五年级奥数下册:不规则图形面积计算习题
小学奥数:不规则图形的面积.专项练习
本讲主要通过求一些不规则图形的面积,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求面积的技巧,提高学生的观察能力、动手操作能力、综合运用能力.【例 1】 你有什么好的方法计算所给图形的面积呢?(单位:厘米)3994399439943994图1 图2 图3【巩固】如图是学校操场一角,请计算它的面积(单位:米)30203040【巩固】如右图所示,图中的ABEFGD 是由一个长方形ABCD 及一个正方形CEFG 拼成的,线段的长度如图所示(单位:厘米),求ABEFGD 的周长和面积. 例题精讲4-2-6.不规则图形的面积F【巩固】求图中五边形的面积.6453【例 2】这是一个楼梯的截面图,高280厘米,每级台阶的宽和高都是20 厘米.问,此楼梯截面的面积是多少?【巩固】如图是一个楼梯的截面图,每级台阶的宽和高都是20厘米.这楼梯的截面积是多少平方厘米?【例 3】有一块菜地长16米,宽8米,菜地中间留了宽2米的路,把菜地平均分成四块,每一块地的面积是多少?【例 4】有10张长3厘米,宽2厘米的纸片,将它们按照下图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?【例 5】下图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积.【巩固】两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积.FBA【例 6】 如图,李大伯给一块长方形田地喷药,喷药器所能喷洒的范围是以李大伯的落脚点为中心,边长2米的正方形区域,他从图中的A 点出发,沿最短路线(图中虚线)走,走过88米到达B 点,恰好把这块田地全部喷完,这块田地的面积是多少平方米?BA 1米1米【例 7】 右图中甲的面积比乙的面积大__________平方厘米.6厘米8厘米4厘米【例 8】 右图中,矩形ABCD 的边AB 为4厘米,BC 为6厘米,三角形ABF 比三角形EDF的面积大9平方厘米,求ED 的长.AB CDE F【巩固】如图所示,4CA AB ==厘米,ABE △比CDE △的面积小2平方厘米,求CD 的长为多少厘米?ABE C D【巩固】如图,平行四边形ABCD 种,10BC cm =,直角三角形ECB 的边8EC cm =,已知阴影部分的总面积比三角形EFG 的面积大210cm ,求平行四边形ABCD 的面积.G FEDCBA【例 9】 如图,ABCD 是74⨯的长方形,DEFG 是102⨯的长方形,求BCO 与EFO 的面积差.O BC D GFE A【例 10】 有一个长方形菜园,如果把宽改成50米,长不变,那么它的面积减少680平方米,如果使宽为60米,长不变,那么它的面积比原来增加2720平方米,原来的长和宽各是多少米?680平方米2720平方米60【巩固】有一个长方形,如果宽减少2米,或长减少3米,则面积均减少24平方米,求这个长方形的面积?2【例 11】 一块长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?【例 12】 一个长方形,如果长减少5厘米,宽减少2厘米,那么面积就减少66平方厘米,这时剩下的部分恰好成为一个正方形,求原来长方形的面积?【巩固】一块长方形纸片,在长边剪去5cm,宽边剪去2cm后(如图),得到的正方形面积比原长方形面积少231cm.求原长方形纸片的面积.52【巩固】一个正方形,如果把它的相邻两边都增加6厘米,就可以得到一个新正方形,新正方形的面积比原正方形大120平方厘米.求原正方形的面积?66【例 13】一块正方形的钢板,先截去一个宽5分米的长方形,又截去一个宽8分米的长方形(如图),面积就比原来正方形减少181平方分米.原正方形的边长是多少分米?85【巩固】一张长方形纸片,先把长剪去8厘米,这时面积减少了72平方厘米,又把宽剪去5厘米,这时面积又减少了60平方厘米,原来这张长方形纸片的面积是多少平方厘米?5【巩固】如右图所示,在一个正方形上先截去宽11分米的长方形,再截去宽7分米的长方形,所得图形的面积比原正方形减少301平方分米.