(x)| , 求 g(x) 的最小值 .5. 设 f (x) 是定义在 [0,1] 上的函数,若存在 x *(0,1) ,使得 f ( x) 在 [0, x * ] 上单调递增,在 [ x * ,1] 上单调递减,则称 f ( x)为 [0,1] 上的单峰函数, x *为峰点,包含峰点的区间为含峰区间.对任意的 [0,1] 上的单峰函数f ( x) ,下面研究缩短其含峰区间长度的方法 .( 1)证明:对任意的 x 1 ,x 2 (0,1) , x 1 x 2 ,若 f ( x 1 ) f ( x 2 ) ,则 (0, x 2 ) 为含峰区间;若 f ( x 1 ) f ( x 2 ) ,则 ( x 1 ,1)为含峰区间;( 2)对给定的 r ( 0 r 0.5) ,证明:存在x 1 , x 2 (0,1) ,满足 x 2 x 1 2r ,使得由( 1)所确定的含峰区间的长度不大于 0.5 r ;6. 设关于x的方程2x2ax 20 的两根分别为、,函数 f (x) 4 x ax 21( 1)证明f ( x)在区间,上是增函数;( 2)当a为何值时, f (x) 在区间, 上的最大值与最小值之差最小7.甲乙两公司生产同一种新产品,经测算,对于函数 f x x 8 , g x x 12 ,及任意的x 0,当甲公司投入 x 万元作宣传时,乙公司投入的宣传费若小于 f x 万元,则乙公司有失败的危险,否则无失败的危险;当乙公司投入 x 万元作宣传时,甲公司投入的宣传费若小于g x 万元,则甲公司有失败的危险,否则无失败的危险.设甲公司投入宣传费 x 万元,乙公司投入宣传费y 万元,建立如图直角坐标系,试回答以下问题:(1)请解释 f 0 , g 0 ;w.w.w.k.s.5.u.c.o.m(2)甲、乙两公司在均无失败危险的情况下尽可能少地投入宣传费用,问此时各应投入多少宣传费?(3)若甲、乙分别在上述策略下,为确保无失败的危险,根据对方所投入的宣传费,按最少投入费用原则,投入自己的宣传费:若甲先投入a112 万元,乙在上述策略下,投入最少费用b1;而甲根据乙的情况,调整宣传费为a2;同样,乙再根据甲的情况,调整宣传费为b2 , , 如此得当甲调整宣传费为a n时,乙调整宣传费为b n;试问是否存在lima n,lim b n的值,若存在写出此极限值(不必证明),若不存在,说明理由.n n8.设 f ( x)是定义域在[1, 1] 上的奇函数,且其图象上任意两点连线的斜率均小于零.( l )求证 f (x)在[1,1] 上是减函数;( ll )如果 f ( x c) , f ( x c2 ) 的定义域的交集为空集,求实数 c 的取值范围;( lll)证明若 1 c 2 ,则 f ( x c) , f ( x c2 ) 存在公共的定义域,并求这个公共的空义域.9.已知函数 f ( x)= ax2+bx+ c,其中 a∈ N*,b∈ N, c∈Z。
2022年全国乙卷理科高考数学压轴题答案详解及解题技巧(含模拟专练)
2022年全国统一高考数学试卷(理科)(乙卷)压轴真题解读11.双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 的两支交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()AB .32CD【命题意图】本题主要考查双曲线的性质,圆的性质,考查转化思想与数形结合思想,考查运算求解能力【答案】C【解析】依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,所以1OG NF ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,sin a c β=,cos b cβ=,在21F F N 中,()()12sin sin sin F F N παβαβ∠=--=+4334sin cos cos sin 555b a a bc c cαβαβ+=+=⨯+⨯=,由正弦定理得21225sin sin 2NF c cαβ==,所以112553434sin 2252c c a b a b NF F F N c ++=∠=⨯=,2555sin 222c c a a NF c β==⨯=又12345422222a b a b aNF NF a +--=-==,所以23b a =,即32b a =,所以双曲线的离心率2c e a ==C【方法归纳】求双曲线离心率或其取值范围的方法(1)求a ,b ,c 的值,由c 2a 2=a 2+b 2a2=1+b 2a 2直接求e .(2)列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=c 2-a 2消去b ,然后转化成关于e 的方程(或不等式)求解.12.已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑()A .21-B .22-C .23-D .24-【命题意图】本题主要考查了函数的奇偶性、对称性和周期性【答案】D【解析】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D【易错提醒】函数f (x )满足的关系f (a +x )=f (b -x )表明的是函数图象的对称性,函数f (x )满足的关系f (a +x )=f (b +x )(a ≠b )表明的是函数的周期性,在使用这两个关系时不要混淆.16.已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.【命题意图】本题主要考查利用导函数研究函数极值点存在大小关系时,导函数图像的问题【答案】1,1e ⎛⎫⎪⎝⎭【解析】()2ln 2e xf x a a x '=⋅-,因为12,x x 分别是函数()22e x f x a x =-的极小值点和极大值点,所以函数()f x 在()1,x -∞和()2,x +∞上递减,在()12,x x 上递增,所以当()()12,,x x x ∈-∞⋃+∞时,()0f x '<,当()12,x x x ∈时,()0f x '>,若1a >时,当0x <时,2ln 0,2e 0x a a x ⋅><,则此时()0f x '>,与前面矛盾,故1a >不符合题意,若01a <<时,则方程2ln 2e 0x a a x ⋅-=的两个根为12,x x ,即方程ln e x a a x ⋅=的两个根为12,x x ,即函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,∵01a <<,∴函数x y a =的图象是单调递减的指数函数,又∵ln 0a <,∴ln x y a a =⋅的图象由指数函数x y a =向下关于x 轴作对称变换,然后将图象上的每个点的横坐标保持不变,纵坐标伸长或缩短为原来的ln a 倍得到,如图所示:设过原点且与函数()y g x =的图象相切的直线的切点为()00,ln xx a a ⋅,则切线的斜率为()020ln x g x a a '=⋅,故切线方程为()0020ln ln x x y a a a a x x -⋅=⋅-,则有0020ln ln x x a a x a a -⋅=-⋅,解得01ln x a=,则切线的斜率为122ln ln e ln a a a a ⋅=,因为函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,所以2eln e a <,解得1e ea <<,又01a <<,所以11e a <<,综上所述,a 的范围为1,1e ⎛⎫⎪⎝⎭.【规律总结】1.已知函数极值,确定函数解析式中的参数时,要注意:根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解.2.导数值为0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.20.已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【命题意图】本题考查了直线与椭圆的综合应用【解析】(1)设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y +=,可得M,(1,N ,代入AB 方程223y x =-,可得26(63,)3T +,由MT TH = 得到26(265,)3H +.求得HN 方程:26(2)23y x =--,过点(0,2)-.②若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=,可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34k y y k k k y y k -+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++-可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-21.已知函数()()ln 1exf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围.【命题意图】本题考查导数的几何意义,考查利用导数研究函数的单调性,零点问题,考查分类讨论思想及运算求解能力【解析】(1)()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0e x x f x x f =++=,所以切点为(0,0)11(),(0)21e xx f x f x ''-=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =(2)()ln(1)e xax f x x =++()2e 11(1)()1e (1)e x x x a x a x f x x x '+--=+=++设()2()e 1x g x a x=+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意2︒若10a -,当,()0x ∈+∞,则()e 20xg x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+,即()0f x '>所以()f x 在(0,)+∞上单调递增,()(0)0f x f >=故()f x 在(0,)+∞上没有零点,不合题意3︒若1a <-(1)当,()0x ∈+∞,则()e 20x g x ax '=->,所以()g x 在(0,)+∞上单调递增(0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<=当,()x f x →+∞→+∞所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x∈-=+-设()()e 2x h x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '=当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+<又1(1)0eg -=>所以存在(1,)t n ∈-,使得()0g t =,即()0f t '=当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减有1,()x f x →-→-∞而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点即()f x 在(1,0)-上有唯一零点所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-【解后反思】(1)涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.