《实数》测试题
中考数学复习《实数》专项测试卷(带答案)

中考数学复习《实数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.与2(9)-结果相同的是( )A.3±B.|3|C.23D.方程281x =的解2.下列说法正确的是( )A.81-平方根是-B.81的平方根是9C.平方根等于它本身的数是1和0D.21a +一定是正数3.一个正方体的棱长为a ,体积为b ,则下列说法正确的是( )A.b 的立方根是a ±B.a 是b 的立方根C.a b =D.b a =4.下列关于5说法错误的是( ) A.5是无理数 B.数轴上可以找到表示5的点C.5相反数是5-D.53>5.估计11832的运算结果介于( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间6.若实数a ,b 满足13a b +=( )A.a ,b 都是有理数B.a b -的结果必定为无理数C.a ,b 都是无理数D.a b -的结果可能为有理数7.如图,在ABC △中90ACB ∠=︒,AC=3,BC=1,AC 在数轴上,点A 所表示的数为1,以点A 为圆心,AB 长为半径画弧,在点A 左侧交数轴于点D ,则点D 表示的数是( )10 B.10- C.110-1018.若1014M -=,12N =则M ,N 的大小关系是( )A.M N <B.M N =C.M N >D.无法比较9.已知实数tan30sin 45cos60a b c =︒=︒=︒,,,则下列说法正确的是( )A.b a c >>B.a b c >>C.b c a >>D.a c b >>10.定义运算:若,则,例如328=,则2log 83=.运用以上定义,计算:53log 125log 81-=( )A.1-B.2C.1D.411.在下列计算中,正确的是( )A.()56+-=-B.122=C.()26⨯-=D.3sin 30︒= 12.式子52的倒数是( ) A.52 B.52- C.25+ D.52213.对于实数a 、b ,定义22()*2()a b ab a b a b ab a b a b +-≥⎧=⎨--<⎩,则结论正确的有( )①5*31=;②22272(1)*(21)451(1)m m m m m m m m ⎧-+-<-=⎨-+≥⎩; ③若1x ,2x 是方程2560x x --=的两个根,则12*16x x =或17-;④若1x ,2x 是方程210x mx m +--=的两个根12*4x x =,则m 的值为3-或.A.1个B.2个C.3个D.4个二、填空题14.在实数: 中无理数有______个.15a 是一个无理数,且13a <<,请写出一个满足条件的a 值_____.16.011|3|(3π)()tan 45162--+-+-+︒+=______. 17.若m 为7的整数部分,n 为7的小数部分,则)7m n =______. 18.实数a ,b ,c 在数轴上的点如图所示,化简222()()a a b b c +-=____________.三、解答题19.计算m a b =log (0)a b m a =>6-(1)11233- (2)12632322⨯- (3)2245tan 30cos60︒+⋅︒︒20.计算:)102cos6031(16)27--︒-+-. 21.设5a 是一个两位数,其中a 是十位上的数字(9a ≤≤).例如,当a =时5a 表示的两位数是45.尝试:①当1a =时2152251210025=⨯⨯+=;①当2a =时2256252310025==⨯⨯+;①当3a =时2351225==______;…… 归纳:()25a 与()100125a a ++有怎样的大小关系? 验证:请论证“归纳”中的结论正确.22.若正整数a 是4的倍数,则称a 为“四倍数”,例如:8是4的倍数,所以8是“四倍数”.(1)已知p 是任意三个连续偶数的平方和,设中间的数为2n (n 为整数),判断p 是不是“四倍数”,并说明理由;(2)已知正整数k 是一个两位数,且10k x y =+(19x y ≤<≤,其中x ,y 为整数),将其个位上的数字与十位上的数字交换,得到新数m .若m 与k 的差是“四倍数”,求出所有符合条件的正整数k . 参考答案1.答案:C 解析:2(9)819-==33=239=方程281x =的解为9x =±. 故选C.2.答案:D解析:A 、81-是负数,负数没有平方根,不符合题意;B 、819= 9的平方根是3±,不符合题意;C 、平方根等于它本身的数是0,1的平方根是1±,不符合题意;D 、21>0a + 正数的算术平方根大于0,符合题意.故选:D.3.答案:B 解析:一个正方体的棱长为a ,体积为b∴3b a =,即:3a b =∴a 是b 的立方根故选:B.4.