原正方形的边长是______分米.11【例 14】如图长方形被分成两部分,已知阴影面积比空白部分面积大34平方厘米,求阴影部分的面积.10cm【例 15】一张长方形纸片,把它的右上角往下折叠(如图甲),阴影部分面积占原纸片面积的27;再把左下角往上折叠(如图乙),乙图中阴影部分面积占原纸片面积的________(答案用分数表示).甲乙【巩固】折叠后,原平行四边形面积是折叠后图形面积的1.5倍.已知阴影部分面积之和为1,则重叠部分(即空白部分)的面积是多少?【巩固】如图,一张长方形纸片,长7厘米,宽5厘米.把它的右上角往下折叠,再把左下角往上折叠,未盖住的阴影部分的面积是多少平方厘米?5【例 16】如图,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?【例 17】如图所示,直角三角形中有一个长方形,求长方形的面积?44 4【例 18】一个边长为20厘米的正方形,依次连接四边中点得到第二个正方形,这样继续下去可得到第三个、第四个、第五个正方形.求第五个正方形的面积?【巩固】如图是由5个大小不同的正方形叠放而成的,如果最小的正方形(阴影部分)的周长是8,那么最大的正方形的边长是.第6题【巩固】图中有6个正方形,较小的正方形都由较大的正方形的4边中点连接而成.已知最大的正方形的边长为16厘米,那么最小的正方形的面积等于多少平方厘米?【例 19】已知图中大正方形的面积是22平方厘米,小正方形面积是多少平方厘米?【巩固】如图所示,外侧大正方形的边长是10cm,在里面画两条对角线、一个圆、两个正方形,阴影的总面积为226cm,最小的正方形的边长为多少厘米?【例 20】有一个边长为16厘米的正方形,连接每边的中点构成第二个正方形,再连接每边的中点构成第三个正方形,第四个正方形.求图中阴影部分的面积?【例 21】如图,边长为10的正方形中有一等宽的十字,其面积(阴影部分)为36,则十字中央的小正方形面积为.第2题【例 22】 下图大小两个正方形有一部分重合,两块没有重合的阴影部分面积相差是多少?(单位:厘米)6【巩固】如图所示,四个相叠的正方形,边长分别是5、7、9、11.问灰色区与黑色区的面积的差是多少?【例 23】 甲、乙、丙三个正方形,它们的边长分别是6、8、10厘米,乙的一个顶点在甲的中心上,丙的一个顶点在乙的中心上.这三个正方形的覆盖面积是多少平方厘米?108 6丙乙甲【巩固】将20张边长为10厘米的正方形纸片,按顺序一张一张地摆放在地板上,摆的时候,要求后摆的纸片必须有一个顶点与前一张的中心重合,且每一张只与其前一张和后一张有重合部分(右图表示已经摆好的5张).地板被这20张纸片所覆盖部分的面积是多少?【例 24】有2个大小不同的正方形A和B.如下左图所示的那样,在将B正方形的对角线的交点与A正方形的一个顶点相重叠时,相重叠部分的面积为A正方形面积的19.求A与B的边长之比.如果当按下右图那样,将A和B反向重叠的话,所重叠部分的面积是B的几分之几?左图右图【例 25】有一个正方形水池(图中阴影部分),在它的周围修一个宽是8米的草地,草地的面积为480平方米,求水池的边长?【巩固】一块长方形草坪(图中阴影部分)长是宽的2倍,它的四周围的总面积是34平方米的1米宽的小路.求草坪的面积是多少平方米?【例 26】如图所示,一个长方形广场的正中央有一个长方形的水池.水池长8米、宽3米.水池周围用边长为1米的方砖一圈一圈地向外铺.恰好铺了若干圈,共用了152块方砖,那么共铺了圈.水池【例 27】用四个相同的长方形拼成一个面积为2100cm的大正方形,每个长方形的周长是多少平方厘米?【巩固】如图所示,4个相同的长方形和一个小正方形拼成一个大的正方形,大正方形的面积是100平方分米,小正方形的面积是36平方分米,求一个小长方形的面积及周长.【例 28】四个完全相同的长方形拼成右图,大正方形的面积是l00平方分米,小正方形的面积是l6平方分米,求每个长方形的面积是多少?长方形的短边是多少分米?16【巩固】如图,4个相同的长方形和1个小正方形拼成一个大正方形,已知其中小正方形的面积为4平方厘米,大正方形的面积为400平方厘米,则其中长方形的长为厘米,宽厘米.