(2)解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.压轴模拟专练1.(2022山东滕州一中高三模拟)已知双曲线22221x y a b-=(0,0a b >>)的左、右焦点分别为12,,F F P 为双曲线上的一点,I 为12PF F △的内心,且1222IF IF PI +=,则C 的离心率为()A .13B .25C D .2【答案】D【解析】如下图示,延长IP 到A 且||||IP PA =,延长2IF 到B 且22||||IF F B =,所以1222IF IF PI +=,即10IF IB IA +=+ ,故I 是△1ABF 的重心,即11AIF BIF AIB S S S == ,又1111222,2,4AIF PIF BIF F IF AIB PIF S S S S S S === ,所以11222PIF F IF PIF S S S == ,而I 是12PF F △的内心,则1122||||2||PF F F PF ==,由21212||||,||2c PF PF a F F -==,则2||2PF a =,故24c a =,即2ce a==.故选:D 2.(2022天津南开中学高三模拟)已知双曲线()2222:10,0x y C a b a b-=>>与椭圆22143x y +=.过椭圆上一点31,2P ⎛⎫- ⎪⎝⎭作椭圆的切线l ,l 与x 轴交于M 点,l 与双曲线C 的两条渐近线分别交于N 、Q ,且N 为MQ 的中点,则双曲线C 的离心率为()A2B C .2D 【答案】A【解析】由题意得:渐近线方程为b y x a=±,设切线方程为()312y k x -=+,联立22143x y +=得:()2223348412302k x k k x k k ⎛⎫+++++-= ⎪⎝⎭,由()()22223Δ64434412302k k k kk ⎛⎫=+-++-= ⎪⎝⎭得:()2210k -=,解得:12k =,所以切线方程为122y x =+,令0y =得:4x =-,所以()4,0M -,联立b y x a =与122y x =+,解得:42Q a x b a =-,联立b y x a =-与122y x =+,解得:42N a x b a=-+,因为N 为MQ 的中点,所以4144222a a b a b a ⎛⎫-=- ⎪+-⎝⎭,解得:32b a =,所以离心率为21312b a ⎛⎫+= ⎪⎝⎭故选:A3.(2022成都七中高三模拟)若函数()f x 满足()()31f x f x +=-,且当[]2,0x ∈-时,()31x f x -=+,则()2022f =()A .109B .10C .4D .2【答案】B【解析】由()()31f x f x +=-,得()()4f x f x +=,∴函数()f x 是周期函数,且4是它的一个周期,又当[]2,0x ∈-时,()31xf x -=+,∴()()()20224506229110f f f =⨯-=-=+=;故选:B.4.(2022安徽六中高三模拟)已知直线y kx m =+与函数22()22x x f x --=-图象交于不同三点M ,N ,P ,且17||||4PM PN ==,则实数k 的值为()A .14B .18C .154D .158【答案】D【解析】因为函数22x x y -=-为奇函数,且在R 上为增函数,所以函数22()22x x f x --=-关于点(2,0)对称,且在R 上为增函数,设点P 的坐标为(2,0),且M ,N 关于P 对称,设()00220,22x x M x ---,17||4PM ==,解得00x =或4,不妨设150,4M ⎛⎫- ⎪⎝⎭,所以150154208k ⎛⎫-- ⎪⎝⎭==-,所以实数k 的值为158.故选:D .5.(2022山师大附中高三模拟)设12,x x 是函数()3222f x x ax a x =-+的两个极值点,若122x x <<,则实数a 的取值范围是______.【答案】26a <<【解析】22()34(3)()f x x ax a x a x a '=-+=--,因为12,x x 是函数()3222f x x ax a x =-+的两个极值点,且122x x <<,所以12,x x 是方一元二次方程()0f x '=的两个实根,且122x x <<,所以(2)0f '<,即(6)(2)0a a --<,解得26a <<.故答案为:26a <<6.(2022山东潍坊一中高三模拟)已知三次函数()3223f x ax ax x =-+的两个极值点1x ,2x 均为正数,()2110g x x x=-,且不等式()()1212ln 21g x g x x x t +-<-对于所有的a 都恒成立,则实数t 的取值范围是______.【答案】ln 51,2∞⎛⎫++ ⎪⎝⎭【解析】令()22210f x ax ax =-+=',由题可知21212Δ480102102a a x x a x x a ⎧⎪=->⎪+=>⇒>⎨⎪⎪=>⎩,()()22121212121211ln 1010ln g x g x x x x x x x x x +-=-+--()21212121212102ln x x x x x x x x x x +⎡⎤=+---⎣⎦11012ln 2a aa ⎛⎫=--+ ⎪⎝⎭10102ln 2a a a=--+,令()10102ln 2h a a a a=--+,2a >,()()()222252210a a a a h a a a'--+-++==,当522a <<时,()0h a '>,()h a 单调递增,当52a >时,()0h a '<,()h a 单调递减,∴max 5()1ln 52h a h ⎛⎫==+ ⎪⎝⎭,∴ln 5211ln 512t t ->+⇒>+,故答案为:ln 51,2∞⎛⎫++ ⎪⎝⎭.7.(2022湖南长沙长郡中学高三模拟)生活中,椭圆有很多光学性质,如从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在y 轴上,中心在坐标原点,从下焦点1F 射出的光线经过椭圆镜面反射到上焦点2F ,这束光线的总长度为4e <(1)求椭圆C 的标准方程;(2)若从椭圆C 中心O 出发的两束光线OM 、ON ,分别穿过椭圆上的A 、B 点后射到直线4y =上的M 、N 两点,若AB 连线过椭圆的上焦点2F ,试问,直线BM 与直线AN 能交于一定点.【解析】(1)由已知可设椭圆方程为22221(0)y x a b a b +=>>,则24a =,122c b ⨯⨯=222a b c =+又2e <所以21a b c ===,,故椭圆C 的标准方程为22143y x +=(2)设AB 方程为1y kx =+,由221431y x y kx ⎧+=⎪⎨⎪=+⎩,得22(34)690k x kx ++-=,222(6)36(34)1441440k k k ∆=++=+>设()()1122A x y B x y ,,,,则121222693434k x x x x k k --+==++,..由对称性知,若定点存在,则直线BM 与直线AN 交于y 轴上的定点,由114y y x x y ⎧=⎪⎨⎪=⎩.是1144x M y ⎛⎫ ⎪⎝⎭,,则直线BM 方程为211121444(4y x y x x y x y --=--,令0x =,则122114(4)44x y y x y x -=+-1122114(1)4(1(1)4x x kx x kx x -+=++-112211234(1)4x kx x x x kx x -=+-+2121124()4x x x x kx x -=-+又12123()2x x kx x +=,则21212112214()4()83554()()22x x x x y x x x x x x --===-++-,所以,直线BM 过定点(0,85),同理直线AN 也过定点8(0,)5.则点(0,85)即为所求点.8.(2022江苏金陵中学高三模拟)已知抛物线()2:21C y px p =>上的点()0,1P x 到其焦点F 的距离为54.(1)求抛物线C 的方程;(2)点(),4E t 在抛物线C 上,直线l 与抛物线交于()11,A x y 、()()2212,0,0B x y y y >>两点,点H 与点A 关于x 轴对称,直线AH 分别与直线OE 、OB 交于点M 、N (O 为坐标原点),且AM MN =.求证:直线l 过定点.【解析】(1)由点()0,1P x 在抛物线上可得,2012px =,解得012x p=.由抛物线的定义可得0152224p p PF x p =+=+=,整理得22520p p -+=,解得2p =或12p =(舍去).故抛物线C 的方程为24y x =.(2)由(),4E t 在抛物线C 上可得244t =,解得4t =,所以()4,4E ,则直线OE 的方程为y x =.易知()11,H x y -且1x 、2x 均不为0,易知12y y ≠,因为10y >,20y >,121222121212404AB y y y y k y y x x y y --===--+,所以,直线l 的斜率存在且大于0,设直线l 的方程为()0y kx m k =+>,联立得24y kx my x=+⎧⎨=⎩化为2440ky y m -+=,则16160km ∆=->,且124y y k+=,124m y y k =,由直线OE 的方程为y x =,得()11,M x x .易知直线OB 的方程为22y y x x =,故1212,x y N x x ⎛⎫⎪⎝⎭.由AM MN =,则M 为AN 的中点,所以,12M N y y y =+,即121122x y x y x =+,即1221122x x x y x y =+,所以,()22221212121212844y y y y y y y y y y ++==,化为()12122y y y y =+,则48m =得2m =,所以直线l 的方程为2y kx =+,故直线l 过定点()0,2.9.(2022东北育才中学高三模拟)已知()()1ln af x a x x x=-++(1)若0a <,讨论函数()f x 的单调性;(2)()()ln a g x f x x x =+-有两个不同的零点1x ,()2120x x x <<,若12202x x g λλ+⎛⎫'> ⎪+⎝⎭恒成立,求λ的范围.