离散数学课件第一章(第1讲)

合集下载

离散数学第一章第一节

离散数学第一章第一节

PQ PQ PQ PQ
0
0
1
1
0
1
1
0
0
1
0
0
1
111源自(1.B,2.AD,3.AD)
6、本讲小结
1、命题是客观上能判明真假的陈述句。当命题为真 时,称命题的真值为“真”;否则,说命题的真值为 “假”。命题一般用大写英文字母表示。表示命题的符 号叫命题标识符。当命题标识符表示不确定命题时称为 命题变元。
7、 练习
1、设P:天热。Q:我去游泳。R:我在家读书。则 命题“如天热,我去游泳,否则在家读书。”的符号化 结果是( )。
A.(PQ)(PR) C.(PQ)(PR) B.(PQ)(PR) D.(PQ)(PR)
2、设X:我上街。Y:我有空闲时间。则命题“我上 街,仅当我有空闲时间。”的符号化结果是( )。
A.XY B.YX C.XY D.YX
3、设X:我上街。Y:我有空闲时间。则命题“除非我 有空闲时间,否则我不上街。”的符号化结果是( )。
A.XY B.YX C.XY D.YX
练习答案
第一讲 作业
P8 3,4c,5bf,6bdgh
定义5 双条件联结词
设P,Q为二命题,复合命题“P当且仅 当Q”称为P与Q的双条件命题,记作 PQ。叫双条件联结词,也记作iff 。 PQ为真当且仅当P,Q真值相同。
例如,2+2=5当且仅当雪是黑的。 设P: 2+2=5 。Q:雪是黑的。
则原命题表示为:PQ。
例5 分析下列各命题的真值: (1) 如果2+2=4,当且仅当3是奇数。 (2) 如果2+2=4,当且仅当3不是奇数。 (3) 如果2+2≠4,当且仅当3是奇数。 (4) 如果2+2≠4,当且仅当3不是奇数。

离散数学第一章命题逻辑PPT课件

离散数学第一章命题逻辑PPT课件

P
Q
0
0
0
1
1
0
1
1
P→Q 1 1 0 1
如: P:雪是黑的。
Q:太阳从东方升起 。
P → Q:如果雪是黑的,则太阳从东方升起 。
命题P→Q是假, 当且仅当P是真而Q是假。
11/20/2020
chapter1
14
1.2 联结词
条件与汉语中“如果…,就…”相类似,但有所区别: (1)自然语言中,“如果P则Q”,往往P和Q有一定的因果 关系,而条件复合命题P→Q中 P和Q 可以完全不相关。 (2)自然语言中,“如果P则Q”,当P为0、Q为1时,整个 句子真值难以确定;而条件复合命题P→Q中,当P为0时, 复合命题的真值为1。 P则Q的逻辑含义:P是Q的充分条件,的表示 命题变元——常用P、Q、R、S等大写字母或加下标的大 写字母P1, Q2, R10, ……表示来表示一个命题,称为命题 变元。 如: P:巴黎在法国。
Q:煤是白色的。
11/20/2020
chapter1
4
1.1 命题及其表示法
3、命题相关概念 简单命题(原子命题)——不能再分解的命题。 复合命题——由若干个简单命题复合而成的命题。 真值表——把组成复合命题的各命题变元的真值的所有 组合及其相对应的复合命题的真值列成表,称为真值表。
11/20/2020
chapter1
6
1.1 命题及其表示法
【例3 】求公式 (P→R)∨(Q→R)的真值表。 解:∵公式含有3个命题变元P、Q、R,
∴真值表有23=8行。其真值表如下表 所示:
11/20/2020
chapter1
7
1.2 联结词
命题和原子命题常可通过一些联结词构成新命题, 这