答案:D 解析:①5 2.2365857......≈属于无限不循环小数 ①5是无理数,故A 选项正确;①数轴上可以表示任意实数 ①数轴上可以找到表示5的点,故B 选项正确;①5相反数是5,故C 选项正确; ①5 2.2365857......≈①53<,故D 选项错误,符合题意故选:D.5.答案:C 解析:1183232223=+33=+; 132<<4335∴<<;故选:C.6.答案:D解析:A 、当2a =时13213b ==--a 是有理数,b 是无理数,故A 错误;B 、当1322a b ==-,那么0a b -=,所以B 错误; C 、当2a =时13b =-,a 是有理数,故选项C 错误;D 、当1322a b ==-,那么0a b -=,所以选项正确,D 正确. 故选:D.7.答案:C 解析:在Rt ABC △中3AC =,BC=1 22223110AB AC BC ∴=++=∴点D 表示的数为:110故选:C.8.答案:C 解析:1014M -=12= 1011103424M N ∴-=-=103> 0M N ∴->M N ∴>.故选C.9.答案:A 解析:321tan 30sin 45cos 602a b c =︒==︒==︒= 132232<< ∴b a c >> 故选:A.10.答案:A解析:35125= 4381=5log 1253∴= 3log 814=53log 125log 81∴-34=-1=-.故选:A.11.答案:A解析:A 、5(6)561+-=-=-正确,符合题意; B 、1222=原计算错误,不符合题意; C 、3(2)6⨯-=-原计算错误,不符合题意;D 、1sin 302=︒原计算错误,不符合题意. 故选: A.12.答案:A 解析:()()1521 52525252⨯==--+式子5的倒数是52式子5的倒数是52,故选:A.13.答案:C 解析:①5*32523531=⨯+⨯-⨯=,故①正确;②当21m m ≥-时即1m ≤时()()()22*212221212422272m m m m m m m m m m m m -=+---=+--+=-+-当21m m <-时即1m >时 ()()()22*21221214221451m m m m m m m m m m m m -=----=---+=-+()()222721*21451(1)m m m m m m m m ⎧-+-≤∴-=⎨-+>⎩,故②错误; ③1x ,2x 是方程2560x x --=的两个根 125x x ∴+= 126x x =-当12x x ≥时()()121212*225616x x x x x x =+-=⨯--= 当12x x <时()()121212*226517x x x x x x =-+=⨯--=-,故③正确;④1x ,2x 是方程210x mx m +--=的两个根12x x m ∴+=- 121x x m =--当12x x ≥时()()121212*22114x x x x x x m m m =+-=----=-+= 解得:3m =-当12x x <时()()121212*221()24x x x x x x m m m =-+=⨯----=--=解得:6m =-综上可知:①③④正确 故选:C.14.答案:4 解析:3644= 其中8 ⋯ π -2是无理数,共4个 故答案为:4.15.答案:2解析:2123<< 2a ∴=.故答案:2(答案不唯一).16.答案:7 解析:0113(3π)()tan 45162-+-+-+︒+31(2)14=++-++7=.17.答案:3 解析:479<<273∴<2m ∴= 72n = )7(72)(72)743m n ==-=∴故答案为3.18.答案:0解析:由数轴可知0b c a <<<则0a b +< 0b c -<222()||()a a b c b c +---()()a a b c b c =-+++-a abc b c =--++-0=.故答案为:0.19.答案:(1)1(2)5 (3)76解析:(1)(133********===; (2)12632322⨯- 22126322⨯=+632=-+5=;(3)2245tan 30cos60︒+⋅︒︒2312222=+⨯⎝⎭ 21113=+⨯ 76=. 20.答案:532 解析:)102cos6031(16)27--︒-+- 1113133222=-+=53.21.答案:尝试3410025⨯⨯+ 归纳()()25100125a a a =++ 验证:见解析解析:尝试:当3a =时2351225==3410025⨯⨯+; 归纳:()()25100125a a a =++; 验证:等号左边222(5)(105)10010025a a a a =+=++ 等号右边2100(1)2510010025a a a a ++=++ 所以,等号左边=等号右边,等式成立,即证.22.