CATIA参数化建模理念教程文件
CATIA参数化(实体)数据设计培训教程
培训目标
使学员熟练掌握CATIA参数化 设计技能,能够独立完成复杂
产品的设计工作。
PART 02
CATIA参数化设计基础
REPORTING
参数化设计概念
参数化设计的定义
参数化设计是一种基于参数变量 进行建模的设计方法,通过调整 参数值来改变模型形状和尺寸。
参数化设计的优势
能够快速生成多种设计方案,提 高设计效率;便于修改和优化设 计,减少重复工作;支持设计重 用和标准化。
PART 06
工程图与标注技术
REPORTING
工程图基础
1 2
工程图概述
工程图是产品设计的重要输出,用于表达产品的 形状、尺寸、材料和制造要求等信息。
工程图类型
包括零件图、装配图、工艺流程图等,不同类型 的工程图有不同的表达方式和要求。
3
工程图规范
工程图的绘制需要遵循一定的规范和标准,如国 家标准、行业标准等,以确保工程图的准确性和 通用性。
PART 07
总结与展望
REPORTING
培训总结
掌握了CATIA参数化设计的基本原理和方法
通过本次培训,学员们深入理解了CATIA参数化设计的核心思想,熟悉了基于特征、参 数和规则的设计方法。
学会了创建和管理参数化模型
学员们掌握了在CATIA中创建参数化模型的关键技术,包括草图绘制、特征创建、参数 设置和模型管理等。
CATIA工程图工具
CATIA工程图界面介绍
CATIA工程图模块的用户界面包括菜单栏、工具栏、绘图区等部 分,熟悉这些界面元素是进行工程图设计的基础。
工程图创建与编辑
通过CATIA的工程图工具,可以创建新的工程图文件,并在其中绘 制图形、添加文本和标注等。
CATIA参数化零件建模思路
CATIA参数化零件建模思路
一、准备
1.识别基本尺寸:
要建立一个参数化零件,第一步需要识别并清楚读懂图纸上的基本尺寸,将所需要的尺寸和参数记录下来(如长度、宽度、厚度、孔径等)以
备后续建模使用。
2.构型确定:
根据图纸的尺寸信息,确定零件的主要形状和构型,比如是平面零件、曲面零件、比例零件,是面(平面)零件,还是立体零件,还是弧形零件,还是螺纹零件等。
3.定义参数:
确定参数类型,根据技术需求,确定参数的类型,是相对尺寸参数、
绝对尺寸参数,还是其他的列表类型、表达式类型参数等。
二、建立
1.打开CATIA软件空白零件文件,根据已列出的参数及构型指定建模
方式;
2.确定绝对尺寸参数,即图纸中的基本尺寸及其他根据公式定义的参数,用CATIA中的参数创建功能建立绝对尺寸参数;
3.建立位置参数,即位置参数及其他根据公式定义的参数,用CATIA
中的参数创建功能建立位置参数;
4.确定相对尺寸参数,通过CATIA的间接仿形尺寸参数功能来定义相对尺寸参数;
5.建立其他参数,参数的类型有表达,式类型、列表类型的参数,利用CATIA中的表达式或者动力学表达式建立表达式参数。
CATIA参数化建模教程(入门)
• 1.设置
• 2.建立参数
• 3.运用参数建模
• 4.拓展
1
设置
1.工具\选项\基础结构\零件基础结构\显示,勾选参数与关系
2.工具\选项\基础结构\零件基础结构\常规,更新勾选手动(个人建议手动更新)
2
建立参数
1.”亦可以选 择实数,角度等单位
2.建立如下参数,见左侧特征树
3.双击参数编辑参数,修改为你喜欢的命名与数值
3
运用参数建模
1.插入几何体(个人建议零件几何体下不要建模);我们以xy平面为草图基准面画草图 双击数据出现右下角对话框,鼠标放在对话框数据上右键\编辑公式
2.出现右侧对话框,单击参数“长”
3.出现右侧对话框,单击参数“长”,然后确定。(你会发现那个数值后带有f(x)字样)
4.此时此刻,数值就变为之前参数所设定的100,并在特征树上出现关“关系”,现在修改数据就只 需要修改参数中的“长”,同理我们设置好“宽”
5.右键定义凸台处“长度”,同理设置
6.在编辑参数的时候可以进行加减乘除运算(数值需带单位,比如10mm)
7.我们修改参数,数据变红提示需更新
8.几何体2\右键本地更新后如下:
CATIA参数化设计
by 小王子
前言