离散数学课件ppt课件

离散数学课件ppt课件
联结词可以嵌套使用,在嵌套使用时,规定如下优先顺序: ( ),┐,∧,∨,→, ,对于同一优先级的联结词,先出现 者先运算。
例1.7 令 P : 北京比天津人口多 Q:22 4 R : 乌鸦是白色的
求下列复合命题的真值:
1P Q P Q R 2Q R P R 3P R P R
解 P,Q,R的真值分别为1,1,0。容易算出 (1)、(2)、(3)的真值分别为1,1,0。
2.在自然语言中,“如果P,则Q”中的前件P与后件Q往 往具有某种内在联系。而在数理逻辑中,P与Q可以无任何内 在联系。
3.在数学或其它自然科学中,“如果P,则Q”往往表达 的是前件P为真,后件Q也为真的推理关系。但在数理逻辑中, 作为一种规定,当P为假时,无论Q是真是假,P→Q均为真。 也就是说,只有P为真Q为假这一种情况使得复合命题P→Q为 假。
PQ 的真值定义为 PQ为真当且仅当P, Q同真值 因此, P, Q一真一假时, P Q为假。
复合命题P Q的真值表: P
0 0 1 1
Q
P Q
0
1
1
0
0
0
1
1
例1.6 将下列命题符号化,并指出它们的真值:
3如 两 圆O1 , O2的面积相等,则它们的半径相等;反之亦然. 4当王小红心情愉快时,她就唱歌;反之当她唱歌时,
真值为真的命题称为真命题;真值为假的命题为假命题。
说明:
1. 命题必须是陈述性语句,而不能是疑问句、命令句、 感叹句等;
2. 命题语句或者为真或者为假,二者必取其一,即命 题的真值是唯一的
判断句子是否为命题的标准: (1)陈述句 (2)有唯一的真值
例1 判断下列句子是不是命题: (1) 4是素数。
第一部分 数理逻辑

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》PPT课件第一章:离散数学简介1.1 离散数学的定义离散数学是研究离散结构及其相互关系的数学分支。