答案:(1)p 是“四倍数”;理由见解析(2)15,19,26,37,48,59解析:(1)p 是“四倍数”,理由如下:①()()()22222222p n n n ++=+-()22128432n n =+=+①p 是“四倍数”;(2)由题意得10m y x =+,则()()10109m k y x x y y x -=+-+=-. ①19x y ≤<≤,其中x ,y 为整数①18y x ≤-≤.若()9y x -.是4的倍数,则4y x -=或8y x -=.当4y x -=时符合条件的k 是15,26,37,48,59; 当8y x -=时符合条件的k 是19.①所有符合条件的正整数k 是15,19,26,37,48,59.。
《实数》测试题

实 数 单 元 测 验一、选择1. 计算 )A. -2 B.±2 C.2 D.4.2. 下列各数中,不是无理数的是( )A .7B . 0.5C . 2πD . 0.151151115…3. 下列说法正确的是( )A. 有理数只是有限小数B. 无理数是无限小数C. 无限小数是无理数D. 3π是分数 4. 下列各式中,正确的是( ) A. 636±= B.6.06.3-=- C.13)13(2-=- D. 3355-=-5. ()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.496. 若,则a 的值是( ) A .78 B .78- C .78± D .343512- 7. 若225a =,3b =,则a b +=( )A .-8B .±8C .±2D .±8或±2 8. 若a a =-2)3(-3,则a 的取值范围是( )A. a ≥3B. a >3C. a <3D. a ≤39. 如果一个数的立方根等于它本身,那么这个数是( )A .0B .1C .0或1D .0,1 或-110. 若0a ≠,a 、b 互为相反数,则下列各对数中互为相反数的一对是( ) A.b a 与 B.2a 与2b C.3a 与3b D.3a 与()33b -11. 如果一个实数的平方根与它的立方根相等,则这个数是( )A . 1B .正整数C .0和1D . 0 12. 若式子3112x x -+-有意义,则x 的取值范围是 ( ).A. 21≥xB. 1≤xC.121≤≤x D. 以上答案都不对. 13.实数a 、b 在数轴上的位置如图所示:那么2)(b a b a ++-的结果是( )A .2aB .2bC .―2aD . -2b14. 在Rt △ABC 中,∠C =90°,BC =15,AB =17,以AC 为直径作半圆,则此半圆的面积( ).A .16πB .12πC .10πD .8π15. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A 钝角三角形B 锐角三角形C 直角三角形D 等腰三角形.二、填空16. 若x 的立方根是-41,则x =___________ . 17. 1-2的相反数是_________, 32-=18. 比较大小:①-7.1 ② 15+- 22- 19. 一个正数x 的平方根是2a -3与5-a ,则a=20. 若7160.03670.03=,542.1670.33=,则3367=21. 若2)(11y x x x +=-+-,则y x -=22. 正数a 的两个平方根是方程223=+y x 的一组解,则a =23. 一个实数有一个大于2小于3的平方根,那么它的整数位上可能取到的数值为__________ 24. 方程 16461)21(3=-+x 的解x = _________ 25 方程x 2 -12149= 0的解x=_________ 26 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______.27 . 若的大小关系则2a ,a ,a ,,10<<a28 .若03)2(12=-+-+-z y x ,则z y x ++的值是29 = 。
2023年七年级下学期第6章《实数》测试卷及答案解析

位长度沿数轴向右运动,当点 A 运动到﹣6 所在的点处时,求 A,B 两点间距离.
(3)在(2)的条件下,现 A 点静止不动,B 点沿数轴向左运动时,经过多长时间 A,B
两点相距 4 个单位长度.
30.不用计算器,比较下列各个数的大小: t和 .
第 4 页 共 14 页
2023 年七年级下学期第 6 章《实数》测试卷
参考答案与试题解析
一.选择题(共 10 小题) 1.已知(a﹣3)2+|b﹣4|=0,则 的平方根是( )
A.
B.﹣2
C.
解:∵(a﹣3)2+|b﹣4|=0, 而(a﹣3)2≥0,|b﹣4|≥0 ∴(a﹣3)2=0,|b﹣4|=0,
∴a=3 且 b=4.