CATIA作为一个汽车行业的主要设计软件,大家对其都不陌生,由于各个 版本的不同,或处于数据保密,大家经常已STP格式的数据交流,众所周知, STP的数据是不能浏览建模过程的,编辑数据相当比较麻烦。我们在建模过 程中如果参数化,后续只需要修改参数即可修改3D数据,对建模效率是极大 的提高。
4
拓展
1.以上为最基本的参数化建模,但是我们设计中往往比这个复杂,我们就需要关联所有参数。如下 例子,就是我自己工作的内容,仅供各位设计同仁参考。
CATIA参数化设计教程
• 表格编辑 • 表格关联
CATIA表格实例——标准件
• 标准件螺栓GB
– 参数:D,总长,螺纹长
• • • • •
创建几何 创建参数 创建表格 表格关联 零件解析
CATIA表格实例——标准件
• 创建几何
• 创建参数
CATIA表格实例——标准件
• 创建表格
• 表格关联
问题交流
• • • • • 参数介绍 参数创建 参数使用 表格使用 实例
CATIA 参数使用基础
参数、公式、表格 xu_q2000
Байду номын сангаас
CATIA参数
• • • • • 参数介绍 参数创建 公式介绍 表格介绍 实例
CATIA参数介绍
• CATIA的参数?
CATIA参数创建
• 创建参数
• 参数分类?
CATIA参数创建
• 参数有实数、整数、字符串、逻辑变量、长度、 质量等数据类型。 • 实体模型层(part level)、装配模型层(product level)和特征层(feature level)三个层次定义参 数。 • 内部参数、外部参数 • 内部参数和用户定义的参数。 • 参数可以是单值的,也可以是多值的。 • 参数是CATIA特有的特征,被赋予特定值,可以在 Relation(关系)中引用。
CATIA参数设置
• • • • 1、零件 2、装配 3、参数 4、语言包
CATIA公式创建
• 在哪里可以创建公式? • 公式支持什么运算? • 公式中使用测量、外部参数 • 公式修改 • 公式删除 mm 语言包支持
CATIA表格
• 表格创建
– 现有表格 – 新建表格
• 表格格式
– Txt – excel
catia全参数建模 ppt课件
5、最终结果(#final part) 该openboy用来存放零件的最终设计曲面数据、材料的矢量方向、材料 厚度、零件MLP信息、搭接面零件上的螺母、螺栓以及对部件的设计修改 信息。如图所示。
5.1 #final geometry 该openbody用来存放零件的最终设计结果,仅仅用一个面片来表示,这 个结果可以用 Invert Orientation命令将零件设计过程(#part definition)数 据的最后一步结果保存在#final geometry openbody内。另外,当数据冻结后 ,要用copy as result命令将零件设计过程(#part definition)数据的最后一步dy内。用 Invert Orientation命令的优点 是可以使最终结果始终与设计修改保持参数化的关联关系,设计过程更改后 系统自动更新最终结果。如图所示
7、 关键截面(#Sections) 此openbody内存放了显示零件关键部位信息的截面数据,如安装孔
、定位孔、搭接面、零件局部结构形式等数据。这些数据信息可以反映 零件周边的装配、搭接关系,可以很好的指导零件结构设计。如图所示 。
结论:
综上所述,参数化设计在现代汽车产品开发中具有重要的意义,参数化设 计可以大大提高汽车开发设计的工作效率,适合在同平台上系列产品的演 变,大大缩短产品开发周期。汽车各个零件相互间有着紧密的联系和协调 性。部分设计质量好不等于产品质量也好。为此,重要的是各零件的设计 人员应具备(自己专业之外的)其他零件的知识,懂得对整体的影响。 CATIA V5 Start Model在零件设计过程中可以很好的体现CATIA V5的参 数化设计优势,培养设计人员在汽车开发设计中的整体设计理念,设计人 员通过对零件结构特征的分析理解,可以很好的吃透零件,把握零件的要 素特征和关键结构形式,举一反三。
最新CATIA参数化设计及零件库的建立教学讲义ppt课件
三交河煤矿“4.21”特大瓦斯爆炸事故
(续)