【解析】(1)()f x 定义域为()0,∞+()()()()()222211111x a x a x a x a f x a x x x x +--+-'=-+-==ⅰ)01a <-<即10a -<<时,()01f x a x '<⇒-<<,()00f x x a '>⇒<<-或1x >ⅱ)1a -=即1a =-时,()0,x ∈+∞,()0f x '≥恒成立ⅲ)1a ->即1a <-,()01f x x a '<⇒<<-,()001f x x '>⇒<<或x a>-综上:10a -<<时,(),1x a ∈-,()f x 单调递减;()0,a -、()1,+∞,()f x 单调递增1a =-时,()0,x ∈+∞,()f x 单调递增1a <-时,()1,x a ∈-,()f x 单调递减;()0,1、(),a -+∞,()f x 单调递增(2)()ln g x a x x =+,由题1122ln 0ln 0a x x a x x +=⎧⎨+=⎩,120x x <<则()1221ln ln a x x x x -=-,设()120,1x t x =∈∴212112ln ln ln x x x xa x x t --==-()1a g x x'=+∴122112122221122ln 2x x x x g ax x t x x λλλλλλ+-++⎛⎫'=+=⋅+⎪+++⎝⎭()()()21102ln t t tλλ+-=+>+恒成立()0,1t ∈,∴ln 0t <∴()()21ln 02t t t λλ+-+<+恒成立设()()()21ln 2t h t t t λλ+-=++,∴()0h t <恒成立()()()()()()()()22222224122241222t t t t h t t t t t t t λλλλλλλ⎛⎫-- ⎪++-+⎝⎭'=-==+++ⅰ)24λ≥时,201t λ-<,∴()0h t '>,∴()h t 在()0,1上单调递增∴()()10h t h <=恒成立,∴(][),22,λ∈-∞-+∞ 合题ⅱ)24λ<,20,4t λ⎛⎫∈ ⎪⎝⎭,∴()0h t '>,∴()h t 在20,4λ⎛⎫⎪⎝⎭上单调递增2,14t λ⎛⎫∈ ⎪⎝⎭时,()0h t '<,∴()h t 在2,14λ⎛⎫⎪⎝⎭上单调递减∴2,14t λ⎛⎫∈ ⎪⎝⎭,()()10h t h >=,不满足()0h t <恒成立综上:(][),22,λ∈-∞-+∞ 10.(2022大连二十四中学高三模拟)已知函数()21e 2=--xf x x ax ax .(1)当2a =时,求函数()f x 的单调区间;(2)若()()212h x f x ax =+在(),0∞-上单调递增,求a 的取值范围;(3)当1a >时,确定函数()f x 零点的个数.【解析】(1)当2a =时,()2e 2xf x x x x =--,()()()1e 2x f x x =+-',令()0f x '=有121,ln 2x x =-=,故当(),1x ∈-∞-和()ln 2,+∞时,()0f x '>,()f x 单调递增;当()1,ln 2x ∈-时()0f x '<,()f x 单调递减;故()f x 的单调递增区间为(),1-∞-和()ln 2,+∞,单调递减区间为()1,ln 2-(2)由题可得()e x h x x ax =-的导函数()()1e 0xh x x a '=+-≥在(),0∞-上恒成立,故()1e x a x ≤+,令()()1e x g x x =+,则()()2e x g x x '=+,易得当2x <-时()0g x '<,()g x 单调递减;当2x >-时()0g x '>,()g x 单调递增;故()()22e g x g -≥-=-,故()()min 2e 12a g x g ≤=-=-,故a 的取值范围为21,e ⎛⎤-∞-⎥⎝⎦(3)当1a >时,()21e 02xf x x ax ax =--=即1e 02x x a ax ⎛⎫--= ⎪⎝⎭,故()f x 有一根为0x =,令()1e 2x h x ax a =--,则()1e 2x h x a '=-,因为1a >,故令1e 02x a -=有ln 2a x ⎛⎫= ⎪⎝⎭,故当,ln 2a x ⎛⎫⎛⎫∈-∞ ⎪ ⎪⎝⎭⎝⎭时,()0h x '<,()h x 单调递减;当ln ,2a x ⎛⎫⎛⎫∈+∞ ⎪ ⎪⎝⎭⎝⎭时,()0h x '>,()h x 单调递增;故()ln 2min 1ln l 22e n 2a a a h x h a a ⎛⎫⎪⎝⎭⎛⎫⎛⎫⎛⎫==-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11ln 1ln 02222a a a ⎛⎫⎛⎫⎛⎫=-+<-+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,即()min 0h x <.故()h x 最多有两个零点.又()00e 10h a a =-=-<,()()2212e 2e 02h a a ---=-⨯--=>,故()h x 在()2,0-之间有1个零点,又()()()2ln 212ln e 2ln ln ln 12a h a a a a a a a a a a a =--=--=--,设()()ln 1,1t x x x x =-->,则()110t x x =->',故()t x 为增函数,故()()11ln110t x t >=--=,故ln 10a a -->,故()2ln 0h a >,故()h x 在()0,2ln a 上有1个零点,故()h x 有2个零点.故当1a >时,函数()f x 零点的个数为3。
2022年新高考数学必刷压轴题专题40:圆的“双切线”问题
第 1 页 共 7 页专题40 圆的“双切线”问题【方法点拨】1.涉及从圆外一点向圆引两条切线的相关线段长计算问题,根据对称性,常将双切线问题转化为一条切线问题,抓住“特征直角三角形”(切点、圆心、圆外点为顶点),向点与圆心的距离问题转化.2.圆上存在一点、圆心与圆外一点(或圆上存在两点与圆外一点)的张角有最大值,张角最大时,直线与圆相切,转化为点与圆心的距离问题.【典型题示例】例1 (2020·新课标Ⅰ·理科·11)已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )A. 210x y --=B. 210x y +-=C. 210x y -+=D. 210x y ++=【答案】D【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据22PAM PM AB S PA ⋅==△可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程. 【解析】圆的方程可化为()()22114x y -+-=,点M 到直线l 的距离为2d ==>,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以12222PAM PM AB S PA AM PA ⋅==⨯⨯⨯=△,而PA =当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.第 2 页 共 7 页∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程.例2 在平面直角坐标系xOy 中,已知直线l :y =kx +6上存在点P ,过点P 作圆O : x 2+ y 2=4的切线,切点分别为A (x 1,y 1),B (x 2,y 2),且x 1 x 2+ y 1y 2=-2,则实数k 的取值范围为 . 【答案】(-∞,-52]∪[52,+∞)12121212=cos =4cos 2x x y y OA OB OA OB AOB AOB +=⋅∠∠=-,则23AOB π∠=,在△P AC ,∠APC =300,PC =4,当直线l 上的点 P 满足PC =4即满足题意.又因为点C 与直线上点间的距离,以垂线段最短,故只需C 到直线的距离不大于4.第 3 页 共 7 页由点到直线的距离公式得:2641k ≤+,解之得5522k k ≤-≥或 所以k 的取值范围为(-∞,-52]∪[52,+∞). 例 3 过点)1,1(-P 作圆C :)(1)2()(22R t t y t x ∈=+-+- 的切线,切点分别为B A ,,则PA PB ⋅ 的最小值为__________.【答案】214【分析】为了求出PA PB ⋅的最小值,需建立目标函数,这里选择使用数量积的定义作为突破口,选择线段PC 长为“元”. 设∠APC =θ,则1sin PC θ=,222cos 212sin 1PC θθ=-=-, 故222222cos 2(1)(1)3PA PB PA PB PC PC PC PC θ⋅==--=+- 又点(,2)C t t -在直线20x y --=,故22PC ≥即28PC ≥所以2218384PA PB ⋅≥+-= 故PA PB ⋅ 的最小值为214.点评:(1)求最值问题要牢固树立建立目标函数的意识;(2)涉及从圆外一点向圆引两条切线的相关线段长计算问题,常将双切线问题转化为一条切线问题,抓住“特征直角三角形”,向点与圆心的距离问题转化.第 4 页 共 7 页例4 已知圆O :x 2+y 2=1,圆M :(x +a +3)2+(y -2a )2=1(a 为实数).若圆O 与圆M 上分别存在点P ,Q ,使得∠OQP =30︒,则a 的取值范围为 . 【答案】[-65,0]【分析】双动点问题先转化为一点固定不动,另一点动.这里,先将Q 固定不动,则点P 在圆O 运动时,当PQ 为圆O 的切线时,∠OQP 最大,故满足题意,需∠OQP ≥30︒,再将角的范围转化为O 、Q 间的距离问题,即需OQ ≤2.再固定P 不动,易得只需OM ≤3即可,利用两点间距离公式(a +3)2+(2a )2≤9,解得-65 ≤a ≤ 0.点评:圆上存在一点(或两点)与圆外一点的张角问题,张角最大时,直线与圆相切,转化为点与圆心的距离问题.例5 平面直角坐标系xOy 中,点P 在x 轴上,从点P 向圆C 1:x 2+(y -3)2=5引切线,切线长为d 1,从点P 向圆C 2:(x -5)2+(y +4)2=7引切线,切线长为d 2,则d 1+d 2的最小值为_____. 【答案】52【分析】求切线长问题再利用数形结合思想解决最值问题. 【解析】设点P (x ,0),则d 1=x 2+(-3)2-5,d 2=(x -5)2+42-7,d 1+d 2=x 2+4+(x -5)2+9, 几何意义:点P (x ,0)到点M (0,2),N (5,-3)的距离和. 当M ,P ,N 三点共线时,d 1+d 2有最小值52,此时P (2,0).第 5 页 共 7 页【巩固训练】1.在平面直角坐标系xOy 中,已知圆C :x 2+(y -3)2=2,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段PQ 的长的取值范围是________.2.已知圆M :(x -1)2+(y -1)2=4,直线l :x +y -6=0,A 为直线l 上一点.若圆M 上存在两点B ,C ,使得∠BAC =60°,则点A 横坐标的取值范围是__________.3.