∴,
D.﹣4
∴ 的平方根为 ,
故选:A. 2.下列运算正确的是( )
故选:D.
3.若|3﹣a|
h 0,则 a+b 的值是( )
A.﹣9
B.﹣3
C.3
解:∵|3﹣a|
h 0,
∴3=a,b=﹣6,
则 a+b=﹣3.
故选:B.
4.下列各式中,正确的是( )
25.用计算器探索.已知按一定规律排列的一组数:1, , ,…, 中选择出若干个数,使它们的和大于 3,那么至少要选几个数?
26.已知实数 x,y 满足关系式 t |y2﹣1|=0.
, ,如果从 t
(1)求 x,y 的值;
(2)判断 t 是有理数还是无理数?并说明理由.
27.给出定义如下:若一对实数(a,b)满足 a﹣b=ab+4,则称它们为一对“相关数”,如:
t
,故 , 是一对“相关数”.
(1)数对(1,1),(﹣2,﹣6),(0,﹣4)中是“相关数”的是
七年级数学实数测试题及答案

七年级数学实数测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.1415926B. √2C. 0.33333(无限循环小数)D. 1/32. 以下哪个表达式的结果不是实数?A. √(-1)B. √(9)C. √(16)D. √(4)3. 两个实数相除,结果为实数的条件是:A. 两个数都是正数B. 两个数都是负数C. 除数不为零D. 被除数不为零4. 如果a和b是实数,且a > b,那么下列哪个表达式一定大于0?A. a - bB. b - aC. a * bD. a / b5. 下列哪个数是实数?A. 5.6C. √(-4)D. 0.333...(无限循环小数)6. 如果a是一个正实数,那么下列哪个表达式的结果也是正实数?A. 1/aB. -1/aC. a^2D. -a^27. 以下哪个数是实数的平方根?A. √3B. √(-3)C. -√3D. √98. 如果a是一个实数,那么下列哪个表达式的结果不是实数?A. a + 1B. a - 1C. a / aD. a * a9. 下列哪个数是实数的立方根?A. ³√8B. ³√(-1)C. ³√(-8)D. ³√110. 如果a是一个实数,那么下列哪个表达式的结果总是实数?A. √aB. a^2D. a^3二、填空题(每题2分,共20分)11. √25的值是______。
12. 一个数的立方根是2,那么这个数是______。
13. 两个实数相除,如果除数是正数,结果的符号与______相同。
14. 如果一个数的平方根是5,那么这个数是______。
15. 一个数的绝对值是3,那么这个数可以是______或______。
16. √(-1)的值是______。
17. 一个数的平方是16,那么这个数是______或______。
18. 如果a是一个实数,那么1/a的值是实数的条件是a不等于______。
《实数》单元测试卷

《实数》单元测试卷一、选择题(每题2分,共20分)1. 实数包括有理数和无理数,以下哪个选项不是实数?A. √2B. -3C. 0.33333...(无限循环)D. π2. 以下哪个数是无理数?A. 1/2B. √3C. 22/7D. -13. 如果a是一个正实数,那么下列哪个表达式的结果不是正实数?A. a + 1B. a - 1C. a × 1D. a / a4. 两个负实数相加的结果是什么?A. 正实数B. 负实数C. 零D. 无理数5. 实数的绝对值总是非负的,以下哪个表达式的结果不是非负数?A. |-5|B. |5|C. |-5 + 5|D. |-5| - 5二、填空题(每题2分,共20分)1. 有理数和无理数的集合统称为_______。
2. 一个数的绝对值是该数与零的距离,例如,|-3| = _______。
3. 无理数是不可以表示为两个整数的比的数,例如_______是一个无理数。
4. 两个实数相除,如果除数为零,则结果为_______。
5. 实数的乘方运算中,任何数的零次方等于_______。
三、计算题(每题5分,共30分)1. 计算下列表达式的值:(3 + √5)²2. 求下列方程的解:2x - 5 = 73. 计算下列表达式的值:(-2)³ + √44. 求下列方程的解:x² - 4x + 4 = 0四、解答题(每题10分,共30分)1. 描述实数的分类,并给出有理数和无理数的例子。
2. 解释绝对值的概念,并给出几个绝对值的例子。
3. 讨论实数的运算规则,特别是乘方和开方。
五、附加题(10分)1. 证明:对于任意实数a和b,如果a > b,则|a| ≥ |b|。