1991年4月21日早8时井下停电,约14时30分送电。下午 16时,共138人约15时左右相继入井。16时05分,203工作 面工人打眼试电钻产生火花引起瓦斯爆炸,冲击波扬起巷 道积尘,引起了全矿井煤尘连续爆炸。地面工人听到轰的 一声巨响,平峒冲出火焰并伴随着冒出浓烟爆炸导致井下 多处巷道支架被推倒,顶板冒落,平峒、大巷砌碹顶冒落 103处约530m,机电设备多数位移变形并遭到不同程度的 破坏,井下通风设施全部摧毁。冲击波把平峒口附近的三 间房摧垮,致使当班井下138人及早班应下班未出井的5人 和中班正准备入井的4人,共计147名矿工全部遇难,另有 地面2人重伤,4人轻伤。(待续)
三交河煤矿“4.21”特大瓦斯爆炸事 故
一、事故经过
洪洞县三交河煤矿是地方国有企业,位于城西32公 里左木乡境内,井田面积285Km2,工业储量26800万吨, 煤种为肥气煤,煤尘爆炸指数为33.89%,有强爆性危 险,属低瓦斯矿井。1980年该矿曾发生死亡30人的瓦 斯爆炸事故。
1991年4月21日16时05分,山西省洪洞县三交河煤 矿,发生了特大瓦斯煤尘爆炸事故,死亡147人,重伤 2人,轻伤4人,另外在抢救事故中牺牲了1名救护队员, 造成经济损失295万元。(待续)
CATIA参数化设计及零 件库的建立
参数化设计
机械专业所用的三维绘图软件都是用尺寸驱动来进行参数化
设计的。例如可以通过更改直径大小来进行参数化设计。
图1 修改草图尺寸
如果仅仅通过上面的方法对一个零件的每一个尺寸进行修改的话,那么整 个工作量会很大,也不实际。故而,在此提出CATIA的参数化设计。
例1:轴
保存表格后,弹出如下对话框。
CATIA知识工程参数化教程
参见图2。
• With formula切换开关:若该切换开关为开,方程显示在特征树上, 参见图2。
(2) Parameter names栏
• Surrounded by The symbol切换开关:若该切换开关为开,参数
需要用引号括起,对非拉丁字母的参数名称必须用引号括起,参
图5公式对话框
第11页,共59页。
图6添加了参数a1
之后的特征树
2.2 公式
公式(Formulas)即一个参数用其它参数定义的表达式。有以下三种定义公 式的途径。
1. 通过参数的上下文相关菜单定义一个新的或修改原有的公式
例如,现有参数a1、b2、c3,见图7(a),若定义公式a1= 2 * b2 + (c3 + 10)/3,操作过
Type of Check域的下拉列表可以选择以下三种类型。
(1)Silent
不返回任何信息。
(2)Information
返回提示信息,见图14。
(3)Warning”
图14 返回提示信息
返回警告信息,见图15。
图15返回警告信息
第20页,共59页。
2.4 规则
规则(Rules)类似于程序设计语言的条件语句,在满足条件的情况下执行一些指令,
第8页,共59页。
2 参数化和知识工程工具
有 关 参 数 化 和 知 识 工 程 的 术 语 有 参 数 ( Parameter ) 、 关 系 (Relation)、方程(Formula)、规则(Rule)、检查(Check)
和设计表(Design Table)。
9.2.1.参数 1. 参数(Parameter)的特点
CATIA知识工程参数化教程
(2)Information
返回提示信息,见图14。
(3)Warning” 返回警告信息,见图15。
图14 返回提示信息
PPT文档演模板
图15返回警告信息
CATIA知识工程参数化教程
2.4 规则
规则(Rules)类似于程序设计语言的条件语句,在满足条件的情况下执 行一些指令,如定义参数或方程,或者发出提示信息,用于对参数的控 制。
9.2.1.参数
1. 参数(Parameter)的特点
( 1 ) 参 数 是 CATIA 特 有 的 特 征 , 被 赋 予 特 定 值 , 可 以 在 Relation(关系)中引用。
(2)可以在实体模型层(part level)、装配模型层(product level)和特征层(feature level)三个层次定义参数。
PPT文档演模板
图1设置参数在特征树的显示状态
CATIA知识工程参数化教程
该选项卡分为以下三栏:
(1) Parameter Tree View栏