第19题【例 29】街心花园里有一个正方形花坛,四周有一条宽1米的甬道(如图),如果甬道的面积是12平方米,那么中间花坛的面积是多少平方米?1米【巩固】在一个正方形的小花园周围,环绕着宽5米的水池,水池面积为300平方米,那么正方形花园的面积是多少平方米?5【巩固】有大、小两个长方形(如图),对应边的距离均为1cm,已知两个长方形之间部分的面积是216cm,且小长方形的长是宽的2倍,求大长方形的面积.A【例 30】已知大正方形比小正方形边长多4厘米,大正方形面积比小正方形面积大96平方厘米.问大、小正方形面积各是多少?【巩固】两个正方形的面积相差29cm,边长相差1cm.求两个正方形的面积和.C BA【巩固】有一大一小两个正方形,它们的周长相差20厘米,面积相差55平方厘米.小正方形的面积是多少平方厘米?【例 31】在一个正方形中放入一个四个顶点与大正方形相接的一个小正方形(如图),如果两个正方形的周长相差16厘米,面积相差96平方厘米,求小正方形的面积是多少平方厘米?(1)(2)c bca【例 32】用两块长方形纸片和一块正方形纸片拼成一个大正方形,长方形纸片面积分别为44平方厘米与28平方厘米,原正方形纸片面积是多少平方厘米?【例 33】计划修建一个正方形的花坛,并在花坛周围种上3米宽的草坪,草坪的面积为300平方米,那么修建这个花坛需要占地多少平方米?(1)(2)【巩固】有大、小两个长方形(右图),对应边的距离均为1厘米,已知两个长方形之间部分的面积是16平方厘米,且小长方形的长是宽的2倍,求大长方形的面积.【巩固】一块长方形的草坪(见图中阴影部分),长是宽的2倍,它的四周围的总面积是34平方米的1米宽的小路,求草坪的总面积是多少平方米?【例 34】一块正方形的苗圃(如右图实线所示),若将它的边长各增加30米(如图虚线所示),则面积增加9900平方米,问原来这块正方形苗圃的面积是多少平方米?3030【例 35】从一块正方形的玻璃板上锯下宽为0.5米的一个长方形玻璃条后,剩下的长方形的面积为5平方米,请问锯下的长方形玻璃条的面积等于多少?【巩固】从一个正方形的木板上锯下宽1m的一个长方形木条后,剩下的长方形面积为26m,问锯下的长方形木条面积是多少?【巩固】从一块正方形木板锯下宽为12米的一个木条以后,剩下的面积是6518平方米.问锯下的木条面积是多少平方米?【例 36】图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的面积大40平方厘米.求乙正方形的面积.【例 37】有一大一小两块正方形试验田,他们的周长相差40米,面积相差220平方米,那么小正方形试验田的面积是多少平方米?图a图b【例 38】 如图,边长是整数的四边形AFED 的面积是48平方厘米,FB 为8厘米.那么,正方形ABCD 的面积是 平方厘米.A BCDEF 488【例 39】 如图,一个正方形被分成4个小长方形,它们的面积分别是110平方米、15平方米、310平方米和25平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?【例 40】 长方形ABCD 的周长是30厘米,以这个长方形的每一条边为边长向外画正方形.已知这四个正方形的面积之和为290平方厘米,那么长方形ABCD 的面积是多少平方厘米?C 1D 1E 1A 1EBC DA【巩固】如图,长方形ABCD 的周长是16厘米,在它的每一条边上各画一个以该边为边长的正方形,已知这四个正方形的面积和是68平方厘米,求长方形ABCD 的面积?A B C D IH G FEAB C D【例 41】 一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道黑条,黑条宽都是2厘米,这条手帕白色部分的面积是多少?【例 42】 用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色的,其它地方铺白色的,如图所示.如果铺满这块地面共用101块黑色瓷砖,那么白色瓷砖用了多少块?图1图2【例 43】7个完全相同的长方形拼成了图中阴影部分,图中空白部分的面积是多少平方厘米?24【巩固】如图所示,7个完全相同的长方形拼成了图中的阴影部分,图中空白部分的面积是多少平方厘米?