【答案】一、选择题1. D2. B3. D4. B5. D二、填空题1. 实数2. 33. √24. 无定义5. 1三、计算题1. (3 + √5)² = 9 + 6√5 + 5 = 14 + 6√52. 2x - 5 = 7 → 2x = 12 → x = 63. (-2)³ + √4 = -8 + 2 = -64. x² - 4x + 4 = (x - 2)² = 0 → x = 2四、解答题1. 实数可以分为有理数和无理数。
实数测试题及答案

实数测试题及答案一、选择题(每题2分,共10分)1. 实数集R中,最小的正整数是:A. 0B. 1C. 2D. 3答案:B2. 下列哪个数不是实数?A. πB. -√2C. √4D. 0.33333(无限循环)答案:无3. 若a, b, c是实数,且a > b,则下列哪个不等式一定成立?A. a + c > b + cB. a - c > b - cC. a × c > b × cD. a ÷ c > b ÷ c答案:A4. 实数x满足|x - 1| < 2,则x的取值范围是:A. -1 < x < 3B. -2 < x < 0C. 0 < x < 2D. 1 < x < 3答案:A5. 若实数x满足x² - 4x + 4 = 0,则x的值为:A. 2B. -2C. 0D. 4答案:A二、填空题(每题2分,共10分)1. 一个实数的绝对值等于它本身,那么这个实数一定是______。
答案:非负数2. 若实数x满足x² = 1,则x的值是______。
答案:±13. 实数-3的相反数是______。
答案:34. 若实数a和b满足a² + b² = 0,则a和b的值分别是______。
答案:05. 一个实数的平方根是它本身,那么这个实数只能是______。
答案:1或0三、解答题(每题10分,共20分)1. 已知实数a和b满足a² - 4a + 4 = 0,求a的值。
答案:由于(a - 2)² = 0,所以a = 2。
2. 证明:对于任意实数x,x² ≥ 0。
答案:设x² = y,由于平方总是非负的,所以y ≥ 0,即x² ≥0。
四、综合题(每题15分,共30分)1. 已知实数x和y满足x² + y² = 1,求证x + y ≤ √2。
实数测试题及答案

实数测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是实数?A. √2B. √-1C. 0.1010010001…D. 2+3i答案:A2. 以下哪个选项是正确的?A. 0是最小的实数B. 没有最大的实数C. 所有实数都是有理数D. 所有有理数都是实数答案:D3. 计算下列哪个表达式的结果是一个正实数?A. (-3)^2B. -(-2)^3C. √(-4)D. 1/0答案:A4. 以下哪个数是无理数?A. 1/3B. √4C. πD. 0.5答案:C5. 以下哪个数是实数集合的元素?A. 2B. √2C. 2+3iD. 1/0答案:B6. 以下哪个数是虚数?A. 3B. √2C. 2+3iD. -5答案:C7. 以下哪个数是纯虚数?A. 3+iB. -iC. √(-1)D. 2i答案:D8. 以下哪个数是复数?A. 3B. √2C. 2+3iD. -5答案:C9. 以下哪个数是实数?A. √9B. √(-9)C. 0.33333…D. 2/3答案:A10. 以下哪个数是实数?A. 3.14B. √3C. 2+3iD. 0.1010010001…答案:A二、填空题(每题4分,共20分)1. √9 = ________。
答案:32. √(-1) = ________。
答案:i3. 2π是实数集合中的一个元素,其值为 ________。
答案:6.284. 如果x是实数,那么x^2 ________ 0。
答案:≥5. 一个数的绝对值总是 ________。
答案:非负三、解答题(每题10分,共50分)1. 计算:(√3 + √2)^2。
答案:7 + 4√62. 证明:√2是一个无理数。
答案:假设√2是有理数,设√2 = a/b,其中a和b是互质的整数。
那么2 = a^2 / b^2,即2b^2 = a^2。
这意味着a^2是偶数,所以a必须是偶数。
设a = 2k,则2b^2 = (2k)^2,所以b^2 = 2k^2,这意味着b也是偶数。
实数测试题及答案