• With value 切换开关:若该切换开关为开,参数值显示在特 征树上,参见图2。
• With formula切换开关:若该切换开关为开,方程显示在特 征树上,参见图2。
(2) Parameter names栏
• Surrounded by The symbol切换开关:若该切换开关为开,参 数需要用引号括起,对非拉丁字母的参数名称必须用引号括 起,参见图2。
(3) Language栏
• Load extended language libraries切换开关:若该切换开关为 开,可以使用测量或用户定义函数,可以从下面的选项框中 选择库函数。
CATIA软件零件参数化建模
CATIA软件零件参数化建模CATIA软件是一款广泛应用于工业设计和机械工程的三维建模软件。
它提供了强大的功能和灵活性,使得用户可以根据自身需求进行零件参数化建模。
本文将介绍CATIA软件中的零件参数化建模方法,以及其在实际应用中的优势。
一、CATIA软件概述CATIA软件是由法国达索系统公司开发的一款计算机辅助设计软件。
它提供了完整的产品设计解决方案,包括产品概念设计、虚拟样机制造、协作设计和产品生命周期管理等功能。
CATIA软件被广泛应用于航空航天、汽车制造、工业设备等领域,具有强大的设计和分析能力。
二、参数化建模概念参数化建模是一种基于参数的零件设计方法,通过调整参数的数值来控制零件的形状和尺寸。
在CATIA软件中,用户可以定义零件的参数,并且根据这些参数进行建模。
参数化建模的优势在于,当设计需求发生变化时,只需要修改参数的数值,而不需要重新设计整个零件,大大提高了设计效率和灵活性。
三、CATIA软件中的参数化建模方法1. 定义参数:在CATIA软件中,用户可以通过参数定义工作台中的零件参数。
具体来说,可以定义线段的长度、角度、曲线的半径等参数。
参数定义完成后,用户可以在后续的建模过程中直接使用这些参数。
2. 建立基础特征:CATIA软件提供了多种基础特征库,包括直线、圆、矩形等。
用户可以通过在工作平面上绘制这些基础特征来快速创建零件的草图,然后可以使用参数进行尺寸调整。
3. 特征操作:CATIA软件中的特征操作包括拉伸、旋转、倒角、挤压等。
用户可以将基础特征进行组合,并应用特征操作进行细化。
通过参数的调整,可以实现对特征尺寸的动态控制,快速生成符合要求的零件。
4. 关系和公式:在CATIA软件中,用户还可以通过关系和公式进行零件参数之间的关联。
例如,可以设置两个参数之间的等于、大于或小于关系,或者使用公式计算一个参数的值。
这种关系和公式的设置可以实现更高级的参数化建模。
四、参数化建模的优势1. 提高设计效率:参数化建模可以大大提高设计效率。
CATIA实用参数化建模理念
CATIA参数化建模理念现阶段我们是运用大坝的CAD二维图来画三维图,也就是说先有二维图,后有三维图;基于CATIA的逆向建模是先建模,再出二维图。
在传统的三维设计包含两种设计模式:①自下而上的设计方法是在设计初期将各个模型建立,在设计后期将各模型按照模型的相对位置关系组装起来,自下向上设计更多应用于机械行业标准件设计组装。
②自上而下设计的设计理念为先总体规划,后细化设计。
大坝骨架设计承了自上而下的设计理念,在大坝三维设计过程中,为了定义各建筑物相对位置关系,骨架包含整个工程的关键定位,布置基准,定义各个建筑物间相关的重要尺寸,自上向下的传递设计数据,应用这种技术就可更加有目的,规范地进行后续的工程设计。
一、参数化设计基本原理参数化设计基本原理:建立一组参数与一组图形或多组图形之间的对应关系,给出不同的参数,即可得到不同的结构图形。
参数化设计的优点是对设计人员的初始设计要求低,无需精确绘图,只需勾绘草图,然后可通过适当的约束得到所需精确图形,便于编辑、修改,能满足反复设计的需要。
①参数(Parameter)是作为特征定义的 CATIA文档的一种特性。
参数有值,能够用关系式(Relation)约束。
②关系式(relation)是智能特征的一般称谓,包括:公式(formulas)、规则( rules)、检查(checks)和设计表(design tables)。