已知椭圆C 1:22221x y a b +=(a >b >0)与圆C 2:22234b x y +=,若在椭圆C 1上不存在点P ,使得由点P 所作的圆C 2的两条切线互相垂直,则椭圆C 1的离心率的取值范围是_______4.在平面直角坐标系xOy 中,已知圆O : x 2+ y 2= r 2 (r >0) 与圆C : (x -6)2+ (y -8)2=4,过圆O 上任意一点P 作圆C 的切线,切点分别为A ,B ,6PA PB +≥,则实数r 的取值范围为 .5.在平面直角坐标系xOy 中,已知圆C :22(3)(4)16x y +++=,若对于直线10x my ++= 上的任意一点P ,在圆C 上总存在Q 使∠PQC =2π,则实数m 的取值范围为 . 6.在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,直线l :x +ay -3=0(a >0),过直线l 上一点P 作圆O 的两条切线,切点分别为M ,N .若PM →·PN →=23,则正实数a 的取值范围是________.7. 过直线l :y =x -2上任意一点P 作圆C :x 2+y 2=1的两条切线,切点分别为A ,B ,当切线最短时,△P AB 的面积为________.8. 已知圆C :(x -1)2+(y -4)2=10上存在两点A ,B ,P 为直线x =5上的一个动点.且满足AP ⊥BP ,那么点P 的纵坐标的取值范围是________.第 6 页 共 7 页【答案与提示】1.【答案】 [2314,22)【提示】直线与圆相切时,利用所得到的直角三角形,向点与圆心的距离问题转化. 2.【答案】[1,5]【提示】∠BAC 最大时,直线与圆相切,转化为点与圆心的距离问题. 3.【答案】3(0,)3【分析】如图,设过点P 的两条直线与圆2C 分别切于点M N ,,由两条切线相互垂直,可知62OP b =,由题知OP a >,解得63b a >,又21b e a ⎛⎫=- ⎪⎝⎭即可得出结果. 【解析】如图,设过点P 的两条直线与圆2C 分别切于点M N ,,由两条切线相互垂直, 可知36=222OP b b ⨯=, 又因为在椭圆C 1上不存在点P ,使得由点P 所作的圆C 2的两条切线互相垂直, 所以OP a >,即得62b a >,所以63b a >, 所以椭圆C 1的离心率22222631133c a b b e a a a ⎛⎫-⎛⎫===-<-= ⎪ ⎪ ⎪⎝⎭⎝⎭, 又0e >,所以303e <<. 4.【答案】(][)+∞⋃,146,0第 7 页 共 7 页5.【答案】3(,)4+∞ 6.【答案】[2,+∞]【解析】如下图,设∠MPO =α,由切线的性质知∠NPO =α,PM =PN ,则PM →·PN →=|PM →|·|PN →|·cos 2α=|PN →|2(1-2sin 2α)=23,即(PO 2-1)⎝⎛⎭⎫1-2PO 2=23,解得PO =3,故点P 的轨迹为x 2+y 2=3. 因为点P 在直线l :x +ay -3=0(a >0)上,所以直线l 与圆x 2+y 2=3有交点,即圆心到直线l 的距离为d =|-3|1+a 2≤3,解得a ≥ 2.7.【答案】12 8.【答案】[2,6]。
立体几何:动点与设未知量-高考理科数学压轴题冲刺训练
07 等差数列与等比数列1.已知{a n}是等比数列,a n>0,且+a3a7=8,则log2a1+log2a2+…+log2a9=().A.8B.9C.10D.11解析▶∵ +a3a7=8,a n>0,且{a n}是等比数列,∴2=8,∴a5=2.∴log2a1+log2a2+…+log2a9=log2[(a1a9)(a2a8)·(a3a7)(a4a6)a5]=log2=9log22=9,故选B.答案▶ B2.在等比数列{a n}中,a n>0,,,+1成等差数列,且a1+2a2=2,则数列{a n}的通项公式为.解析▶设等比数列{a n}的公比为q,由a n>0知q>0,由题意得+=,即a1-a2=a1a2, ∴a1q=1-q.又a1+2a2=2,∴a1+2a1q=2.由-解得或--(舍去),∴数列{a n}的通项公式为a n=-.答案▶a n=-3.如图所示的是“杨辉三角”数图,计算第1行的2个数的和,第2行的3个数的和,第3行的4个数的和 … 则第n行的n+1个数的和为.11第1行12 1 第2行1331第3行1464 1 第4行…解析▶1+1=2,1+2+1=4,1+3+3+1=8,1+4+6+4+1=16,则第n行的n+1个数的和为2n.答案▶2n4.已知数列{a n}的各项均为正数,前n项和为S n,且S n=( ),n∈N*.(1)求证:数列{a n}是等差数列.(2)设b n=,T n=b1+b2+…+b n,求T n.解析▶(1)∵S n=( ),n N∈*,∴当n=1时,a1=S1=( )(a1>0),解得a1=1;当n≥ 时,由----a n-1,得2a n=+a n--即(a n+a n-1)(a n-a n-1-1)=0,∵a n+a n-1>0,∴a n-a n-1=1(n≥ ).∴数列{a n}是首项为1,公差为1的等差数列.(2)由(1)可得a n=n,S n=( ),b n===-.( )∴T n=b1+b2+b3+…+b n=1-+-+…+-=1-=.【例1】设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析▶(法一)设等比数列{a n}的公比为q(q≠0) 则2S2=2(a1+a2)=2(a1+a1q),S3=a1+a2+a3=a1+a1q+a1q2.因为3S1,2S2,S3成等差数列,所以3a1+a1+a1q+a1q2=4(a1+a1q),解得q=3,故a n =3n-1.(法二)设等比数列{a n }的公比为q ,由3S 1,2S 2,S 3成等差数列,易得q ≠ 所以4S 2=3S 1+S 3, 即( - )-=3a 1+( - )-, 解得q=3,故a n =3n-1. 答案▶ 3n-1在等差(比)数列问题中,最基本的量是首项a 1和公差d (公比q ),在解题时往往根据已知条件建立关于这两个量的方程组,从而求出这两个量,那么其他问题也就会迎刃而解,这就是解决等差(比)数列问题的基本量的方法,其中蕴含着方程思想的运用.在应用等比数列前n 项和公式时,务必注意公比q 的取值范围.1.已知等比数列{a n }的前n 项和为S n ,a 1+a 3=30,S 4=120,设b n =1+log 3a n ,则数列{b n }的前15项和为( ).A .152B .135C .80D .16解析▶ 设等比数列{a n }的公比为q ,由a 1+a 3=30,a 2+a 4=S 4-(a 1+a 3)=90,得公比q==3,首项a 1==3,所以a n =3n ,b n =1log+33n=1+n ,则数列{b n }是等差数列,其前15项和为 ( )=135.故选B .答案▶ B2.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( ).A .2B .-2C .D .-解析▶ 由题意知S 1=a 1,S 2=2a 1-1,S 4=4a 1-6. 因为S 1,S 2,S 4成等比数列,所以 =S 1·S 4,即(2a 1-1)2=a 1(4a 1-6),解得a 1=-.故选D .答案▶ D【例2】(1)设等差数列{a n}的前n项和为S n,且满足S15>0,S16<0,则, … 中最大的项为().A.B.C.D.(2)若等比数列{a n}的各项均为正数,且a8a13+a9a12=2e(e为自然对数的底数),则ln a1+ln a2+…+ln a20= .解析▶(1)由S15= ()==15a8>0,S16= ()=8(a8+a9)<0,可得a8>0,a9<0,d<0,所以数列{a n}是递减数列,所以a1>a2>…>a8>0,所以0<S1<S2<…<S8,从而0<<<…<.又因为当 ≤n≤ n∈N*时,a n<0,S n>0,即<0,所以是, … 中的最大项.故选C.(2)因为{a n}是等比数列,所以a8a13=a9a12=e,所以ln a1+lna2+…+ln a20=ln(a1a2…a20)=ln(a1a20)10=10ln(a8a13)=10ln e=10.答案▶(1)C(2)10等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质,整体考虑,减少运算量”的思想.1.已知等比数列{a n}满足a n>0,且a3a2n-3=22n(n≥ ) 则当n≥时,log2a1+log2a2+log2a3+…+log2a2n-1= .解析▶log2a1log+2a2log+2a3+…log+2a2n-1log=2(a1a2a3…a2n-1).设S=a1a2a3…a2n-1,则S=-a2n-2a2n-3 (1)两式相乘,得S2=(a3a2n-3)2n-1=22n(2n-1),所以S=2n(2n-1),故原式=n(2n-1).答案▶n(2n-1)2.已知等比数列{a n}的前n项和为S n,若=3,则= .解析▶显然公比q≠ 则由=( -)-( -)-=--=1+q3=3,得q3=2,所以=--=--=.答案▶【例3】已知数列{a n}的前n项和S n=λ(a n-1),其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)当λ=2时,求a2i.解析▶(1)由题意得a1=S1=λ(a1-1),故λ≠ a1=-,a1≠0.由S n=λ(a n-1),S n+1=λ(a n+1-1),得a n+1=λa n+1-λa n,即a n+1(λ-1)=λa n.由a1≠0 λ≠0 得a n≠0 所以aa =-,因此{a n}是首项为-,公比为-的等比数列,于是a n=-.(2)由(1)可知,当λ=2时,a n=2n,故a2i=a2+a4+…+a2n= ( -)-= ( - ).判断或证明数列是否为等差、等比数列,一般是依据等差、等比数列的定义,或利用等差中项、等比中项进行判断.利用=a n+1·a n-1(n≥ n∈N*)来证明数列{a n}为等比数列时,要注意数列中的各项均不为0.记S n为等比数列{a n}的前n项和,已知a3=-8,S3=-6.(1)求数列{a n}的通项公式;(2)求S n,并证明对任意的n∈N*,S n+2,S n,S n+1成等差数列.解析▶(1)设数列{a n}的公比为q,由题设可得-( )-解得--故数列{a n}的通项公式为a n=(-2)n.(2)由(1)可得S n=( -)-=-+(-1)n·.由于S n+2+S n+1=-+(-1)n·-=2-(- )·=2S n,故S n+2,S n,S n+1成等差数列.【例4】设数列{a n}的前n项和为S n,已知a1=λ,S n+1=λS n+λ(n∈N*),其中常数λ>1.(1)求证:数列{a n}是等比数列.(2)若数列{b n}满足b n=logλ(a1a2…a n)(n∈N*),求数列{b n}的通项公式.解析▶(1)当n=1时,S2=λS1+λ,即a2=λ2,∴=λ.当n≥ 时,S n=λS n-1+λ,∴a n+1=S n+1-S n=λ(S n-S n-1)=λa n,即=λ(n≥ ).