离散数学与连续数学相对,主要研究对象是集合、图、逻辑等。

1.2 离散数学的应用离散数学在计算机科学、信息技术、密码学等领域有广泛应用。

学习离散数学能够为编程、算法设计、数据结构等课程打下基础。

第二章:集合与逻辑2.1 集合的基本概念集合是由明确定义的元素组成的整体。

集合的表示方法:列举法、描述法、图示法等。

2.2 集合的基本运算集合的并、交、差运算。

集合的幂集、子集、真子集等概念。

2.3 逻辑基本概念命题:可以判断真假的陈述句。

逻辑联结词:与、或、非等。

逻辑等价式与蕴含式。

第三章:图论基础3.1 图的基本概念图是由点集合及连接这些点的边集合组成的数学结构。

图的表示方法:邻接矩阵、邻接表等。

3.2 图的基本运算图的邻接、关联、度等概念。

图的遍历:深度优先搜索、广度优先搜索。

3.3 图的应用图在社交网络、路径规划、网络结构等领域有广泛应用。

学习图论能够帮助我们理解和解决现实世界中的问题。

第四章:组合数学4.1 排列与组合排列:从n个不同元素中取出m个元素的有序组合。

组合:从n个不同元素中取出m个元素的无序组合。

4.2 计数原理分类计数原理、分步计数原理。

函数:求排列组合问题的有效工具。

4.3 鸽巢原理与包含-排除原理包含-排除原理:解决计数问题时,通过加减来排除某些情况。

第五章:命题逻辑与谓词逻辑5.1 命题逻辑命题逻辑关注命题及其逻辑关系。

命题逻辑的基本运算:联结词、逻辑等价式、蕴含式等。

5.2 谓词逻辑谓词逻辑是命题逻辑的推广,引入量词和谓词。

谓词逻辑的基本结构:个体、谓词、量词、逻辑运算等。

5.3 谓词逻辑的应用谓词逻辑在计算机科学中用于描述和验证程序正确性。

学习谓词逻辑能够提高对问题本质的理解和表达能力。

第六章:组合设计6.1 组合设计的基本概念组合设计是指从给定的有限集合中按照一定规则选取元素,构成满足特定条件的组合。

离散数学第一章PPT课件

离散数学第一章PPT课件

R 0 1 0 1 0 1 0 1
Assignments(作业)
第30页: 4
1.3 公式分类与等价式
1.3.1 公式分类 1.3.2 等价公式(等值演算) 1.3.3 基本等价式----命题定律 1.3.4 代入规则和替换规则 1.3.5 证明命题公式等价的方法
1.3.1 公式分类
定义1.13 设A是一个命题公式,对A所有可能的解释: (1)若A都为真,称A为永真式或重言式。
(2)若A都为假,称A为永假式或矛盾式。
(3)若至少存在一个解释使得A为真,称A为可满足式。
例1 从上一节真值表可知,命题公式(PQ)(P∨Q)为 重言式,(PQ)∧Q为矛盾式,PQ)∧R为可满足式。
注: 1、 永真式必为可满足式,反之则不然;永真式的否定是永 假式,反之亦然; 2、 决定一个公式是否是一个永真式、永假式或可满足式有 三种方法:真值表法(适用于变元少而简单的公式)、求主范
1.否定词(negation connective )﹁
定义1.4 复合命题“非P”称为命题P的否定,记作
P,读作非P。 P为真当且仅当P为假。
例3 设 P:离散数学是计算机专业的核心课程, 则 P:离散数学不是计算机专业的核心课 程。
2.合取词(conjunction connective )∧
命题符号化的目的在于用五个联结词将日 常语言中的命题转化为数理逻辑中的形式命题, 其关键在于对自然语言中语句之间的逻辑关系 以及命题联结词的含义要有正确的理解,使用 适当的联结词: (1)确定语句是否是一个命题;
(2)找出句中连词,用适当的命题联结词表
示。
Assignments(作业)
第30页: 3(偶数小题)
定义1.12 设A是含有n个命题变元的命题 公式,将命题公式A在所有赋值之下取值的情 况汇列成表,称为A的真值表( truth table )。 为列出一个公式的真值表,我们约定: ①命题变元按字典序排列;②对公式的每个 解释,以二进制从小到大列出;③当公式较 复杂时,可先列出子公式的真值,最后列出 所给公式的真值。

离散数学课件 第一章

离散数学课件  第一章
离 散 数 学
主讲教师 李红军 北京林业大学 理学院
BEIJING FOREST UNIVERSITY
教材及参考资料
教材:
1耿素云,屈婉玲,张立昂编著,离散数学,清华大学出版 社, 2008年3月(第4版) 2耿素云,屈婉玲编著.离散数学(修订版).高等教育出版社, 2004年
参考资料:
1 左孝凌编著,离散数学,上海科学技术出版社
1.1 命题与联结词 命题:能判断真假而不是可真可假的陈述句。 命题的真值:命题为真或者假的判断。 真命题:真值为真的命题。 假命题:真值为假的命题。 注:任何命题的真值都是惟一的;
用“1”表示真,用“0”表示假。
例 1.1 :判断下列句子哪些是命题.
(1)
3 是有理数。
(2) 2是素数。 (3) X+Y>10。
1 3
m z 1 r m 1
z m 1
1 2
1
3
比赛结束,三位观众各猜对了一半,并且没有并列名次.问:中 国、美国、日本的各排名第几? 设z1:中国第一;z2 :中国第三;r1:日本第一; m1:美国第一;m2:美国第二; m3:美国第三.
例1的参考答案 m1 z3 1 r1 m3 1 z1 m2 1
对偶原理
A和A*是互为对偶式,P1, P2 ,……Pn是出现在A和A*的原子变元,则 A(P1,…,Pn) A*( P1,…, Pn) A( P1,…, Pn) A*(P1,…,Pn)
即公式的否定等值于其变元否定的对偶式。 例:A为PQ,则A*为PQ, 则(PQ) PQ
真值表
将命题公式A在所有赋值下取值情况列成表
试考虑求公式A的真值表的步骤? 例1 求下列公式的真值表,并求出成真赋值和成假赋值. 1) p(¬ r∧q) 2) (p∨q)(¬ p q)

离散数学的ppt课件

离散数学的ppt课件

科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。

连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。

离散数学第一章课件

离散数学第一章课件



表示“或者” “或者”有二义性,看下面两个例子: 例1-2.3. 灯泡或者线路有故障。 例1-2.4. 第一节课上数学或者上英语。 例3中的或者是可兼取的或。即析取“∨” 例4中的或者是不可兼取的或,也称之为异或、 排斥或。即“ ”.
28
1. 析取“∨”

例1-2.3. 灯泡或者线路有故障。 P:灯泡有故障。 Q:线路有故障。 例中的复合命题可表示为:P∨Q P∨Q读成P析取Q,P或者Q。 P∨Q的真值为F,当且仅当P与Q均为F。
11
数理逻辑把推理符号化之二

设M(x): x是金属 . 设C(x): x能导电. 设x 表示: 所有的x . 设 a 表示铜. 例2的推理过程表示为: 前提:x(M(x)C(x)) (所有金属都导电.) 前提:M(a) (铜是金属.) 结论:C(a) (铜能导电.) (其中符号M(x)是谓词,所以这就是第二章 “谓词逻辑”中所讨论的内容.)