【例 44】如右图所示,在长方形ABCD中,放入六个形状大小相同的长方形(尺寸如图),图中阴影部分的面积是__________.B【例 45】 若干同样大小的长方形小纸片摆成了如图所示的图形.已知小纸片的宽是12厘米,问阴影部分的总面积是多少平方厘米?【例 46】 一个大长方形若能分割成若干个大小不同的小正方形,则称为完美长方形.下面一个长方形是由9个小正方形组成的完美长方形.图中正方形A 和B 的边长分别是7厘米和4厘米,那么这个完美长方形的面积分别是多少平方厘米?ABA BCDE FGH【巩固】如图:有一个矩形可以被分割为11个正方形,其中最小的正方形(阴影部分)面积为281cm ,请问这个矩形之面积为多少平方厘米?【巩固】图中的长方形被分割成6个正方形,已知中央小正方形的面积是1平方厘米,求原来长方形的面积.【巩固】9个边长分别为1、4、7、8、9、10、14、15、18的正方形拼成一个长方形,问这个长方形的长和宽是多少?并请画出这个长方形的拼接图.1518141094781【例 47】 图中数字分别表示两个长方形和一个直角三角形的面积,另一个三角形的面积是 .51215A 51215【例 48】 如图,一个矩形被分成八个小矩形,其中有五个矩形的面积如图中所示(单位:平方厘米),问大矩形的面积是多少平方厘米?1230201636G FEDC B AS 3S 2S 11230201636G FEDC B A【巩固】阳阳用四块小长方形恰好拼成了一个大的长方形,如图所示.现在知道其中三块长方形的面积分别为48平方厘米、24平方厘米、30平方厘米,那么,阴影部分的面积是多少?302448【巩固】如图,矩形ABCD 被分割成9个小矩形.其中有5个小矩形的面积如图所示.矩形ABCD 的面积为 .164221CBD A【例 49】 有红、黄、绿三块大小一样的正方形纸片,放在一个底面为正方形的盒内,它们之间相互叠合(见下图).已知露在外面的部分中,红色面积是20,黄色面积是14,绿色面积是10.求正方形盒底的面积.绿黄红绿黄红【例 50】 如图所示,在正方形ABCD 内,红色、绿色正方形的面积分别是48和12,且红、绿两个正方形有一个顶点重合.黄色正方形的一个顶点位于红色正方形两条对角线的交点,另一个顶点位于绿色正方形两条对角线的交点.那么黄色正方形的面积是 .DCBA绿黄红 312【巩固】如图所示,在正方形ABCD 中,红色,绿色正方形的面积分别是52和13,且红、绿两个正方形有一个顶点重合.黄色正方形的一个顶点位于红色正方形两条对角线的交点,另一个顶点位于绿色正方形两条对角线的交点,求黄色正方形面积.绿黄红D C BA【例 51】 如图,三个一样大小的正方形放在一个长方形的盒内,A 和B 是两个正方形的重叠部分,C 、D 、E 是空出的部分,每一部分都是矩形,它们的面积比是A :B :C :D :E =1:2:3:4:5,那么这个长方形的长与宽之比是________.【例 52】 如图如果长方形的面积为56平方厘米,且2MD =厘米、3QC =厘米、5CP =厘米、6BN =厘米,那么请你求出四边形MNPQ 的面积是多少厘米?CP2552PC【巩固】长方形的广告牌长为10米,宽为8米,A,B,C,D分别在四条边上,并且C 比A低5米,D在B的左边2米,四边形ABCD的面积是平方米.DCBADCBA【例 53】直角三角形PQR的直角边为5厘米,9厘米,问:图中三个正方形的面积之和比4个三角形的面积之和大多少?DFCCFD【例 54】如图所示,甲、乙、丙、丁四个长方形拼成一个正方形EFGH,中间阴影为正方形.已知甲、乙、丙、丁四个长方形面积的和是232cm,四边形ABCD的面积是220cm.⑴求正方形EFGH的边长?⑵求甲、乙、丙、丁四个长方形周长的总和?FEGDBABCDGH E Fhgfe d cba图1 图2 图3【例 55】 如图,平面上CDEF 是正方形,ABCD 是等腰梯形,它的上底23AD =厘米,下底35BC =厘米.求三角形ADE 的面积.FECB DAH 2H 1HADBCEF【例 56】 右图是由9个等边三角形拼成的六边形,已知中间最小的等边三角形的边长是1,问:这个六边形的周长是多少?【例 57】 把正三角形的每条边三等分,以各边的中间一段为边向外作小正三角形,得到一个六角形.再将这个六角形的六个”角”(即小正三角形)的两边三等分,又以它的中间段为边向外作更小的小正三角形,这样就得到如右图所示的图形.如果所作的最小的小正三角形的面积为1平方厘米,求如图中整个图形的面积.图a中中中大图b【例 58】 如图,长方形的面积是小于100的数.它的内部有三个边长是整数的正方形.正方形②的边长是长方形长的512,正方形①的边长是长方形宽的18.那么,图中阴影部分的面积是。