又∵=λ,∴数列{a n}是首项为λ,公比为λ的等比数列.(2)由(1)得a n=λn,∴a1a2…a n=λ1+2+…+n=( ),∴b n=logλ( )=.解这种题目的一般方法是用“退位相减法”消去S n(或者a n),得到数列{a n}的递推公式(或者是数列{S n}的递推公式),进而求出a n(或者S n)与n的关系式.设S n是数列{a n}的前n项和,且a1=-1,a n+1=S n·S n+1,则S n= .解析▶由已知得a n+1=S n+1-S n=S n+1·S n,易知S n≠0 等式两边同时除以S n+1·S n,得-=-1,故数列是以-1为首项,-1为公差的等差数列,则=-1-(n-1)=-n,所以S n=-.答案▶-一、选择题1.S n是等差数列{a n}的前n项和,若S7-S2=45,则S9=().A.54B.63C.72D.81解析▶(法一)∵S7-S2=45,∴a3+a4+a5+a6+a7=45,∴5a5=45,a5=9,∴S9= ()=9a5=81.(法二)∵S7-S2=45,∴7a1+21d-(2a1+d)=45,即a1+4d=9,∴S9=9a1+36d=9(a1+4d)=9×9=81,故选D.答案▶ D2.已知数列{a n}满足a1=2,a n+1=(n∈N*),则a2019=().-A.-2B.-1C.2D.解析▶∵数列{a n}满足a1=2,a n+1=-(n N∈*),∴a2=-=-1,a3=-(- )=,a4=-= … 可知此数列具有周期性,周期为3,即a n+3=a n,则a2019=a3=.故选D.答案▶ D3.若S n为数列{a n}的前n项和,且S n=,则等于().A.B.C.D.30解析▶∵当n≥ 时,a n=S n-S n-1=--=( ),∴=5×(5+1)=30.故选D.答案▶ D4.已知等比数列{a n}中,a2=2,a6=8,则a3a4a5=().A.±64B.64C.32D.16解析▶因为a2=2,a6=8,所以由等比数列的性质可知a2a6==16,而a2,a4,a6同号,所以a4=4,所以a3a4a5==64,故选B.答案▶ B5.已知{a n}是公差为4的等差数列,S n是其前n项和.若S5=15,则a10的值是().A.11B.20C.29D.31解析▶因为S5=15,所以5a1+×4=15,所以a1=-5,所以a10=a1+9d=31,故选D.答案▶ D6.观察下列各图,并阅读图形下面的文字.像这样,10条直线相交,最多可形成的交点的个数是().A.40B.45C.50D.55解析▶(法一)n+1(n N∈*)条直线相交,当n= … k …时,最多可形成的交点个数分别是1,1+2,1+2+ … +2+3+…+k ….∴10条直线相交,最多可形成的交点的个数是1+2+…+9=45.(法二)设n(n≥ n∈N*)条直线相交,最多可形成的交点个数为a n,则--…-累加得a10-a2=2+3+…+9,∴a10=1+2+3+…+9=45.故选B.答案▶ B7.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为().A.B. 00C. 00D.解析▶由题意知这匹马每日所走的路程成等比数列,设该数列为{a n},则公比q=,前7项和S7=700.由等比数列的求和公式得--=700,解得a1= 00,故选B.答案▶ B8.已知等差数列{a n},{b n}的前n项和分别为S n,T n,且=,则0=().A. 0B.C.D.解析▶(法一)设S n=5n2+2n,则T n=n2+3n.当n=1时,a1=7;当n≥ 时,a n=S n-S n-1=10n-3.∵a1=7符合上式,∴a n=10n-3.同理b n=2n+2.∴0= 0 .故选A.(法二)由=--,得0==== 0 .故选A.答案▶ A9.已知数列{a n}的通项公式为a n=,若数列{a n}为递减数列,则实数k的取值范围为().A.(3,+∞)B.(2,+∞)C.(1,+∞)D.(0,+∞)解析▶因为a n+1-a n=-=--,所以由数列{a n}为递减数列知,对任意n N∈*,a n+1-a n=--<0,所以k>3-3n对任意n N∈*恒成立,所以k∈(0 +∞).故选D.答案▶ D二、填空题10.在等比数列{a n}中,若a1=,a4=-4,则|a1|+|a2|+…+|a n|= .解析▶设等比数列{a n}的公比为q,则a4=a1q3,代入数据得q3=-8,所以q=-2.又等比数列{|a n|}的公比为|q|=2,所以|a n|=×2n-1,所以|a1|+|a2|+|a3|+…+|a n|=(1+2+22+…+2n-1)=(2n-1)=2n-1-.答案▶2n-1-11.设等差数列5, 0,, 0 …的前n项和为S n,则当S n最大时,n= .解析▶(法一)设该等差数列为{a n},∵公差d= 0-5=-,a1=5,∴a n=5+(n-1)×-=-+ 0.要使S n最大,则00 即- 00- ( ) 00解得 ≤n≤ .又n∈N*,∴ =7或n=8.(法二)∵公差d= 0-5=-,首项为5, ∴S n=5n+(- )×-=-n2+n=--+.∴当n 取最接近 的整数时,S n 最大,即当n=7或n=8时,S n 最大.答案▶ 7或812.在计算机语言中,有一种函数y=INT(x )叫作取整函数,它表示不超过x 的最大整数,如INT(0.9)=0,INT(3.14)=3.已知 =0. ·8571 ·,令a n =INT 0 ,b 1=a 1,b n =a n -10a n-1(n>1且n ∈N *),则b 2019= .解析▶ 依题意得a 1=2,a 2=28,a 3=285,a 4=2857,a 5=28571,a 6=285714,a 7= … 所以b 1=a 1=2.又b n =a n -10a n-1,所以b 2=8,b 3=5,b 4=7,b 5=1,b 6=4,b 7= … 可知数列{b n }是周期为6的周期数列.而2019=336×6+3,所以b 2019=b 3=5.答案▶ 5三、解答题13.已知数列{a n }的前n 项和为S n ,且S n =a n+1-2,a 1=2.(1)证明{a n }是等比数列,并求其通项公式;(2)若数列{b n }满足 - · - ·…· - = (n ∈N *),证明:{b n }是等差数列. 解析▶ (1)当n ≥ 时,由S n =a n+1-2,得S n-1=a n -2,两式相减,得a n+1=2a n ,即=2. 又S 1=a 2-2,a 1=2,∴a 2=S 1+2=4,满足=2, ∴=2对任意的n ∈N *都成立. ∴{a n }是首项为2,公比为2的等比数列.∴a n =2n .(2)∵ - · - ·…· - =, ∴ … - = · ,∴2[(b 1+b 2+…+b n )-n ]=n ·b n , ①∴2[(b 1+b 2+…+b n+1)-(n+1)]=(n+1)b n+1, ②由②-①得2(b n+1-1)=(n+1)b n+1-nb n ,即(n-1)b n+1-nb n +2=0, ③∴ b n+2-(n+1)b n+1+2=0,④由④-③得nb n+2-2nb n+1+nb n=0, ∴b n+2-2b n+1+b n=0,即b n+2-b n+1=b n+1-b n(n∈N*),∴是等差数列.。
高考数学试卷压轴题
高考数学试卷压轴题
1.一边长度为10cm 的正方形铁皮,四个角各剪去边长为( x ) 的小正方形后,折成一个
无盖的容器,试问:如何选择( x ) 使得容器的容积最大?
2.设某市某种疾病的患病率为( p ),市民们通过疾病检测的阳性概率为0.05。
某市民在
检测结果为阳性的情况下,重新检测的阳性概率提高到0.1。
求该市民患病的概率。
3.已知函数( f(x) = x^3 - 3x^2 + 4x ) 在区间([-2, 3]) 上取得极值。
求函数在该区间上的
最大值和最小值,并求出取得最大值和最小值时的( x ) 值。
4.某物体在空气中自由落体,已知其下落高度( h(t) = 40t - 4.9t^2 ),其中( t ) 为时间
(s),求该物体自由落体的最大高度以及达到最大高度时的时间。
高考数学压轴题精选
高考数学压轴题精选1、已知等差数列{an}的前n项和为Sn=n²-n+1,求a1和公差d。
2、在坐标平面内,过点A(1,2)且与x轴夹角为α的直线l1,与过点B(-3,4)且与x轴夹角为β的直线l2相交于点C。
求证:α-β=90°。
3、已知函数f(x)=ax²+bx+c,其中a,b,c均为正实数。
若f(1)=1,f(2)=4,f(3)=9,求f(4)的值。
4、已知函数f(x)=x³-3x²+3x-1,求函数f(x)的单调递增区间和单调递减区间。
5、已知函数f(x)=ax²+bx+c,其中a,b,c均为实数,且a≠0。
若对于任意的x,均有f(x)+f'(x)>0,求a的取值范围。
6、已知函数f(x)=log₃(2x+1),求f(2)的值。
7、在平面直角坐标系中,点A的坐标为(2,-1),点B的坐标为(-3,4)。
若点C在x轴上且满足AC=BC,求点C的坐标。
8、若函数f(x)=x³+3x²+5x+k能被(x-2)整除,求k的值。
9、已知函数f(x)=a|x-h|+k,其中a,h,k为常数,且a>0。
若图像过点(3,4),且在x=1处取得最大值,求a,h,k的值。
10、已知函数f(x)=x³-3x²+3x-1,求f(x)的零点和极值点。
11、已知函数f(x)=sin(nx+π/6)+cos(nx-π/3),其中n为正整数,求函数f(x)的周期。
12、已知正整数n的二进制表示中有3个1,求n的十进制表示的所有可能值。
13、已知函数f(x)=a³x³+3ax²-6x,其中a为常数,若f(x)在区间[1,2]上的平均值为2,求a的值。
高考数学压轴题精选100题汇总(含答案)
7. 已知动圆过定点 P(1,0),且与定直线 L:x=-1 相切,点 C 在 l 上. (1)求动圆圆心的轨迹 M 的方 程; (2)设过点 P,且斜率为 3 的直线与曲线 M 相交于 A, B 两点. (i)问:△ABC 能否为正三角形?若能,求点 C 的坐标;若不能,说明理由 (ii)当△ABC 为钝角三角形时,求这种点 C 的纵坐标的取值范围.
1
1
n 1 1
(Ⅱ)已知各项不为零的数列an 满足 4Sn f ( ) 1 ,求证: ln
;
an
an1
n
an
(Ⅲ)设 bn 1 , Tn 为数列bn 的前 n 项和,求证: T2008 1 ln 2008 T2007 .
ba b a
2
(1)求椭圆的方程;
(2)若直线 AB 过椭圆的焦点 F(0,c),(c 为半焦距),求直线 AB 的斜率 k 的值;
(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
5.已知数列{an}中各项为: 12、1122、111222、……、111 22 2 ……
n
T 2n 1 .
n
3
26. 对于函数 f (x) ,若存在 x0 R ,使 f (x0 ) x0 成立,则称 x0 为 f (x) 的不动点.如果函数
f (x) x2 a (b, c N*) 有且仅有两个不动点 0 、 2 ,且 f (2) 1 .