31
四.条件 (蕴涵)“”




表示“如果… 则 …”, 例1-2.5: P表示:缺少水分。 Q表示:植物会死亡。 PQ:如果缺少水分,植物就会死亡。 PQ:也称之为蕴涵式,读成“P蕴涵Q”, “如果P则Q”。 也说成P是PQ 的前件,Q是PQ的后件。还 可以说P是Q的充分条件,Q是P的必要条件。
24
1-2 联结词



复合命题的构成:是用“联结词”将原子命题 联结起来构成的。 归纳自然语言中的联结词,定义了六个逻辑联 结词,分别是: (1) 否定“” (2) 合取“∧” (3) 析取“∨” (4) 异或“ ” (5) 蕴涵“” (6) 等价“”
25
一. 否定“” (Negation)

北京工业大学《离散数学》课件-第一章 逻辑和证明

北京工业大学《离散数学》课件-第一章 逻辑和证明

第一章基础:逻辑和证明1内容提要◦逻辑(logic):思维的规律和规则,是研究推理的科学公元前四世纪由希腊哲学家亚里士多德首创◦数理逻辑:用数学方法研究逻辑,又称符号逻辑十七世纪由德国数学家莱布尼兹提出2内容提要命题逻辑数理逻辑谓词逻辑34日常使用的自然语言,往往易产生二义性:•冬天,能穿多少穿多少;夏天,能穿多少穿多少。

•中国足球,谁也打不赢;中国乒乓球,谁也打不赢。

引入形式符号体系5本节摘要◦命题(离散对象)◦命题逻辑(离散对象之间的关系)◦命题逻辑的应用6命题◦命题是一个陈述语句,可判定真假◦举例:◦月亮是绿色奶酪做的。

◦1+0=1◦别的星球有生物。

◦坐下!◦几点了?◦X+1=2。

◦我正在说谎。

7命题非命题说明:◦只有具有确定真值的陈述句才是命题。

一切没有判断内容的句子,无所谓是非的句子,如:感叹句、祈使句、疑问句等,都不是命题。

◦命题只有两种真值,“命题逻辑”又称“二值逻辑”。

◦“具有确定真值”指客观上的具有,与我们是否知道它的真值是两回事。

8命题逻辑◦命题变量:表示命题的变量,习惯上用p, q, r, s, ...表示;真命题用T表示,假命题用F表示◦命题逻辑:涉及命题的逻辑领域研究对象:复合命题由已知命题用逻辑运算符(联结词)组合而来只有成绩好和竞赛获奖的同学才能保研操作符:逻辑联结词包括[否定,合取,析取,异或,条件,双条件]9复合命题:否定联结词◦令p为一命题,则p的否定记为 p,读作“非p”,一元运算符。

命题之否定的真值表T FF T“非”放在命题最前面表意更清晰。

p:地球是圆的;p:并非地球是圆的。

p:咱们班上都是男同学;p:咱们班上都不是男同学(×)or 咱们班上不都是男同学(√)。

10◦令p 和q 为命题,p 和q 的合取(conjunction )记作pq 。

11复合命题:合取联结词T T T T F F F T F F F F两命题析取的真值表阳光灿烂,但是正在下雨= 阳光灿烂正在下雨我在吃饭我女朋友在吃饭我和女朋友一起吃饭= 我和女朋友都在吃饭复合命题:析取联结词◦令p和q为命题,p和q的析取(disjunction)记作p q。