五年级奥数专题-不规则图形面积计算含解析
不规则图形面积计算我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算般我们称这样的图形为不规则图形那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
一、例题与方法指导例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10 厘米和12 厘米.求阴影部分的面积。
思路导航:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白三角形(△ ABG、△ BDE、△ EFG)的面积之和。
例2 如右图,正方形ABCD的边长为6 厘米,△ABE、△ADF 与四边形AECF的面积彼此相等,求三角形AEF的面积.思路导航:∵△ ABE、△ ADF与四边形AECF的面积彼此相等,∴四边形AECF的面积与△ ABE、△ ADF的面积都等于正方形1 ABCD的1。
3在△ ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=,2∴△ ECF的面积为2×2÷ 2=2。
所以S△AEF=S四边形AECF-S△ ECF=12-2=1(0 平方厘米)。
例3两块等腰直角三角形的三角板,直角边分别是10 厘米和6 厘米。
如右图那样重合.求重合部分(阴影部分)的面积思路导航:在等腰直角三角形ABC中∵AB=10∵EF=BF=AB-AF=10-6=,4∴阴影部分面积=S△ ABG-S△BEF=25-8=1(7 平方厘米)例4 如右图,A 为△ CDE的DE边上中点,BC=CD,若△ ABC阴影部分)面积为5平方厘米.求△ ABD及△ ACE的面积.思路导航:取BD 中点F,连结AF.因为△ ADF、△ ABF和△ ABC等底、等高,所以它们的面积相等,都等于5平方厘米.∴△ ACD的面积等于15 平方厘米,△ ABD的面积等于10平方厘米。
五年级奥数专题:不规则图形面积计算
不规则图形面积计算
实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
一、例题与方法指导
例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘
米和12厘米.求阴影部分的面积。
例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.
例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
例4 如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.
求△ABD及△ACE的面积.
B
C
二、巩固训练
1. 如右图,在正方形ABCD中,三角形ABE的面积是8平方厘米,它是三
角形DEC 的面积的4
5
,求正方形ABCD的面积。
2. 如右图,已知:S△ABC=1,AE=ED,BD=2
3
BC.求阴影部分的面积。
3. 如右图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的长DG为5
厘米,求它的宽DE等于多少厘米?
4. 如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.
5. 如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.