bx c
2
(Ⅰ)试求函数 f (x) 的单调区间;
a2 a3
an1 3
14.已知函数gx a2 x3 a x 2 cxa 0,
32
(I)当a 1 时,若函数 gx在区间1,1上是增函数,求实数c的取值范围;
理科高考数学立体几何选择填空压轴题专练
立体几何选择填空压轴题专练A 组一、选择题1.(2018全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD【答案】A【解析】记该正方体为''''-ABCD A B C D ,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱'A A ,''A B ,''A D 与平面α所成的角都相等,如图,连接'AB ,'AD ,''B D ,因为三棱锥'''-A AB D 是正三棱锥,所以'A A ,''A B ,''A D 与平面''AB D 所成的角都相等,分别取''C D ,''B C ,'BB ,AB ,AD ,'DD 的中点E ,F ,G ,H ,I ,J ,连接EF ,FG .GH ,IH ,IJ ,IE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面''AB D 平行,且截正方体所得截面的面积最大,又2======EF FG GH IH IJ JE ,所以该正六边形的面积为26434⨯⨯=,所以α截此正方体所得截面面积的最大值为4,故选A . 2.如图,矩形ABCD 中, 2AB AD =, E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆(1A ∉平面ABCD ).若M 、O 分别为线段1A C 、DE 的中点,则在ADE ∆翻转过程中,下列说法错误的是( )A. 与平面1A DE 垂直的直线必与直线BM 垂直B. 异面直线BM 与1A E 所成角是定值C. 一定存在某个位置,使DE MO ⊥D. 三棱锥1A ADE -外接球半径与棱AD 的长之比为定值【答案】C【解析】取CD 的中点F ,连BF,MF,如下图:可知面MBF// 1A DE ,所以A 对。
高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学
高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。
1.1212ii+=-() A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为()A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是()4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=()A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,>的离心力为3,则其渐近线方程为()A .2y x =±B .3y x =±C .2y x =±D .3y x =± 6.在ABC △中,5cos2C =,1BC =,5AC =,则AB =() A .42B .30 C .29 D .257.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入()A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是() A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为()A .15BCD10.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是()A .4πB .2πC .43πD .π 11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=()A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为() A .23B .12C .13D .14 二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________. 16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
数学高考压轴题含答案
数学高考压轴题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.3.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .4.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.5.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.6.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.7.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828= 是自然对数的底数)参考答案:1.(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,∞+,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11lnln a a a a-=-,整理得到1ln 1a a a -=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,∞+上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =.综上,1a =.(2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数,所以()()min 010S x S b ==-<,而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x '<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,∞+上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,∞+上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,∞+上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e0x bx b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.2.(1)1-;(2)9.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ ∠=,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.(2)不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=,即tan 2α=-,2tan 0αα-=,解得tan α,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以103P x -=,P y=53,同理可得,103Q x +=,Q y=53-.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d =,故PAQ △的面积为11623⨯=3.(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()ln 1ln n n +-的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有<整理得到:()ln 1ln n n +-()ln 2ln1ln 3ln 2ln 1ln n n +-+-+++- ()ln 1n =+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.4.(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b ,∴222244c a b a =+==,∴1a =,∴b =∴C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为直线QM ,∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==--,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283kx ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.5.(1)y x=(2)()g x 在[0,)+∞上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,由第二问结论可知()m x 在[0,+∞)上单调递增,即得证.(1)解:因为()e ln(1)x f x x =+,所以()00f =,即切点坐标为()0,0,又1()e (ln(1))1xf x x x=+++',∴切线斜率(0)1k f '==∴切线方程为:y x =(2)解:因为1()()e (ln(1))1xg x f x x x=++'=+,所以221()e (ln(1))1(1)xg x x x x =++++',令221()ln(1)1(1)h x x x x =++-++,则22331221()01(1)(1)(1)x h x x x x x +=-+=>++++',∴()h x 在[0,)+∞上单调递增,∴()(0)10h x h ≥=>∴()0g x '>在[0,)+∞上恒成立,∴()g x 在[0,)+∞上单调递增.(3)解:原不等式等价于()()()(0)f s t f s f t f +->-,令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,∵()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+,e e ()e ln(1)e ln(1)()()11x t x x tx m x x t x g x t g x x t x++=++++-=+-++'+,由(2)知1()()e (ln(1))1xg x f x x x=++'=+在[)0,∞+上单调递增,∴()()g x t g x +>,∴()0m x '>∴()m x 在()0,∞+上单调递增,又因为,0x t >,∴()(0)m x m >,所以命题得证.6.(1)11;(2)5.【解析】【分析】(1)设,sin )Q θθ是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =⋅+,由柯西不等式即可求出最小值.(1)设,sin )Q θθ是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ θθθθθ⎛⎫=+-=--=-+≤⎭+⎪⎝,当且仅当1sin 11θ=-时取等号,故||PQ (2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=-⎪+⎪⎪⎨⎪=-⎛⎫⎪+ ⎪⎪⎝⎭⎩,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1C D x CD x k x =-=+-2=35161656565231555k =⋅=≥=+,当且仅当316k =时取等号,故CD 的最小值为5.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.7.(1)()f x 的减区间为e 02⎛⎫⎪⎝⎭,,增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.(1)()22e 12e 22xf x x x x -'=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02⎛⎫⎪⎝⎭,,()f x 的增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+= ⎪⎝⎭,设()()21e e ln 22g x x a x b x x x ⎛⎫=---+ ⎪⎝⎭,则()()22321e 1e 1e22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭()()31e x x a x =---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+< ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+> ⎪⎝⎭,整理得到:12e a b <+且()e ln 2b a f a a >+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a ⎛⎫⎛⎫---<-+-+=-- ⎪ ⎪⎝⎭⎝⎭,设()3e ln 22u a a a =--,则()2e-202au a a '=<,故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+> ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+< ⎪⎝⎭,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =∈,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2ea at t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e ,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea at t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎝⎭⎝⎭,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-⨯-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k kk ϕ⎛⎫'=--> ⎪⎝⎭-,设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>,故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m ω---+-+'=>>++,所以()m ω在()0,1为增函数,故()()10m ωω<=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。
全国甲卷(理科)-2022年全国高考数学压轴题解读