《离散数学讲义》课件

《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。

离散数学课件第一章

离散数学课件第一章

图的连通性
04
CHAPTER
逻辑基础
命题逻辑中的基本概念包括命题、真值和逻辑运算,通过这些基本概念可以表达和推理复杂的命题关系。
命题逻辑在计算机科学、人工智能、自动化等领域有广泛应用,是形式化方法的重要基础。
命题逻辑是研究命题之间关系的逻辑分支,主要涉及命题的否定、合取、析取、蕴含等基本运算。
命题逻辑
详细描述
集合的运算包括并集、交集、差集等。并集是指两个或多个集合合并为一个新的集合,包含所有元素;交集是指两个或多个集合中共有的元素组成的集合;差集是指从一个集合中去掉另一个集合中的元素后剩余的元素组成的集合。这些运算在离散数学中有着广泛的应用。
总结词
集合的运算
集合的基数是指集合中元素的个数,通常用大写字母表示。
鸽巢原理
THANKS
感谢您的观看。
集合论
图论是研究图(由节点和边构成的结构)的数学分支,它广泛应用于计算机科学和工程学科。
图论
逻辑是离散数学的另一个重要分支,它研究推理的形式和规则,是计算机科学和人工智能的基础。
逻辑
组合数学是研究计数、排列和组合问题的数学分支,它在计算机科学和统计学中有重要的应用。
组合数学
离散数学的研究内容
02
CHAPTER
离散数学课件第一章
目录
绪论 集合论基础 图论基础 逻辑基础 组合数学基础
01
CHAPTER
绪论
离散数学是研究离散对象(如集合、图、树等)的数学分支,它不涉及连续的量或函数。
离散数学的定义
离散数学的起源
离散数学的特点
离散数学的起源可以追溯到古代数学,如欧几里得几何和数论。
离散数学强调结构、关系和组合,而不是连续性和微积分。

离散数学 课件 PPT 精品课程 考研 大学课程 数学一 第一章 命题逻辑

离散数学 课件 PPT 精品课程 考研 大学课程 数学一 第一章 命题逻辑

例1: 1. 2是素数。 2. 雪是黑色的。 3. 2+3=5 。 4. 明年十月一日是晴天。 5. 这朵花多好看呀! 6. 3能被2整除. 7. 明天下午有会吗? 8. 请关上门! 9. x+y>5 。 10. 地球外的星球上也有人。
命题判断的关键: 1.是否是陈述句; 2.真值是否是唯一的。
1
前件,q称为条件命题p→q的后
1
件。
表1.4 q p→q 01 11 00 11
【例】 p:小王努力学习。q:小王学习成绩优秀。 p→q:如果小王努力学习,那么他的学习成绩就优秀。 联 结 词 “ → ” 与 汉 语 中 的 “ 如 果 … , 那 么 …” 或
“若…,则…”相似,但又是不相同的。
• 例11:用等值演算法解决下面问题. A、B、C、D四人百米竞赛.观众甲、乙、丙预测比 赛名次为: 甲:C第一,B第二; 乙:C第二,D第三; 丙:A第二,D第四. 比赛结束后发现甲、乙、丙每人预测的情况都各对 一半,试问实际名次如何(假设无并列情况)?
1.4 联结词全功能集
• 一个n(n≥1)维卡氏积{0,1}n到{0,1}的函数称为一个 n元真值函数。设F是一个n元真值函数,则可记 为F:{0,1}n→{0,1}
1.3 等值演算
• 定义1.10 设A,B为两个命题公式,若等价 式A↔B是重言式,则称A与B是等值的,记 作A⇔B.
• A⇔B不是命题公式 • 可通过判断A与B的真值表是否相同,来判
断A与B是否等值。
• 例8:判断下列命题公式是否等值 (1) ¬(p∨q)与¬p∨¬q ; (2) ¬(p∨q)与¬p∧¬q ;
• 在一个联结词的集合中,如果一个联结词可由集 合中的其他联结词定义,则称此联结词为冗余的 联结词,否则称为独立的联结词。