③公式(formulas)是用来定义一个参数如何由其他参数计算出的。
④零件设计表:设计表是 Excel或文本表格,有一组参数。
表格中的每列定义具体参数的一个可能的值。
每行定义这组参数可能的配置。
零件设计表是创建系列产品系列的最好方法,可以用来控制系列产品的尺寸值和特征的激活状态,表格中的单元格通常采用标准形式,用户可以随时进行修改。
⑤配置(Configuration)是设计表中相关的参数组的一组值。
⑥超级副本(PowerCopy):超级副本是一组经过分组以用于不同上下文的特征(几何元素、公式、约束等),它提供了在粘贴时根据上下文重新指定特征的能力。
CATIA参数化建模技巧
CATIA参数化建模技巧CATIA是一款功能强大的三维设计软件,被广泛应用于航空航天、汽车、机械等领域。
在使用CATIA进行建模设计时,掌握一些参数化建模技巧可以提高工作效率和设计质量。
本文将介绍一些常用的CATIA参数化建模技巧,并给出相应的操作步骤和注意事项。
一、利用关键参数进行建模在CATIA中,可以通过定义关键参数来实现建模的参数化。
关键参数可以是长度、宽度、高度等数值,也可以是角度、半径等。
通过定义关键参数,可以在后续设计中灵活地修改这些参数,而无需重新绘制模型。
操作步骤:1. 打开CATIA软件并新建一个零件文件。
2. 在"参数"工作台中,点击"创建参数"按钮,定义需要的参数。
3. 在建模过程中,使用这些参数来确定各个特征的尺寸。
4. 在需要修改尺寸的时候,只需要修改参数的数值,模型会自动按照新的数值进行更新。
注意事项:- 定义参数时,应注意给予有意义的名称,以便在后续修改时更容易理解。
- 尽量使用相对尺寸而非绝对尺寸,这样在需要调整模型大小时更加方便。
二、使用公式进行参数计算CATIA还支持使用公式来进行参数计算,在建模过程中,可以根据不同的需求灵活地定义公式,并将其应用到模型的设计中。
这样可以避免繁琐的手工计算,并大大提高设计效率。
操作步骤:1. 在"参数"工作台中,选择需要进行计算的参数。
2. 在参数的属性中,点击"关系"选项。
3. 在"关系编辑器"中,输入需要的公式,并确认。
4. 公式的计算结果将自动应用到模型中。
注意事项:- 在定义公式时,应根据实际需求合理计算,避免出现不合理的计算结果。
- 对于复杂的公式计算,建议使用CATIA提供的数学函数库以及逻辑判断语句,以实现更加灵活的设计。
三、使用关系约束进行设计除了参数化建模外,CATIA还支持使用关系约束对模型进行设计。
通过定义各个几何元素之间的关系,可以保证模型在不同状态下的一致性和稳定性。
CATIA参数化设计及零件库的建立
参数化设计的基本步骤
定义参数
设计师根据设计需求定 义一组参数,并为其赋 予合适的数值范围和单
位。
建立参数关系
通过数学公式和逻辑关 系将参数关联起来,以 实现参数之间的相互影
响和制约。
生成几何模型
根据参数关系和初始条 件,使用Catia的几何建 模功能生成相应的几何
模型。
验证和优化
对生成的几何模型进行 验证和优化,以确保其 符合设计要求和性能指
标。
03
Catia参数化设计实例
实例一:轴类零件的参数化设计
总结词
轴类零件是机械系统中常见的传动件,参数化设计可以提高设计效率,减少重 复劳动。
详细描述
轴类零件的参数化设计主要涉及直径、长度、键槽等参数的设定,通过Catia软 件的参数和公式功能,可以快速生成不同规格的轴类零件,实现批量设计和优 化。
高效、灵活、可重复使用,能够 快速响应设计变更,提高设计质 量和效率。
Catia软件介绍
Catia
是一款功能强大的CAD/CAE/CAM 软件,广泛应用于汽车、航空、船舶 、机械等领域。
Catia的优势
提供了丰富的设计工具和模块,支持 参数化设计,具有强大的数据管理功 能和集成开发环境。
02
Catia参数化设计基础
参数化设计的基本原理
参数化设计是通过定义一组参数来控 制几何形状的尺寸和形状,从而实现 产品设计的自动化和标准化。
参数化设计的基本原理是通过建立参 数之间的数学关系,使得修改参数值 可以自动更新几何形状,从而快速生 成和修改设计方案。
Catia参数化设计工具介绍
CATIA软件参数化建模教程