2022年全国统一高考数学试卷(理科)(甲卷)压轴真题解读11.设函数()sin()3f x x πω=+在区间(0,)π恰有三个极值点、两个零点,则ω的取值范围是()A .5[3,13)6B .5[3,19)6C .13(6,8]3D .13(6,196【答案】C【解析】当0ω<时,不能满足在区间(0,)π极值点比零点多,所以0ω>;函数()sin()3f x x πω=+在区间(0,)π恰有三个极值点、两个零点,(33x ππω+∈,3πωπ+,∴5323ππωππ<+,求得13863ω<,故选:C .【解后反思】1.研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.2.方程根的个数可转化为两个函数图象的交点个数.12.已知3111,cos ,4sin 3244a b c ===,则()A .c b a >>B .b a c>>C .a b c>>D .a c b>>【答案】A【解析】因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>,故选:A【规律总结】1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小.2.与抽象函数有关的不等式,要充分挖掘条件关系,恰当构造函数;题目中若存在f (x )与f ′(x )的不等关系时,常构造含f (x )与另一函数的积(或商)的函数,与题设形成解题链条,利用导数研究新函数的单调性,从而求解不等式.16.已知ABC ∆中,点D 在边BC 上,120ADB ∠=︒,2AD =,2CD BD =.当ACAB取得最小值时,BD =.1【解析】设BD x =,2CD x =,在三角形ACD 中,2244222cos60b x x =+-⋅⋅⋅︒,可得:22444b x x =-+,在三角形ABD 中,22422cos120c x x =+-⋅⋅⋅︒,可得:2224c x x =++,要使得ACAB 最小,即22b c 最小,222244412432411b x x c x x x x -+==-+++++,其中311x x +++,此时224b c-,当且仅当1x +=时,即1x =-时取等号,【易错】忽视基本不等式成立的条件20.设抛物线2:2(0)C y px p =>的焦点为F ,点(,0)D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,||3MF =.(1)求C 的方程;(2)设直线MD ,ND 与C 的另一个交点分别为A ,B ,记直线MN ,AB 的倾斜角分别为α,β.当αβ-取得最大值时,求直线AB 的方程.【命题意图】考查抛物线方程的求法、直线与抛物线位置关系的应用、运算求解能力,属难题.【解析】(1)当x p =时,222y p =,得M y =,可知||MD =,||2p FD =.则在Rt MFD ∆中,222||||||FD DM FM +=,得22()92p +=,解得2p =.则C :24y x =;(2)要使αβ-取得最大值,则tan()αβ-最大,且知当直线MN 的斜率为负时,αβ-为正才能达到最大,又tan tan tan()1tan tan αβαβαβ--=+,设1(M x ,1)y ,2(N x ,2)y ,3(A x ,3)y ,4(B x ,4)y ,由(1)可知(1,0)F ,(2,0)D ,则1212221212124tan 44MN y y y y k y y x x y y β--====-+-,又N 、D 、B 三点共线,则ND BD k k =,即24240022y y x x --=--,∴242224002244y y y y --=--,得248y y =-,即428y y =-;同理由M 、D 、A 三点共线,得318y y =-.则1234124tan 2()y y y y y y α==+-+.由题意可知,直线MN 0,不妨设:1(0)MN l x my m =+<,由241y xx my ⎧=⎨=+⎩,得2440y my --=,124y y m +=,124y y =-,则41tan 4m m β==,41tan 242m m α-==-⨯,则1112tan()111122m m m m m mαβ---==+⋅+,可得当2m =时,tan()αβ-最大,αβ-最大,此时AB 的直线方程为33344()y y x x y y -=-+,即34344()0x y y y y y -++=,又123412128()888y y y y m y y y y -++=--===-,34128816y y y y --=⋅=-,AB ∴的方程为4160x +-=,即40x +-=.21.已知函数()xe f x lnx x a x=-+-.(1)若()0f x ,求a 的取值范围;(2)证明:若()f x 有两个零点1x ,2x ,则121x x <.【命题意图】考查利用导函数研究函数单调性,即构造函数证明不等式恒成立问题,属较难题.【解析】(1)()f x 的定义域为(0,)+∞,(1)1()(1)()1x x e x e x x f x x x x-+-'=-+=,令()0f x '>,解得1x >,故函数()f x 在(0,1)单调递减,(1,)+∞单调递增,故()min f x f =(1)1e a =+-,要使得()0f x 恒成立,仅需10e a +-,故1a e +,故a 的取值范围是(-∞,1]e +;(2)证明:由已知有函数()f x 要有两个零点,故f (1)10e a =+-<,即1a e >+,不妨设1201x x <<<,要证明121x x <,即证明211x x <,101x << ,∴111x >,即证明:2111x x <<,又因为()f x 在(1,)+∞单调递增,即证明:211()()f x f x <⇔111()()f x f x <,构造函数1()()()h x f x f x=-,01x <<,12221(1)()11()()()xx x xe x e x h x f x f x x x-+--'='+'=,令121()xxk x xe x e x =+--,01x <<,12211()(1)20x x k x x e x e x x'=++++>,()k x k <(1)0=,所以()k x 在(0,1)上递增,又因为10x -<,20x >,故()0h x '>在(0,1)恒成立,故()h x 在(0,1)单调递增,又因为h (1)0=,故()h x h <(1)0=,故111()()f x f x <,即121x x <.得证.【方法总结】利用导数求函数的零点常用方法(1)构造函数g (x ),利用导数研究g (x )的性质,结合g (x )的图象,判断函数零点的个数.(2)利用零点存在定理,先判断函数在某区间有零点,再结合图象与性质确定函数有几个零点.压轴模拟专练1.已知0x 是函数()12sin cos 3f x x x x =-的一个极值点,则20tan x 的值是()A .1B .12C .37D .57【答案】D【解析】()2001112cos2,cos22cos 1366f x x x x =-∴=∴-=',∴207cos 12x =,∴22005sin 1cos 12x x =-=,∴220020sin 5tan cos 7x x x ==。
2021年全国高考数学全国乙卷(理)-压轴题
绝密★启用前2021年普通高等学校招生全国统一考试数学试题(乙卷·理科)压轴题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上11.设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ,则C 的离心率的取值范围是( ) A.,1) B .1[2,1)C .(0D .(0,1]2本题考查了椭圆的方程和性质,考查了运算求解能力和转化与化归思想,属于中档题. 答案:C解:点B 的坐标为(0,)b ,因为C 上的任意一点P 都满足||2PB b ,所以点P 的轨迹可以看成以B 为圆心,2b 为半径的圆与椭圆至多只有一个交点, 即22222221()4x y a b x y b b ⎧+=⎪⎨⎪+-=⎩至多一个解,消去x ,可得222222230b a y by a b b--+-=, ∴△22222244(3)0b a b a b b-=-⋅⋅-, 整理可得4224440b a b a -+,即222(2)0a b -, 解得222a b =,e ∴==,故e的范围为,故选:C . 点评:解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系; (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.12.设2 1.01a ln =, 1.02b ln =,1c ,则( ) A .a b c <<B .b c a <<C .b a c <<D .c a b <<本题考查了不等式的大小比较,导数和函数的单调性和最值的关系,考查了转化思想,属于难题. 答案:B解:2 1.01 1.0201a ln ln ==, 1.02b ln =,a b ∴>,令()2(1)1)f x ln x =+-,01x <<,t =,则1t <<214t x -=,223()2()12(3)1244t g t ln t ln t t ln +∴=-+=+-+-,2222443(1)(3)()10333t t t t t g t t t t ----∴'=-==->+++,()g t ∴在(1上单调递增,()g t g ∴>(1)241240ln ln =-+=,()0f x ∴>,a c ∴>,同理令()(12)1)h x ln x =+-,t ,则1t <<214t x -=,221()()1(1)122t t ln t ln t t ln ϕ+∴=-+=+-+-,2222(1)()1011t t t t t ϕ--∴'=-=<++,()t ϕ∴在(1上单调递减, ()t ϕϕ∴<(1)21120ln ln =-+-=, ()0h x ∴<,c b ∴>,a c b ∴>>.故选B .16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).2图①图③图②图④图⑤考查三视图,考查直观想象,逻辑推理能力 答案:②⑤或③④解:根据“长对正,高平齐,宽相等”及图中数据,可知②③只能是侧视图,④⑤只能是俯视图,于是可得正确答案为②⑤或③④若为②⑤,则如图1;若为③④,则如图2.20.己知函数()()f x ln a x =-,已知0x =是函数y xf =()x 的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.本题考查了导数的综合应用,主要考查了利用导数研究函数的极值问题,利用导数证明不等式问题,此类问题经常构造函数,转化为证明函数的取值范围问题,考查了逻辑推理能力与化简运算能力,属于难题. 解:(1)由题意,()f x 的定义域为(,)a -∞, 令()()g x xf x =,则()()g x xln a x =-,(,)x a ∈-∞, 则1()()()xg x ln a x x ln a x a x a x--'=-+⋅=-+--, 因为0x =是函数()y xf x =的极值点,则有()0g x '=,即0lna =,所以1a =, 当1a =时,1()(1)(1)111x g x ln x ln x x x--'=-+=-++--,且(0)0g '=, 因为22112()01(1)(1)x g x x x x ---''=+=<---, 则()g x '在(,1)-∞上单调递减, 所以当(,)x a ∈-∞时,()0g x '>, 当(0,1)x ∈时,()0g x '<,所以1a =时,0x =时函数()y xf x =的一个极大值. 综上所述,1a =;(2)证明:由(1)可知,()(1)xf x xln x =-, 要证()1()x f x xf x +<,即需证明(1)1(1)x ln x xln x +-<-,因为当(,)x a ∈-∞时,(1)0xln x -<, 当(0,1)x ∈时,(1)0xln x -<,所以需证明(1)(1)x ln x xln x +->-,即(1)(1)0x x ln x +-->, 令()(1)(1)h x x x ln x =+--, 则1()(1)1(1)1h x x ln x x-'=-⋅+---,所以(0)0h '=,当(,0)x ∈-∞时,()0h x '<, 当(0,1)x ∈时,()0h x '>, 所以0x =为()h x 的极小值点,所以()(0)0h x h >=,即(1)(1)x ln x xln x +->-, 故(1)1(1)x ln x xln x +-<-,所以()1()x f x xf x +<.21.已知抛物线2:2(0)C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4. (1)求p ;(2)若点P 在M 上,PA ,PB 为C 的两条切线,A ,B 是切点,求PAB ∆面积的最大值. 本题考查圆锥曲线的综合运用,考查直线与抛物线的位置关系,考查运算求解能力,属于中档题. 解:(1)点(0,)2p F 到圆M 上的点的距离的最小值为||14142pFM -=+-=,解得2p =;(2)由(1)知,抛物线的方程为24x y =,即214y x =,则12y x '=, 设切点1(A x ,1)y ,2(B x ,2)y ,则易得221122:,:2424PA PB x x x x l y x l y x =-=-,从而得到1212(,)24x x x x P +,设:AB l y kx b =+,联立抛物线方程,消去y 并整理可得2440x ky b --=, ∴△216160k b =+>,即20k b +>,且124x x k +=,124x x b =-, (2,)P k b ∴-,||AB 2p AB d →=,∴3221||4()2PABS AB d k b ∆==+①, 又点(2,)P k b -在圆22:(4)1M x y ++=上,故221(4)4b k --=,代入①得,32212154()4PAB b b S ∆-+-=, 而[5p y b =-∈-,3]-,∴当5b =时,()PAB min S ∆=压轴题模拟1.(2021·广东汕头市·高三二模)已知椭圆C :2212x y +=的左、右焦点分别是1F 、2F ,过2F 的直线l 与C 交于A ,B 两点,设O 为坐标原点,若OE OA OB =+,则四边形AOBE 面积的最大值为( )A .1BCD .答案:B解:由已知得若OE OA OB =+,故四边形AOBE 是平行四边形,其面积是△OAB 面积的两倍,下面先求△OAB 的面积的最大值.由椭圆的方程的椭圆的右焦点坐标为(1,0),设直线AB 的方程为1x ky =+,代入椭圆方程中并整理得:()222210,k yky ++-=()()()()22224+2181k k k ∆=-+⨯-=,111122OABA B S OF y y =-=⨯=△,t,OAB S tt ==≤+△,当1t =,即k =0,也就是直线AB 与x轴垂直时OAB 面积取得最大值为2,∴四边形AOBE 故选:B. 2.(2021·黑龙江大庆市·铁人中学高三一模(理))已知双曲线2222:1x y C a b-=(0a >,0b >)的左、右焦点分别为1F ,2F ,以坐标原点O 为圆心,以12F F为直径的圆交双曲线右支上一点M ,21sin MF F ∠≥,则双曲线C 的离心率的取值范围为() A .1e <≤B .12e <≤C .1e <≤D .13e <<答案:C解:∵M 是以O 为圆心,以12F F 为直径的圆与双曲线C 右支的交点,∴122F MF π∠=,∴222124c MF MF =+,1212tan MF MF F MF ∠=.∵122MF MF a -=,∴()222122221244MF MF c e a MF MF +==-22122222112222MF MF MF MF MF MF MF MF +=-+. ∵21sin 5MF F ∠≥,∴2212sin tan 2cos MF F MF F MF F ∠∠==≥∠. 设122MF t MF =≥,则2221211212t e t t t t+==+-++-, 令()1f t t t =+,()()()222211111t t t f t t t t +--'=-==,∴2t >时,()0f t '>,则()f t 在[)2,+∞上单调递增, ∴115222t t +≥+=,∴215e <≤,∴1e <≤故选:C.3.(2021·新余市第一中学高三模拟(理))已知0,4x π⎛⎫∈ ⎪⎝⎭,若222cos 2cos 1e xx a +=,cos cos 1e x x b +=,sin sin 1e x x c +=,则( ) A .a b c << B .a c b <<C .b c a <<D .c a b <<答案:A解:构造函数1(),(0,)x x f x x e +=∈+∞,则2(1)e ()0x x x xe x xf x e e -+'==-<, 所以函数()f x 在(0,)+∞上单调递减,因为0,4x π⎛⎫∈ ⎪⎝⎭,所以20sin cos 12cos 2x x x <<<<<<, 所以2(2cos )(cos )(sin )f f f x x x <<,所以a b c <<, 故选:A .4.(2021·山东济南市·高三一模)设2022ln 2020a =,2021ln 2021b =,2020ln 2022c =,则( ) A .a c b >> B .c b a >> C .b a c >> D .a b c >>答案:D解:令ln ()1xf x x =+且(0,)x ∈+∞,则211ln ()(1)x xf x x +-'=+, 若1()1lng x x x=+-,则在(0,)x ∈+∞上211()0g x x x '=--<,即()g x 单调递减,又1()0g e e =>,221()10g e e =-<,即201(,)x e e∃∈使0()0g x =, ∴在0(,)x +∞上()0<g x ,即()0f x '<,()f x 单调递减; ∴(2021)(2020)f f <,有ln 2021ln 202020222021<,即a b >,令ln ()1xm x x =-且(0,1)(1,)x ∈+∞,则211ln ()(1)x x m x x --'=-, 若1()1ln n x x x =--,则11()(1)n x x x'=-,即在(0,1)x ∈上()n x 单调递增,在(1,)x ∈+∞上()n x 单调递减, ∴()(1)0n x n <=,即()0m x '<,()m x 在(1,)x ∈+∞上递减, ∴(2022)(2021)m m <,有ln 2022ln 202120212020<,即b c >,故选:D.5.(2021·湖北高三一模(理))现有编号为①、②、③的三个三棱锥(底面水平放置),俯视图分别为图1、图2、图3,则至少存在....一个侧面与此底面互相垂直的三棱锥的所有编号是___答案:①②解:编号为①的三棱锥,其直观图可能是①,侧棱VC ⊥底面ABC ,则侧面VAC ⊥底面ABC ,满足题意; 编号为②的三棱锥,其直观图可能是②,侧面PBC ⊥底面ABC ,满足题意; 编号为③的三棱锥,顶点的投影不在底面边上(如图③),不存在侧面与底面垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年包九中数学压轴模拟卷一(理科)
(试卷总分150分 考试时间120分钟)
第Ⅰ卷 (选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的.