D。
五年级不规则图形面积计算(供参考)
五年级不规则图形⾯积计算(供参考)五年级不规则图形⾯积计算我们曾经学过的三⾓形、长⽅形、正⽅形、平⾏四边形、梯形、菱形、圆和扇形等图形,⼀般称为基本图形或规则图形.我们的⾯积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,⽽是由⼀些基本图形组合、拼凑成的,它们的⾯积及周长⽆法应⽤公式直接计算.⼀般我们称这样的图形为不规则图形。
那么,不规则图形的⾯积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等⽅法将它们转化为基本图形的和、差关系,问题就能解决了。
⼀、例题与⽅法指导例1 如右图,甲、⼄两图形都是正⽅形,它们的边长分别是10厘⽶和12厘⽶.求阴影部分的⾯积。
思路导航:阴影部分的⾯积等于甲、⼄两个正⽅形⾯积之和减去三个“空⽩”三⾓形(△ABG、△BDE、△EFG)的⾯积之和。
例2 如右图,正⽅形ABCD的边长为6厘⽶,△ABE、△ADF 与四边形AECF的⾯积彼此相等,求三⾓形AEF的⾯积.思路导航:∵△ABE 、△ADF 与四边形AECF 的⾯积彼此相等,∴四边形 AECF 的⾯积与△ABE 、△ADF 的⾯积都等于正⽅形ABCD 的1 3。
在△ABE 中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF 的⾯积为2×2÷2=2。
所以S △AEF=S 四边形AECF-S △ECF=12-2=10(平⽅厘⽶)。
例3两块等腰直⾓三⾓形的三⾓板,直⾓边分别是10厘⽶和6厘⽶。
如右图那样重合.求重合部分(阴影部分)的⾯积。
思路导航:在等腰直⾓三⾓形ABC 中∵AB=10∵EF=BF=AB-AF=10-6=4,∴阴影部分⾯积=S △ABG-S △BEF=25-8=17(平⽅厘⽶)。
例4如右图,A 为△CDE 的DE 边上中点,BC=CD ,若△ABC(阴影部分)⾯积为5平⽅厘⽶. 求△ABD 及△ACE 的⾯积.BC思路导航:取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等⾼,所以它们的⾯积相等,都等于5平⽅厘⽶.∴△ACD的⾯积等于15平⽅厘⽶,△ABD的⾯积等于10平⽅厘⽶。
五年级下册数学专项训练 奥数第二讲 不规则图形面积的计算
第二讲不规则图形面积的计算(二)不规则图形的另外一种情况,就是由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,这是一类更为复杂的不规则图形,为了计算它的面积,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、差关系,同时还常要和“容斥原理”(即:集合A与集合B之间有:S A∪B=SA+S B-S A∩B)合并使用才能解决。
例1如图,在一个正方形内,以正方形的三条边为直径向内作三个半圆、求阴影部分的面积。
解法1:把上图靠下边的半圆换成(面积与它相等)右边的半圆,得到右图、这时,右图中阴影部分与不含阴影部分的大小形状完全一样,因此它们的面积相等。
因此上图中阴影部分的面积等于正方形面积的一半。
解法2:将上半个“弧边三角形”从中间切开,分别补贴在下半圆的上侧边上,如右图所示。
阴影部分的面积是正方形面积的一半、解法3:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如右图所示。
阴影部分的面积是正方形的一半、例2 如图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。
解:由容斥原理S阴影=S扇形ACB+S扇形ACD-S正方形ABCD例3 如图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积。
解:S阴影=S扇形ABE+S扇形CBF-S矩形ABCD=13π-24=15(平方厘米)(取π=3)、例4 如图,直角三角形ABC中,AB是圆的直径,且AB=20厘米,假如阴影(Ⅰ)的面积比阴影(Ⅱ)的面积大7平方厘米,求BC长。
分析已知阴影(Ⅰ)比阴影(Ⅱ)的面积大7平方厘米,就是半圆面积比三角形ABC面积大7平方厘米;又知半圆直径AB=20厘米,能够求出圆面积、半圆面积减去7平方厘米,就可求出三角形ABC的面积,进而求出三角形的底BC的长。
解:BC的长=[3。