CATIA软件参数化建模教程CATIA是一款功能强大的三维建模软件,广泛应用于机械设计、汽车设计等行业。
参数化建模是CATIA的一项重要功能,它可以帮助用户快速创建复杂的三维模型并进行灵活的设计变化。
本教程将介绍CATIA软件参数化建模的基本原理和操作方法,帮助初学者快速上手。
一、参数化建模的概念及优势参数化建模是一种基于数学关系和可编辑特性的三维模型创建方法。
通过使用参数和公式,用户可以在设计中定义可变的尺寸、位置和形状等属性,实现模型的灵活变换与优化。
相比于传统的实体建模,参数化建模具有以下优势:1. 提高设计效率:参数化建模使设计师能够快速调整模型的关键尺寸,避免了重新绘制和修改的麻烦,大大提高了设计效率。
2. 实现设计变化:通过改变参数数值,可以快速生成不同尺寸的模型,满足不同客户需求和设计变化。
3. 简化设计过程:参数化建模可以减少设计过程中的错误和重复工作,提高设计的一致性和准确性。
二、CATIA参数化建模的基本原理1. 参数定义:在CATIA软件中,可以通过使用参数表或直接定义参数的方式来定义模型中的尺寸、角度等参数。
参数表是一个用于关联和管理多个参数的表格,可以简化参数的管理和调整。
2. 操作方法:CATIA提供了丰富的操作工具和命令,用于创建和编辑参数化模型。
通过使用特征工具、操作菜单和快捷键等功能,可以对参数进行编辑、调整和约束等操作。
3. 关系绑定:CATIA中的参数可以通过数学关系进行绑定,实现参数之间的依赖关系和约束。
例如,可以通过长度参数和角度参数的关系定义出模型中的几何约束,使模型具有特定的形状和行为。
三、CATIA参数化建模的操作步骤以下是CATIA软件参数化建模的基本操作步骤,供初学者参考:1. 创建新零件:打开CATIA软件,选择“新建”命令创建一个新的零件文件。
在零件文件中可以进行三维模型的创建和编辑。
2. 定义参数:在参数表中定义需要使用的参数,可以通过参数名称、数值、单位等属性进行设置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C A T I A参数化建模理念CATIA参数化建模理念1.CATIA参数化建模思路1.1. 逆向建模现阶段我们是运用大坝的CAD二维图来画三维图,也就是说先有二维图,后有三维图;基于CATIA的逆向建模是先建模,再出二维图。
1.2. 骨架设计在传统的三维设计包含两种设计模式:①自下而上的设计方法是在设计初期将各个模型建立,在设计后期将各模型按照模型的相对位置关系组装起来,自下向上设计更多应用于机械行业标准件设计组装。
②自上而下设计的设计理念为先总体规划,后细化设计。
大坝骨架设计承了自上而下的设计理念,在大坝三维设计过程中,为了定义各建筑物相对位置关系,骨架包含整个工程的关键定位,布置基准,定义各个建筑物间相关的重要尺寸,自上向下的传递设计数据,应用这种技术就可更加有目的,规范地进行后续的工程设计。
1.3. 参数化模板设计一、参数化设计基本原理参数化设计基本原理:建立一组参数与一组图形或多组图形之间的对应关系,给出不同的参数,即可得到不同的结构图形。
参数化设计的优点是对设计人员的初始设计要求低,无需精确绘图,只需勾绘草图,然后可通过适当的约束得到所需精确图形,便于编辑、修改,能满足反复设计的需要。
①参数(Parameter)是作为特征定义的 CATIA文档的一种特性。
参数有值,能够用关系式(Relation)约束。
②关系式(relation)是智能特征的一般称谓,包括:公式(formulas)、规则( rules)、检查(checks)和设计表(design tables)。
③公式(formulas)是用来定义一个参数如何由其他参数计算出的。
④零件设计表:设计表是 Excel或文本表格,有一组参数。
表格中的每列定义具体参数的一个可能的值。
每行定义这组参数可能的配置。
零件设计表是创建系列产品系列的最好方法,可以用来控制系列产品的尺寸值和特征的激活状态,表格中的单元格通常采用标准形式,用户可以随时进行修改。
⑤配置(Configuration)是设计表中相关的参数组的一组值。
⑥超级副本(PowerCopy):超级副本是一组经过分组以用于不同上下文的特征(几何元素、公式、约束等),它提供了在粘贴时根据上下文重新指定特征的能力。