离散数学课件 第一章 命题逻辑-1st

离散数学课件 第一章 命题逻辑-1st

• 我不承认你是对的,除非太阳从西边出来
– A:我不承认你是对的。 – B:太阳从西边出来。 – 翻译为: ¬B→ A
29/34
句子到逻辑表达式的翻译
• 如果你和他都不固执己见的话,那么不愉 快的事情就不会发生了。
– P:你固执己见。 – Q:他固执己见。 – R:不愉快的事情不会发生。 – 翻译为: (¬PΛ¬Q)→R
6/34
• 15岁时,进了莱比锡大学学习法律,一进校便跟上了大学二年 级标准的人文学科的课程,还广泛阅读了培根、开普勒、伽利 略等人的著作,并对他们的著述进行深入的思考和评价。在听 了教授讲授欧几里德的《几何原本》的课程后,莱布尼兹对数 学产生了浓厚的兴趣。17岁时他在耶拿大学学习了短时期的数 学,并获得了哲学硕士学位 。 • 19岁设计出世界第一台乘法器,被认为是现代机器数学的先驱 者。 • Leibniz(1646~1716年) 之梦:有一天所有的知识,包括精 神和无形的真理,能够通过通用的代数演算放入一个单一的演 绎系统。 • 1693年,发现了机械能的能量守恒定律。 • 与牛顿并称为微积分的创立者。 • 系统阐述了二进制记数法,并把它和中国的八卦联系起来。
734主要内容?主要内容命题命题逻辑联结词命题变元合式公式重言式永真蕴含恒等式带入规则替换规则对偶原理范式及其判定问题命题演算的推理83411概述?目标探索出一套完整的逻辑规则这些规则给出数学语句的准确定义按照这些规则可以确定任何特定的论证是否有效
离散数学
大连理工大学软件学院 陈志奎 教授 办公室: 综合楼411,Tel: 87571525 实验室:教学楼A318/A323,Tel:87571620/24 Mobile: 13478461921 Email: zkchen@ zkchen00@
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3)区分“可兼或”与“不可兼或(异或,排斥或)” 析取联结词为可兼或 例如: 灯泡有故障或开关有故障。 今天下雨或打雷。 以上例句均为可兼或。
“不可兼或”表示为:▽ (异或),当P和Q均为“T”时, 则P异或Q为“F”。
P
Q
P▽Q
F
F
F
F
T
T
T
F
T
T
T
F
例: 他通过电视看杂技或到剧场看杂技。 他乘火车去北京或乘飞机去北京。
§1 命题与命题联结词
1 命题
《定义》: 具有唯一值的陈述句叫命题。 讨论定义:
(1)命题的值: 命题值可以是真的,也可以是假的,但不能同时 既为真又为假。
(2)命题的真假值表示: 命题中所有的“真”用“T ” 或“ 1”表示 命题中所有的“假”用“F ”或 “0 ”表示。
(3)命题分类: ⅰ)原子命题:一个命题,不能分解成为更简单的命题。
(2) 合取词(“合取”、 “与”运算) 1) 符号 “Λ” 设P,Q为两个命题,则PΛQ称P与Q的合取, 读作: “P与Q” “P与Q的合取” “P并且Q”
2) 合取运算真值表
P Q PΛ Q
FF
F
FT
F
TF
F
TT
T
QΛP F F F T
注: ①当且仅当P和Q的真值均为 T ,则PΛQ 的真值 为 T 。否则,其真值为 F 。
第一篇 数理逻辑
逻辑:通常指人们思考问题,从某些已知条件出发推出合 理的结论的规律。 数理逻辑:用数学方法来研究推理的规律。包括命题逻辑 和谓词逻辑。 数理逻辑研究方法:采用一套数学的符号系统来描述和处 理思维的形式和规律。
第一章 命题逻辑
§1.命题与命题联结词 §2.命题公式与真值表 §3.命题公式的翻译 §4. 等价式与蕴含式 §5.对偶与范 式 §6.命题逻辑的推理理论 §7.其他联结词
例:判断下列语句是否为命题,若是,请给出其真值。
(1)十是整数。
(T)
(2)上海是一个城市。
(T)
(3)加拿大是一个国家。
(T)
(4)2是偶数而3不是奇数。
(F)
(5)请勿闯红灯!
(6)你今天出差吗?
(7)x-y=6
2 命题联结词
下面先介绍五个常用的命题联结词。 (1)否定词:(否定运算、非运算) 1)符号 ¬ ,读作“非”,“否定”
则可省去括号,否则不可省去括号。 例:¬P∨(Q∨R)可省去括号 而P→(Q→R)中的括号不能省去,因为“→”不满 足结合律。 (4)命题公式最外层的括号可以省去 (P→Q∨R)可写成P→Q∨R
④ P: 王大和王二是亲兄弟。 注:这是原子命题。
(3)析取词(或运算) 1)符号“∨”
设P、Q为二个命题,则(P∨Q)称作P与Q的 “析取”,读作:“P或Q”。
2)析取运算真值表:
P Q P∨ Q Q∨P
FF
F
F
FTTLeabharlann TTFTT
TT
T
T
注: ① 当且仅当P、Q均为 F 时, P∨Q 为 F 。 否则,其真值为 T 。 ②P和Q地位是平等的,P和Q的位置可以交换,不会 影响P∨Q的结果。
设命题为P,则¬P读做“P的否定”或“非P” 2)否定运算真值表
P ¬P TF FT
3)举例: P: 北京是一座城市。 ¬P:北京不是一座城市。 Q: 每一种生物是动物。 ¬Q:有一些生物不是动物。 这里¬Q不能讲成“每一种生物都不是动物” 。
对量化命题的否定,除对动词进行否定外,同时对量词 也要加以否定。
以上两句均为不“可兼或”。
(4) 单条件联结词:(“蕴含”联结词、蕴含词) 1) 符号“→”
设P、Q为二个命题,则P→Q 读作:“如果P则Q”, “P蕴含Q”,“P仅当Q”,“Q当且P”, “P是Q的充分条件” P:称为前件、条件、前提、假设 Q:称为后件、结论
2) 蕴含运算真值表
P
Q
P→Q
F
F
④ P:2+2=4 Q:雪是白色的
P↔Q: 2+2=4当且仅当雪是白色的。
4) 单条件联结词与双条件联结词的表达
P当且仅当Q
P↔Q
P仅当Q
P→Q
P当且Q
Q→P