实数测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数不是实数?A. πB. -2C. √2D. i2. 两个负数相加,结果是什么?A. 正数B. 负数C. 零D. 无法确定3. 绝对值的定义是什么?A. 一个数的平方B. 一个数的平方根C. 一个数距离0的距离D. 一个数的倒数4. 哪个数是无理数?A. 1/3B. 0.33333(无限循环小数)C. √3D. 25. 下列哪个表达式的结果不是实数?A. 2 + 3C. √(-1)D. 1/26. 有理数和无理数的总称是什么?A. 整数B. 有理数C. 无理数D. 实数7. 实数的运算中,哪个操作是不允许的?A. 加法B. 减法C. 乘法D. 除以08. 下列哪个数是实数?A. 2.71828B. 0.1010010001...(无限不循环小数)C. 1/2D. √29. 一个数的相反数是什么?A. 它的绝对值B. 它的倒数C. 它的平方D. 它的负数10. 下列哪个数是实数集的边界?A. 0B. 1D. 无边界二、填空题(每题2分,共20分)11. √9 = ______12. -√9 = ______13. 绝对值 |-5| = ______14. 1/0 的结果是 ______15. 两个负数相乘的结果是 ______16. 无理数的特点是 ______17. 实数包括 ______18. √(-1) 的结果是 ______19. 0的相反数是 ______20. 一个数的绝对值总是 ______三、解答题(每题10分,共50分)21. 证明:对于任意实数x,|x| ≥ 0。
22. 解释有理数和无理数的区别。
23. 计算:(-2)^2 + √(-4)。
24. 证明:对于任意实数a和b,如果a < b,则a + c < b + c(对于任意实数c)。
25. 解释实数的连续性。
答案:一、选择题1. D2. B3. C4. C5. C6. D7. D8. D9. D10. D二、填空题11. 312. -313. 514. 无定义(或无穷大)15. 正数16. 不能表示为两个整数的比17. 有理数和无理数18. 无定义(或复数i)19. 020. 非负数三、解答题21. 证明:根据绝对值的定义,对于任意实数x,|x| 表示x到0的距离,距离总是非负的,因此|x| ≥ 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学《实数》单元测试题
一、选择题
1. 有下列说法:
(1)无理数就是开方开不尽的数;(2)无理数是无限不循环
小数;
(3)无理数包括正无理数、零、负无理数; (4)无理数
都可以用数轴上的点来表示。
其中正确的说法的个数是( )
A .1
B .2
C .3
D .4
2.()20.7-的平方根是( )
A .0.7-
B .0.7±
C .0.7
D .0.49
3.能与数轴上的点一一对应的是( )
A 整数
B 有理数
C 无理数
D 实数
4.
91的平方根是( ) A. 31
B. 31
- C. 31
± D. 811
±
5.如果一个实数的平方根与它的立方根相等,则这个数是( )
A. 0
B. 正整数
C. 0和1
D. 1
6.下列说法正确是( )
A. 25的平方根是5
B. 一2 2
的算术平方根是2
65
是 的一个平方根
C. 0.8的立方根是0.2
D. 7. 如果 25.0=y ,那么y 的值是( )
A. 0.0625
B. —0.5
C. 0.5 D .±0.5 8 . 下列说法错误的是( )
A . a 2与(—a )2 相等 B. a 2与)(2
a -互为相反
数 C. 3a 与3a - 是互为相反数 D. a 与a - 互为相反数
9. 设面积为3的正方形的边长为x ,那么关于x 的说法正确的是( )
A. x 是有理数
B. x = 3±
C. x 不存在
D. x 是
1和2之间的实数
10. 下列说法正确的是( )
A. 0.25是0.5 的一个平方根 B .正数有两个平方根,且这两个平方根之和等于0
C . 7 2 的平方根是7 D. 负数有一个平方根
11、下列说法正确的是( )
A 、0.25是0.5 的一个平方根
B 、正数有两个平方根,且这两个平方根之和等于0
C 、7 2的平方根是7
D 、负数有一个平方根
12、9的平方根是 ( )
A .3 B.-3 C. ±3 D. 81
3625
13. 下列各数中,不是无理数的是()
A7 B 0.5 C 2π D 0.151151115…
5
(
1
之间依次多
)
个
两个1
14. 下列说法正确的是()
A. 有理数只是有限小数
B. 无理数是无限小数
π是分数
C. 无限小数是无理数
D.