超级副本可捕获设计者的设计意图和知识技能,因此可以提高重用性和效率。
⑦用户特征(UDF):在常规设计工作中,经常会有类似相同的设计,只是设计所用数据不一样;对于这种情况,可以用数据表控制数据源,在需要某数据时,指定相应数据;将以上重用数据表设计过程封装成 UDF,并发布相应数据,达到重用设计的效果。
二、参数化模板设计主要技术特征参数化模板设计主要技术特征是:基于特征、全尺寸约束、尺寸驱动设计修改、全数据相关。
①基于特征:将某些具有代表性的平面几何定义为特征,并将其所有尺寸存为可调参数,进而形成实体,以此为基础进行更为复杂的几何形体的构造。
②全尺寸约束:将形状和尺寸联合起来考虑,通过约束来实现对几何形状的控制。
造型必须以完整的尺寸参数为出发点(全约束),不能漏注尺寸(欠约束),不能多注尺寸(过约束)。
③尺寸驱动设计修改:通过编辑尺寸数值来驱动几何形状的改变。
④全数据相关:尺寸参数的修改导致其它相关模块的相关尺寸得以更新。
大坝各剖面的草图都可以用参数和公式表达出来,公式中包含参数,将公式与草图边线的约束相关联,达到参数通过公式驱动图形的目的。
我们将建好的大坝各部件的三维图保存为模板,模板是CATIA V5知识工程的一个功能。
知识工程是将一些诸如经验公式、分析算法、优化计算、条件控制等智能知识打包到一个盒子中,只留出几个条件输入参数接口。
设计人员在进行设计时,不需要关心盒子中到底有哪些内容,而只需要知道目标模型所属的类型及确定目标模型具体细节的关键几个输入参数即可。
调用模型时,通过输入参数,调用打包在模型内部的一系列计算公式及判断条件,自动进行一系列的内部运算与调整,快速生成符合用户设想的几何模型。
1.4. 装配设计装配设计(Assembly Design)即产品的高效管理和装配,它提供了在装配环境下可由用户控制关联关系的设计能力,通过使用自上向下和自底向上的方法管理装配层次,可真正实现装配设计和单个零件设计之间的并行工程。
装配设计通过使用图形化的命令建立机械设计约束,可以直观方便的将零件放到指定位置。
1.5. 二维图制作C ATIA的二维工程图是由三维模型向各方向的投影视图以及相关辅助视图组成的。
其最大优势在于二维图能与三维设计模型相关联,即三维模型发生更改,二维图可即时更新,不必像其他CAD软件需要再重新绘制二维图。
2.重力坝参数化建模2.1. CATIA选项设置确认“知识选项卡(“工具” >“选项” >“常规” >“参数和测量”)中的“带值”和“带公式”复选框。
如图1 。
图 1确认“显示”选项卡(“工具” >“选项” >“零件基础结构” >“显示”)中的“外部参考”、“约束”、“约束”、“参数”、“关系”复选框。
如图2所示图 22.2. 参数和关系建立①建立参数:点击“知识工程”工具栏上的“f(x)”命令会出现图3,选择参数的类型,比如:“长度”,再点击“新类型参数”新建一个长度参数,并赋值。
图 3②建立关系:关系是参数与图形连接的桥梁,参数通过关系关联图形,以此来驱动图形。
最常用的关系是公式,如图用上文建立的参数“长”通过公式来关联一条直线的长度。
先在XY平面新建一个草图,画一条直线,用“约束”工具栏中的“约束”命令进行标注,如图4,,选定尺寸标注单击右键,在“长度对象”下拉找到“编辑公式”命令,如图5,单击后会弹出一个对话框,双击“’长’”即可将直线的长度与参数“长”关联,这样直线的长度将会等于参数“长”的值,如图6。
图 4 图5图 62.3. 骨架设计重力坝的骨架可由“左(右)坝肩A(B)两点”、“连接A、B两点的坝轴线和垂直于坝轴线”和“过A点的0+000.00桩所在的平面”这三部分组成。
将这三部分作为骨架发布出去,以此作为整个工程的关键定位和布置依据。
在CATIA环境下,如果设计变更牵扯到坝轴线位置的调整,无需重新定位控制点A、B,只需更改控制点A、B的坐标,或者直接移动坝轴线,就能完成对坝轴线的调整,实现设计变更,如图7。
图 72.4. 重力坝结构划分现实中的重力坝是一个非常复杂的体型,如果不进行划分,一方面体现不出挡水坝、溢流坝和内部廊道等结构相互独立的特征。