3.命题联结词的运算要求 (1)先括号内,后括号外 (2)运算时联结词的优先次序由高到低排序为:
¬ Λ∨→ ↔ (3)含有相同 联结词的命题公式,如果联结词满足结合律,
值。
3)举例: ① P:△ABC是等腰三角形
Q:△ABC有两只角相等 P↔Q:△ABC是等腰三角形当且仅当△ABC中有 两只角相等。 ② P:春天来了
Q:燕子飞回来了 P↔Q:春天来了当且仅当燕子飞回来了。
③ P:平面上两直线平行 Q: 二直线不相交
P↔Q:平面上二直线平行,当且仅当这二直线不相交。
②P和Q地位是平等的,P和Q的位置可以交换而不会 影响PΛQ的结果。
3)举例: ① P:王华的成绩很好
Q:王华的品德很好。 则PΛQ:王华的成绩很好并且品德很好。 ② P:我们去种树 Q:房间里有一台电视机 则PΛQ:我们去种树与房间里有一台电视机。
③ P:今天下大雨 Q:3+3=6 则PΛQ:今天下大雨和3+3=6 注:在日常生活中,合取词应用在二个有关系的命题 之间。由例② ,③ 可知,在逻辑学中,合取词可以用 在二个毫不相干的命题之间。
T
F
T
T
T
F
F
T
T
T
注:当P为“T”,Q为“F”时,则(P→Q)为“F”, 否则(P→Q)都为“T”。
3) 举例: ① P:我拿起一本书
Q:我一口气读完了这本书 P→Q:如果我拿起一本书,则我一口气读完了这本书。 ② P:月亮出来了
Q:3×3=9 P→Q:如果月亮出来了,则3×3=9。
(5) 双条件联结词(“等价”词) 1)符号“↔”
例:我是一位学生。 ⅱ) 复合命题:若干个原子命题使用适当的联结词所组
成的新命题。 例:我是一位老师和他是一位学生 (4)命题的表示:常用26个大写的英文字母表示命题。
注意: (1) 命令句,感叹句,疑问句都不是命题。如:
1)把门关上! 2)你到哪里去? (2) 语句既为真,同时又包含假的不是命题,这样的句 子称为“悖论”。 如:我正在说谎。 在命题逻辑中不讨论悖论问题。
设P、Q为二个命题,则P↔Q读作: P当且仅当Q P等价Q P是Q的充分必要条件
2) 等价运算真值表
P Q P↔Q Q↔P
FF T
T
FT F
F
TF F
F
TT T
T
注: ①每当P和Q的真值相同时,(P↔Q)的真值为 “T”,否则(P↔Q)的真值为“F”。 ②P、Q的地位是平等的,P、Q交 换位置不会改变P↔Q的
相关文档
最新文档