1.已知全集{2}x M x y ==,集合2
{|lg(2)}N x y x x ==-,则M
N =( )
A .(0,2)
B .),2(+∞
C .),0[+∞
D .),2()0,(+∞⋃-∞ 2. 在复平面内,复数31
1z i i
=
--,则复数z 对应的点位于 ( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 3.关于直线m ,n 与平面 α,β,有下列四个命题:
①m ∥α,n ∥β 且 α∥β,则m ∥n ; ②m ⊥α,n ⊥β 且 α⊥β,则m ⊥n ; ③m ⊥α,n ∥β 且 α∥β,则m ⊥n ; ④m ∥α,n ⊥β 且 α⊥β,则m ∥n .
其中真命题的序号是( ). A .①②
B .②③
C .①④
D .③④
4.已知)(x g 为三次函数cx ax x a x f ++=
23
3
)(的导函数,则函数)(x g 与)(x f 的图像可能是( )
5.已知数列12463579{}1(),18,log ()n n n a a a n N a a a a a a ++=+∈++=++满足且则等于( ) A .2 B .3 C .—3 D .—2
6.执行右面的程序框图,如果输出的是341a =,那么判断框( ) A .4?k < B .5?k < C .6?k < D .7?k <
7. 根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20—80 mg/100ml (不含80)之间,属于酒后驾车,处暂扣一个月以上三个月以下驾驶证,并处200元以上500元以下
罚款;血液酒精浓度在80mg/100ml (含80)以上时,属醉酒驾车,处十五日以下拘留和暂扣三个月以上六个月以下驾驶证,并处500元以上2000元以下罚款.
据《法制晚报》报道,2013年8月15日至8 月28日,全国查处酒后驾车和醉酒驾车共 28800人,如图1是对这28800人酒后驾车血
液中酒精含量进行检测所得结果的频率分布 直方图,则属于醉酒驾车的人数约为( ) A .2160 B .2880 C .4320 D .8640
8.—个空间几何体的三视图如图所示,则该几何体的表面积为( )
C .48
D . 80
9. 已知函数()f x 在x R ∈上恒有()()f x f x -=,若对于0x ≥,都有(2)()f x f x +=,且当[0,2)x ∈时,
2()log (1)f x x =+,则(2012)(2013)f f -+的值为( )
A .2-
B .1
C .1-
D .2
10.在△ABC 中,a 、b 、c 分别为三个内角A 、B 、C 所对的边,设向量m =(b -c ,c -a),n =(b ,c +a),若向量m ⊥n ,则角A 的大小为( )
A .π3
B .π6
C .π
2 D .2π3
11.给出定义:若函数()f x 在D 上可导,即()f x '存在,且导函数()f x '在D 上也可导,则称()f x 在D 上
存在二阶导函数,记()()
()f x f x ''''=,若()0f x ''<在D 上恒成立,则称()f x 在D 上为凸函数.以下四
个函数在0,
2π⎛⎫
⎪⎝⎭
上不是凸函数的是( ) A .()sin cos f x x x =+ B .()ln 2f x x x =- C .3
()21f x x x =-+- D .()x
f x xe -=-
12.过双曲线22
221(0,0)x y a b a b
-=>>的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交
于点B ,若2FB FA =,则此双曲线的离心率为( )
A B C .2 D
第Ⅱ卷 (非选择题 共90分)
二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.
13.在A B C △
中,3
A π
∠=,3B C =,A
B ,则
C ∠= . 14.若c b a ,,是直角三角形ABC ∆的三边的长(c 为斜边),则圆4:2
2
=+y x C 被直线0:=++c by ax l 所截得的弦长为 .
15.若x ,y 满足约束条件⎩⎪⎨⎪
⎧
x +y ≥1,x -y ≥-1,
2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围
是 .
16. 已知函数,0
()2,0x e x f x x x ⎧=⎨-
<⎩≥,则关于x 的方程()[]0
=+k x f f 给出下列四个命题: ①存在实数k ,使得方程恰有1个实根;
②存在实数k ,使得方程恰有2个不相等的实根; ③存在实数k ,使得方程恰有3个不相等的实根; ④存在实数k ,使得方程恰有4个不相等的实根.
其中正确命题的序号是 (把所有满足要求的命题序号都填上).
三.解答题:本大题共8小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)
已知等差数列}{n a 的公差不为零,且53=a ,521,,a a a 成等比数列. (Ⅰ)求数列}{n a 的通项公式;
(Ⅱ)若数列}{n b 满足n n n a b b b b =++++-1
3221222 ,求数列}{n b 的前n 项和n T .
18. (本小题满分12分)
某种家用电器每台的销售利润与该电器的无故障时间T (单位:年)有关,若T ≤1,则销售利润为0元;若1<T ≤3,则销售利润为100元,若T>3,则销售利润为200元.设每台该种电器的无故障使用时间T ≤1,1<T ≤3,
T>3这三种情况发生的概率分别为123,,P P P ,又知12,P P 为方程25x 2-15x+a=0的两根,且23P P =.
(Ⅰ)求123,,P P P 的值;
(Ⅱ)记ξ表示销售两台这种家用电器的销售利润总和,求ξ的分布列及数学期望. 19. (本小题满分12分)
在四棱锥P ABCD -中,底面ABCD 是直角梯形,AB ∥CD ,
90=∠ABC ,2AB PB PC BC CD ====,ABCD PBC 平面平面⊥
(Ⅰ)在棱PB 上是否存在点M 使得CM ∥平面PAD ?若存在, 求
PM
PB
的值;若不存在,请说明理由. (Ⅱ)求平面PAD 和平面BCP 所成二面角(小于90°)的大小; 20.(本小题满分12分)
已知点M 是椭圆C :22
221x y a b +=(0)a b >>上一点,12,F F 分别为C
的左右焦点,12||F F =,
01260F MF ∠=,12F MF ∆
. (1)求椭圆C 的方程;
(2)设过椭圆右焦点2F 的直线l 和椭圆交于两点,A B ,是否存在直线l ,使得△2OAF 与 △2OBF 的面积比值为2?若存在,求出直线l 的方程;若不存在,说明理由.
P
A
B
C D
21. (本小题满分12分)
已知函数)R (ln )(2
∈+=a x ax x f
(Ⅰ)当2=a 时,求)(x f 在区间],[2
e e 上的最大值和最小值;
(Ⅱ)如果函数)(),(),(21x f x f x g 在公共定义域D 上,满足)()()(21x f x g x f <<, 那么就称)(x g 为)(),(21x f x f 的“伴随函数”.已知函数
x a ax x a x f ln )1(2)21()(221-++-=,ax x x f 22
1
)(22+=.若在区间),1(+∞上,
函数)(x f 是)(),(21x f x f 的“伴随函数”,求a 的取值范围.
请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号。
22.(本小题满分10分)
如图,已知⊙O 的半径为1,MN 是⊙O 的直径,过M 点作⊙O 的切线AM ,C 是AM 的中点,AN 交⊙O 于B 点,若四边形BCON 是平行四边形;
(Ⅰ)求AM 的长; (Ⅱ)求sin ∠ANC .
23. (本小题满分10分)
已知曲线C 的极坐标方程为θρcos 4=,直线l 的参数方程是:⎪⎪⎩
⎪⎪⎨⎧+=+-=t y t x 22522
5 为参数)t (. (Ⅰ)求曲线C 的直角坐标方程,直线l 的普通方程; (Ⅱ)将曲线C 横坐标缩短为原来的2
1
,再向左平移1个单位,得到曲线曲线1C ,求曲线1C 上的点到直线l 距离的最小值. 24. (本小题满分10分)
已知函数a x x f -=)(.
(I )当2=a 时,解不等式14)(--≥x x f ; (II )若1)(≤x f 的解集为{
})0,0(21
1,20>>=+
≤≤n m a n
m x x ,求证:42≥+n m .。