另一方面参数繁多,难以确定,体现不出参数化的特点和优势,所以在重力坝模型对象的设计中,首先要考虑如何把复杂的重力坝进行合理地拆分,使之形成多个简单的模型对象的组合。
当把重力坝完全抽象为若干个对象的集合时,我们也就完成了对重力坝实体对象的划分。
重力坝可简单的分为:挡水坝段和溢流坝段两部分,当然也包括廊道、排水管和帷幕等部件。
2.4.1.挡水坝段①建立参数:重力坝挡水坝段的特征参数有“坝段起始桩号”、“坝段长度”、“坝顶宽度”、“坝顶高程”、“上游折坡高程”、“上游坡比”、“下游折坡高程”、“下游坡比”、“坝底高程”,用“f(x)”命令建立这些参数并赋值。
②绘制草图:以“过A点的0+000.00桩所在的平面”为基准平面,偏移一个平面,偏移长度为参数“坝段起始桩号”,在这个新平面上绘制出挡水坝段的典型剖面,并将上述参数与剖面进行关联,从而得到参数化的挡水坝段剖面,如图8。
图 8草图中的V和H坐标轴是尺寸约束的参照基准,只有草图中的图像相对于V、H轴的所有位置关系都确定后,该图形才能完全约束(无过约束也不欠约束)。
“过约束”是指一个元素被多个同一尺寸标注,此时过约束的元素会显示“紫色”;“欠约束”是是指一个元素未被尺寸标注,此时欠约束的元素会显示“白色”,如图9。
图形完全约束后,其尺寸和位置关系才能协同变化,系统会直接将尺寸约束转化为系统参数。
草图修改可通过编辑系统参数直接驱动几何形状的改变,为三维参数驱动提供基础。
图 9剖面草图绘制完成后,将草图进行“凸台”得到一个坝段,凸台的长度用公式关联到参数“坝段长度”,如图10。
现在可以通过更改那些特征参数即可驱动挡水坝段的图形。
如将参数“坝段长度”的值改为50mm(本次设计中比例为1:1000),更改参数后的图形如图11。
图 10 图112.4.2. 溢流坝段重力坝溢流坝段剖面图形由顶部曲线段、中间直线段和反弧段三部分组成。
溢流坝与挡水坝相比较,有其自身的结构特点,它的草图结构要比挡水坝复杂了很多。
挡水坝典型剖面相对简单,可以运用草图工作台提供的绘图命令直接完成典型剖面草图的绘制。
而溢流坝则不同,它的典型剖面中包含下游反弧段和堰顶下游堰面曲线—WES 幂曲线等复杂的曲线,特别是WES 幂曲线是不能通过草图工作台提供的绘图命令直接绘制的。
为保证WES 幂曲线精准性,可以通过CATIA 中规则曲线进行绘制。
WES 曲线绘制对WES 幂曲线方程进行分析。
WES 幂曲线方程的表达式为:y kH x n d n 1-=。
x ,y 表示草图中曲线的横纵坐标,而曲线的形状有参数k ,n 和d H 来控制。
在这里设置三个用户参数:“d H 堰面曲线定型水头”、“WES 曲线系数:k ”和“WES 系数n ”分别代表系数:k ,n 和d H 。
以后通过修改这三个用户参数,来实现对WES 曲线形状的控制。
新建“k ”、“n ”、“d H ”和“参考线长度”参数,在要绘制WES 曲线的平面上,绘制一条水平参考线,长度通过公式关联参数“参考线长度”;用“fog ”命令新建一个WES 曲线规则,规则中编辑如下公式,y=-1*(1/k)` *'Hd'**(1-n)*(参考线长度` /1mm*x)**`n` ,如图12。
公式中有两点需要注意:在CATIA 中要输入n x ,则要输成n x **;自变量x 的类型必须为实数,且CATIA 中规定x 的范围是从0到1变化,所以要画WES 曲线,必须在x 前面乘以一个系数,即参数“参考线的长度”。
fog规则建立完成后,将CATIA工作界面切换到“形状的创成外形设计”中,选用“线框”工具栏中的“平行曲线定义”命令绘制WES曲线,如图13,对话框中的“曲线”选择“参考直线”,支持面选择WES曲线所在平面,常量这一栏单击“法则曲线”按钮,弹出法则曲线定义对话框,选择法则曲线类型为“高级”,法则曲线元素选择新建的fog规则,绘制的WES曲线,如图14。
溢流坝剖面的其它曲线可按照绘制挡水坝剖面曲线的方法逐一绘制,对绘制的溢流坝剖面草图进行“凸台”(方法见挡水坝段),得到实体溢流坝段,如图15。
图 12图 13 图14图 152.5. 模板设计在上文中基于重力坝的挡水坝段和溢流坝段各自的特征参数建立了相关模型,而且可以通过更改特征参数实现图形的变换。