五年级奥数竞赛试题-不规则图形面积的计算
五年级奥数竞赛试题第二讲不规则图形面积的计算(二)不规则图形的另外一种情况,就是由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,这是一类更为复杂的不规则图形,为了计算它的面积,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、差关系,同时还常要和“容斥原理”(即:集合A与集合B之间有:S A∪B=S A+S B-S A∩B)合并使用才能解决。
例1 如图,在一个正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积。
解法1:把上图靠下边的半圆换成(面积与它相等)右边的半圆,得到右图.这时,右图中阴影部分与不含阴影部分的大小形状完全一样,因此它们的面积相等.所以上图中阴影部分的面积等于正方形面积的一半。
解法2:将上半个“弧边三角形”从中间切开,分别补贴在下半圆的上侧边上,如右图所示.阴影部分的面积是正方形面积的一半。
解法3:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如右图所示.阴影部分的面积是正方形的一半.例2 如图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。
解:由容斥原理S阴影=S扇形ACB+S扇形ACD-S正方形ABCD例3 如图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积。
解:S阴影=S扇形ABE+S扇形CBF-S矩形ABCD=13π-24=15(平方厘米)(取π=3)。
例4 如图,直角三角形ABC中,AB是圆的直径,且AB=20厘米,如果阴影(Ⅰ)的面积比阴影(Ⅱ)的面积大7平方厘米,求BC长。
分析已知阴影(Ⅰ)比阴影(Ⅱ)的面积大7平方厘米,就是半圆面积比三角形ABC面积大7平方厘米;又知半圆直径AB=20厘米,可以求出圆面积.半圆面积减去7平方厘米,就可求出三角形ABC的面积,进而求出三角形的底BC的长.解:BC的长=[3.14×(20/2)2÷2-7] ×2÷20=(157-7)×2÷20=15(厘米)。
不规则图形面积的计算(练习题)及详细讲解
第一讲不规则图形面积得计算(一)习题一(及详细答案)一、填空题(求下列各图中阴影部分得面积):二、解答题:1、如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE、求阴影部分面积。
2、如右图,正方形ABCD与正方形DEFG得边长分别为12厘米与6厘米、求四边形CMGN (阴影部分)得面积、3、如右图,正方形ABCD得边长为5厘米,△CEF得面积比△ADF得面积大5平方厘米、求CE得长。
4、如右图,已知CF=2DF,DE=EA,三角形BCF得面积为2,四边形BEDF得面积为4、求三角形ABE得面积、5、如右图,直角梯形ABCD得上底BC=10厘米,下底AD=14厘米,高CD=5厘米、又三角形ABF、三角形BCE与四边形BEDF得面积相等。
求三角形DEF得面积、6、如右图,四个一样大得长方形与一个小得正方形拼成一个大正方形,其中大、小正方形得面积分别就就是64平方米与9平方米、求长方形得长、宽各就就是多少?7、如右图,有一三角形纸片沿虚线折叠得到右下图,它得面积与原三角形面积之比为2:3,已知阴影部分得面积为5平方厘米、求原三角形面积、8、如右图,ABCD得边长BC=10,直角三角形BCE得直角边EC长8,已知阴影部分得面积比△EFG得面积大10、求CF得长、习题一解答一、填空题:二、解答题:ﻫﻫ3、CE=7厘米、ﻫ可求出BE=12、所以CE=BE-5=7厘米、4、3、提示:加辅助线BD∴CE=4,DE=CD-CE=5-4=1。
同理AF=8,DF=AD-AF=14-8=6,6、如右图,大正方形边长等于长方形得长与宽得与、中间小正方形得边长等于长方形得长与宽得差、而大、小正方形得边长分别就就是8米与3米,所以长方形得宽为(8-3)÷2=2、5(米),长方形得长为8-2、5=5、5(米)、7、15平方厘米、解:如右图,设折叠后重合部分得面积为x平方厘米,ﻫx=5、所以原三角形得面积为2×5+5=15平方厘米、∴阴影部分面积就就是:10x-40+S△GEF由题意:S△GEF+10=阴影部分面积,∴10x-40=10,x=5(厘米)、。