3
15. 下列说法错误的是()
A. 1的平方根是1
B. –1的立方根是-1
C. 2是2的平方根
D. –3是2)3
(-的平方根
16. 若规定误差小于1, 那么60的估算值为()
A. 3
B. 7
C. 8
D. 7或8
17. 和数轴上的点一一对应的是()
A 整数
B 有理数
C 无理数
D 实数
18. 下列说法正确的是()
A.064
±.0
-的立方根是0.4 B.9-的平方根是3
C.16的立方根是316
D.0.01的立方根是
0.000001
19. 若a和a-都有意义,则a的值是()
A.0
a D.0
≠
a
=
a C.0
≥
a B.0
≤
20. 边长为1的正方形的对角线长是()
A. 整数
B. 分数
C. 有理数
D. 不是有理数
21. 38-=( )
A .2
B .-2
C .±2
D .不存在
22a =-,则实数a 在数轴上的对应点一定在( )
A .原点左侧
B .原点右侧
C .原点或原点左侧
D .原点或原点右侧
23.下列说法中正确的是( )
A. 实数2a -是负数
B. a a =2
C. a -一定是正数
D. 实数a -的绝对值是a
二、填空题(每小题4分,共20分)
1.100的平方根是 ; 10的算术平方根是 。
2.在数轴上表示
的点离原点的距离是 。
3. 比较下列实数的大小 ①140 12 ②2
15- 5.0; 4. 9的算术平方根是 ;(-3)2 的算术平方根
是 ;3的平方根是 ; 0的平方根是 ;-2的平方根是 .
5. 25-的相反数是 ,绝对值是 。
16的算术平方根是( )、9
4的平方根是( ) 6、a 的两个平方根是方程223=+y x 的一组解,则a = ,2a 的立
方根是
X 3=-8 则x = 、125的立方根是
7. –1的立方根是 ,
271的立方根是 , 9的立方根是 . 8. 2的相反数是 , 倒数是 , -36的绝对值是 .
9. 比较大小
填“>”或“<”)
10. =-2)4( ;=-33)6( ; 2)196(= . 11. 37-的相反数是 ; 32-=
12.若
2b +和5的立方根,则a = ,b =
三、解答题
1、 小东在学习了b a b a =后, 认为b
a b a =也成立, 因此他认为一个化简过程: 545520520-⨯-=--=--545-⋅-==24=是正确的. 你认为他的化简对吗? 说说理由;
2、先阅读下列的解答过程,然后再解答:
形如n m 2±的化简,只要我们找到两个数a 、b ,使m b a =+,n ab =,使得m b a =+22)()(,n b a =⋅,那么便有:
b a b a n m ±=±=±2)(2)(b a > 例如:化简347+
解:首先把347+化为1227+,这里7=m ,12=n ,
由于4+3=7,1234=⨯ 即7)3()4(22=+,1234=⨯ ∴347+=1227+=32)34(2+=+ 由上述例题的方法化简:42213-;
3、小明买了一箱苹果, 装苹果的纸箱的尺寸为50×40×30(长度单位为厘米). 现小明要将这箱苹果分装在两个大小一样的正方体纸箱内, 问这两个正方体纸箱的棱长为多少厘米?
4、小芳想在墙壁上钉一个三角架(如图), 其中两直角边长度之比为3:2, 斜边长
520厘米, 求两直角边的长度.
5、八年级(3)班两位同学在打羽毛球, 一不小心球落在离地面高为6米的树上. 其中一位同学赶快搬来一架长为7米的梯子, 架在树干上, 梯子底端离树干2米远, 另一位同学爬上梯子去拿羽毛球. 问这位同学能拿到球吗?
6、 某居民生活小区需要建一个大型的球形储水罐, 需储水13.5立方米, 那么这个球罐的半径r 为多少米(球的体积V=ππ,343r 取
3.14, 结果精确到0.1米)?
7.一个正方形的面积变为原来的m 倍,则边长变为原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍。