2020-2021学年河北省保定市顺平县九年级(上)期中数学试卷 解析版
2020-2021学年河北省保定市雄县四校联考九年级(上)期中数学试卷 解析版
2020-2021学年河北省保定市雄县四校联考九年级(上)期中数学试卷一、单选题(本大题共有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的,将正确答案的代号填入题后的括号内.)1.剪纸艺术是中华文化的瑰宝,下列剪纸图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.2.抛物线y=(x﹣2)2﹣1的顶点坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)3.下列方程中,关于x的一元二次方程是()A.3(x+1)2=2(x+1)B.C.ax2+bx+c=0D.x2+2x=x2﹣14.下列说法正确的是()A.长度相等的两条弧是等弧B.平分弦的直径垂直于弦C.直径是同一个圆中最长的弦D.过三点能确定一个圆5.已知关于x的一元二次方程x2﹣2ax+4=0的一个根是2,则a的值为()A.1B.﹣1C.2D.﹣26.已知点A与点B关于原点对称,若点A的坐标为(﹣2,3),则点B的坐标是()A.(﹣3,2)B.(﹣2,﹣3)C.(3,﹣2)D.(2,﹣3)7.方程(x+2)(x+4)=x+2的解是()A.x=﹣2B.x=﹣4C.x=﹣2或x=﹣4D.x=﹣2或x=﹣3 8.如图,四边形ABCD为圆内接四边形∠A=85°,∠B=105°,则∠C的度数为()A.115°B.75°C.95°D.无法求9.将抛物线y=﹣(x+1)2+3向右平移2个单位再向上平移2个单位后得到的新抛物线的表达式为()A.y=﹣(x+3)2+1B.y=﹣(x﹣1)2+5C.y=﹣(x+1)2+5D.y=﹣(x+3)2+510.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A.55°B.60°C.65°D.70°11.(2分)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32B.(10﹣2x)(6﹣2x)=32C.(10﹣x)(6﹣x)=32D.10×6﹣4x2=3212.(2分)已知某二次函数,当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小,则该二次函数的解析式可以是()A.y=2(x+1)2B.y=﹣2(x+1)2C.y=2(x﹣1)2D.y=﹣2(x﹣1)213.(2分)如图,AB、AC是圆O的两条切线,切点为B、C.且∠BAC=50°,D是优弧BDC上一动点(不与B、C重合),则∠BDC的度数为()A.130°B.65°C.50°或130°D.65°或115°14.(2分)已知点A(﹣3,y1),B(1,y2)在二次函数y=﹣(x+2)2+m的图象上,则y1,y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定15.(2分)图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B点,甲虫沿ADA1、A1EA2、A2F A3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定16.(2分)如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,如果点A的坐标为(1,0),那么点B2019的坐标为()A.(1,1)B.C.D.(﹣1,1)二、填空题(本大题共3个小题,共15分,17-18小题各3分;19小题有3个空,每空3分,把答案写在题中横线上。
人教版2020---2021学年度上学期九年级数学期中考试卷及答案(含3套题)
密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列汽车标志中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.已知m 是方程x 2﹣x ﹣2=0的一个根,则代数式m 2﹣m+2的值等于( )A .4B .1C .0D .﹣13.已知点P 关于x 轴的对称点P 1的坐标是(2,3),那么点P 关于原点的对称点P 2的坐标是( )A .(﹣3,﹣2)B .(2,﹣3)C .(﹣2,﹣3)D .(﹣2,3) 4.抛物线y=(x+2)2﹣3可以由抛物线y=x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位,再向上平移3个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位5.已知关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则k 的取值范围是( ) A .k <﹣2 B . k <2 C .k >2 D .k <2且k ≠1 6.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出下列结论:①b 2﹣4ac >0;②2a+b <0;③4a ﹣2b+c=0;④a :b :c=﹣1:2:3.其中正确的是( )A .①②B .②③C .③④D .①④二、填空题(本大题共8小题,每小题3分,共24分) 7.一元二次方程x 2﹣3x=0的根是 .得 答 题8.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是 .9.我们在教材中已经学习了:①等边三角形;②矩形;③平行四边形;④等腰三角形;⑤菱形.在以上五种几何图形中,既是轴对称图形,又是中心对称图形的是 . 10.二次函数y=ax 2+bx+c 和一次函数y=mx+n 的图象如图所示,则ax 2+bx+c ≤mx+n 时,x 的取值范围是 .11.方程x 2﹣2x ﹣k=0的一个实数根为3,则另一个根为 .12.已知二次函数y=(x ﹣1)2+4,若y 随x 的增大而减小,则x 的取值范围是 .13.已知抛物线y=x 2﹣2(k+1)x+16的顶点在x 轴上,则k 的值是 .14.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为 .三、(本大题共4小题,每小题6分,共24分) 15.解方程:x (2x+3)=4x+6.16.如图,已知:BC 与CD 重合,∠ABC=∠CDE=90°,△≌△CDE ,并且△CDE 可由△ABC 尺规作出旋转中心O 墨水笔加黑),并直接写出旋转角度是 .17长为1个单位长度;已知△ABC .(1)作出△ABC 以O 为旋转中心,顺时针旋转90°的△A 1B 1(只画出图形).(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2,形),写出B 2和C 2的坐标.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题18.已知x 1,x 2是关于x 的一元二次方程x 2﹣6x+k=0的两个实数根,且x 12x 22﹣x 1﹣x 2=115. (1)求k 的值; (2)求x 12+x 22+8的值.四、(本大题共4小题,每小题8分,共32分)19.如图,在直角坐标系xOy 中,二次函数y=x 2+(2k ﹣1)x+k+1的图象与x 轴相交于O 、A 两点. (1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B ,使△AOB 的面积等于6,求点B 的坐标.20.已知等腰△ABC 的一边长a=3,另两边长b 、c 恰好是关于x 的方程x 2﹣(k+2)x+2k=0的两个根,求△ABC 的周长.21.如图,矩形ABCD 的两边长AB=18cm ,AD=4cm ,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1cm 的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x 秒,△PBQ 的面积为y (cm 2).(1)求y 关于x 的函数关系式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.22.在同一平面内,△ABC 和△ABD 如图①放置,其中AB=BD . 小明做了如下操作:将△ABC 绕着边AC 的中点旋转180°得到△CEA ,将△ABD 绕着边AD 的中点旋转180°得到△DFA ,如图②,请完成下列问题: (1)试猜想四边形ABDF 是什么特殊四边形,并说明理由; (2)连接EF ,CD ,如图③,求证:四边形CDEF 是平行四边形.五、(本大题共10分)23.如图,隧道的截面由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8m ,宽AB 为2m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系(如图1),y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6m .(1)求抛物线的解析式;(2)现有一辆货运卡车,高4.4m ,宽2.4m ,它能通过该隧道吗?(3)如果该隧道内设双向道(如图2)道正中间设有0.4m 吗?六、(本大题共12分)24.如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过B 两点的抛物线交x 轴于另一点C (3,0). (1)求A、B的坐标; (2)求抛物线的解析式;(3)在抛物线的对称轴上求一点P ,使得△PAB 并求出最小值;(4)在抛物线的对称轴上是否存在点Q ,使△ABQ 形?若存在,求出符合条件的Q 由.密学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.D .2. A . 3.D .4.B . 5.D . 6.D二、填空题(本大题共8小题,每小题3分,共24分) 7.一元二次方程x 2﹣3x=0的根是 x 1=0,x 2=3 .8.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是 20% .9.我们在教材中已经学习了:①等边三角形;②矩形;③平行四边形;④等腰三角形;⑤菱形.在以上五种几何图形中,既是轴对称图形,又是中心对称图形的是 ②⑤ . 10.二次函数y=ax 2+bx+c 和一次函数y=mx+n 的图象如图所示,则ax 2+bx+c ≤mx+n 时,x 的取值范围是 ﹣2≤x ≤1 .11.方程x 2﹣2x ﹣k=0的一个实数根为3,则另一个根为﹣1 . 12.已知二次函数y=(x ﹣1)2+4,若y 随x 的增大而减小,则x的取值范围是 x ≤1.13.已知抛物线y=x 2﹣2(k+1)x+16的顶点在x 轴上,则k 的值是 3或﹣5 .14.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为 (,2) .三、(本大题共4小题,每小题6分,共24分) 15.解:x (2x+3)﹣2(2x+3)=0, ∴(2x+3)(x ﹣2)=0, ∴2x+3=0或x ﹣2=0, ∴x 1=﹣,x 2=2.题16.如图,已知:BC 与CD 重合,∠ABC=∠CDE=90°,△ABC ≌△CDE ,并且△CDE 可由△ABC 逆时针旋转而得到.请你利用尺规作出旋转中心O (保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是 90° .17.解:(1)△A 1B 1C 1如图所示; (2)△A 2B 2C 2如图所示, B 2(4,﹣1),C 2(1,﹣2).18.解:(1)∵x 1,x 2是方程x 2﹣6x+k=0的两个根, ∴x 1+x 2=6,x 1x 2=k , ∵x 12x 22﹣x 1﹣x 2=115,∴k 2﹣6=115, 解得k 1=11,k 2=﹣11,当k 1=11时,△=36﹣4k=36﹣44<0, ∴k 1=11不合题意当k 2=﹣11时,△=36﹣4k=36+44>0, ∴k 2=﹣11符合题意,∴k 的值为﹣11; (2)∵x 1+x 2=6,x 1x 2=﹣11∴x 12+x 22+8=(x 1+x 2)2﹣2x 1x 2+8=36+2×11+8=66.四、(本大题共4小题,每小题8分,共32分) 19.解:(1)把(0,0)代入得k+1=0,解得k=﹣1, 所以二次函数解析式为y=x 2﹣3x ;(2)当y=0时,x 2﹣3x=0,解得x 1=0,x 2=3,则A (3,0抛物线的对称轴为直线x=, 设B (x ,x 2﹣3x ), 因为△AOB 的面积等于6, 所以•3•|x 2﹣3x|=6,当x 2﹣3x=4时,解得x 1=﹣1,x 2=4,则B 点坐标为(4,4当x 2﹣3x=﹣4时,方程无实数解. 所以点B 的坐标为(4,4).密 学校 班级 姓名 学号密 封 线 内 不 得 答 题20.解:x 2﹣(k+2)x+2k=0(x ﹣2)(x ﹣k )=0, 则x 1=2,x 2=k , 当b=c ,k=2,则△ABC 的周长=2+2+3=7,当b=2,c=3或c=2,b=3 则k=3,则△ABC 的周长=2+3+3=8. 故△ABC 的周长是7或8.21.解:(1)∵S △PBQ =PB •BQ ,PB=AB ﹣AP=18﹣2x ,BQ=x , ∴y=(18﹣2x )x ,即y=﹣x 2+9x (0<x ≤4);(2)由(1)知:y=﹣x 2+9x , ∴y=﹣(x ﹣)2+,∵当0<x ≤时,y 随x 的增大而增大, 而0<x ≤4,∴当x=4时,y 最大值=20, 即△PBQ 的最大面积是20cm 2.22.(1)解:四边形ABDF 是菱形.理由如下:∵△ABD 绕着边AD 的中点旋转180°得到△DFA , ∴AB=DF ,BD=FA , ∵AB=BD , ∴AB=BD=DF=FA , ∴四边形ABDF 是菱形;(2)证明:∵四边形ABDF 是菱形, ∴AB ∥DF ,且AB=DF ,∵△ABC 绕着边AC 的中点旋转180°得到△CEA , ∴AB=CE ,BC=EA ,∴四边形ABCE 为平行四边形, ∴AB ∥CE ,且AB=CE , ∴CE ∥FD ,CE=FD ,∴四边形CDEF 是平行四边形. 五、(本大题共10分)23.解:(1)对于直线y=3x+3, 令x=0,得到y=3;令y=0,得到x=﹣1, 则A (﹣1,0),B (0,3);(2)由A (﹣1,0),C (3,0),设抛物线解析式为y=a (x+1)(x ﹣3),把B (0,3)代入得:3=﹣3a ,即a=﹣1,则抛物线解析式为y=﹣(x+1)(x ﹣3)=﹣x 2+2x+3;密 封 线 答 题(3)连接BC ,与抛物线对称轴交于点P ,连接AP ,由对称性得AP=CP ,如图1所示,此时△ABP 周长最小,由抛物线解析式y=﹣x 2+2x+3=﹣(x ﹣1)2+4,得到对称轴为直线x=1,设直线BC 解析式为y=mx+n , 将B (0,3),C (3,0)代入得:,解得:m=﹣1,n=3,即直线BC 解析式为y=﹣x+3, 联立得:, 解得:,即P (1,2),根据两点间的距离公式得:AB==,BC==3,则P (1,2),周长为AB+BP+AP=AB+BP+PC=AB+BC=3+;(4)在抛物线的对称轴上存在点Q ,使△ABQ 是等腰三角形, 如图2所示,分四种情况考虑:当AB=AQ 1==时,在Rt △AQ 1Q 3中,AQ 3=2,AQ 1=,根据勾股定理得:Q 1Q 3==,此时Q 1(1,);由对称性可得Q 2(1,);当AB=BQ 3时,可得OQ 3=OA=1,此时Q 3(1,0);当AQ 4=BQ 4时,Q 4为线段AB 垂直平分线与对称轴的交点, ∵A (﹣1,0),B (0,3), ∴直线AB 斜率为=3,中点坐标为(﹣,),∴线段AB 垂直平分线方程为y ﹣=﹣(x+), 令x=1,得到y=1,此时Q 4(1,1),综上,Q 的坐标为(1,)或(1,﹣)或(1,0)或(1,1).密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(共10小题,每小题3分,共30分)1.方程3x 2﹣4x ﹣1=0的二次项系数和一次项系数分别为( ) A .3和4 B .3和﹣4 C .3和﹣1 D .3和1 2.二次函数y=x 2﹣2x+2的顶点坐标是( )A .(1,1)B .(2,2)C .(1,2)D .(1,3) 3.将△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则直线AB 与直线A 1B 1的夹角(锐角)为( ) A .130° B .50° C .40° D .60°4.用配方法解方程x 2+6x+4=0,下列变形正确的是( ) A .(x+3)2=﹣4 B .(x ﹣3)2=4 C .(x+3)2=5 D .(x+3)2=± 5.下列方程中没有实数根的是( ) A .x 2﹣x ﹣1=0 B .x 2+3x+2=0 C .2015x 2+11x ﹣20=0 D .x 2+x+2=06.平面直角坐标系内一点P (﹣2,3)关于原点对称的点的坐标是( )A .(3,﹣2)B .(2,3)C .(﹣2,﹣3)D .(2,﹣3)7.如图,⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OC=3:5,则AB 的长为( )A . cmB .8cmC .6cmD .4cm8.已知抛物线C 的解析式为y=ax 2+bx+c ,则下列说法中错误的是( )A .a 确定抛物线的形状与开口方向B .若将抛物线C 沿y 轴平移,则a ,b 的值不变 C .若将抛物线C 沿x 轴平移,则a 的值不变D .若将抛物线C 沿直线l :y=x+2平移,则a 、b 、c 的值全变 9.如图,四边形ABCD 的两条对角线互相垂直,AC+BD=16,则四边形ABCD 的面积最大值是( )A .64B .16C .24D .32封线内不得10.已知二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),且a2+ab+ac<0,下列说法:①b2﹣4ac<0;②ab+ac<0;③方程ax2+bx+c=0有两个不同根x1、x2,且(x1﹣1)(1﹣x2)>0;④二次函数的图象与坐标轴有三个不同交点,其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(共6小题,每小题3分,共18分)11.抛物线y=﹣x2﹣x﹣1的对称轴是_________.12.已知x=(b2﹣4c>0),则x2+bx+c的值为_________.13.⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离_________.14.如图,线段AB的长为1,C在AB上,D在AC上,且AC2=BC•AB,AD2=CD•AC,AE2=DE•AD,则AE的长为_________.15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是_________.16.如图,△ABC是边长为a的等边三角形,将三角板的角的顶点与A重合,三角板30°角的两边与BC交于D、E点,则DE长度的取值范围是_________.三、解答题(共8小题,共72分)17.解方程:x2+x﹣2=0.18.已知抛物线的顶点坐标是(3,﹣1),与y轴的交点是(﹣4),求这个二次函数的解析式.19.已知x1、x2是方程x2﹣3x﹣5=0的两实数根(1)求x1+x2,x1x2的值;(2)求2x12+6x2﹣2015的值.密学校 班级 姓名 学号密 封 线 内 不 得 答 题20.如图所示,△ABC 与点O 在10×10的网格中的位置如图所示(1)画出△ABC 绕点O 逆时针旋转90°后的图形; (2)画出△ABC 绕点O 逆时针旋转180°后的图形;(2)若⊙M 能盖住△ABC ,则⊙M 的半径最小值为_________.21.如图,在⊙O 中,半径OA 垂直于弦BC ,垂足为E ,点D 在CA 的延长线上,若∠DAB+ ∠AOB=60°(1)求∠AOB 的度数; (2)若AE=1,求BC 的长.22.飞机着陆后滑行的距离S (单位:m )关于滑行时间t (单位:s )的函数解析式是:S=60t ﹣1.5t 2(1)直接指出飞机着陆时的速度; (2)直接指出t 的取值范围;(3)画出函数S 的图象并指出飞机着陆后滑行多远才能停下来?23.如图,△ABC 是边长为6cm 的等边三角形,点D 从B 点出发沿B →A 方向在线段BA 上以a cm/s 速度运动,与此同时,点E 从线段BC 的某个端点出发,以b cm/s 速度在线段BC 上运动,当D 到达A 点后,D 、E 运动停止,运动时间为t (秒)(1)如图1,若a=b=1,点E 从C 出发沿C →B 方向运动,连AE 、CD ,AE 、CD 交于F ,连BF .当0<t <6时:密封 线 内 不 得①求∠AFC 的度数; ②求的值;(2)如图2,若a=1,b=2,点E 从B 点出发沿B →C 方向运动,E 点到达C 点后再沿C →B 方向运动.当t ≥3时,连DE ,以DE 为边作等边△DEM ,使M 、B 在DE 两侧,求M 点所经历的路径长.24.定义:我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(1)已知抛物线的焦点F (0,),准线l :,求抛物线的解析式;(2)已知抛物线的解析式为:y=x 2﹣n 2,点A (0,)(n ≠0),B (1,2﹣n 2),P 为抛物线上一点,求PA+PB 的最小值及此时P 点坐标;(3)若(2)中抛物线的顶点为C ,抛物线与x 轴的两个交点分别是D 、E ,过C 、D 、E 三点作⊙M ,⊙M 上是否存在定点N ?若存在,求出N 点坐标并指出这样的定点N 有几个;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分) 1.B . 2.A . 3. B .4.C .5.D .6.D .7.B .8.D .密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题9. D .10.C .二、填空题(共6小题,每小题3分,共18分) 11.抛物线y=﹣x 2﹣x ﹣1的对称轴是 直线x=﹣ . 12.已知x=(b 2﹣4c >0),则x 2+bx+c 的值为 0 .13.⊙O 的半径为13cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB=24cm ,CD=10cm .则AB 和CD 之间的距离 7cn 或17cm .14.如图,线段AB 的长为1,C 在AB 上,D 在AC 上,且AC 2=BC •AB ,AD 2=CD •AC ,AE 2=DE •AD ,则AE 的长为﹣2 .15.抛物线的部分图象如图所示,则当y <0时,x 的取值范围是 x >3或x <﹣1 .16.如图,△ABC 是边长为a 的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC 交于D 、E 两点,则DE 长度的取值范围是 (2﹣3)a ≤DE ≤a . .题三、解答题(共8小题,共72分)17. 解:分解因式得:(x ﹣1)(x+2)=0, 可得x ﹣1=0或x+2=0, 解得:x 1=1,x 2=﹣2.18.解:设抛物线解析式为y=a (x ﹣3)2﹣1, 把(0,﹣4)代入得:﹣4=9a ﹣1,即a=﹣, 则抛物线解析式为y=﹣(x ﹣3)2﹣1.19.解:(1)∵∴x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 1+x 2=3,x 1x 2=﹣5,;(2)∵x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 12﹣3x 1﹣5=0, ∴x 12=3x 1+5,∴2x 12+6x 2﹣2015=2(3x 1+5)+6x 2﹣2015=6(x 1+x 2)﹣2015=﹣1987.20.解:(1)如图,△A ′B ′C ′为所作; (2)如图,△A ″B ″C ″为所求;(3)如图,点M 为△ABC 的外接圆的圆心,此时⊙M 是能盖住△ABC 的最小的圆,⊙M 的半径为=.故答案为.21.解:(1)连接OC , ∵OA ⊥BC ,OC=OB ,∴∠AOC=∠AOB ,∠ACO=∠ABO ,∵∠DAO=∠ACO+∠AOC=∠OAB+∠DAB ,∠ACO=∠OAB , ∴∠DAB=∠AOC ,∴∠DAB=∠AOB ,又∠DAB+∠AOB=60°, ∴∠AOB=30°; (2)∵∠AOB=30°, ∴BE=OB ,设⊙O 的半径为r ,则BE=r ,OE=r ﹣1, 由勾股定理得,r 2=(r )2+(r ﹣1)2, 解得r=4,∵OB=OC ,∠BOC=2∠AOB=60°, ∴BC=r=4.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题22.解:(1)飞机着陆时的速度V=60; (2)当S 取得最大值时,飞机停下来,则S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600, 此时t=20因此t 的取值范围是0≤t ≤20; (3)如图,S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600. 飞机着陆后滑行600米才能停下来.23.解:(1)如图1,由题可得BD=CE=t . ∵△ABC 是等边三角形, ∴BC=AC ,∠B=∠ECA=60°. 在△BDC 和△CEA 中,,∴△BDC ≌△CEA , ∴∠BCD=∠CAE ,∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°, ∴∠AFC=120°;②延长FD 到G ,使得FG=FA ,连接GA 、GB ,过点B 作BH ⊥FG于H ,如图2,∵∠AFG=180°﹣120°=60°,FG=FA ,密 封 内∴△FAG 是等边三角形,∴AG=AF=FG ,∠AGF=∠GAF=60°. ∵△ABC 是等边三角形, ∴AB=AC ,∠BAC=60°, ∴∠GAF=∠BAC , ∴∠GAB=∠FAC . 在△AGB 和△AFC 中,,∴△AGB ≌△AFC ,∴GB=FC ,∠AGB=∠AFC=120°, ∴∠BGF=60°. 设AF=x ,FC=y ,则有FG=AF=x ,BG=CF=y . 在Rt △BHG 中,BH=BG •sin ∠BGH=BG •sin60°=y ,GH=BG •cos ∠BGH=BG •cos60°=y , ∴FH=FG ﹣GH=x ﹣y . 在Rt △BHF 中,BF 2=BH 2+FH 2 =(y )2+(x ﹣y )2=x 2﹣xy+y 2.∴==1;(2)过点E 作EN ⊥AB 于N ,连接MC ,如图3,由题可得:∠BEN=30°,BD=1×t=t ,CE=2(t ﹣3)=2t ﹣∴BE=6﹣(2t ﹣6)=12﹣2t ,BN=BE •cosB=BE=6﹣t , ∴DN=t ﹣(6﹣t )=2t ﹣6, ∴DN=EC .∵△DEM 是等边三角形, ∴DE=EM ,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°∴∠NDE=∠MEC . 在△DNE 和△ECM 中,,∴△DNE ≌△ECM , ∴∠DNE=∠ECM=90°,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴M 点运动的路径为过点C 垂直于BC 的一条线段.当t=3时,E 在点B ,D 在AB 的中点, 此时CM=EN=CD=BC •sinB=6×=3;当t=6时,E 在点C ,D 在点A , 此时点M 在点C .∴当3≤t ≤6时,M 点所经历的路径长为3.24.解:(1)设抛物线上有一点(x ,y ), 由定义知:x 2+(y ﹣)2=|y+|2,解得y=ax 2;(2)如图1,由(1)得抛物线y=x 2的焦点为(0,),准线为y=﹣,∴y=x 2﹣n 2由y=x 2向下平移n 2个单位所得, ∴其焦点为A (0,﹣n 2),准线为y=﹣﹣n 2, 由定义知P 为抛物线上的点,则PA=PH , ∴PA+PH 最短为P 、B 、A 共线,此时P 在P ′处, ∵x=1,∴y=1﹣n 2<2﹣n 2, ∴点B 在抛物线内,∴BI=y B ﹣y I =2﹣n 2﹣(﹣﹣n 2)=,∴PA+PB 的最小值为,此时P 点坐标为(1,1﹣n 2); (3)由(2)知E (|n|,0),C (0,n 2),设OQ=m (m >0),则CQ=QE=n 2﹣m ,在Rt △OQE 中,由勾股定理得|n|2+m 2=(n 2﹣m )2, 解得m=﹣, 则QC=+=QN ,∴ON=QN ﹣m=1, 即点N (0,1), 故AM 过定点N (0,1).人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)题号 一 二 总分 得分一、选择题(共15题,每题3分共45分)不1.下列平面图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .2.方程x 2=3x 的解是( )A .x=﹣3B .x=3C .x 1=0,x 2=3D .x 1=0,x 2=﹣3 3.三角形的两边长分别是3和6,第三边是方程x 2﹣6x+8=0的解,则这个三角形的周长是( )A .11B .13C .11或13D .11和134.已知x 1,x 2是一元二次方程x 2﹣4x+1=0的两个实数根,则x 1•x 2等于( )A .﹣4B .﹣1C .1D .45.若a 为方程x 2+x ﹣5=0的解,则a 2+a+1的值为( ) A .12 B .6 C .9 D .166.关于x 的一元二次方程9x 2﹣6x+k=0有两个不相等的实根,则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥17.如图所示,在等腰直角△ABC 中,∠B=90°,将△ABC 绕点 A 逆时针旋转60°后得到的△AB ′C ′,则∠BAC ′等于( )A .105°B .120°C .135°D .150°8.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( A .y=1+x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2 9.将抛物线y=2x 2向左平移1个单位,再向上平移3到的抛物线,其解析式是( )A .y=2(x+1)2+3B .y=2(x ﹣1)2﹣3C .y=2(x+1)2﹣3D .y=2(x ﹣1)2+3 10.抛物线y=(x+2)2+1的顶点坐标是( ) A .(2,1) B .(﹣2,1) C .(2,﹣1) D .(﹣2,﹣1)11.函数y=﹣x 2﹣4x ﹣3图象顶点坐标是( ) A .(2,﹣1) B .(﹣2,1) C .(﹣2,﹣1) D .2,1)12.已知二次函数y=ax 2+bx+c 的x 、y x ﹣1 0 123y51﹣1 ﹣1 1则该二次函数图象的对称轴为( )A .y 轴B .直线x=C .直线x=2D .直线x=密线学校 班级 姓名 学号密 封 线 内 不 得 答 题13.已知二次函数y=ax 2+bx+c 的图象如图所示,则a 、b 、c满足( )A .a <0,b <0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >014.已知抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系内的图象如图,其中正确的是( )A .B .C .D .15.已知0≤x ≤,那么函数y=﹣2x 2+8x ﹣6的最大值是( ) A .﹣10.5 B .2 C .﹣2.5 D .﹣6 二、解答题(本大题共9小题,共75分) 16.解方程:x 2﹣4x+2=0.17.已知抛物线的顶点为A (1,﹣4),且过点B (3,0).求该抛物线的解析式.18.如图,点O 是等边△ABC 内一点,∠AOB=110°,∠BOC=α,将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD . (1)求证:△COD 是等边三角形;(2)当α=150°时,试判断△AOD 的形状,并说明理由.19.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x (元)取整数,用y (元)表示该店日净收入.( 日净收入=每天的销售额﹣套餐成本﹣每天固定支出 )(1)当5<x ≤10时,y= ;当x >10时, y= ;(2)若该店日净收入为1560元,那么每份售价是多少元? 20.如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A 点为旋转中心,将△ABC 绕点A 顺时针旋转90°得△AB 1C 1,画出△AB 1C 1.(2)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2.题(3)作出点C 关于x 轴的对称点P .若点P 向右平移x (x 取整数)个单位长度后落在△A 2B 2C 2的内部,请直接写出x 的值.21.已知关于x 的一元二次方程. (1)判断这个一元二次方程的根的情况;(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.22.某房地产开放商欲开发某一楼盘,于2010年初以每亩100万的价格买下面积为15亩的空地,由于后续资金迟迟没有到位,一直闲置,因此每年需上交的管理费为购买土地费用的10%,2012年初,该开发商个人融资1500万,向银行贷款3500万后开始动工(已知银行贷款的年利率为5%,且开发商预计在2014年初完工并还清银行贷款),同时开始房屋出售,开发总面积为5万平方米,动工后每年的土地管理费降为购买土地费用的5%,工程完工后不再上交土地管理费.出售之前,该开发商聘请调查公司进行了市场调研,发现在该片区,若房价定位每平方米3000元,则会销售一空.若房价每平方米上涨100元,则会少卖1000平方米,且卖房时间会延长2.5房地产开发商预计售房净利润为8660万.(1)问:该房地产开发商总的投资成本是多少万?(2)若售房时间定为2年(2发商不再出售,准备作为商业用房对外出租)每平方米多少元?23.正方形ABCD 中,将一个直角三角板的直角顶点与点A 合,一条直角边与边BC 交于点E (点E 不与点B 和点C 另一条直角边与边CD 的延长线交于点F . (1)如图①,求证:AE=AF ;(2)如图②,此直角三角板有一个角是45°,它的斜边与边CD 交于G ,且点G 是斜边MN 的中点,连接EG EG=BE+DG ;(3)在(2)的条件下,如果=,那么点G 是否一定是边CD 的中点?请说明你的理由.密学校 班级 姓名 学号密 封 线 内 不 得 答 题24.如图,已知点A (0,1),C (4,3),E (,),P 是以AC 为对角线的矩形ABCD 内部(不在各边上)的一动点,点D 在y 轴上,抛物线y=ax 2+bx+1以P 为顶点. (1)说明点A ,C ,E 在一条直线上;(2)能否判断抛物线y=ax 2+bx+1的开口方向?请说明理由; (3)设抛物线y=ax 2+bx+1与x 轴有交点F 、G (F 在G 的左侧),△GAO 与△FAO 的面积差为3,且这条抛物线与线段AE 有两个不同的交点,这时能确定a 、b 的值吗?若能,请求出a ,b 的值;若不能,请确定a 、b 的取值范围.参考答案一、选择题(共15题,每题3分共45分)1.B .2. C .3. B .4. C .5.B .6.A .7.A .8.D .9.A . 10.B .11.B .12.D .13.A .14.D .15.C . 二、解答题(本大题共9小题,共75分)16.解:x 2﹣4x=﹣2 x 2﹣4x+4=2 (x ﹣2)2=2或 ∴,.17.解:设抛物线的解析式为y=a (x ﹣1)2﹣4, ∵抛物线经过点B (3,0), ∴a (3﹣1)2﹣4=0, 解得:a=1,∴y=(x ﹣1)2﹣4,即y=x 2﹣2x ﹣3.18.(1)证明:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴∠OCD=60°,CO=CD , ∴△OCD 是等边三角形; (2)解:△AOD 为直角三角形. 理由:∵△COD 是等边三角形. ∴∠ODC=60°,∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴∠ADC=∠BOC=α, ∴∠ADC=∠BOC=150°,得 答 题∴∠ADO=∠ADC ﹣∠CDO=150°﹣60°=90°,于是△AOD 是直角三角形.19.解:(1)由题意得:当5<x ≤10时,y=400(x ﹣5)﹣600; 当x >10时,y=(x ﹣5)[400﹣40(x ﹣10)]﹣600=﹣40x 2+100x ﹣4600.即y=﹣40x 2+100x ﹣4600(x >10).故答案是:400(x ﹣5)﹣600;﹣40x 2+100x ﹣4600; (2)由(1)知,y=﹣40x 2+100x ﹣4600(x >10) 当y=1560时,(x ﹣5)[400﹣40(x ﹣10)]﹣600=1560, 解得:x 1=11,x 2=14,答:该店日净收入为1560元,那么每份售价是11元或14元;20.解:(1)作图如右:△A 1B 1C 1即为所求;(2)作图如右:△A 2B 2C 2即为所求;(3)x 的值为6或7.21.解:(1)所以,方程有两个实数根;密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)若腰=3,则x=3是方程的一个根,代入后得:k=2, 原方程为x 2﹣5x+6=0⇒x 1=2,x 2=3 即,等腰三角形的三边为3,3,2.则周长为8,面积为若底为3,则原方程为x 2﹣4x+4=0⇒x 1=x 2=2 即,等腰三角形的三边为2,2,3. 则周长为7,面积为22.解:(1)15×100=1500万, 1500×10%×2=300万,1500+3500+3500×5%×2=5350万, 1500×5%×2=150万,四者相加1500+300+5350+150=7300万. 答:该房地产开发商总的投资成本是7300万;(2)设房价每平方米上涨x 个100元,依题意有 (5﹣0.1x )=8660+7300, 解得x 1=12,x 2=8,又因为当x 1=12时,卖房时间为30个月,此时超过两年,所以舍去;当x 2=8时,卖房时间为20个月; 则房价为3000+8×100=3800元. 答:房价应定为每平方米3800元.23.解:(1)如图①,∵四边形ABCD 是正方形, ∴∠B=∠BAD=∠ADC=∠C=90°,AB=AD .∵∠EAF=90°, ∴∠EAF=∠BAD ,∴∠EAF ﹣∠EAD=∠BAD ﹣∠EAD , ∴∠BAE=∠DAF . 在△ABE 和△ADF 中,∴△ABE ≌△ADF (ASA ) ∴AE=AF ;(2)如图②,连接AG , ∵∠MAN=90°,∠M=45°, ∴∠N=∠M=45°, ∴AM=AN .∵点G 是斜边MN 的中点, ∴∠EAG=∠NAG=45°.密 封 题∴∠EAB+∠DAG=45°. ∵△ABE ≌△ADF , ∴∠BAE=∠DAF ,AE=AF , ∴∠DAF+∠DAG=45°, 即∠GAF=45°, ∴∠EAG=∠FAG . 在△AGE 和AGF 中,,∴△AGE ≌AGF (SAS ), ∴EG=GF . ∵GF=GD+DF , ∴GF=GD+BE , ∴EG=BE+DG ;(3)G 不一定是边CD 的中点. 理由:设AB=6k ,GF=5k ,BE=x , ∴CE=6k ﹣x ,EG=5k ,CF=CD+DF=6k+x , ∴CG=CF ﹣GF=k+x ,在Rt △ECG 中,由勾股定理,得 (6k ﹣x )2+(k+x )2=(5k )2, 解得:x 1=2k ,x 2=3k ,∴CG=4k 或3k .∴点G 不一定是边CD 的中点.24.解:(1)由题意,A (0,1)、C (4,3)两点确定的直线解析式为:y=x+1 将点E 的坐标(,),代入y=x+1中,左边=,右边=×+1=.∵左边=右边∴点E 在直线y=x+1上, 即点A 、C 、E 在一条直线上;(2)解法一:由于动点P 在矩形ABCD 的内部,∴点P 的纵坐标大于点A 的纵坐标,而点A 与点P 上,且P 为顶点,∴这条抛物线有最高点,抛物线的开口向下. 解法二:∵抛物线y=ax 2+bx+1的顶点P 的纵坐标为,且P 在矩形ABCD 的内部, ∴1<<3,由1<1﹣得﹣>0.∴a <0.∴抛物线开口向下; (3)连接GA 、FA .密学校 班级 姓名 学号密 封 线 内 不 得 答 题∵S △GAO ﹣S △FAO =3∴GO •AO ﹣FO •AO=3. ∵OA=1, ∴GO ﹣FO=6.设F (x 1,0),G (x 2,0),则x 1、x 2是方程ax 2+bx+1=0的两个根,且x 1<x 2,又∵a <0 ∴x 1•x 2=<0, ∴x 1<0<x 2 ∴GO=x 2、FO=﹣x 1∴x 2﹣(﹣x 1)=6,即x 2+x 1=6 ∵x 2+x 1=,∴=6∴b=﹣6a∴抛物线的解析式为:y=ax 2﹣6ax+1,其顶点P 的坐标为(3,1﹣9a )∵顶点P 在矩形ABCD 的内部, ∴1<1﹣9a <3, ∴﹣<a <0① 由方程组,得ax 2﹣(6a+)x=0, ∴x=0或x==6+,当x=0时,即抛物线与线段AE 交于点A ,而这条抛物线与线段AE 有两个不同的交点, 则有:0<6+≤, 解得:﹣a <﹣②,综合①②,得﹣<a <﹣,∵b=﹣6a , ∴<b <.。
人教版2020---2021学年度九年级数学(上)期中考试卷及答案(含三套题)
密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、选择题(共15题,每题3分,共45分)1.下列平面图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .2.方程x 2=3x 的解是( )A .x=﹣3B .x=3C .x 1=0,x 2=3D .x 1=0,x 2=﹣3 3.三角形的两边长分别是3和6,第三边是方程x 2﹣6x+8=0的解,则这个三角形的周长是( ) A .11 B .13 C .11或13 D .11和134.已知x 1,x 2是一元二次方程x 2﹣4x+1=0的两个实数根,则x 1•x 2等于( ) A .﹣4 B .﹣1 C .1 D .45.若a 为方程x 2+x ﹣5=0的解,则a 2+a+1的值为( ) A .12 B .6 C .9 D .166.关于x 的一元二次方程9x 2﹣6x+k=0有两个不相等的实根,则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥17.如图所示,在等腰直角△ABC 中,∠B=90°,将△ABC 绕点 A 逆时针旋转60°后得到的△AB ′C ′,则∠BAC ′等于( )A .105°B .120°C .135°D .150°8.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( )A .y=1+x 2B .y=(2x+1)2C .y=(x ﹣1)2D .y=2x 2 9.将抛物线y=2x 2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是( ) A .y=2(x+1)2+3 B .y=2(x ﹣1)2﹣3 C .y=2(x+1)2﹣3 D .y=2(x ﹣1)2+310.抛物线y=(x+2)2+1的顶点坐标是( ) A .(2,1) B .(﹣2,1) C .(2,﹣1) D .(﹣2,﹣1) 11.函数y=﹣x 2﹣4x ﹣3图象顶点坐标是( ) A .(2,﹣1) B .(﹣2,1) C .(﹣2,﹣1) D .2,1) 12.已知二次函数y=ax 2+bx+c 的x 、y 的部分对应值如下表:x﹣1123题号一 二 总分 得分密 封 线 内 不 得y 5 1 ﹣1 ﹣1 1则该二次函数图象的对称轴为( )A .y 轴B .直线x=C .直线x=2D .直线x= 13.已知二次函数y=ax 2+bx+c 的图象如图所示,则a 、b 、c 满足( )A .a <0,b <0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >014.已知抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系内的图象如图,其中正确的是( )A .B .C .D .15.已知0≤x ≤,那么函数y=﹣2x 2+8x ﹣6的最大值是( ) A .﹣10.5 B .2 C .﹣2.5 D .﹣6 二、解答题(本大题共9小题,共75分) 16.(4分)解方程:x 2﹣4x+2=0.17.(5分)已知抛物线的顶点为A (1,﹣4),该抛物线的解析式.18.(6分)如图,点O 是等边△ABC 内一点,∠BOC=α,将△BOC 绕点C 按顺时针方向旋转60接OD .(1)求证:△COD 是等边三角形;(2)当α=150°时,试判断△AOD19.(6分)份套餐的成本为5套餐成本).若每份售价不超过10每份售价超过10元,每提高1元,了便于结算,每份套餐的售价x 示该店日净收入.( 日净收入=天固定支出 )(1)当5<x ≤10时,y= ;当x >10时,(2)若该店日净收入为1560密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题20.(9分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题: (1)以A 点为旋转中心,将△ABC 绕点A 顺时针旋转90°得△AB 1C 1,画出△AB 1C 1.(2)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2. (3)作出点C 关于x 轴的对称点P .若点P 向右平移x (x 取整数)个单位长度后落在△A 2B 2C 2的内部,请直接写出x 的值.21.(10分)已知关于x 的一元二次方程. (1)判断这个一元二次方程的根的情况;(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.22.(11分)某房地产开放商欲开发某一楼盘,于2018年初以每亩100万的价格买下面积为15亩的空地,由于后续资金迟迟没有到位,一直闲置,因此每年需上交的管理费为购买土地费用的10%,2020年初,该开发商个人融资1500万,向银行贷款3500万后开始动工(已知银行贷款的年利率为5%,且开发商预计在2022年初完工并还清银行贷款),同时开始房屋出售,开发总面积为5万平方米,动工后每年的土地管理费降为购买土地费用的5%,工程完工后不再上交土地管理费.出售之前,该开发商聘请调查公司进行了市场调研,发现在该片区,若房价定位每平方米3000元,则会销售一空.若房价每平方米上涨100元,则会少卖1000平方米,且卖房时间会延长2.5个月.该房地产开发商预计售房净利润为8660万. (1)问:该房地产开发商总的投资成本是多少万? (2)若售房时间定为2年(2年后,对于未出售的面积,开发商不再出售,准备作为商业用房对外出租),则房价应定为每平方米多少元?23.(12分)正方形ABCD 中,将一个直角三角板的直角顶点与点A 重合,一条直角边与边BC 交于点E (点E 不与点B 和点C 重合),另一条直角边与边CD 的延长线交于点F . (1)如图①,求证:AE=AF ;(2)如图②,此直角三角板有一个角是45°,它的斜边MN 与边CD 交于G ,且点G 是斜边MN 的中点,连接EG ,求证:EG=BE+DG ;(3)在(2)的条件下,如果=,那么点G 是否一定是边CD 的中点?请说明你的理由.24.(12分)如图,已知点A(0,1),C(4,3),E(,),P是以AC为对角线的矩形ABCD内部(不在各边上)的一动点,点D在y轴上,抛物线y=ax2+bx+1以P为顶点.(1)说明点A,C,E在一条直线上;(2)能否判断抛物线y=ax2+bx+1的开口方向?请说明理由;(3)设抛物线y=ax2+bx+1与x轴有交点F、G(F在G的左侧),△GAO与△FAO的面积差为3,且这条抛物线与线段AE有两个不同的交点,这时能确定a、b的值吗?若能,请求出a,b的值;若不能,请确定a、b的取值范围.参考答案与试题解析一、选择题(共15题,每题3分共45分)1.解:∵选项A中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项A不正确;∵选项B中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,它也是轴对称图形,∴选项B正确;∵选项C中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项C不正确;∵选项D中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,但它不是轴对称图形,∴选项D不正确.故选:B.2.解:x2﹣3x=0, x(x﹣3)=0, x=0或x﹣3=0,所以x1=0,x2=3.故选C.3.解:方程x2﹣6x+8=0,分解因式得:(x﹣2)(x﹣4)=0,可得x﹣2=0或x﹣4=0,解得:x1=2,x2=4,当x=2时,三边长为2,3,6,不能构成三角形,舍去;当x=4时,三边长分别为3,4,6,此时三角形周长为故选B.4.解:根据韦达定理得x1•x2=1.故选:C.5.解:∵a为方程x2+x﹣5=0的解,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴a 2+a ﹣5=0,∴a 2+a=5 则a 2+a+1=5+1=6.故选:B .6.解:∵关于x 的一元二次方程9x 2﹣6x+k=0有两个不相等的实根,∴△=(﹣6)2﹣4×9k >0,解得k <1.故选A . 7.解:∵在等腰直角△ABC 中,∠B=90°,∴∠BAC=45°,∵将△ABC 绕点 A 逆时针旋转60°后得到的△AB ′C ′, ∴∠BAB ′=60°,∠B ′AC ′=∠BAC=45°,∴∠BAC ′=∠BAB ′+∠B ′AC ′=60°+45°=105°,故选A . 8.解:y=2(x ﹣1)2+3中,a=2.故选D .9.解:原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(﹣1,3).可设新抛物线的解析式为y=2(x ﹣h )2+k ,代入得:y=2(x+1)2+3. 故选A .10.解:因为y=(x+2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1).故选B .11.解:∵y=﹣x 2﹣4x ﹣3=﹣(x 2+4x+4﹣4+3)=﹣(x+2)2+1 ∴顶点坐标为(﹣2,1);故选B . 12.解:∵x=1和2时的函数值都是﹣1,∴对称轴为直线x==.故选:D .13.解:根据二次函数图象的性质, ∵开口向下, ∴a <0,∵与y 轴交于正半轴, ∴c >0, 又∵对称轴x=﹣<0,∴b <0,所以A 正确.故选A .14.解:A 、由二次函数的图象可知a <0,此时直线y=ax+b 应经过二、四象限,故A 可排除;B 、由二次函数的图象可知a <0,对称轴在y 轴的右侧,可知a 、b 异号,b >0,此时直线y=ax+b 应经过一、二、四象限,故B 可排除;C 、由二次函数的图象可知a >0,此时直线y=ax+b 应经过一、三象限,故C 可排除;正确的只有D .故选:D . 15.解:∵y=﹣2x 2+8x ﹣6=﹣2(x ﹣2)2+2.∴该抛物线的对称轴是x=2,且在x <2上y 随x 的增大而增大. 又∵0≤x ≤,∴当x=时,y 取最大值,y 最大=﹣2(﹣2)2+2=﹣2.5.故选:C .二、解答题(本大题共9小题,共75分)密16.解:x 2﹣4x=﹣2 x 2﹣4x+4=2 (x ﹣2)2=2或 ∴,.17.解:设抛物线的解析式为y=a (x ﹣1)2﹣4, ∵抛物线经过点B (3,0), ∴a (3﹣1)2﹣4=0, 解得:a=1,∴y=(x ﹣1)2﹣4,即y=x 2﹣2x ﹣3.18.(1)证明:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴∠OCD=60°,CO=CD , ∴△OCD 是等边三角形; (2)解:△AOD 为直角三角形. 理由:∵△COD 是等边三角形. ∴∠ODC=60°,∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴∠ADC=∠BOC=α, ∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC ﹣∠CDO=150°﹣60°=90°,于是△AOD 三角形.19.解:(1)由题意得:当5<x ≤10时,y=400(x ﹣5)﹣当x >10时,y=(x ﹣5)[400﹣40(x ﹣10)]﹣600=﹣40x 2﹣4600.即y=﹣40x 2+100x ﹣4600(x >10).故答案是:400(x ﹣5)﹣600;﹣40x 2+100x ﹣4600; (2)由(1)知,y=﹣40x 2+100x ﹣4600(x >10) 当y=1560时,(x ﹣5)[400﹣40(x ﹣10)]﹣600=1560, 解得:x 1=11,x 2=14,答:该店日净收入为1560元,那么每份售价是11元或1420.解:(1)作图如右:△A 1B 1C 1即为所求; (2)作图如右:△A 2B 2C 2即为所求; (3)x 的值为6或7.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题21.解:(1)所以,方程有两个实数根;(2)若腰=3,则x=3是方程的一个根,代入后得:k=2, 原方程为x 2﹣5x+6=0⇒x 1=2,x 2=3 即,等腰三角形的三边为3,3,2. 则周长为8,面积为 若底为3,则原方程为x 2﹣4x+4=0⇒x 1=x 2=2 即,等腰三角形的三边为2,2,3. 则周长为7,面积为22.解:(1)15×100=1500万, 1500×10%×2=300万,1500+3500+3500×5%×2=5350万, 1500×5%×2=150万,四者相加1500+300+5350+150=7300万.答:该房地产开发商总的投资成本是7300万;(2)设房价每平方米上涨x 个100元,依题意有(5﹣0.1x )=8660+7300, 解得x 1=12,x 2=8,又因为当x 1=12时,卖房时间为30个月,此时超过两年,所以舍去;当x 2=8时,卖房时间为20个月; 则房价为3000+8×100=3800元. 答:房价应定为每平方米3800元.23.解:(1)如图①,∵四边形ABCD 是正方形, ∴∠B=∠BAD=∠ADC=∠C=90°,AB=AD . ∵∠EAF=90°, ∴∠EAF=∠BAD ,∴∠EAF ﹣∠EAD=∠BAD ﹣∠EAD , ∴∠BAE=∠DAF . 在△ABE 和△ADF 中,∴△ABE ≌△ADF (ASA ) ∴AE=AF ;(2)如图②,连接AG , ∵∠MAN=90°,∠M=45°,密 封 线 内 不 得 答 题∴∠N=∠M=45°, ∴AM=AN .∵点G 是斜边MN 的中点, ∴∠EAG=∠NAG=45°. ∴∠EAB+∠DAG=45°. ∵△ABE ≌△ADF , ∴∠BAE=∠DAF ,AE=AF , ∴∠DAF+∠DAG=45°, 即∠GAF=45°, ∴∠EAG=∠FAG . 在△AGE 和AGF 中,,∴△AGE ≌AGF (SAS ), ∴EG=GF . ∵GF=GD+DF , ∴GF=GD+BE , ∴EG=BE+DG ;(3)G 不一定是边CD 的中点. 理由:设AB=6k ,GF=5k ,BE=x , ∴CE=6k ﹣x ,EG=5k ,CF=CD+DF=6k+x ,∴CG=CF ﹣GF=k+x ,在Rt △ECG 中,由勾股定理,得 (6k ﹣x )2+(k+x )2=(5k )2, 解得:x 1=2k ,x 2=3k , ∴CG=4k 或3k .∴点G 不一定是边CD 的中点.24.解:(1)由题意,A (0,1)、C (4,3)两点确定的直线解析式为:y=x+1 将点E 的坐标(,),代入y=x+1中,左边=,右边=×+1=.∵左边=右边∴点E 在直线y=x+1上, 即点A 、C 、E 在一条直线上;(2)解法一:由于动点P 在矩形ABCD 的内部,∴点P 的纵坐标大于点A 的纵坐标,而点A 与点P 上,且P 为顶点,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴这条抛物线有最高点,抛物线的开口向下.解法二:∵抛物线y=ax 2+bx+1的顶点P 的纵坐标为,且P 在矩形ABCD 的内部,∴1<<3,由1<1﹣得﹣>0.∴a <0. ∴抛物线开口向下;(3)连接GA 、FA . ∵S △GAO ﹣S △FAO =3∴GO •AO ﹣FO •AO=3. ∵OA=1, ∴GO ﹣FO=6.设F (x 1,0),G (x 2,0),则x 1、x 2是方程ax 2+bx+1=0的两个根,且x 1<x 2, 又∵a <0 ∴x 1•x 2=<0, ∴x 1<0<x 2 ∴GO=x 2、FO=﹣x 1∴x 2﹣(﹣x 1)=6,即x 2+x 1=6 ∵x 2+x 1=,∴=6∴b=﹣6a∴抛物线的解析式为:y=ax 2﹣6ax+1,其顶点P 的坐标为(3,1﹣9a )∵顶点P 在矩形ABCD 的内部, ∴1<1﹣9a <3,∴﹣<a <0① 由方程组,得ax 2﹣(6a+)x=0, ∴x=0或x==6+,当x=0时,即抛物线与线段AE 交于点A ,而这条抛物线与线段AE 有两个不同的交点, 则有:0<6+≤, 解得:﹣a <﹣②,综合①②,得﹣<a <﹣,∵b=﹣6a , ∴<b <.封 线 内 不 得 答人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列汽车标志中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.已知m 是方程x 2﹣x ﹣2=0的一个根,则代数式m 2﹣m+2的值等于( )A .4B .1C .0D .﹣13.已知点P 关于x 轴的对称点P 1的坐标是(2,3),那么点P 关于原点的对称点P 2的坐标是( )A .(﹣3,﹣2)B .(2,﹣3)C .(﹣2,﹣3)D .(﹣2,3) 4.抛物线y=(x+2)2﹣3可以由抛物线y=x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位,再向上平移3个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位5.已知关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0相等的实数根,则k 的取值范围是( ) A .k <﹣2 B .k <2 C .k >2 D .k <2且k≠16.二次函数y=ax 2+bx+c (a≠0论:①b 2﹣4ac >0;②2a+b <0;③4a ﹣2b+c=0;④a :b :﹣1:2:3.其中正确的是( )A .①②B .②③C .③④D .①④二、填空题(本大题共8小题,每小题3分,共24分) 7.一元二次方程x 2﹣3x=0的根是 .8.某药品原价每盒25号召,经过连续两次降价,现在售价每盒16均每次降价的百分率是 .密线学校 班级 姓名 学号密 封 线 内 不 得 答 题9.我们在教材中已经学习了:①等边三角形;②矩形;③平行四边形;④等腰三角形;⑤菱形.在以上五种几何图形中,既是轴对称图形,又是中心对称图形的是 . 10.二次函数y=ax 2+bx+c 和一次函数y=mx+n 的图象如图所示,则ax 2+bx+c≤mx+n 时,x 的取值范围是 .11.方程x 2﹣2x ﹣k=0的一个实数根为3,则另一个根为 .12.已知二次函数y=(x ﹣1)2+4,若y 随x 的增大而减小,则x 的取值范围是 .13.已知抛物线y=x 2﹣2(k+1)x+16的顶点在x 轴上,则k 的值是 .14.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为 .三、(本大题共4小题,每小题6分,共24分) 15.解方程:x (2x+3)=4x+6.16.如图,已知:BC 与CD 重合,∠ABC=∠CDE=90°,△ABC≌△CDE ,并且△CDE 可由△ABC 逆时针旋转而得到.请你利用尺规作出旋转中心O (保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是 .17.如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC .(1)作出△ABC 以O 为旋转中心,顺时针旋转90°的△A 1B 1C 1,(只画出图形).(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2,(只画出图形),写出B 2和C 2的坐标.密封线内18.已知x1,x2是关于x的一元二次方程x2﹣6x+k=0的两个实数根,且x12x22﹣x1﹣x2=115.(1)求k的值;(2)求x12+x22+8的值.四、(本大题共4小题,每小题8分,共32分)19.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标.20.已知等腰△ABC的一边长a=3,另两边长b、c恰好是关于x的方程x2﹣(k+2)x+2k=0的两个根,求△ABC的周长.21.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点Q分别从A、B同时出发,P在边AB上沿AB方向以每秒的速度匀速运动,Q在边BC上沿BC方向以每秒1cm间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.22.在同一平面内,△ABC和△ABD如图①放置,其中小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△绕着边AD的中点旋转180°得到△DFA问题:(1)试猜想四边形ABDF(2)连接EF,CD,如图③,求证:四边形CDEF边形.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题五、(本大题共10分)23.如图,隧道的截面由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8m ,宽AB 为2m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系(如图1),y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6m .(1)求抛物线的解析式;(2)现有一辆货运卡车,高4.4m ,宽2.4m ,它能通过该隧道吗?(3)如果该隧道内设双向道(如图2),为了安全起见,在隧道正中间设有0.4m 的隔离带,则该辆货运卡车还能通过隧道吗?六、(本大题共12分)24.如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0).(1)求A 、B 的坐标;(2)求抛物线的解析式;(3)在抛物线的对称轴上求一点P ,使得△PAB 的周长最小,并求出最小值;(4)在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.解:A.是轴对称图形,不是中心对称图形,故本选项错误; B.既不是中心对称图形,也不是轴对称图形,故本选项错误; C.不是轴对称图形,是中心对称图形,故本选项错误; D.是中心对称图形,也是轴对称图形,故本选项正确.故选D . 2.解:把x=m 代入方程x 2﹣x ﹣2=0得: m 2﹣m ﹣2=0,m 2﹣m=2,所以m2﹣m+2=2+2=4.故选A.3.解:∵点P关于x轴的对称点P1的坐标是(2,3),∴点P的坐标是(2,﹣3).∴点P关于原点的对称点P2的坐标是(﹣2,3).故选D.4.解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.5.解:根据题意得:△=b2﹣4ac=4﹣4(k﹣1)=8﹣4k>0,且k﹣1≠0,解得:k<2,且k≠1.故选:D.6.解:由二次函数图象与x轴有两个交点,∴b2﹣4ac>0,选项①正确;又对称轴为直线x=1,即﹣=1,可得2a+b=0(i),选项②错误;∵﹣2对应的函数值为负数,∴当x=﹣2时,y=4a﹣2b+c<0,选项③错误;∵﹣1对应的函数值为0,∴当x=﹣1时,y=a﹣b+c=0(ii),联立(i)(ii)可得:b=﹣2a,c=﹣3a,∴a:b:c=a:(﹣2a):(﹣3a)=﹣1:2:3,选项④正确,则正确的选项有:①④.故选D二、填空题(本大题共8小题,每小题3分,共24分)7.解:x2﹣3x=0,x(x﹣3)=0,∴x1=0,x2=3.故答案为:x1=0,x2=3.8.解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.9称图形,故选项正确;故答案为:②⑤.10.解:依题意得求关于x的不等式ax2+bx+c≤mx+n实质上就是根据图象找出函数y=ax2+bx+c的值小于或等于y=mx+n的值时x的取值范围,由两个函数图象的交点及图象的位置可以得到此时x围是﹣2≤x≤1.故填空答案:﹣2≤x≤1.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题11.解:∵方程x 2﹣2x ﹣k=0的一个实数根为3,∴把3代入方程得:9﹣6﹣k=0, ∴k=3,∴把k=3代入原方程得:x 2﹣2x ﹣3=0,∴解得方程的两根分别为3和﹣1,故答案为:﹣1. 12.解:∵二次函数的解析式的二次项系数是,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(1,4),∴该二次函数图象在[﹣∞1m]上是减函数,即y 随x 的增大而减小;即:当x≤1时,y 随x 的增大而减小, 故答案为:x≤1.13.解:根据顶点纵坐标公式,抛物线y=x 2﹣2(k+1)x+16的顶点纵坐标为,∵抛物线的顶点在x 轴上时, ∴顶点纵坐标为0,即=0,解得k=3或﹣5. 故本题答案为3或﹣5.14.解:∵Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上, ∴4=4a ,解得a=1, ∴抛物线为y=x 2,∵点A (﹣2,4), ∴B (﹣2,0), ∴OB=2,∵将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD , ∴D 点在y 轴上,且OD=OB=2, ∴D (0,2), ∵DC ⊥OD , ∴DC ∥x 轴, ∴P 点的纵坐标为2, 代入y=x 2,得2=x 2, 解得x=±, ∴P (,2).故答案为(,2).三、(本大题共4小题,每小题6分,共24分) 15.解:x (2x+3)﹣2(2x+3)=0,∴(2x+3)(x ﹣2)=0, ∴2x+3=0或x ﹣2=0, ∴x 1=﹣,x 2=2.16.解:如图所示:旋转角度是90°. 故答案为:90°.密 封 不17.解:(1)△A 1B 1C 1如图所示; (2)△A 2B 2C 2如图所示, B 2(4,﹣1),C 2(1,﹣2).18.解:(1)∵x 1,x 2是方程x 2﹣6x+k=0的两个根, ∴x 1+x 2=6,x 1x 2=k , ∵x 12x 22﹣x 1﹣x 2=115, ∴k 2﹣6=115, 解得k 1=11,k 2=﹣11,当k 1=11时,△=36﹣4k=36﹣44<0, ∴k 1=11不合题意当k 2=﹣11时,△=36﹣4k=36+44>0, ∴k 2=﹣11符合题意,∴k 的值为﹣11;(2)∵x 1+x 2=6,x 1x 2=﹣11∴x 12+x 22+8=(x 1+x 2)2﹣2x 1x 2+8=36+2×11+8=66. 四、(本大题共4小题,每小题8分,共32分) 19.解:(1)把(0,0)代入得k+1=0,解得k=﹣1, 所以二次函数解析式为y=x 2﹣3x ;(2)当y=0时,x 2﹣3x=0,解得x 1=0,x 2=3,则A (3,抛物线的对称轴为直线x=, 设B (x ,x 2﹣3x ), 因为△AOB 的面积等于6,所以•3•|x 2﹣3x|=6,当x 2﹣3x=4时,解得x 1=﹣1,x 2=4,则B 点坐标为(4,当x 2﹣3x=﹣4时,方程无实数解. 所以点B 的坐标为(4,4). 20.解:x 2﹣(k+2)x+2k=0 (x ﹣2)(x ﹣k )=0, 则x 1=2,x 2=k , 当b=c ,k=2,则△ABC 的周长=2+2+3=7, 当b=2,c=3或c=2,b=3密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题则k=3,则△ABC 的周长=2+3+3=8.故△ABC 的周长是7或8. 21.解:(1)∵S △PBQ =PB•BQ ,PB=AB ﹣AP=18﹣2x ,BQ=x , ∴y=(18﹣2x )x ,即y=﹣x 2+9x (0<x≤4); (2)由(1)知:y=﹣x 2+9x ,∴y=﹣(x ﹣)2+,∵当0<x≤时,y 随x 的增大而增大, 而0<x≤4,∴当x=4时,y 最大值=20, 即△PBQ 的最大面积是20cm 2.22.(1)解:四边形ABDF 是菱形.理由如下: ∵△ABD 绕着边AD 的中点旋转180°得到△DFA , ∴AB=DF ,BD=FA , ∵AB=BD , ∴AB=BD=DF=FA , ∴四边形ABDF 是菱形;(2)证明:∵四边形ABDF 是菱形, ∴AB ∥DF ,且AB=DF ,∵△ABC 绕着边AC 的中点旋转180°得到△CEA , ∴AB=CE ,BC=EA ,∴四边形ABCE 为平行四边形,∴AB ∥CE ,且AB=CE , ∴CE ∥FD ,CE=FD ,∴四边形CDEF 是平行四边形. 五、(本大题共10分)23.解:(1)∵OE 为线段BC 的中垂线, ∴OC=BC .∵四边形ABCD 是矩形, ∴AD=BC=8m ,AB=CD=2m , ∴OC=4.∴D (4,2,).E (0,6).设抛物线的解析式为y=ax 2+c ,由题意,得,解得:,∴y=﹣x 2+6; (2)由题意,得当y=4.4时,4.4=﹣x 2+6, 解得:x=±, ∴宽度为:>2.4,∴它能通过该隧道; (3)由题意,得密线内不得答题(﹣0.4)=﹣0.2>2.4,∴该辆货运卡车还能通过隧道.六、(本大题共12分)24.解:(1)对于直线y=3x+3,令x=0,得到y=3;令y=0,得到x=﹣1,则A(﹣1,0),B(0,3);(2)由A(﹣1,0),C(3,0),设抛物线解析式为y=a(x+1)(x﹣3),把B(0,3)代入得:3=﹣3a,即a=﹣1,则抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(3)连接BC,与抛物线对称轴交于点P,连接AP,由对称性得AP=CP,如图1所示,此时△ABP周长最小,由抛物线解析式y=﹣x2+2x+3=﹣(x﹣1)2+4,得到对称轴为直线x=1,设直线BC解析式为y=mx+n,将B(0,3),C(3,0)代入得:,解得:m=﹣1,n=3,即直线BC解析式为y=﹣x+3,联立得:,解得:,即P(1,2),根据两点间的距离公式得:AB==,BC==3,则P(1,2),周长为AB+BP+AP=AB+BP+PC=AB+BC=3+;(4)在抛物线的对称轴上存在点Q,使△ABQ如图2所示,分四种情况考虑:当AB=AQ1==时,在Rt△AQ1Q3中,AQ3=2,AQ1=,根据勾股定理得:Q1Q3==,此时Q1(1,);由对称性可得Q2(1,);当AB=BQ3时,可得OQ3=OA=1,此时Q3(1,0);当AQ4=BQ4时,Q4为线段AB∵A(﹣1,0),B(0,3),密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴直线AB 斜率为=3,中点坐标为(﹣,),∴线段AB 垂直平分线方程为y ﹣=﹣(x+), 令x=1,得到y=1,此时Q 4(1,1),综上,Q 的坐标为(1,)或(1,﹣)或(1,0)或(1,1).人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 120分钟)一、选择题(每题3分,共30分)1.下列图形中,旋转60°后可以和原图形重合的是( ) A .正六边形 B .正方形C .正五边形D .正三角形2.已知m 是方程x 2﹣x ﹣2=0的一个根,则m 2﹣m 的值是( )A .﹣2B .0C .2D .43.抛物线y=﹣5(x+2)2﹣6的顶点坐标是( ) A .(2,﹣6) B .(﹣2,﹣6)C .(2,6) D .(﹣5,﹣6) 4.若关于x 的方程x 2﹣4x+m+4=0有实数根,则m 的取值范围是( ) A .m <0B .m ≤0C .m >0D .m ≥05.某商品的价格为100元,连续两次降x%后的价格是81元,则x 为( ) A .9B .10C .19D .86.在平面直角坐标系中,点P (﹣3,4)关于y 轴对称点的坐标为( )A .(﹣3,4)B .(3,4)C .(3,﹣4)D .(﹣3,﹣4) 7.下列说法有误的是( )A .圆是中心对称图形B .平分弦的直径垂直于弦C .垂直于弦的直径平分弦D .圆的直径是最长的弦8.抛物线y=﹣x 2+3x ﹣的对称轴是( )A .x=3B .x=﹣3C .x=6D .x=﹣9.一元二次方程2x 2﹣8x=0的根是( ) A .x=4 B .x 1=0,x 2=4C .x=+4D .x 1=2,x 2=410.在抛物线y=x 2﹣4x ﹣4上的一个点是( ) A .(4,4) B .(3,﹣1) C .(﹣2,﹣8) D .()二、填空题:(每空3分,共39分)11.已知方程3x 2﹣2x+m=0的一个根是1,则m 的值为 .12.若将二次函数y=x 2﹣2x+3配方为y=(x ﹣n )2+k 的形式,则y= ,对称轴是 ,顶点坐标为 .题号一 二 三 总分 得分13.在平面直角坐标系中,点A 的坐标为(1,2),将OA 绕原点O 按顺时针方向旋转90°得到OA ′,则点A ′的坐标是 .14.如图,在⊙O 中,弦AB 的长为8cm ,OD ⊥AB 于C 且CD=2cm ,则⊙O 的半径为15.若关于x 的一元二次方程x 2﹣2x+m=0有两个相等的实数根,则m 的值是 16.已知二次函数y=x 2﹣2x+1,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小. 17.一元二次方程x 2﹣1=3x ﹣3的解是 . 18.将抛物线y=(x ﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为 . 19.一元二次ax 2+bx+c=0(a ≠0)的根与系数的关系是:x 1+x 2= ,x 1x 2= . 三、解答题(共5小题,满分51分) 20.(每小题3分,共12分)解方程:(1)x 2+2x=2 (2)196x 2﹣1=0(3)x (x ﹣2)+x ﹣2=0 (4)x 2﹣x ﹣=0.21.(8分)两个相邻偶数的积是168,求这两个数. 22.(8分)某地有一人患了流感,经过两轮传染后共有人患了流感,每轮传染中平均一个人传染了几个人? 23.(10分)小李想用篱笆围成一个周长为60矩形面积S 随矩形一边长x (单位:米)的变化而变化. (1)求S 与x 之间的函数关系式.(2)当x 是多少时,矩形场地的面积S 少?24.(13分)某商店销售一种销售成本为40元/若按50元/千克销售,一个月可售出500kg ,月销售量就减少10kg .(1)写出月销售利润y (单位:元)与售价x (单位:元/克)之间的函数解析式.(2)当销售价定为55元时,计算月销售量和利润.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(3)当售价为多少时,会获得最大利润?求出最大利润.参考答案与试题解析 一、选择题1.解:选项中的几个图形都是旋转对称图形, A 、正六边形旋转的最小角度是=60°,故此选项正确; B 、正五边形的旋转最小角是=72°,故此选项错误;C 、正方形的旋转最小角是=90°,故此选项错误;D 、正三角形的旋转最小角是=120°,故此选项错误. 故选:A .2.解:∵m 是方程x 2﹣x ﹣2=0的一个根, ∴m 2﹣m ﹣2=0, ∴m 2﹣m=2. 故选C .3.解:抛物线y=﹣5(x+2)2﹣6的顶点坐标为(﹣2,﹣6),故选B .4.解:根据题意得△=(﹣4)2﹣4×(4+m )≥0, 解得m ≤0, 故选B .5.解:根据题意得:100(1﹣x%)2=81, 解之,得x 1=190(舍去),x 2=10. 即平均每次降价率是10%.故选:B .6.解:点P (﹣3,4)关于y 轴对称点的坐标为(3,4).故选B .7.解:A 、圆是中心对称图形,圆心是它的对称中心,所以A 选项正确;B 、平分(非直径)弦的直径垂直于弦,所以B 选项不正确;C 、垂直于弦的直径,根据垂径定理,平分弦,所以C 选项正确;D 、圆的直径是最长的弦,选项正确; 故选B .8.解:∵y=﹣x 2+3x ﹣, ∴a=﹣,b=3, ∴对称方程为x=﹣=3, 故选A .9.解:∵2x 2﹣8x=0, ∴2x (x ﹣4)=0, ∴x=0或x ﹣4=0,解得:x 1=0,x 2=4.故选:B .10.解:A 、x=4时,y=x 2﹣4x ﹣4=﹣4≠4,点(4,4)不在抛物线上;B 、x=3时,y=x 2﹣4x ﹣4=﹣7≠﹣1,点(3,﹣1)不在抛物线上;C 、x=﹣2时,y=x 2﹣4x ﹣4=8≠﹣8,点(﹣2,﹣8)不在抛物线上;内 不 得D 、x=﹣时,y=x 2﹣4x ﹣4=﹣,点()在抛物线上.故选D .二、填空题:(每空3分,共39分)11.解:把x=1代入方程3x 2﹣2x+m=0,可得3﹣2+m=0, 解得m=﹣1.故答案为:﹣1.12.解:y=x 2﹣2x+3=(x 2﹣2x+1)+2=(x ﹣1)2+2,即y=(x﹣1)2+2,所以该抛物线的对称轴是x=1,顶点坐标是(1,2).故答案为:(x ﹣1)2+2;x=1;(1,2). 13.解:A 点的坐标为(1,2),根据旋转中心0,旋转方向顺时针,旋转角度90°,从而得点A ′的坐标是(2,﹣1).14.解:∵⊙O 的弦AB=8,半径OD ⊥AB , ∴AC=AB=×8=4,设⊙O 的半径为r ,则OC=r ﹣CD=r ﹣2,连接OA , 在Rt △OAC 中,OA 2=OC 2+AC 2,即r 2=(r ﹣2)2+42,解得r=5. 故答案为:5.15.解:∵关于x 的一元二次方程x 2﹣2x+m=0数根, ∴△=0,∴(﹣2)2﹣4m=0, ∴m=1,故答案为:1.16.解:二次函数y=x 2﹣2x+1的对称轴x=﹣=﹣2,当x<﹣2时,y 随x 的增大而增大,当x >﹣2时,y 随x 的增大而减小.故答案为:<﹣2;>﹣2. 17.解:方程整理得:x 2﹣3x+2=0, 分解因式得:(x ﹣1)(x ﹣2)=0, 解得:x 1=1,x 2=2. 故答案为:x 1=1,x 2=218.解:将y=(x ﹣1)2+3向左平移1为:y=x 2+3;再向下平移3个单位为:y=x 2.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为y=x 2.19.解:根据根与系数的关系可得:x 1+x 2=﹣,x 1x 2=. 三、解答题(共5小题,满分51分) 20.解:(1)x 2+2x+1=3,(x+1)2=3, x+1=±所以x 1=﹣1+,x 2=﹣1﹣; (2)(13x+1)(13x ﹣1)=0, 13x+1=0或13x ﹣1=0, 所以x 1=﹣,x 2=;(3)(x ﹣2)(x+1)=0, x ﹣2=0或x+1=0, 所以x 1=2,x 2=﹣1;(4)△=(﹣)2﹣4×1×(﹣)=3, x=所以x 1=,x 2=.21.解:设这两个相邻偶数为x ,x+2, 根据已知得:x (x+2)=168, 解得:x=12,或x=﹣14(舍去). x+2=14,故这两个数分别为12,14.22.解:设每轮传染中平均每个人传染了x 人, 依题意得1+x+x (1+x )=121,∴x=10或x=﹣12(不合题意,舍去).所以,每轮传染中平均一个人传染了10个人. 23.解:(1)根据题意,矩形另一边长为: =30﹣x 米,故S=x (30﹣x ); (2)∵S=x (30﹣x ) =﹣(x ﹣15)2+225,∴当x=15时,S 有最大值为225平方米.即当x 是15时,矩形场地面积S 最大,最大面积是225平方米.24.解:(1)可卖出千克数为500﹣10(x ﹣50)=1000﹣10x ,y 与x 的函数表达式为y=(x ﹣40)(1000﹣10x )=﹣10x 2+1400x ﹣40000;(2)当销售单价定为每千克55元时,月销售量为:500﹣(55﹣50)×10=450(千克);利润=450×(55﹣40)=6750元; (3)∵y=(x ﹣40)[500﹣10(x ﹣50)]=﹣10x 2+1400x ﹣40000;(3)y=﹣10x 2+1400x ﹣40000=﹣10(x ﹣70)2+9000, ∴当x=70时,利润最大为9000元.答:当售价为70元,利润最大,最大利润是9000元.。
2020-2021年度河北省保定市十三中九年级上学期期中考试数学试题
2020-2021学年度九年级第一学期教学质量检测数学 一、选择题(本大题一共16道小题,1-10题每小题3分,11-16题每小题2分,共2分) 1. 下列方程中,是一元二次方程的是( )A .0122=+-y xB .023=+xC .032=-x xD .512=+xx 2. 若43=x y ,则xy x +的值为( ) A .1 B .74 C .45 D .47 3. 矩形具有而菱形不具有的性质是( )A .对边平行且相等B .对角线垂直C .对角线互相平分D .对角线相等4. 不透明的布袋中装有除颜色外没有区别的1个红球和2个白球,搅匀后从中摸出一个球,放回去后再摸出一个球。
两次都摸出白球的概率为( )A .94B .92C .32D .31 5. 如图,在△ABC 中,DE//AB ,且23=BD CD ,则CA CE 的值为( ) A .53 B .32 C .54 D .23 6. 用配方法解方程0162=+-x x ,方程应变形为( )A .()832=-xB .()1032=-xC .()862=-xD .()1062=-x 7. 如图所示,在平面直角坐标系中,有两点A (4,2),B (3,0),以原点为位似中心,A ′B ′与AB 的相似比为21,得到线段A ′B ′.正确的画法是( )A .B .C .D .8. 若关于x 的一元二次方程02-2=+m x x 有一个解为1-=x ,则另一个根是( )A .1-=xB .3-=xC .3=xD .4=x9. 如图,矩形ABCD 的对角线AC 和BD 相交于点O ,∠AOD=60°,AD=8,则△BOC 的周长是( )A .16B .24C .30D .2010. 当5=+c b 时,关于x 的一元二次方程032=-+c bx x 的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定11. 如图,菱形ABCD 的对角线AC 、BD 交于点O ,AC =8,BD =6,DE ⊥AB 于点E ,则DE 的长为()A .4.8B .5C .9.6D .1012. 某数学兴趣小组利用阳光下的影子测量建筑物的高度,已知小明的身高1.5m ,测量其影子为1.2m ,建筑物的影长为14m ,则建筑物的高是( )m.A .16.5B .17C .17.5D .1813. 有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人.A .40B .10C .9D .814. 已知线段c b a ,,的长度分别为3,2,1===c b a ,如果线段d 和已知的三个线段是成比例线段,那么线段d 的长度等于( )A .6B .23C .32D .516 15. 如图,正方形ABCD 中,点E. F 分别在边CD ,AD 上,BE 与CF 交于点G .若BC =4.DE =AF =1.则GF 的长为( )A .513 B .512 B .519 D .516 16. 如图,正五边形的边长为2,连接对角线AD 、BE 、CE ,线段AD 分别与BE 和CE 相交于点M 、N ,给出下列结论:①∠AME =108°,②AN 2=AM ·AD ;③MN =5-3;④BE =15+,其中正确的有( ).A .1个B .2个C .3个D .4个二、填空题17. 方程()02=-x x 的根为.18. 若332c b a ==,且332=++c b a ,则=+-c b a . 19. 如图,在矩形ABCD 中,AD =2,CD =1,连接AC ,以对角线AC 为边,按逆时针方向作矩形ABCD 的相似矩形AB 1C 1C ,再连接AC 1,以对角线AC 1为边作矩形AB 1C 1C 的相似矩形AB 2C 2C 1,…,按此规律继续下去,则矩形AB n C n C n −1的面积为___.三、解答题(本大题共68分,解答应写出文字说明,证明过程或演算步骤)20. 解方程(每小题3分,共12分)①0242=--x x ②04432=+--x x ③()x x 210532-=- ④()()22113+=-x x21. 近年来某市大力发展绿色交通,构建公共、绿色交通体系,将“共享单车”陆续放置在人口流量较大的地方,琪琪同学随机调查了若干市民用“共享单车”的情况,将获得的数据分成四类,A :经常使用;B :偶尔使用;C :了解但不使用;D :不了解,并绘制了如下两个不完整的统计图。
2020-2021学年人教版第一学期九年级期中考试数学试卷(含答案)
九年级期中考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.观察下列图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.2.若x=1是方程x2+ax-2=0的一个根,则a的值为()A. 0B. 1C. 2D. 33.将二次函数y=2(x-1)2+2的图象向左平移2个单位长度得到的新图象的表达式为()A. B. C. D.4.在平面直角坐标系中,将点P(a,b)关于原点对称得到点P1,再将点P1向左平移2个单位长度得到点P2,则点P2的坐标是()A. (b−2,−a)B. (b+2,−a)C. (−a+2,−b)D. (−a−2,−b)5.同一坐标系中,抛物线y=(x-a)2与直线y=a+ax的图象可能是( )A. B. C. D.6.一元二次方程x2-6x+5=0的两根分别是x1、x2,则x1+x2的值是( )A. 6B. -6C. 5D. -57.如图,已知在△ABC中,∠ABC=90°,AB=8,BC=6,将线段AC绕点A顺时针旋转得到AD,且∠DAC=∠BAC,连接CD,且△ACD的面积为()A. 24B. 30C. 36D. 408.有一人患了流感,经过两轮传染后共有64人患了流感,则每轮传染中平均一个人传染的人数是()A. 5人B. 6人C. 7人D. 8人9.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是()A. B. C. D. 且10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c >b;④2a+b=0;⑤△=b2-4ac<0;⑥3a+c>0;⑦(m2-1)a+(m-1)b≥0(m为任意实数)中成立式子()A. ②④⑤⑥⑦B. ①②③⑥⑦C. ①③④⑤⑦D. ①③④⑥⑦二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为________.12.某乡村种的水稻2018年平均每公顷产3200kg ,2020年平均每公顷产5000kg ,则水稻每公顷产量的年平均增长率为________.13.一抛物线的形状,开口方向与y=3x2−3x+1相同,顶点在(-2,3),则此抛物线的解析式为2________.14.如图,是抛物线y=ax2+bx+c(a≠0)的一部分,已知抛物线的对称轴为x=2,与x轴的一个交点是(-1,0),则方程ax2+bx+c=0(a≠0)的两根是________15.如图,四边形ABCD是正方形,P在CD上,△ADP旋转后能够与△ABP′重合,若AB=3,DP=1,则PP′=________.16.如图,已知AB⊥BC,AB=12cm,BC=8cm.一动点N从C点出发沿CB方向以1cm/s的速度向B 点运动,同时另一动点M由点A沿AB方向以2cm/s的速度也向B点运动,其中一点到达B点时另一点也随之停止,当△MNB的面积为24cm2时运动的时间t为________秒.17.如图,在边长为6的等边△ABC中,AD是BC边上的中线,点E是△ABC内一个动点,且DE=2,将线段AE绕点A逆时针旋转60°得到AF,则DF的最小值是________.18.如图,抛物线y=−14x2+12x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于X轴,与拋物线相交于P、Q两点,则线段PQ的长为________.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.如图,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置.(1)指出它的旋转中心;(2)说出它的旋转方向和旋转角是多少度;(3)分别写出点A,B,C的对应点.20.已知关于x的一元二次方程x2+(k−1)x+k−2=0.(1)求证:方程总有两个实数根;(2)任意写出一个k值代入方程,并求出此时方程的解.21.已知二次函数y=x2-4x+3,设其图象与x轴的交点分别是A、B(点A在点B的左边),与y轴的交点是C,求:(1)A、B、C三点的坐标;(2)△ABC的面积.22.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?23.跳绳时,绳甩到最高处时的形状是抛物线. 正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0. 9米,身高为1. 4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E. 以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果身高为1. 85米的小华也想参加跳绳,问绳子能否顺利从他头顶越过?请说明理由;(3)如果一群身高在1. 4米到1. 7米之间的人站在OD之间,且离点O的距离为t米, 绳子甩到最高处时必须超过他们的头顶,请结合图像,写出t的取值范围________.24.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)连接BF,求证:CF=EF.(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.25.如图,已知抛物线y=1x2+bx与直线y=2x交于点O(0,0),A(a,12),点B是抛物线上2O、A之间的一个动点,过点B分别作x轴和y轴的平行线与直线OA交于点C、E,(1)求抛物线的函数解析式;(2)若点C为OA的中点,求BC的长;(3)以BC、BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m、n之间的关系式.26.在一-次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F 重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4 cm,并进行如下研究活动。
人教版2020---2021学年度九年级数学(上)期中考试卷及答案(含四套题)
密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、填空题(本大题共8个小题,每小题3分,共24分)1.关于x 的方程(m ﹣)﹣x+3=0是一元二次方程,则m= .2.设x 1、x 2是方程3x 2+4x ﹣5=0的两根,则= ,x 12+x 22= .3.若抛物线y=x 2﹣6x+c 的顶点在x 轴,则c= . 4.点P (2,3)绕着原点逆时针方向旋转90°与点P ′重合,则P ′的坐标为 .5.抛物线y 1=x 2﹣2x+1与直线y 2=﹣x+1在同一坐标系中相交,当y 1>y 2时自变量x 的取值范围是 .6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A 点时,一共走了 米.7.如图,EF 过平行四边形的对角线的交点O ,若四边形ABFE 绕O 点旋转一定的角度后能与四边形 CDEF 重合,AB=3,BC=4,OE=1.5,则四边形EFCD 的周长是 .8.已知二次函数y=ax 2+bx+c (a ≠0),若2a+b=0,且当x=﹣1时,y=3,那么当x=3时,y= .二、选择题(本大题共10个小题,每小题3分,共30分) 9.如图中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .10.方程(x+1)(x ﹣3)=5的解是( )A .x 1=1,x 2=﹣3B .x 1=4,x 2=﹣2C .x 1=﹣1,x 2=3D .x 1=﹣4,x 2=211.已知a 、b 满足a+b=5且ab=6,以a 、b 为根的一元二次方程为( )题号一 二 三 总分 得分密封线A.x2+5x+6=0 B.x2﹣5x+6=0 C.x2﹣5x﹣6=0 D.x2+5x﹣6=012.若A(﹣,y1),B(﹣1,y2),C(,y3)为二次函数y=﹣x2﹣4x+5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y313.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50° B.60° C.70° D.80°14.如图是二次函数y=ax2+bx+c的部分图象,y<0时自变量x的取值范围是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>515.已知函数y=ax+b的图象经过二、三、四象限,那么y=ax2+bx+1的图象大致为()A. B. C. D.16.如图是一个中心对称图形,A为对称中心,若∠C=90∠B=30°,AC=1,则BB′的长为()A.4 B.C.D.17.若1人患流感,经过两轮传染后共有121照这样的传染速度,则经过第三轮传染后共有(感.A.1210 B.1000 C.1100 D.133118.二次函数y=ax2+bx+c(a≠0结论:①b2﹣4ac>0;②2a+b<0;③4a﹣2b+c=0;④a:b﹣1:2:3.其中正确的是()密线学校 班级 姓名 学号密 封 线 内 不 得 答 题A .①②B .②③C .③④D .①④三、解答题 (本大题共7个小题,共66分)解答应写出文字说明、证明过程或演算步骤. 19.(本小题满分8分,每小题4分)解方程(1)(x ﹣2)2=(2x+5)2(2)=.20.(本小题满分7分)已知关于x 的方程x 2﹣2(1﹣m )x+m 2=0的两实数根为x 1,x 2.是否存在这样的实数m 使方程的两实根的平方和为14?21.(本小题满分8分)在下图中,把△ABC 向右平移5个方格,再绕点B 的对应点顺时针方向旋转90度.(1)画出平移和旋转后的图形,并标明对应字母; (2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.22.(本小题满分9分)如图所示,某小区规划在一个长40m ,宽26m 的矩形场地ABCD 上修建三条相同宽度的甬路,使其中两条与AB 平行,另一条与AD 平行,其余6块部分种草,使每块草坪面积都是144m 2,求甬路宽度.23.(本小题满分9分)如图,P 是正三角形ABC 内的一点,且PA=6,PB=8,PC=10.若将△PAC 绕点A 逆时针旋转后,得到△P ′AB .(1)求点P 与点P ′之间的距离; (2)求∠APB 的度数.24.(本小题满分12分)为了落实中央的惠农政策,积极推进农业机械化,某市某县政府制定了农户投资购买农机设备的补贴办法,其中购买A 型、B 型农机设备所投资的金额x (万元)与政府补贴的金额y 1(万元)、y 2(万元)的函数关系如图所示(图中OA 段是抛物线,A 是抛物线的顶点).(1)分别写出y 1、y 2与x 的函数关系式;封线内不得答题(2)现有一农户计划同时对A型、B型两种农机设备共投资10万元,设其共获得的政府补贴金额为y万元,求y与其购买B型设备投资金额x的函数关系式;(3)在(2)的条件下,请你帮该农户设计一个能获得最大补贴金额的投资方案,并求出按此方案能获得的最大补贴金额.25.(本小题满分13分)如图,对称轴为直线x=的抛物线经过点A(﹣6,0)和点B(0,4).(1)求抛物线的解析式和顶点坐标;(2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求▱OEAF的面积S与x的函数关系式,并写出自变量x的取值范围;①当▱OEAF的面积为24时,请判断▱OEAF是否为菱形?②是否存在点E,使▱OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案与试题解析一、填空题(24分)1.解:∵方程(m﹣)﹣x+3=0是一元二次方程,∴m2﹣1=1或m﹣=0.解得m=或m=.故答案为:或.2.解:根据题意得x1+x2=﹣,x1•x2=﹣,所以===,x12+x22=(x1+x2)2﹣2x1•x2=(﹣)2﹣2×(﹣)=.故答案为,.3.解:根据题意,顶点在x轴上,顶点纵坐标为0,即,解得c=9.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题4.解:∵P (2,3),∴P ′的坐标为(﹣3,2).5.解:由题意得:x 2﹣2x+1﹣(﹣x+1)>0, 即x 2﹣x=x (x ﹣)>0, 解得:x <0或x >. 故答案为:x <0或x >. 6.解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米. 故答案为:120.7.解:∵四边形ABCD 为平行四边形, ∴AB=CD=3,AD=BC=4,OA=OC ,OB=OD ,∵四边形ABFE 绕O 点旋转180度后能与四边形 CDEF 重合, ∴AE=CF ,OE=OF=1.5,∴四边形EFCD 的周长=DE+CF+OE+OF+CD=BC+2OE+CD =4+3+3 =10. 故答案为10.8.解:∵2a+b=0, ∴b=﹣2a ;又当x=﹣1时,y=3,∴3=a ﹣b+c=3a+c ,即3a+c=3; ∴当x=3时, y=9a+3b+c =9a ﹣6a+c =3a+c =3;故答案为:3. 二、选择题(30分)9.解:A 、是轴对称图形,不是中心对称图形.故错误; B 、是轴对称图形,也是中心对称图形.故正确; C 、不是轴对称图形,是中心对称图形.故错误; D 、是轴对称图形,不是中心对称图形.故错误. 故选B .得 答 题10.解:(x+1)(x ﹣3)=5, x 2﹣2x ﹣3﹣5=0, x 2﹣2x ﹣8=0,化为(x ﹣4)(x+2)=0, ∴x 1=4,x 2=﹣2. 故选:B .11.解:∵a+b=5,ab=6,∴以a ,b 为根的一元二次方程可以为x 2﹣5x+6=0. 故选B .12.解:∵二次函数y=﹣x 2﹣4x+5中a=﹣1<0 ∴抛物线开口向下,对称轴为x=﹣=﹣=﹣2∵B (﹣1,y 2),C (,y 3)中横坐标均大于﹣2 ∴它们在对称轴的右侧y 3<y 2,A (﹣,y 1)中横坐标小于﹣2,∵它在对称轴的左侧,它关于x=﹣2的对称点为2×(﹣2)﹣(﹣)=﹣,>﹣>﹣1∵a <0时,抛物线开口向下,在对称轴的右侧y 随x 的增大而减小∴y 3<y 1<y 2. 故选C .13.解:∵△ABC 绕着点C 按顺时针方向旋转20°,B B ′位置,A 点落在A ′位置 ∴∠BCB ′=∠ACA ′=20° ∵AC ⊥A ′B ′,∴∠BAC=∠A ′=90°﹣20°=70°. 故选C .14.解:由图象可知,抛物线与x 轴的交点坐标分别为(﹣0)和(5,0),∴y <0时,x 的取值范围为x <﹣1或x >5. 故选C .15.解:∵函数y=ax+b 的图象经过二、三、四象限, ∴a <0,b <0, ∴x=﹣<0,即二次函数y=ax 2+bx+1的图象开口向下,对称轴位于y 故选:C .16.解:∵在Rt △ABC 中,∠B=30°,AC=1,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴AB=2AC=2,∴BB ′=2AB=4. 故选A .17.解:设平均一人传染了x 人,根据题意,得:x+1+(x+1)x=121 解得:x 1=10,x 2=﹣12(不符合题意舍去)∴经过三轮传染后患上流感的人数为:121+10×121=1331(人). 故选:D .18.解:由二次函数图象与x 轴有两个交点, ∴b 2﹣4ac >0,选项①正确; 又对称轴为直线x=1,即﹣=1,可得2a+b=0(i ),选项②错误; ∵﹣2对应的函数值为负数,∴当x=﹣2时,y=4a ﹣2b+c <0,选项③错误; ∵﹣1对应的函数值为0,∴当x=﹣1时,y=a ﹣b+c=0(ii ), 联立(i )(ii )可得:b=﹣2a ,c=﹣3a ,∴a :b :c=a :(﹣2a ):(﹣3a )=﹣1:2:3,选项④正确, 则正确的选项有:①④. 故选D三、解答题(共66分)19.解:(1)(x ﹣2)2=(2x+5)2, 直接开平方得,x ﹣2=±(2x+5), x ﹣2=2x+5,或x ﹣2=﹣(2x+5), 所以x 1=﹣7,x 2=﹣1; (2)=,方程整理得:x 2+x+6=0, 这里a=1,b=1,c=6, ∵△=1﹣24=﹣23<0, ∴原方程无解.20.解:存在.理由如下:根据题意得△=4(1﹣m )2﹣4m 2≥0,解得m ≤, 由根与系数的关系得到x 1+x 2=2(1﹣m ),x 1x 2=m 2, ∵x 12+x 22=14,∴(x 1+x 2)2﹣2x 1x 2=14, ∴4(1﹣m )2﹣2m 2=14,整理得m 2﹣4m ﹣5=0,解得m 1=5,m 2=﹣1, 而m ≤, ∴m=﹣1.21.解:(1)平移和旋转后的图形如图所示:内 不得 答(2)能,将△ABC 绕CB 、C ″B ″延长线的交点顺时针旋转90度.22.解:设甬路宽度为x 米,依题意可列方程(40﹣2x )(26﹣x )=144×6, 整理得x 2﹣46x+88=0, 解得x 1=2,x 2=44(舍去) 答:甬路宽度为2米.23.解:(1)连接PP ′,由题意可知BP ′=PC=10,AP ′=AP , ∠PAC=∠P ′AB ,而∠PAC+∠BAP=60°, 所以∠PAP ′=60度.故△APP ′为等边三角形, 所以PP ′=AP=AP ′=6;(2)利用勾股定理的逆定理可知:PP ′2+BP 2=BP ′2,所以△BPP ′为直角三角形,且∠BPP ′=90°可求∠APB=90°+60°=150°.24.解::(1)当0≤x ≤4时设y 1=kx ,将(4,1.61.6=4k ,解得:k=0.4,当k >4时,设y 1=kx+b ,将点(4,1.6)(8.2.4)代入得:解得:k=0.2,b=0.8 故y 1=∵顶点A 的坐标为(4,3.2), ∴设y 2=a (x ﹣4)2+3.2, ∵经过点(0,0) ∴0=a (0﹣4)2+3.2 解得a=﹣0.2,∴y 2=﹣0.2(x ﹣4)2+3.2=﹣0.2x 2+1.6x (0≤x ≤4) 当x >4时,y 2=3.2;密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)假设投资购买B 型用x 万元、A 型为(10﹣x )万元,当0≤x ≤4时:y=y 1+y 2=0.2(10﹣x )+0.8﹣0.2x 2+1.6x ; =﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+3.4125,当4<x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6;当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2;(3)当0≤x <4时:y=﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+5.25,当4≤x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=4时有最大值5.25万元;当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=6时有最大值4.8万元;∴当投资B 型机械4万元,A 型机械6万元能获得最大补贴,最大补贴金额为5.25万元.25.解:(1)设抛物线的解析式为y=a (x+)2+k (k ≠0), 则依题意得:a+k=0,a+k=4,解之得:a=, k=﹣即:y=(x+)2﹣,顶点坐标为(﹣,﹣);(2)∵点E (x ,y )在抛物线上,且位于第三象限. ∴S=2S △OAE =2××0A ×(﹣y ) =﹣6y=﹣4(x+)2+25 (﹣6<x <﹣1); ①当S=24时,即﹣4(x+)2+25=24, 解之得:x 1=﹣3,x 2=﹣4∴点E 为(﹣3,﹣4)或(﹣4,﹣4)当点E 为(﹣3,﹣4)时,满足OE=AE ,故▱OEAF 是菱形; 当点E 为(﹣4,﹣4)时,不满足OE=AE ,故▱OEAF 不是菱形. ②不存在.当0E ⊥AE 且OE=AE 时,▱OEAF 是正方形,此时点E 的坐标为(﹣3,﹣3),而点E 不在抛物线上,故不存在点E ,使▱OEAF 为正方形.密 封线 人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、选择题(共10小题,每小题3分,共30分)1.方程3x 2﹣4x ﹣1=0的二次项系数和一次项系数分别为( ) A .3和4 B .3和﹣4 C .3和﹣1 D .3和1 2.二次函数y=x 2﹣2x+2的顶点坐标是( )A .(1,1)B .(2,2)C .(1,2)D .(1,3) 3.将△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则直线AB 与直线A 1B 1的夹角(锐角)为( ) A .130° B .50° C .40° D .60°4.用配方法解方程x 2+6x+4=0,下列变形正确的是( ) A .(x+3)2=﹣4 B .(x ﹣3)2=4 C .(x+3)2=5 D .(x+3)2=± 5.下列方程中没有实数根的是( ) A .x 2﹣x ﹣1=0 B .x 2+3x+2=0 C .2015x 2+11x ﹣20=0 D .x 2+x+2=06.平面直角坐标系内一点P (﹣2,3标是( )A .(3,﹣2)B .(2,3)C .(﹣2,﹣3)D .(2,﹣7.如图,⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD 为M ,OM :OC=3:5,则AB 的长为( )A .cm B .8cm C .6cm D .4cm8.已知抛物线C 的解析式为y=ax 2+bx+c 的是( )A .a 确定抛物线的形状与开口方向B .若将抛物线C 沿y 轴平移,则a ,b 的值不变 C .若将抛物线C 沿x 轴平移,则a 的值不变D .若将抛物线C 沿直线l :y=x+2平移,则a 、b 、c 9.如图,四边形ABCD 的两条对角线互相垂直,AC+BD=16四边形ABCD 的面积最大值是( )密线学校 班级 姓名 学号密 封 线 内 不 得 答 题A .64B .16C .24D .3210.已知二次函数的解析式为y=ax 2+bx+c (a 、b 、c 为常数,a ≠0),且a 2+ab+ac <0,下列说法: ①b 2﹣4ac <0;②ab+ac <0;③方程ax 2+bx+c=0有两个不同根x 1、x 2,且(x 1﹣1)(1﹣x 2)>0;④二次函数的图象与坐标轴有三个不同交点, 其中正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(共6小题,每小题3分,共18分) 11.抛物线y=﹣x 2﹣x ﹣1的对称轴是_________. 12.已知x=(b 2﹣4c >0),则x 2+bx+c 的值为_________.13.⊙O 的半径为13cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB=24cm ,CD=10cm .则AB 和CD 之间的距离_________.14.如图,线段AB 的长为1,C 在AB 上,D 在AC 上,且AC 2=BC •AB ,AD 2=CD •AC ,AE 2=DE •AD ,则AE 的长为_________.15.抛物线的部分图象如图所示,则当y <0时,x 的取值范围是_________.16.如图,△ABC 是边长为a 的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC 交于D 、E 两点,则DE 长度的取值范围是_________.三、解答题(共8小题,共72分) 17.(6分)解方程:x 2+x ﹣2=0.18.(8分)已知抛物线的顶点坐标是(3,﹣1),与y 轴的交点是(0,﹣4),求这个二次函数的解析式. 19.(8分)已知x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根 (1)求x 1+x 2,x 1x 2的值;密封线内不得(2)求2x12+6x2﹣2015的值.20.(10分)如图所示,△ABC与点O在10×10的网格中的位置如图所示(1)画出△ABC绕点O逆时针旋转90°后的图形;(2)画出△ABC绕点O逆时针旋转180°后的图形;(3)若⊙M能盖住△ABC,则⊙M的半径最小值为_________.21.(11分)如图,在⊙O中,半径OA垂直于弦BC,垂足为E,点D在CA的延长线上,若∠DAB+∠AOB=60°(1)求∠AOB的度数;(2)若AE=1,求BC的长.22.(11分)飞机着陆后滑行的距离S(单位:m间t(单位:s)的函数解析式是:S=60t﹣1.5t2(1)直接指出飞机着陆时的速度;(2)直接指出t的取值范围;(3)画出函数S的图象并指出飞机着陆后滑行多远才能停下来?23.(14分)如图,△ABC是边长为6cm的等边三角形,点DB点出发沿B→A方向在线段BA上以a cm/s速度运动,时,点E从线段BC的某个端点出发,以b cm/s速度在线段上运动,当D到达A点后,D、E运动停止,运动时间为t密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)如图1,若a=b=1,点E 从C 出发沿C →B 方向运动,连AE 、CD ,AE 、CD 交于F ,连BF .当0<t <6时: ①求∠AFC 的度数;②求的值;(2)如图2,若a=1,b=2,点E 从B 点出发沿B →C 方向运动,E 点到达C 点后再沿C →B 方向运动.当t ≥3时,连DE ,以DE为边作等边△DEM ,使M 、B 在DE 两侧,求M 点所经历的路径长.24.(14分)定义:我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(1)已知抛物线的焦点F (0,),准线l :,求抛物线的解析式;(2)已知抛物线的解析式为:y=x 2﹣n 2,点A (0,)(n ≠0),B (1,2﹣n 2),P 为抛物线上一点,求PA+PB 的最小值及此时P 点坐标;(3)若(2)中抛物线的顶点为C ,抛物线与x 轴的两个交点分别是D 、E ,过C 、D 、E 三点作⊙M ,⊙M 上是否存在定点N ?若存在,求出N 点坐标并指出这样的定点N 有几个;若不存在,请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分) 1.解:∵3x 2﹣4x ﹣1=0,∴方程3x 2﹣4x ﹣1=0的二次项系数是3,一次项系数是﹣4; 故选B .2.解:y=x 2﹣2x+2的顶点横坐标是﹣=1,纵坐标是=1,y=x 2﹣2x+2的顶点坐标是(1,1). 故选:A .3.解:如图,△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则∠A 1OA=50°,OA=OA 1,OB=OB 1,AB=A 1B 1. 设直线AB 与直线A 1B 1交于点M . 由SSS 易得△OAB ≌△OA 1B 1, ∴∠OAB=∠OA 1B 1, ∴∠OAM=∠OA 1M , 设A 1M 与OA 交于点D , 在△OA 1D 与△MAD 中,题∵∠DAM=∠DA 1O ,∠ODA 1=∠MDA , ∴∠M=∠A 1OD=50°. 故选B .4.解:∵x 2+6x+4=0, ∴x 2+6x=﹣4,∴x 2+6x+9=5,即(x+3)2=5. 故选:C .5.解:A 、x 2﹣x ﹣1=0,△=(﹣1)2﹣4×(﹣1)=9>0,方程有两个不相等的根,此选项错误;B 、x 2+3x+2=0,△=32﹣4×2=1>0,方程有两个不相等的根,此选项错误;C 、2015x 2+11x ﹣20=0,△=112﹣4×2015×(﹣20)>0,方程有两个不相等的根,此选项错误;D 、x 2+x+2=0,△=12﹣4×2=﹣7<0正确; 故选D .6.解:点P (﹣2,3)关于原点对称的点的坐标是(2,﹣3故选:D .7.解:如图所示,连接OA .⊙O 的直径CD=10cm , 则⊙O 的半径为5cm , 即OA=OC=5,又∵OM :OC=3:5, 所以OM=3,∵AB ⊥CD ,垂足为M , ∴AM=BM , 在Rt △AOM 中,AM==4,∴AB=2AM=2×4=8. 故选B .8密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴抛物线C 的解析式为y=ax 2+bx+c ,a 确定抛物线的形状与开口方向;若将抛物线C 沿y 轴平移,顶点发生了变化,对称轴没有变化,a 的值不变,则﹣不变,所以b 的值不变;若将抛物线C 沿直线l :y=x+2平移,则a 的值不变, 故选D .9.解:设AC=x ,四边形ABCD 面积为S ,则BD=16﹣x , 则:S=AC •BD=x (16﹣x )=﹣(x ﹣8)2+32, 当x=8时,S 最大=32;所以AC=BD=8时,四边形ABCD 的面积最大, 故选D .10.解:当a >0时, ∵a 2+ab+ac <0, ∴a+b+c <0, ∴b+c <0, 如图1,∴b 2﹣4ac >0,故①错误; a (b+c )<0,故②正确;∴方程ax 2+bx+c=0有两个不同根x 1、x 2,且x 1<1,x 2>1, ∴(x 1﹣1)(x 2﹣1)<0,即(x 1﹣1)(1﹣x 2)>0,故③正确;∴二次函数的图象与坐标轴有三个不同交点,故④正确; 故选C .二、填空题(共6小题,每小题3分,共18分) 11.解:对称轴为直线x=﹣=﹣=﹣,即直线x=﹣故答案为:直线x=﹣. 12.解:∵x=(b 2﹣4c >0),∴x 2+bx+c =()2+b+c=++c == =0.故答案为:0.13.解:作OE ⊥AB 于E ,交CD 于F ,连结OA 、OC ,如图,题∵AB ∥CD , ∴OF ⊥CD ,∴AE=BE=AB=12,CF=DF=CD=5, 在Rt △OAE 中,∵OA=13,AE=12, ∴OE==5,在Rt △OCF 中,∵OC=13,CF=5, ∴OF==12,当圆心O 在AB 与CD 之间时,EF=OF+OE=12+5=17; 当圆心O 不在AB 与CD 之间时,EF=OF ﹣OE=12﹣5=7; 即AB 和CD 之间的距离为7cn 或17cm . 故答案为7cn 或17cm .14.解:设AC=x ,则BC=AB ﹣AC=1﹣x , ∵AC 2=BC •AB , ∴x 2=1﹣x , 解得:x 1=,x 2=(不合题意,舍去),∴AC=,∵AD 2=CD •AC ,∴AD=×=,∵AE 2=DE •AD , ∴AE=×=﹣2;故答案为:﹣2.15.解:根据函数图象可知:抛物线的对称轴为x=1与x 轴一个交点的坐标为(﹣1,0),由抛物线的对称性可知:抛物线与x 轴的另一个交点坐标为0). ∵y <0,∴x >3或x <﹣1.故答案为:x >3或x <﹣1.16.解:当B 、D 重合或C 、E 重合时DE 长度最大,如图1∵∠BAE=30°,∠AEB=90°, ∴DE=AB=a ,当∠BAD=∠CAE=15°时,DE 长度最小,如图2, 作AF ⊥BC ,且AF=AB ,连接DF 、CF , ∵AF ⊥BC ,∴∠BAF=∠CAF=30°, ∵∠BAD=∠CAE=15°, ∴∠DAH=∠EAH=15°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BAD=∠DAH ,在△ADB 和△ADF 中,,∴△ABD ≌△ADF , ∴∠B=∠AFD ,BD=DF , ∵∠AHB=∠DHF=90°,∴△ABH ∽△DFH , AB :AH=DF :DH , ∴=, ∴=,∴DH=,其中BD+DH=a 、AH=a ,∴DH==a∴DE=(2﹣3)a ,故DE 长度的取值范围是(2﹣3)a ≤DE ≤a .三、解答题(共8小题,共72分) 17.解:分解因式得:(x ﹣1)(x+2)=0, 可得x ﹣1=0或x+2=0, 解得:x 1=1,x 2=﹣2.18.解:设抛物线解析式为y=a (x ﹣3)2﹣1, 把(0,﹣4)代入得:﹣4=9a ﹣1,即a=﹣, 则抛物线解析式为y=﹣(x ﹣3)2﹣1.19.解:(1)∵∴x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 1+x 2=3,x 1x 2=﹣5,;(2)∵x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 12﹣3x 1﹣5=0, ∴x 12=3x 1+5,∴2x 12+6x 2﹣2015=2(3x 1+5)+6x 2﹣2015=6(x 1+x 2)﹣2015=﹣1987.20.解:(1)如图,△A ′B ′C ′为所作;密(2)如图,△A ″B ″C ″为所求;(3)如图,点M 为△ABC 的外接圆的圆心,此时⊙M 是能盖住△ABC 的最小的圆,⊙M 的半径为=.故答案为.21.解:(1)连接OC , ∵OA ⊥BC ,OC=OB ,∴∠AOC=∠AOB ,∠ACO=∠ABO ,∵∠DAO=∠ACO+∠AOC=∠OAB+∠DAB ,∠ACO=∠OAB , ∴∠DAB=∠AOC ,∴∠DAB=∠AOB ,又∠DAB+∠AOB=60°, ∴∠AOB=30°; (2)∵∠AOB=30°, ∴BE=OB ,设⊙O 的半径为r ,则BE=r ,OE=r ﹣1, 由勾股定理得,r 2=(r )2+(r ﹣1)2,解得r=4,∵OB=OC ,∠BOC=2∠AOB=60°, ∴BC=r=4.22.解:(1)飞机着陆时的速度V=60; (2)当S 取得最大值时,飞机停下来,则S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600, 此时t=20因此t 的取值范围是0≤t ≤20; (3)如图,S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600. 飞机着陆后滑行600米才能停下来.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题23.解:(1)如图1,由题可得BD=CE=t . ∵△ABC 是等边三角形, ∴BC=AC ,∠B=∠ECA=60°. 在△BDC 和△CEA 中,,∴△BDC ≌△CEA , ∴∠BCD=∠CAE ,∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°,∴∠AFC=120°;②延长FD 到G ,使得FG=FA ,连接GA 、GB ,过点B 作BH ⊥FG 于H ,如图2,∵∠AFG=180°﹣120°=60°,FG=FA , ∴△FAG 是等边三角形,∴AG=AF=FG ,∠AGF=∠GAF=60°. ∵△ABC 是等边三角形, ∴AB=AC ,∠BAC=60°,∴∠GAF=∠BAC , ∴∠GAB=∠FAC . 在△AGB 和△AFC 中,,∴△AGB ≌△AFC ,∴GB=FC ,∠AGB=∠AFC=120°, ∴∠BGF=60°. 设AF=x ,FC=y ,内不答题则有FG=AF=x,BG=CF=y.在Rt△BHG中,BH=BG•sin∠BGH=BG•sin60°=y,GH=BG•cos∠BGH=BG•cos60°=y,∴FH=FG﹣GH=x﹣y.在Rt△BHF中,BF2=BH2+FH2=(y)2+(x﹣y)2=x2﹣xy+y2.∴==1;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得:∠BEN=30°,BD=1×t=t,CE=2(t﹣3)=2t﹣6.∴BE=6﹣(2t﹣6)=12﹣2t,BN=BE•cosB=BE=6﹣t,∴DN=t﹣(6﹣t)=2t﹣6,∴DN=EC.∵△DEM是等边三角形,∴DE=EM,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°∴∠NDE=∠MEC.在△DNE和△ECM中,,∴△DNE≌△ECM,∴∠DNE=∠ECM=90°,∴M点运动的路径为过点C垂直于BC的一条线段.当t=3时,E在点B,D在AB的中点,此时CM=EN=CD=BC•sinB=6×=3;当t=6时,E在点C,D在点A,此时点M在点C.∴当3≤t≤6时,M点所经历的路径长为3.24.解:(1)设抛物线上有一点(x,y),由定义知:x2+(y﹣)2=|y+|2,解得y=ax2;(2)如图1,由(1)得抛物线y=x2的焦点为(0,),准线为y=﹣,∴y=x2﹣n2由y=x2向下平移n2个单位所得,∴其焦点为A(0,﹣n2),准线为y=﹣﹣n2,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题由定义知P 为抛物线上的点,则PA=PH ,∴PA+PH 最短为P 、B 、A 共线,此时P 在P ′处, ∵x=1,∴y=1﹣n 2<2﹣n 2,∴点B 在抛物线内,∴BI=y B ﹣y I =2﹣n 2﹣(﹣﹣n 2)=,∴PA+PB 的最小值为,此时P 点坐标为(1,1﹣n 2); (3)由(2)知E (|n|,0),C (0,n 2), 设OQ=m (m >0),则CQ=QE=n 2﹣m ,在Rt △OQE 中,由勾股定理得|n|2+m 2=(n 2﹣m )2, 解得m=﹣, 则QC=+=QN ,∴ON=QN ﹣m=1, 即点N (0,1), 故AM 过定点N (0,1).密 封 不 人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、选择题(共15题,每题3分,共45分)1.下列平面图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .2.方程x 2=3x 的解是( )A .x=﹣3B .x=3C .x 1=0,x 2=3D .x 1=0,x 2=﹣3 3.三角形的两边长分别是3和6,第三边是方程x 2﹣6x+8=0的解,则这个三角形的周长是( ) A .11 B .13 C .11或13 D .11和134.已知x 1,x 2是一元二次方程x 2﹣4x+1=0的两个实数根,则x 1•x 2等于( ) A .﹣4 B .﹣1 C .1 D .45.若a 为方程x 2+x ﹣5=0的解,则a 2+a+1的值为( ) A .12 B .6 C .9 D .166.关于x 的一元二次方程9x 2﹣6x+k=0则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥17.如图所示,在等腰直角△ABC 中,∠B=90°,将△ABC A 逆时针旋转60°后得到的△AB ′C ′,则∠BAC ′等于(A .105°B .120°C .135°D .150°8.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( A .y=1+x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2 9.将抛物线y=2x 2向左平移1个单位,再向上平移3到的抛物线,其解析式是( ) A .y=2(x+1)2+3 B .y=2(x ﹣1)2﹣3 C .y=2(x+1)2﹣3 D .y=2(x ﹣1)2+310.抛物线y=(x+2)2+1的顶点坐标是( ) A .(2,1) B .(﹣2,1) C .(2,﹣1) D .(﹣2,﹣1)11.函数y=﹣x 2﹣4x ﹣3图象顶点坐标是( ) A .(2,﹣1) B .(﹣2,1) C .(﹣2,﹣1) D .2,1)12.已知二次函数y=ax 2+bx+c 的x 、y密线学校 班级 姓名 学号密 封 线 内 不 得 答 题x ﹣1 0 1 2 3 y51﹣1﹣11则该二次函数图象的对称轴为( )A .y 轴B .直线x=C .直线x=2D .直线x=13.已知二次函数y=ax 2+bx+c 的图象如图所示,则a 、b 、c 满足( )A .a <0,b <0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >014.已知抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系内的图象如图,其中正确的是( )A .B .C .D . 15.已知0≤x ≤,那么函数y=﹣2x 2+8x ﹣6的最大值是( ) A .﹣10.5 B .2 C .﹣2.5 D .﹣6 二、解答题(本大题共9小题,共75分) 16.(4分)解方程:x 2﹣4x+2=0.17.(5分)已知抛物线的顶点为A (1,﹣4),且过点B (3,0).求该抛物线的解析式.18.(6分)如图,点O 是等边△ABC 内一点,∠AOB=110°,∠BOC=α,将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD .(1)求证:△COD 是等边三角形;(2)当α=150°时,试判断△AOD 的形状,并说明理由.19.(6分)一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x (元)取整数,用y (元)表示该店日净收入.( 日净收入=每天的销售额﹣套餐成本﹣每天固定支出 )(1)当5<x ≤10时,y= ;当x >10时,y= ; (2)若该店日净收入为1560元,那么每份售价是多少元?20.(9分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题: (1)以A 点为旋转中心,将△ABC 绕点A 顺时针旋转90°得△AB 1C 1,画出△AB 1C 1.(2)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2. (3)作出点C 关于x 轴的对称点P .若点P 向右平移x (x 取整数)个单位长度后落在△A 2B 2C 2的内部,请直接写出x 的值.21.(10分)已知关于x 的一元二次方程. (1)判断这个一元二次方程的根的情况;(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.22.(11分)某房地产开放商欲开发某一楼盘,于2018年初以每亩100万的价格买下面积为15亩的空地,由于后续资金迟迟没有到位,一直闲置,因此每年需上交的管理费为购买土地费用的10%,2020年初,该开发商个人融资1500万,向银行贷款3500万后开始动工(已知银行贷款的年利率为5%,且开发商预计在2022年初完工并还清银行贷款),售,开发总面积为5购买土地费用的5%,工程完工后不再上交土地管理费.若房价定位每平方米3000米上涨100元,则会少卖1000平方米,且卖房时间会延长个月.该房地产开发商预计售房净利润为8660万. (1)问:该房地产开发商总的投资成本是多少万?(2)若售房时间定为2年(2商不再出售,准备作为商业用房对外出租)平方米多少元?23.(12分)正方形ABCD 点A 重合,一条直角边与边BC 交于点E (点E 不与点B 重合),另一条直角边与边CD 的延长线交于点F . (1)如图①,求证:AE=AF ;(2)如图②,此直角三角板有一个角是45°,它的斜边与边CD 交于G ,且点G 是斜边MN 的中点,连接EG EG=BE+DG ;(3)在(2)的条件下,如果=,那么点G 是否一定是边CD 的中点?请说明你的理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.(12分)如图,已知点A (0,1),C (4,3),E (,),P 是以AC 为对角线的矩形ABCD 内部(不在各边上)的一动点,点D 在y 轴上,抛物线y=ax 2+bx+1以P 为顶点. (1)说明点A ,C ,E 在一条直线上;(2)能否判断抛物线y=ax 2+bx+1的开口方向?请说明理由; (3)设抛物线y=ax 2+bx+1与x 轴有交点F 、G (F 在G 的左侧),△GAO 与△FAO 的面积差为3,且这条抛物线与线段AE 有两个不同的交点,这时能确定a 、b 的值吗?若能,请求出a ,b 的值;若不能,请确定a 、b 的取值范围.参考答案与试题解析一、选择题(共15题,每题3分共45分)1.解:∵选项A 中的图形旋转180°后不能与原图形重合, ∴此图形不是中心对称图形,但它是轴对称图形,∴选项A 不正确;∵选项B 中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,它也是轴对称图形, ∴选项B 正确;∵选项C 中的图形旋转180°后不能与原图形重合, ∴此图形不是中心对称图形,但它是轴对称图形, ∴选项C 不正确;∵选项D 中的图形旋转180°后能与原图形重合, ∴此图形是中心对称图形,但它不是轴对称图形, ∴选项D 不正确.故选:B .2.解:x 2﹣3x=0, x (x ﹣3)=0, x=0或x ﹣3=0, 所以x 1=0,x 2=3.故选C . 3.解:方程x 2﹣6x+8=0, 分解因式得:(x ﹣2)(x ﹣4)=0,可得x ﹣2=0或x ﹣4=0,解得:x 1=2,x 2=4,当x=2时,三边长为2,3,6,不能构成三角形,舍去;当x=4时,三边长分别为3,4,6,此时三角形周长为3+4+6=13. 故选B .4.解:根据韦达定理得x 1•x 2=1.故选:C . 5.解:∵a 为方程x 2+x ﹣5=0的解, ∴a 2+a ﹣5=0,∴a2+a=5 则a2+a+1=5+1=6.故选:B.6.解:∵关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,∴△=(﹣6)2﹣4×9k>0,解得k<1.故选A.7.解:∵在等腰直角△ABC中,∠B=90°,∴∠BAC=45°,∵将△ABC绕点 A逆时针旋转60°后得到的△AB′C′,∴∠BAB′=60°,∠B′AC′=∠BAC=45°,∴∠BAC′=∠BAB′+∠B′AC′=60°+45°=105°,故选A.8.解:y=2(x﹣1)2+3中,a=2.故选D.9.解:原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(﹣1,3).可设新抛物线的解析式为y=2(x﹣h)2+k,代入得:y=2(x+1)2+3.故选A.10.解:因为y=(x+2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1).故选B.11.解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1 ∴顶点坐标为(﹣2,1);故选B.12.解:∵x=1和2时的函数值都是﹣1,∴对称轴为直线x==.故选:D.13.解:根据二次函数图象的性质,∵开口向下,∴a<0,∵与y轴交于正半轴,∴c>0,又∵对称轴x=﹣<0,∴b<0,所以A正确.故选A.14.解:A、由二次函数的图象可知a<0,此时直线应经过二、四象限,故A可排除;B、由二次函数的图象可知a<0,对称轴在ya、b异号,b>0,此时直线y=ax+b故B可排除;C、由二次函数的图象可知a>0,此时直线y=ax+b三象限,故C可排除;正确的只有D.故选:D.15.解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x又∵0≤x≤,∴当x=时,y取最大值,y最大=﹣2(﹣2)2+2=﹣2.5.故选:C.二、解答题(本大题共9小题,共75分)密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题16.解:x 2﹣4x=﹣2x 2﹣4x+4=2 (x ﹣2)2=2或∴,.17.解:设抛物线的解析式为y=a (x ﹣1)2﹣4,∵抛物线经过点B (3,0), ∴a (3﹣1)2﹣4=0, 解得:a=1,∴y=(x ﹣1)2﹣4,即y=x 2﹣2x ﹣3.18.(1)证明:∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴∠OCD=60°,CO=CD , ∴△OCD 是等边三角形; (2)解:△AOD 为直角三角形. 理由:∵△COD 是等边三角形. ∴∠ODC=60°,∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC , ∴∠ADC=∠BOC=α, ∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC ﹣∠CDO=150°﹣60°=90°,于是△AOD 是直角三角形.19.解:(1)由题意得:当5<x ≤10时,y=400(x ﹣5)﹣600; 当x >10时,y=(x ﹣5)[400﹣40(x ﹣10)]﹣600=﹣40x 2+100x ﹣4600.即y=﹣40x 2+100x ﹣4600(x >10).故答案是:400(x ﹣5)﹣600;﹣40x 2+100x ﹣4600; (2)由(1)知,y=﹣40x 2+100x ﹣4600(x >10) 当y=1560时,(x ﹣5)[400﹣40(x ﹣10)]﹣600=1560, 解得:x 1=11,x 2=14,答:该店日净收入为1560元,那么每份售价是11元或14元; 20.解:(1)作图如右:△A 1B 1C 1即为所求; (2)作图如右:△A 2B 2C 2即为所求; (3)x 的值为6或7.21.解:(1)所以,方程有两个实数根;(2)若腰=3,则x=3是方程的一个根,代入后得:k=2,原方程为x2﹣5x+6=0⇒x1=2,x2=3即,等腰三角形的三边为3,3,2.则周长为8,面积为若底为3,则原方程为x2﹣4x+4=0⇒x1=x2=2即,等腰三角形的三边为2,2,3.则周长为7,面积为22.解:(1)15×100=1500万,1500×10%×2=300万,1500+3500+3500×5%×2=5350万,1500×5%×2=150万,四者相加1500+300+5350+150=7300万.答:该房地产开发商总的投资成本是7300万;(2)设房价每平方米上涨x个100元,依题意有(5﹣0.1x)=8660+7300,解得x1=12,x2=8,又因为当x1=12时,卖房时间为30个月,此时超过两年,舍去;当x2=8时,卖房时间为20个月;则房价为3000+8×100=3800元.答:房价应定为每平方米3800元.23.解:(1)如图①,∵四边形ABCD是正方形,∴∠B=∠BAD=∠ADC=∠C=90°,AB=AD.∵∠EAF=90°,∴∠EAF=∠BAD,∴∠EAF﹣∠EAD=∠BAD﹣∠EAD,∴∠BAE=∠DAF.在△ABE和△ADF 中,∴△ABE≌△ADF(ASA)∴AE=AF;(2)如图②,连接AG,∵∠MAN=90°,∠M=45°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠N=∠M=45°,∴AM=AN .∵点G 是斜边MN 的中点, ∴∠EAG=∠NAG=45°.∴∠EAB+∠DAG=45°. ∵△ABE ≌△ADF ,∴∠BAE=∠DAF ,AE=AF , ∴∠DAF+∠DAG=45°, 即∠GAF=45°, ∴∠EAG=∠FAG . 在△AGE 和AGF 中,,∴△AGE ≌AGF (SAS ), ∴EG=GF . ∵GF=GD+DF , ∴GF=GD+BE , ∴EG=BE+DG ;(3)G 不一定是边CD 的中点. 理由:设AB=6k ,GF=5k ,BE=x , ∴CE=6k ﹣x ,EG=5k ,CF=CD+DF=6k+x ,∴CG=CF ﹣GF=k+x ,在Rt △ECG 中,由勾股定理,得 (6k ﹣x )2+(k+x )2=(5k )2, 解得:x 1=2k ,x 2=3k , ∴CG=4k 或3k .∴点G 不一定是边CD 的中点.24.解:(1)由题意,A (0,1)、C (4,3)两点确定的直线解析式为:y=x+1 将点E 的坐标(,),代入y=x+1中,左边=,右边=×+1=.∵左边=右边∴点E 在直线y=x+1上, 即点A 、C 、E 在一条直线上;(2)解法一:由于动点P 在矩形ABCD 的内部,∴点P 的纵坐标大于点A 的纵坐标,而点A 与点P 都在抛物线上,且P 为顶点,密 封 线 内 不答 题∴这条抛物线有最高点,抛物线的开口向下. 解法二:∵抛物线y=ax 2+bx+1的顶点P 的纵坐标为,且P 在矩形ABCD 的内部, ∴1<<3,由1<1﹣得﹣>0.∴a <0. ∴抛物线开口向下; (3)连接GA 、FA . ∵S △GAO ﹣S △FAO =3∴GO •AO ﹣FO •AO=3. ∵OA=1, ∴GO ﹣FO=6.设F (x 1,0),G (x 2,0),则x 1、x 2是方程ax 2+bx+1=0的两个根,且x 1<x 2, 又∵a <0 ∴x 1•x 2=<0, ∴x 1<0<x 2 ∴GO=x 2、FO=﹣x 1∴x 2﹣(﹣x 1)=6,即x 2+x 1=6 ∵x 2+x 1=,∴=6∴b=﹣6a∴抛物线的解析式为:y=ax 2﹣6ax+1,其顶点P 1﹣9a )∵顶点P 在矩形ABCD 的内部, ∴1<1﹣9a <3, ∴﹣<a <0①由方程组,得ax 2﹣(6a+)x=0, ∴x=0或x==6+,当x=0时,即抛物线与线段AE 交于点A ,AE 有两个不同的交点, 则有:0<6+≤, 解得:﹣a <﹣②,综合①②,得﹣<a <﹣,∵b=﹣6a , ∴<b <.。
人教版2020---2021学年度上学期九年级数学期中考试卷及答案(含4套题)
密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(每小题3分,共24分)1.下列图形中,既是中心对称图形又是轴对称图形的( ) A .B .C .D .2.下列方程是一元二次方程的是( ) A .ax 2+bx+c=0 B .x 2+2x=x 2﹣1 C .﹣x=2 D .(x ﹣1)(x ﹣3)=0 3.下列关于x 的方程有实数根的是( )A .x 2﹣x+1=0B .x 2+x+1=0C .x 2﹣x ﹣1=0D .(x ﹣1)2+1=0 4.用配方法解方程x 2+8x+9=0,变形后的结果正确的是( ) A .(x+4)2=﹣7 B .(x+4)2=﹣9 C .(x+4)2=7 D .(x+4)2=255.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=59°,则∠C 等于( )A .29°B .31°C .59°D .62°6.若代数式x 2+3x+5的值为7,则代数式3x 2+9x ﹣2的值等于( )A .0B .4C .6D .197.已知二次函数y=3(x ﹣1)2+k 的图象上有三点A (,y 1),B (2,y 2),C (﹣,y 3),则y 1、y 2、y 3的大小关系为( ) A .y 1>y 2>y 3 B .y 2>y 1>y 3 C .y 3>y 1>y 2 D .y 3>y 2>y 1 8.已知抛物线y=ax 2+bx+c (a ≠0)在平面直角坐标系中的位置如图所示,对称轴是直线x=,则下列结论中,正确的是( )A .a <0B .2a+3b=0C .a ﹣b+c <0D .c <﹣1二、填空题(每小题3分,共21分)9.已知方程x 2+kx ﹣10=0的一根是2,则另一根是__________.不得答10.如果一个三角形外接圆的圆心在三角形边上,那么这个三角形是__________三角形.11.若点P(m,2)与点Q(3,n)关于原点对称,则m﹣n=__________.12.把抛物线y=x2﹣2x﹣2先向右平移2个单位,再向下平移5个单位得到新的抛物线解析式是__________.13.已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于__________.14.如图,直线与x轴,y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是__________.15.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,则等腰△ABC的面积为__________.三、解答题(本大题8个小题,共75分)16.解下列方程:(1)x(x﹣3)+x﹣3=0(2)3x2+5(2x+1)=0.17.如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.18.2013年,黄冈市某楼盘以每平方米4000行降价促销,经过连续两年下调后,20153240元.(1)求平均每年下调的百分率;密学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)假设2016年的均价仍然下调相同的百分率,李老师准备购买一套100平方米的住房,他持有现金10万元,可以在银行贷款20万元,李老师的愿望能否实现?(房价每平方米按照均价计算)19.已知二次函数y=﹣x 2+2x+m .(1)如果二次函数的图象与x 轴有两个交点,求m 的取值范围;(2)如图,二次函数的图象过点A (3,0),与y 轴交于点B ,直线AB 与这个二次函数图象的对称轴交于点P ,求点P 的坐标.(3)根据图象直接写出使一次函数值大于二次函数值的x 的取值范围.20.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (0,1),B (﹣1,1),C (﹣1,3). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出△ABC 绕原点O 顺时针方向旋转90°后得到的△A 2B 2C 2;(3)△OB 2P 为等腰三角形,且P 在x 轴上,请直接写出所有符合条件的P 点坐标.21.一位同学拿了两块45°三角尺△MNK,△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=4.(1)如图1,两三角尺的重叠部分为△ACM,则重叠部分的面积为__________,周长为__________.(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为__________,周长为__________.(3)如果将△MNK绕M旋转到不同于图1和图2的图形,如图3,请你猜想此时重叠部分的面积为__________.(4)在图3情况下,若AD=1,求出重叠部分图形的周长.22.某大型汽车租赁公司有高级小轿车160间,每辆车每天收租金180每辆车日租金提高20元,则减少1020元的这种方法变化下去.(1)设每辆车日租金提高x(元)(元),但会减少y2辆车租出,请分别写出y1、y2与x 函数关系式;(2)为了投资少而利润大,每辆车日租金提高x租赁公司每天日租金总收入为y(元),请写出y与x 数关系式,租金收入,并说明理由.23.如图①,直线l:y=mx+n(m<0,n>0)与x,y交于A,B两点,将△AOB绕点O逆时针旋转90°得到△过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P 关联直线.密 学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)若l :y=﹣2x+2,则P 表示的函数解析式为__________;若P :y=﹣x 2﹣3x+4,则l 表示的函数解析式为__________. (2)求P 的对称轴(用含m ,n 的代数式表示);(3)如图②,若l :y=﹣2x+4,P 的对称轴与CD 相交于点E ,点F 在l 上,点Q 在P 的对称轴上.当以点C ,E ,Q ,F 为顶点的四边形是以CE 为一边的平行四边形时,求点Q 的坐标;(4)如图③,若l :y=mx ﹣4m ,G 为AB 中点,H 为CD 中点,连接GH ,M 为GH 中点,连接OM .若OM=,直接写出l ,P表示的函数解析式.参考答案一、选择题(每小题3分,共24分) 1.D . 2. D . 3. C . 4.C 5.B . 6.B . 7.D . 8. B .二、填空题(每小题3分,共21分)9.已知方程x 2+kx ﹣10=0的一根是2,则另一根是﹣5. 10.如果一个三角形外接圆的圆心在三角形边上,那么这个三角形是直角三角形.11.若点P (m ,2)与点Q (3,n )关于原点对称,则m ﹣n=﹣1.12.把抛物线y=x 2﹣2x ﹣2先向右平移2个单位,再向下平移5个单位得到新的抛物线解析式是y=(x ﹣3)2﹣8. 13.已知x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,则+等于﹣2.14.如图,直线与x 轴,y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是.15.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,则等腰△ABC 的面积为32或8.三、解答题(本大题8个小题,共75分) 16.解下列方程:解:(1)x (x ﹣3)+x ﹣3=0 (x ﹣3)(x+1)=0 x ﹣3=0,x+1=0 解得:x 1=3,x 2=﹣1. (2)3x 2+5(2x+1)=0 3x 2+10x+5=0b 2﹣4ac=100﹣4×3×5=40 x=解得:x 1=,x 2=.17.证明:(1)连接AD ;∵AB 是⊙O 的直径, ∴∠ADB=90°. 又∵DC=BD ,∴AD 是BC 的中垂线. ∴AB=AC . (2)连接OD ;∵OA=OB ,CD=BD , ∴OD ∥AC .∴∠0DE=∠CED . 又∵DE⊥AC , ∴∠CED=90°.∴∠ODE=90°,即OD ⊥DE . ∴DE 是⊙O 的切线.密学校 班级 姓名 学号密 封 线 内 不 得 答 题18.解:(1)设平均每年下调的百分率为x , 根据题意得4000(1﹣x )2=3240, 解得x 1=0.1x 2=1.9(舍),所以平均每年下调的百分率为10%;(2)3240×(1﹣10%)×100=291600<(10+20)×10000,李老师的愿望可以实现.19.解:(1)∵二次函数的图象与x 轴有两个交点, ∴△=22+4m >0 ∴m >﹣1;(2)∵二次函数的图象过点A (3,0), ∴0=﹣9+6+m ∴m=3,∴二次函数的解析式为:y=﹣x 2+2x+3, 令x=0,则y=3, ∴B (0,3),设直线AB 的解析式为:y=kx+b , ∴,解得:,∴直线AB 的解析式为:y=﹣x+3,∵抛物线y=﹣x 2+2x+3,的对称轴为:x=1,∴把x=1代入y=﹣x+3得y=2, ∴P (1,2).(3)根据函数图象可知:x <0或x >3.20.解:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1如图所示:(2)画出△ABC 绕原点O 顺时针方向旋转90°后得到的△A 2B 2C 2如图所示:(3)①OB 2=PB 2时,OP=2OA 2=2, ∴P 1(2,0);②OB 2=OP 时,∵OB=, ∴P 2(﹣,0),P 3(,0); ③OP=B 2P 时,P 4(1,0).密封 线 内 不综上,符合条件的P 点坐标为(1,0),(2,0),(,. 21.解:(1) 4,4+4; (2) 4,8. (3) 4. (4)如图所示:过点M 作ME ⊥BC 于点E ,MH ⊥AC 于点H , ∴四边形MECH 是矩形, ∴MH=CE , ∵∠A=45°, ∴∠AMH=45°, ∴AH=MH , ∴AH=CE ,在Rt △DHM 和Rt △GEM 中,,∴Rt △DHM ≌Rt △GEM . ∴GE=DH ,∴AH ﹣DH=CE ﹣GE , ∴CG=AD , ∵AD=1, ∴DH=1. ∴DM==∴四边形DMGC 的周长为: CE+CD+DM+ME =AD+CD+2DM=4+2.22.解:(1)由题意可得:y 1=180+x ,y 2=x ; (2)由题意可得:y=(180+x )(160﹣x ), 即:y=﹣(x ﹣70)2+31250,当x=70时,可获最大日租金收入31250元,因为31250>×180,又因为每次提价为20元, 所以x 是不可能取到70,根据二次函数的对称性,与70金获得最大化,而与70最接近的两个数分别是60或80,使投资少而利润大,每辆车日租金应提高80元. 23.解:(1)若l :y=﹣2x+2,则A (1,0),B (0,2). ∵将△AOB 绕点O 逆时针旋转90°,得到△COD , ∴D (﹣2,0).密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题设P 表示的函数解析式为:y=ax 2+bx+c ,将点A 、B 、D 坐标代入得:,解得,∴P 表示的函数解析式为:y=﹣x 2﹣x+2; 若P :y=﹣x 2﹣3x+4=﹣(x+4)(x ﹣1), 则D (﹣4,0),A (1,0). ∴B (0,4).设l 表示的函数解析式为:y=kx+b ,将点A 、B 坐标代入得:,解得,∴l 表示的函数解析式为:y=﹣4x+4. (2)直线l :y=mx+n (m >0,n <0), 令y=0,即mx+n=0,得x=﹣; 令x=0,得y=n .∴A (﹣,0)、B (0,n ), ∴D (﹣n ,0).设抛物线对称轴与x 轴的交点为N (x ,0), ∵DN=AN ,∴﹣﹣x=x ﹣(﹣n ), ∴2x=﹣n ﹣,∴P 的对称轴为x=﹣.(3)若l :y=﹣2x+4,则A (2,0)、B (0,4), ∴C (0,2)、D (﹣4,0).可求得直线CD 的解析式为:y=x+2. 由(2)可知,P 的对称轴为x=﹣1.∵以点C ,E ,Q ,F 为顶点的四边形是以CE 为一边的平行四边形,∴FQ ∥CE ,且FQ=CE .设直线FQ 的解析式为:y=x+b . ∵点E 、点C 的横坐标相差1, ∴点F 、点Q 的横坐标也是相差1. 则|x F ﹣(﹣1)|=|x F +1|=1, 解得x F =0或x F =﹣2.∵点F 在直线l l :y=﹣2x+4上, ∴点F 坐标为(0,4)或(﹣2,8).若F (0,4),则直线FQ 的解析式为:y=x+4, 当x=﹣1时,y=, ∴Q 1(﹣1,);密 封 线 内 不 得 答 题若F (﹣2,8),则直线FQ 的解析式为:y=x+9, 当x=﹣1时,y=, ∴Q 2(﹣1,).∴满足条件的点Q 有2个,如答图1所示,点Q 坐标为Q 1(﹣1,)、Q 2(﹣1,).(4)如答图2所示,连接OG 、OH . ∵点G 、H 为斜边中点, ∴OG=AB ,OH=CD .由旋转性质可知,AB=CD ,OG ⊥OH , ∴△OGH 为等腰直角三角形. ∵点M 为GH 中点,∴△OMG 为等腰直角三角形, ∴OG=OM=•=2,∴AB=2OG=4. ∵l :y=mx ﹣4m ,∴A (4,0),B (0,﹣4m ).在Rt △AOB 中,由勾股定理得:OA 2+OB 2=AB 2, 即:42+(﹣4m )2=(4)2, 解得:m=﹣2或m=2, ∵点B 在y 轴正半轴,∴m=2舍去,∴m=﹣2.∴l 表示的函数解析式为:y=﹣2x+8; ∴B (0,8),D (﹣8,0). 又A (4,0),利用待定系数法求得P :y=﹣x 2﹣x+8.密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、填空题(共24分)1.关于x 的方程(m ﹣)﹣x+3=0是一元二次方程,则m= .2.设x 1、x 2是方程3x 2+4x ﹣5=0的两根,则= ,x 12+x 22= .3.若抛物线y=x 2﹣6x+c 的顶点在x 轴,则c= . 4.点P (2,3)绕着原点逆时针方向旋转90°与点P ′重合,则P ′的坐标为 .5.抛物线y 1=x 2﹣2x+1与直线y 2=﹣x+1在同一坐标系中相交,当y 1>y 2时自变量x 的取值范围是 .6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A 点时,一共走了 米.7.如图,EF 过平行四边形的对角线的交点O ,若四边形ABFE绕O 点旋转一定的角度后能与四边形 CDEF 重合,AB=3,BC=4,OE=1.5,则四边形EFCD 的周长是 .8.已知二次函数y=ax 2+bx+c (a ≠0),若2a+b=0,且当x=﹣1时,y=3,那么当x=3时,y= .二、选择题(共30分)9.如图中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .10.方程(x+1)(x ﹣3)=5的解是( ) A .x 1=1,x 2=﹣3 B .x 1=4,x 2=﹣2 C .x 1=﹣1,x 2=3 D .x 1=﹣4,x 2=2密封线内不11.已知a、b满足a+b=5且ab=6,以a、b为根的一元二次方程为()A.x2+5x+6=0 B.x2﹣5x+6=0 C.x2﹣5x﹣6=0 D.x2+5x﹣6=012.若A(﹣,y1),B(﹣1,y2),C(,y3)为二次函数y=﹣x2﹣4x+5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y313.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50° B.60° C.70° D.80°14.如图是二次函数y=ax2+bx+c的部分图象,y<0时自变量x的取值范围是()A.﹣1<x<5 B.x>5C.x<﹣1且x>5 D.x<﹣1或x>515.已知函数y=ax+b的图象经过二、三、四象限,那么y=ax2+bx+1的图象大致为()A.B.C.D.16.如图是一个中心对称图形,A为对称中心,若∠C=90∠B=30°,AC=1,则BB′的长为()A.4 B. C.D.17.若1人患流感,经过两轮传染后共有121照这样的传染速度,则经过第三轮传染后共有(感.A.1210 B.1000 C.1100 D.133118.二次函数y=ax2+bx+c(a≠0结论:①b2﹣4ac>0;②2a+b<0;③4a﹣2b+c=0;④a:b﹣1:2:3.其中正确的是()密线学校 班级 姓名 学号密 封 线 内 不 得 答 题A .①②B .②③C .③④D .①④三、解答题(共66分) 19.解方程(1)(x ﹣2)2=(2x+5)2 (2)=.20.已知关于x 的方程x 2﹣2(1﹣m )x+m 2=0的两实数根为x 1,x 2.是否存在这样的实数m 使方程的两实根的平方和为14?21.在下图中,把△ABC 向右平移5个方格,再绕点B 的对应点顺时针方向旋转90度.(1)画出平移和旋转后的图形,并标明对应字母;(2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.22.如图所示,某小区规划在一个长40m ,宽26m 的矩形场地ABCD 上修建三条相同宽度的甬路,使其中两条与AB 平行,另一条与AD 平行,其余6块部分种草,使每块草坪面积都是144m 2,求甬路宽度.23.如图,P 是正三角形ABC 内的一点,且PA=6,PB=8,PC=10.若将△PAC 绕点A 逆时针旋转后,得到△P ′AB . (1)求点P 与点P ′之间的距离; (2)求∠APB 的度数.得答题24.为了落实中央的惠农政策,积极推进农业机械化,黄冈市某县政府制定了农户投资购买农机设备的补贴办法,其中购买A型、B型农机设备所投资的金额x(万元)与政府补贴的金额y1(万元)、y2(万元)的函数关系如图所示(图中OA段是抛物线,A是抛物线的顶点).(1)分别写出y1、y2与x的函数关系式;(2)现有一农户计划同时对A型、B型两种农机设备共投资10万元,设其共获得的政府补贴金额为y万元,求y与其购买B型设备投资金额x的函数关系式;(3)在(2)的条件下,请你帮该农户设计一个能获得最大补贴金额的投资方案,并求出按此方案能获得的最大补贴金额.25.如图,对称轴为直线x=的抛物线经过点A(﹣6,0)和点B(0,4).(1)求抛物线的解析式和顶点坐标;(2)设点E(x,y)是抛物线上的一个动点,四边形OEAF是以OA为对角线的平行四边形,求▱OEAFS与x的函数关系式,并写出自变量x的取值范围;①当▱OEAF的面积为24时,请判断▱OEAF是否为菱形?②是否存在点E,使▱OEAF为正方形?若存在,求出点E标;若不存在,请说明理由.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一、填空题( 共24分) 1.或. 2.,.3.c=9.4.P ′的坐标为(﹣3,2).5. x <0或x >.6.120.7.10.8.3. 二、选择题(共30分)9.B .10.B .11.B .12.C .13.C .14.C .15.C.16.A 17.D 18.D 三、解答题(共66分)19. 解:(1)(x ﹣2)2=(2x+5)2, 直接开平方得,x ﹣2=±(2x+5), x ﹣2=2x+5,或x ﹣2=﹣(2x+5),所以x 1=﹣7,x 2=﹣1; (2)=,方程整理得:x 2+x+6=0, 这里a=1,b=1,c=6, ∵△=1﹣24=﹣23<0, ∴原方程无解.20.解:存在.理由如下:根据题意得△=4(1﹣m )2﹣4m 2≥0,解得m ≤, 由根与系数的关系得到x 1+x 2=2(1﹣m ),x 1x 2=m 2, ∵x 12+x 22=14,∴(x 1+x 2)2﹣2x 1x 2=14, ∴4(1﹣m )2﹣2m 2=14,整理得m 2﹣4m ﹣5=0,解得m 1=5,m 2=﹣1, 而m ≤, ∴m=﹣1.21.解:(1)平移和旋转后的图形如图所示:内 不得 答(2)能,将△ABC 绕CB 、C ″B ″延长线的交点顺时针旋转90度.22.解:设甬路宽度为x 米,依题意可列方程(40﹣2x )(26﹣x )=144×6, 整理得x 2﹣46x+88=0, 解得x 1=2,x 2=44(舍去) 答:甬路宽度为2米.23.解:(1)连接PP ′,由题意可知BP ′=PC=10,AP ′=AP , ∠PAC=∠P ′AB ,而∠PAC+∠BAP=60°, 所以∠PAP ′=60度.故△APP ′为等边三角形, 所以PP ′=AP=AP ′=6;(2)利用勾股定理的逆定理可知:PP ′2+BP 2=BP ′2,所以△BPP ′为直角三角形,且∠BPP ′=90°可求∠APB=90°+60°=150°.24.解::(1)当0≤x ≤4时设y 1=kx ,将(4,1.61.6=4k ,解得:k=0.4,当k >4时,设y 1=kx+b ,将点(4,1.6)(8.2.4)代入得:解得:k=0.2,b=0.8 故y 1=∵顶点A 的坐标为(4,3.2), ∴设y 2=a (x ﹣4)2+3.2, ∵经过点(0,0) ∴0=a (0﹣4)2+3.2 解得a=﹣0.2,∴y 2=﹣0.2(x ﹣4)2+3.2=﹣0.2x 2+1.6x (0≤x ≤4) 当x >4时,y 2=3.2;密学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)假设投资购买B 型用x 万元、A 型为(10﹣x )万元,当0≤x ≤4时:y=y 1+y 2=0.2(10﹣x )+0.8﹣0.2x 2+1.6x ; =﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+3.4125,当4<x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6;当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2;(3)当0≤x <4时:y=﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+5.25,当4≤x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=4时有最大值5.25万元;当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=6时有最大值4.8万元;∴当投资B 型机械4万元,A 型机械6万元能获得最大补贴,最大补贴金额为5.25万元.25.解:(1)设抛物线的解析式为y=a (x+)2+k (k ≠0), 则依题意得:a+k=0,a+k=4,解之得:a=, k=﹣即:y=(x+)2﹣,顶点坐标为(﹣,﹣);(2)∵点E (x ,y )在抛物线上,且位于第三象限. ∴S=2S △OAE =2××0A ×(﹣y ) =﹣6y=﹣4(x+)2+25 (﹣6<x <﹣1); ①当S=24时,即﹣4(x+)2+25=24, 解之得:x 1=﹣3,x 2=﹣4∴点E 为(﹣3,﹣4)或(﹣4,﹣4)当点E 为(﹣3,﹣4)时,满足OE=AE ,故▱OEAF 是菱形; 当点E 为(﹣4,﹣4)时,不满足OE=AE ,故▱OEAF 不是菱形. ②不存在.当0E ⊥AE 且OE=AE 时,▱OEAF 是正方形,此时点E 的坐标为(﹣3,﹣3),而点E 不在抛物线上,故不存在点E ,使▱OEAF 为正方形.密 封线 人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(共10小题,每小题3分,共30分)1.方程3x 2﹣4x ﹣1=0的二次项系数和一次项系数分别为( ) A .3和4 B .3和﹣4 C .3和﹣1 D .3和1 2.二次函数y=x 2﹣2x+2的顶点坐标是( )A .(1,1)B .(2,2)C .(1,2)D .(1,3) 3.将△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则直线AB 与直线A 1B 1的夹角(锐角)为( ) A .130° B .50° C .40° D .60°4.用配方法解方程x 2+6x+4=0,下列变形正确的是( ) A .(x+3)2=﹣4 B .(x ﹣3)2=4 C .(x+3)2=5 D .(x+3)2=± 5.下列方程中没有实数根的是( ) A .x 2﹣x ﹣1=0 B .x 2+3x+2=0 C .2015x 2+11x ﹣20=0 D .x 2+x+2=06.平面直角坐标系内一点P (﹣2,3坐标是( )A .(3,﹣2)B .(2,3)C .(﹣2,﹣3)D .(2,﹣7.如图,⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD 为M ,OM :OC=3:5,则AB 的长为( )A .cm B .8cm C .6cm D .4cm8.已知抛物线C 的解析式为y=ax 2+bx+c 的是( )A .a 确定抛物线的形状与开口方向B .若将抛物线C 沿y 轴平移,则a ,b 的值不变 C .若将抛物线C 沿x 轴平移,则a 的值不变D .若将抛物线C 沿直线l :y=x+2平移,则a 、b 、c 9.如图,四边形ABCD 的两条对角线互相垂直,AC+BD=16四边形ABCD 的面积最大值是( )密学校 班级 姓名 学号密 封 线 内 不 得 答 题A .64B .16C .24D .3210.已知二次函数的解析式为y=ax 2+bx+c (a 、b 、c 为常数,a ≠0),且a 2+ab+ac <0,下列说法: ①b 2﹣4ac <0;②ab+ac <0;③方程ax 2+bx+c=0有两个不同根x 1、x 2,且(x 1﹣1)(1﹣x 2)>0;④二次函数的图象与坐标轴有三个不同交点, 其中正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(共6小题,每小题3分,共18分) 11.抛物线y=﹣x 2﹣x ﹣1的对称轴是_________. 12.已知x=(b 2﹣4c >0),则x 2+bx+c 的值为_________.13.⊙O 的半径为13cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB=24cm ,CD=10cm .则AB 和CD 之间的距离_________.14.如图,线段AB 的长为1,C 在AB 上,D 在AC 上,且AC 2=BC •AB ,AD 2=CD •AC ,AE 2=DE •AD ,则AE 的长为_________.15.抛物线的部分图象如图所示,则当y <0时,x 的取值范围是_________.16.如图,△ABC 是边长为a 的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC 交于D 、E 两点,则DE 长度的取值范围是_________.三、解答题(共8小题,共72分) 17.解方程:x 2+x ﹣2=0.18.已知抛物线的顶点坐标是(3,﹣1),与y 轴的交点是(0,﹣4),求这个二次函数的解析式.19.已知x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根 (1)求x 1+x 2,x 1x 2的值; (2)求2x 12+6x 2﹣2015的值.密封线内不得20.如图所示,△ABC与点O在10×10的网格中的位置如图所示(1)画出△ABC绕点O逆时针旋转90°后的图形;(2)画出△ABC绕点O逆时针旋转180°后的图形;(2)若⊙M能盖住△ABC,则⊙M的半径最小值为_________.21.如图,在⊙O中,半径OA垂直于弦BC,垂足为E,点D在CA的延长线上,若∠DAB+∠AOB=60°(1)求∠AOB的度数;(2)若AE=1,求BC的长.22.飞机着陆后滑行的距离S(单位:m)关于滑行时间t位:s)的函数解析式是:S=60t﹣1.5t2(1)直接指出飞机着陆时的速度;(2)直接指出t的取值范围;(3)画出函数S的图象并指出飞机着陆后滑行多远才能停下来?23.如图,△ABC是边长为6cm的等边三角形,点D从B发沿B→A方向在线段BA上以a cm/s点E从线段BC的某个端点出发,以b cm/s速度在线段BC运动,当D到达A点后,D、E运动停止,运动时间为t密线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)如图1,若a=b=1,点E 从C 出发沿C →B 方向运动,连AE 、CD ,AE 、CD 交于F ,连BF .当0<t <6时: ①求∠AFC 的度数;②求的值;(2)如图2,若a=1,b=2,点E 从B 点出发沿B →C 方向运动,E 点到达C 点后再沿C →B 方向运动.当t ≥3时,连DE ,以DE 为边作等边△DEM ,使M 、B 在DE 两侧,求M 点所经历的路径长.24.定义:我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(1)已知抛物线的焦点F (0,),准线l :,求抛物线的解析式;(2)已知抛物线的解析式为:y=x 2﹣n 2,点A (0,)(n ≠0),B (1,2﹣n 2),P 为抛物线上一点,求PA+PB 的最小值及此时P 点坐标;(3)若(2)中抛物线的顶点为C ,抛物线与x 轴的两个交点分别是D 、E ,过C 、D 、E 三点作⊙M ,⊙M 上是否存在定点N ?若存在,求出N 点坐标并指出这样的定点N 有几个;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分) 1.B . 2.A . 3. B .4.C .5.D .6.D .7.B .密封线内不得答题8.D.9.D.10.C.二、填空题(共6小题,每小题3分,共18分)11.抛物线y=﹣x2﹣x﹣1的对称轴是直线x=﹣.12.已知x=(b2﹣4c>0),则x2+bx+c的值为0 .13.⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离7cn或17cm .14.如图,线段AB的长为1,C在AB上,D在AC上,且AC2=BC•AB,AD2=CD•AC,AE2=DE•AD,则AE的长为﹣2 .15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是x>3或x<﹣1 .16.如图,△ABC是边长为a的等边三角形,将三角板的30°角的顶点与A重合,三角板30°角的两边与BC交于D、E两点,则DE长度的取值范围是(2﹣3)a≤DE≤a..密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(共8小题,共72分)17. 解:分解因式得:(x ﹣1)(x+2)=0, 可得x ﹣1=0或x+2=0, 解得:x 1=1,x 2=﹣2.18.解:设抛物线解析式为y=a (x ﹣3)2﹣1, 把(0,﹣4)代入得:﹣4=9a ﹣1,即a=﹣, 则抛物线解析式为y=﹣(x ﹣3)2﹣1.19.解:(1)∵∴x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 1+x 2=3,x 1x 2=﹣5,;(2)∵x 1、x 2是方程x 2﹣3x ﹣5=0的两实数根, ∴x 12﹣3x 1﹣5=0, ∴x 12=3x 1+5,∴2x 12+6x 2﹣2015=2(3x 1+5)+6x 2﹣2015=6(x 1+x 2)﹣2015=﹣1987.20.解:(1)如图,△A ′B ′C ′为所作; (2)如图,△A ″B ″C ″为所求;(3)如图,点M 为△ABC 的外接圆的圆心,此时⊙M 是能盖住△ABC 的最小的圆,⊙M 的半径为=.故答案为.21.解:(1)连接OC , ∵OA ⊥BC ,OC=OB ,∴∠AOC=∠AOB ,∠ACO=∠ABO ,∵∠DAO=∠ACO+∠AOC=∠OAB+∠DAB ,∠ACO=∠OAB , ∴∠DAB=∠AOC ,∴∠DAB=∠AOB ,又∠DAB+∠AOB=60°, ∴∠AOB=30°; (2)∵∠AOB=30°,密 内 不 得 答∴BE=OB ,设⊙O 的半径为r ,则BE=r ,OE=r ﹣1, 由勾股定理得,r 2=(r )2+(r ﹣1)2, 解得r=4,∵OB=OC ,∠BOC=2∠AOB=60°, ∴BC=r=4.22.解:(1)飞机着陆时的速度V=60; (2)当S 取得最大值时,飞机停下来, 则S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600, 此时t=20因此t 的取值范围是0≤t ≤20; (3)如图,S=60t ﹣1.5t 2=﹣1.5(x ﹣20)2+600. 飞机着陆后滑行600米才能停下来.23.解:(1)如图1,由题可得BD=CE=t . ∵△ABC 是等边三角形, ∴BC=AC ,∠B=∠ECA=60°. 在△BDC 和△CEA 中,,∴△BDC ≌△CEA , ∴∠BCD=∠CAE ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°,∴∠AFC=120°;②延长FD 到G ,使得FG=FA ,连接GA 、GB ,过点B 作BH ⊥FG 于H ,如图2,∵∠AFG=180°﹣120°=60°,FG=FA , ∴△FAG 是等边三角形,∴AG=AF=FG ,∠AGF=∠GAF=60°. ∵△ABC 是等边三角形, ∴AB=AC ,∠BAC=60°, ∴∠GAF=∠BAC , ∴∠GAB=∠FAC . 在△AGB 和△AFC 中,,∴△AGB ≌△AFC ,∴GB=FC ,∠AGB=∠AFC=120°, ∴∠BGF=60°.设AF=x ,FC=y ,则有FG=AF=x ,BG=CF=y . 在Rt △BHG 中,BH=BG •sin ∠BGH=BG •sin60°=y ,GH=BG •cos ∠BGH=BG •cos60°=y ,∴FH=FG ﹣GH=x ﹣y . 在Rt △BHF 中,BF 2=BH 2+FH 2 =(y )2+(x ﹣y )2=x 2﹣xy+y 2.∴==1;(2)过点E 作EN ⊥AB 于N ,连接MC ,如图3,由题可得:∠BEN=30°,BD=1×t=t ,CE=2(t ﹣3)=2t ﹣6. ∴BE=6﹣(2t ﹣6)=12﹣2t ,BN=BE •cosB=BE=6﹣t , ∴DN=t ﹣(6﹣t )=2t ﹣6, ∴DN=EC .∵△DEM 是等边三角形,密 封 线 内 不 得 答 题∴DE=EM ,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°=90°, ∴∠NDE=∠MEC . 在△DNE 和△ECM 中,,∴△DNE ≌△ECM , ∴∠DNE=∠ECM=90°,∴M 点运动的路径为过点C 垂直于BC 的一条线段. 当t=3时,E 在点B ,D 在AB 的中点, 此时CM=EN=CD=BC •sinB=6×=3;当t=6时,E 在点C ,D 在点A , 此时点M 在点C .∴当3≤t ≤6时,M 点所经历的路径长为3. 24.解:(1)设抛物线上有一点(x ,y ), 由定义知:x 2+(y ﹣)2=|y+|2,解得y=ax 2;(2)如图1,由(1)得抛物线y=x 2的焦点为(0,),准线为y=﹣,∴y=x 2﹣n 2由y=x 2向下平移n 2个单位所得, ∴其焦点为A (0,﹣n 2),准线为y=﹣﹣n 2,由定义知P 为抛物线上的点,则PA=PH , ∴PA+PH 最短为P 、B 、A 共线,此时P 在P ′处, ∵x=1,∴y=1﹣n 2<2﹣n 2, ∴点B 在抛物线内,∴BI=y B ﹣y I =2﹣n 2﹣(﹣﹣n 2)=,∴PA+PB 的最小值为,此时P 点坐标为(1,1﹣n 2); (3)由(2)知E (|n|,0),C (0,n 2), 设OQ=m (m >0),则CQ=QE=n 2﹣m ,在Rt △OQE 中,由勾股定理得|n|2+m 2=(n 2﹣m )2, 解得m=﹣, 则QC=+=QN ,∴ON=QN ﹣m=1, 即点N (0,1), 故AM 过定点N (0,1).密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期中考试卷及答案(满分:120分 时间:120分钟)一、选择题(30分)1.下列图形中,旋转60°后可以和原图形重合的是( )A .正六边形 B .正方形C .正五边形D .正三角形2.已知m 是方程x 2﹣x ﹣2=0的一个根,则m 2﹣m 的值是( )A .﹣2B .0C .2D .43.抛物线y=﹣5(x+2)2﹣6的顶点坐标是( ) A .(2,﹣6) B .(﹣2,﹣6)C .(2,6) D .(﹣5,﹣6) 4.若关于x 的方程x 2﹣4x+m+4=0有实数根,则m 的取值范围是( ) A .m <0B .m ≤0C .m >0D .m ≥05.某商品的价格为100元,连续两次降x%后的价格是81元,则x 为( ) A .9B .10C .19D .86.在平面直角坐标系中,点P (﹣3,4)关于y 轴对称点的坐标为( )A .(﹣3,4)B .(3,4)C .(3,﹣4)D .(﹣3,﹣4) 7.下列说法有误的是( )A .圆是中心对称图形B .平分弦的直径垂直于弦C .垂直于弦的直径平分弦D .圆的直径是最长的弦8.抛物线y=﹣x 2+3x ﹣的对称轴是( ) A .x=3B .x=﹣3C .x=6D .x=﹣9.一元二次方程2x 2﹣8x=0的根是( ) A .x=4B .x 1=0,x 2=4C .x=+4D .x 1=2,x 2=410.在抛物线y=x 2﹣4x ﹣4上的一个点是( ) A .(4,4) B .(3,﹣1) C .(﹣2,﹣8) D .()二、填空题:(每空3分,共39分)11.已知方程3x 2﹣2x+m=0的一个根是1,则m 的值为 .12.若将二次函数y=x 2﹣2x+3配方为y=(x ﹣n )2+k 的形式,则y= ,对称轴是 ,顶点坐标为 .13.在平面直角坐标系中,点A 的坐标为(1,2),将OA 绕原点O 按顺时针方向旋转90°得到OA ′,则点A ′的坐标是 .14.如图,在⊙O 中,弦AB 的长为8cm ,OD ⊥AB 于C 且CD=2cm ,则⊙O 的半径为15.若关于x 的一元二次方程x 2﹣2x+m=0有两个相等的实数根,则m 的值是 16.已知二次函数y=x 2﹣2x+1,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小。
人教版2020---2021学年度九年级数学(上)期中考试卷及答案(含六套题)
第1页,共114页 第2页,共114页密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号填在题后括号内.1. 下列四个图形中,既是轴对称图形又是中心对称图形的有( )A.1个B.2C.3个D. 4个 2. 若关于x 的一元二次方程0242=+-a x x 有两个相等的实数根,则a 的值为( )A.2B.2-C. 4D. 4- 3. 下列函数:①233xy -=; ②22xy =; ③)53(x x y -=; ④)21)(21(x x y -+=,是二次函数的有( )A.1个B.2个C.3个D. 4个 4. 下列语句中正确的是( )A.长度相等的两条弧是等弧B. 平分弦的直径垂直于弦C.相等的圆心角所对的弧相等D. 经过圆心的每一条直线都是圆的对称轴 5. 当0>ab 时,2ax y =与b ax y +=的图象大致是( )A. B. C. D.6.用配方法解下列方程时,配方有错误的是( )A.09922=--x x 化为100)1(2=-xB. 0982=++x x 化为25)4(2=+xC.04722=--x x 化为1681)47(2=-x D.02432=--x x 化为910)32(2=-x7. 如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B`位置,点A 落在A`位置.若A`C ⊥AB,则∠B`A`C 的度数为( )A. 80°B. 70C. 60°D. 50°第7题图 第8题图 第9题图8. 如图,在⊙O 中,半径OC 与弦AB 垂直于D,且AB=8,OC=5,则题号一 二 三 总分 得分yxy xyxyx O O O OFDABAB'A'AOC DEG第3页,共114页 第4页,共114页CD 的长是( )A. 3B. 2.5C. 2D. 19. 如图,正方形ABCD 的边长为5,点E 是AB 上一点,点F 是AD 延长线上一点,且BE=DF.四边形AEGF 是矩形,则矩形AEGF 的面积y 与BE 的长x 之间的函数关系式为( )A. x y -=5B. 25x y -=C. x y -=25D. 225x y -= 10. 若二次函数)0(2≠++=a c bx ax y 的图象与x 轴的交点坐标分别是)0,(),0,(n m ,且n m <,图象上有一点M ),(q p 在x 轴下方,对于以下说法:①042>-ac b ; ②p x =是方程02=-++q c bx ax 的解; ③n p m <<;④0))((<--n p m p a , 对于以上说法正确的是( )A. ①②③④B.①②④C.③④D.①③二、填空题:(本大题共6个小题,每小题3分,共18分) 11. 已知关于x 的方程02=++q px x 的两根为5-和2,则p =______,q =_________.12. 某工厂第一年的利润是40万元,第三年的利润是y 万元,则y 与平均年增长率x 之间的函数关系式是___________. 13. 如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD,若DA ⊥AB,AD=1,BD=17,则BC 的长为_________.第13题图 第14题图 第15题图14.如图,⊙O 的直径CD ⊥EF,∠OEG=30°,则∠15.如图,平面直角坐标系中,□OABC 的顶点A 坐标为)0,6(,C 坐标为)2,2(,若经过点P )0,1(的直线平分□OABC 的周长,线的解析式为_______________.16.当1≤≤2x -时,二次函数12-+-=kx x y 的最大值是1,则k 能是_________.三、解答题:(本大题共9个小题,共72说明、证明过程或演算步骤. 17.(每小题3分,共12分)按要求解下列一元二次方程(1)022=-x x (2)07842=-+x x (3)0252=-+x x (用公式法) (4)22)2()31(-=-x x 18.(本小题满分5分)如图,∠C=90°,以AC 为半径的圆C 与AB 相交于点AC=3,CB=4,求BD 的长.第5页,共114页 第6页,共114页密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题19.(本小题满分6分)如图,在平面直角坐标系中,△ABC 的顶点的坐标分别为A )5,1(-、B )1,1(-、C )1,3(-.将△ABC 向右平移2个单位、再向下平移4个单位得到△A 1B 1C 1;将△A 1B 1C 1绕原点O 旋转180°得到 △A 2B 2C 2.(1) 按要求画出图形;(2) 请直接写出点C 1和C 2的坐标; (3) 请直接写出线段A 1A 2的长. 20.(本小题满分5分)已知:一个三角形两边长分别是6和8 ,第三边长是一元二次方程060162=+-x x 的一个实数根,试求第三边的长及该三角形的面积.21.(本小题满分6分)已知:二次函数22-+-=m mx x y .(1) 求证:不论m 为何实数,此二次函数的图象与x 轴都有两个不同交点;(2) 若函数y 有最小值45-,求函数的表达式.22.(本小题满分6分)在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子,镜子的长与宽的比是2:1,设制作这面镜子的宽度是x 米,总费用是y 元,则601802402++=x x y .(注:总费用=镜面玻璃的费用+边框的费用+加工费)(1) 这块镜面玻璃的价格是每平方米_______元,加工费是_______元;(2) 如果制作这面镜子共花了210元,求这面镜子的长和宽.23.(本小题满分10分)已知:下列关于x 的一元二次方程的根情况如下: 方程① 032=-+-y mx x 有两个不相等的实数根; 方程② 06)6(2=-+-+y x m x 有两个相等的实数根; 方程③ 05)4(2=-+-+y x m x 无实数根. (1) 根据以上信息确定y 关于m 的函数关系式; (2) 求自变量m 的取值范围;(3) 在(2)的条件下,求函数值y 的取值范围.24.(本小题满分10分)如图,在△ABC 中,AB=AC=2,∠BAC=45°,△AEF 是由△ABC 绕点A 按逆时针方向旋转得到的,连接BE 、CF 相交于点D.(1) 求证: BE=CF;(2) 探究旋转角等于多少度时,四边形ABDF 为菱形,证明你的结论;(3) 在(2)的条件下,求CD 的长.25.(本小题满分12分)已知:抛物线c x ax y ++=22与x 轴交于A)0,1(,B两 点,与直线343--=x y 相交于y 轴上D F ECA ByxEA CBO Py xCB AO第7第8页,共114页的点C.点E 是直线343--=x y 上的一动点,过点E 且平行于y 轴的直线交c x ax y ++=22于点P.(1) 试求该抛物线的解析式;(2) 当点E 在第三象限并且CE=PE 时,求点E 的坐标; (3) 是否存在点E 使得以点P,E,O,C 为顶点的四边形 为平行四边形?若存在,请求点E 的坐标;若不存在, 请说明理由.九年级数学试题参考答案一.选择题二.填空题11.3,10- 12.2)1(40x y += 13.817 14.30º 15.3131-=x y 16.3或22- (第16题只填一种情况并且对了的,给2分;若填了两种情况,但有一种错误的,给0分) 三.解答题17.(1) 解:0)2(=-x x 02,0=-=x x 或 2,021==x x (2) 解: 7842=+x x 4722=+x x147122+=++x x411)1(2=+x2111±=+x2112,211221--=+-=x x(每小题3分,共12分,18.解:过点C 作CE ⊥AB 于E ∵∠C =45º ∴5432222=+=+BC AC ....... 又∵CE AB BC AC S ABC ⋅=⋅=2121∆ 即CE 5214321⨯=⨯⨯∴512=CE ....... ∵CE ⊥AB∴∠AEC =90º ,AD=2AE....... ∴AE=59)512(32222=-=-CE AC ∴AD=518.....................…. ∴BD=AB -AD=575185=-………5分19.解:(1)画图如右图所示..........2分 (2) )3,1(1--C ,)3,1(2C .............4分 (3) 2221=A A (6)分20. 解:∵060162=+-x x第9页,共114页 第10页,共114页密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题0)10)(6(=--x x ...........................…………1分∴610==x x 或......................……………2分∵ 当10=x 时2221086=+ ∴此时该三角形是直角三角形∴248621=⨯⨯=三角形S ....................…………3分∵ 当6=x 时,该三角形是等腰三角形,底边上的高=524622=-∴5852821=⨯⨯=三角形S ....……………4分答:第三边的长分别是6和10,对应的三角形面积分别是58与24.........…5分21.解:(1)证明:∵)2(4)(2---=m m ∆…………………1分 842+-=m m 4442++-=m m04)2(2>+-=m …………………2分 ∴不论m 为何实数,此二次函数的图象与x 轴都有两个不同交点….…3分(2)由题意得454)()2(42-=---m m 解得31==x x 或...……………………4分 当1=x 时,函数的表达式为:12--=x x y ..…5分当3=x 时,函数的表达式为:132+-=x x y .....6分22. 解:(1) 120,60………………2分(2) 当210=y 即210601802402=++x x 时.…………3分 解得45,5.0-==x x (不合题意,舍去).…………4分15.022=⨯=x .........…………5分答:这面镜子的长和宽分别是1米与0.5米…6分 23. 解:(1) 由方程②的解的情况可得0)6(4)6(2=---y m .............................................................…………1分 042412362=+-+-y m m121242-+-=m m y .............................................................…………2分∴33412-+-=m m y ..............................................................…………3分(2) 由方程①与③的解的情况可得⎪⎩⎪⎨⎧<--->--0)5(4)4(0)3(422y m y m 化简得⎪⎩⎪⎨⎧<--+>-+0484012422m y m y m .....…………5分 由(1)可知121242-=+m y m ,代入上式得⎩⎨⎧<--->--04812120121212m m m .....…….....................................................……6分解得:42<<m ............................................................................……7分(3)∴(1)中二次函数的对称轴:6)41(232=-⨯-=-=a b x∴当42<<m 时,y 随x 的增大而增大.....................................……8分又∴当2=m 时,2323441=-⨯+⨯-=y当4=m 时,53431641=-⨯+⨯-=y .....................................……9分∴ 52<<y ..................................................................................…10分 (本题每小问分数分配:3分+4分+3分)24. 解:(1) 由题意可得∴AEF∴∴ABC.................................................………1分 ∴∴BAC=∴EAF,AB=AC=AE=AF∴∴BAC+∴CAE=∴EAF+∴CAE.......................................………2分 即∴BAE=∴CAF∴ 在∴BAE 和∴CAF 中第11页,共114页 第12页,共114页⎪⎩⎪⎨⎧=∠=∠=AF AC CAF BAE AE AB∴∴BAE∴∴CAF .....................…............................................……3分∴BE=CF..................................................................................………4分 (2) 当旋转角为90º时,四边形ABDF 为菱形,理由如下: ∴旋转角为90º∴∴BAE=∴CAF=90º∴∴BAE 与∴CAF 均是等腰直角三角形 ∴∴ABE=∴ACF=45º∴∴BAF=∴BAE+∴EAF=90º+45º=135º ∴∴ABE+∴BAF=45º+135º=180º∴AF∴BE................................................................................……5分 又∴∴BAC=∴ACF=45º∴AB∴CF.............................................................................……6分 ∴四边形ABDF 为平行四边形∴AB=AF..................................................................................…7分 ∴四边形ABDF 为菱形(3) 在Rt∴CAF 中22222222=+=+=AF AC CF ...................…8分 ∴四边形ABDF 为菱形∴DF=AB=2.......................................................................................…9分 ∴CD=CF -DF=222-................................................................…10分 (本题每小问分数分配:4分+3分+3分)25.解:(1)∴在343--=x y 中,当30-==y x 时,即点C 坐标为)3,0(-................…1分将点A )0,1(与C )3,0(-代入c x a y ++=22得⎩⎨⎧-==++302c c a ......................................................................................…2分解得⎩⎨⎧-==31c a ............................................................................................…3分∴所求抛物线的解析式为:322-+=x x y ............................................…4分(2)设点E 坐标为)0(),343,(<--m m m 则点P 为)32,(2-+m m m∴EP=m m m m m 411)32(34322--=-+--- 过点E 作ED ⊥y 轴于D∴在Rt∴EDC 中m m m m CD ED EC 45|45|1692222-==+=+= ∴m m m 454112-=-- ∴23-=m当23-=m 时,8153)23(43-=--⨯-=y ∴点E 的坐标为)815,23(-- (3) 存在点E 使得该四边形为平行四边形∴EP ∥y 轴∴当EP=OC=3时,该四边形为平行四边形①当点P 在点E 下方时34112=--m m ,即0121142=++m m∴0711244112<-=⨯⨯-=∆原方程无解∴此种情况不存在②当点P 在点E 上方时34112=+m m ,即0121142=-+m m解得831311--=x 或831311+-=x 当831311--=x 时,32313363383131143+-=---⨯-=y当831311+-=x 时,32313363383131143--=-+-⨯-=y∴存在点E )32313363,831311(+---或)32313363,831311(--+- 使得以点P,E,O,C 为顶点的四边形为平行四边形 (本题每小问分数分配:4分+4分+4分)第13页,共114页 第14页,共114页密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、选择题(每小题3分,共24分)1.下列图形中,既是中心对称图形又是轴对称图形的是( ) A .B .C .D .2.下列方程是一元二次方程的是( ) A .ax 2+bx+c=0 B .x 2+2x=x 2﹣1 C .﹣x=2 D .(x ﹣1)(x ﹣3)=0 3.下列关于x 的方程有实数根的是( )A .x 2﹣x+1=0B .x 2+x+1=0C .x 2﹣x ﹣1=0D .(x ﹣1)2+1=0 4.用配方法解方程x 2+8x+9=0,变形后的结果正确的是( ) A .(x+4)2=﹣7 B .(x+4)2=﹣9 C .(x+4)2=7 D .(x+4)2=255.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=59°,则∠C 等于( )A .29°B .31°C .59°D .62°6.若代数式x 2+3x+5的值为7,则代数式3x 2+9x ﹣2的值等于( )A .0B .4C .6D .197.已知二次函数y=3(x ﹣1)2+k 的图象上有三点A (,y 1),B (2,y 2),C (﹣,y 3),则y 1、y 2、y 3的大小关系为( ) A .y 1>y 2>y 3 B .y 2>y 1>y 3 C .y 3>y 1>y 2D .y 3>y 2>y 1 8.已知抛物线y=ax 2+bx+c (a ≠0)在平面直角坐标系中的位置如图所示,对称轴是直线x=,则下列结论中,正确的是( )A .a <0B .2a+3b=0C .a ﹣b+c <0D .c <﹣1二、填空题(每小题3分,共21分)9.已知方程x 2+kx ﹣10=0的一根是2,则另一根是__________.题号一 二 三 总分 得分密10.如果一个三角形外接圆的圆心在三角形边上,那么这个三角形是__________三角形.11.若点P(m,2)与点Q(3,n)关于原点对称,则m﹣n=__________.12.把抛物线y=x2﹣2x﹣2先向右平移2个单位,再向下平移5个单位得到新的抛物线解析式是__________.13.已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于__________.14.如图,直线与x轴,y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是__________.15.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,则等腰△ABC的面积为__________.三、解答题(本大题8个小题,共75分)16.解下列方程:(1)x(x﹣3)+x﹣3=0(2)3x2+5(2x+1)=0.17.如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.18.2017年,某市某楼盘以每平方米4000行降价促销,经过连续两年下调后,20203240元.(1)求平均每年下调的百分率;(2)假设2021购买一套100平方米的住房,他持有现金10行贷款20照均价计算)19.已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m围;第15页,共114页第16页,共114页第17页,共114页 第18页,共114页密线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)如图,二次函数的图象过点A (3,0),与y 轴交于点B ,直线AB 与这个二次函数图象的对称轴交于点P ,求点P 的坐标. (3)根据图象直接写出使一次函数值大于二次函数值的x 的取值范围.20.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (0,1),B (﹣1,1),C (﹣1,3). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出△ABC 绕原点O 顺时针方向旋转90°后得到的△A 2B 2C 2; (3)△OB 2P 为等腰三角形,且P 在x 轴上,请直接写出所有符合条件的P 点坐标.21.一位同学拿了两块45°三角尺△MNK ,△ACB 做了一个探究活动:将△MNK 的直角顶点M 放在△ABC 的斜边AB 的中点处,设AC=BC=4.(1)如图1,两三角尺的重叠部分为△ACM ,则重叠部分的面积为__________,周长为__________.(2)将图1中的△MNK 绕顶点M 逆时针旋转45°,得到图2,此时重叠部分的面积为__________,周长为__________. (3)如果将△MNK 绕M 旋转到不同于图1和图2的图形,如图3,请你猜想此时重叠部分的面积为__________.(4)在图3情况下,若AD=1,求出重叠部分图形的周长. 22.某大型汽车租赁公司有高级小轿车160辆,在每天营业期间,每辆车每天收租金180元,便可以全部租出;调查发现:每辆车日租金提高20元,则减少10辆车租出,若以每次提高20元的这种方法变化下去.(1)设每辆车日租金提高x (元),则每辆车每天的租金为y 1(元),但会减少y 2辆车租出,请分别写出y 1、y 2与x 之间的函数关系式;(2)为了投资少而利润大,每辆车日租金提高x(元)后,设租赁公司每天日租金总收入为y(元),请写出y与x之间的函数关系式,求出每辆车日租金应提高多少元公司可获得最大日租金收入,并说明理由.23.如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为__________;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为__________.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.参考答案一、选择题(每小题3分,共24分)1.解:A、是中心对称图形,不是轴对称图形,B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选D.2.解:A、a=0时是一元一次方程,故A错误;B、是一元一次方程,故B错误;C、是分式方程,故C错误;D、是一元二次方程,故D正确.故选:D.3.解:A、△=b2﹣4ac=1﹣4=﹣3<0B、△=b2﹣4ac=1﹣4=﹣3<0,此方程没有实数根;C、△=b2﹣4ac=1+4=5>0D、△=b2﹣4ac=4﹣8=﹣4<0,此方程没有实数根.第19页,共114页第20页,共114页密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题故选:C .4.解:方程x 2+8x+9=0,整理得:x 2+8x=﹣9, 配方得:x 2+8x+16=7,即(x+4)2=7,故选C 5.解:∵AB 是⊙O 的直径,∴∠ADB=90°, ∵∠ABD=59°,∴∠A=90°﹣∠ABD=31°, ∴∠C=∠A=31°.故选B . 6.解:根据题意,得 x 2+3x+5=7, 则x 2+3x=2.∴3x 2+9x ﹣2=3(x 2+3x )﹣2=3×2﹣2=4.故选B .7.解:A (,y 1),B (2,y 2)在对称轴的右侧,y 随x 的增大而增大,因为<2,故y 1<y 2,根据二次函数图象的对称性可知,C (﹣,y 3)中,|﹣﹣1|>|2﹣1|,故有y 3>y 2; 于是y 3>y 2>y 1.故选D .8.解:A 、∵二次函数的图象开口向上, ∴a >0,故本选项错误;B 、∵二次函数的图象的对称轴是直线x=, ∴﹣=, ﹣3b=2a ,2a+3b=0,故本选项正确;C 、把x=﹣1代入y=ax 2+bx+c 得:y=a ﹣b+c , ∵从二次函数的图象可知当x=﹣1时,y >0, 即a ﹣b+c >0,故本选项错误;D 、∵二次函数的图象与y 轴的交点在点(0,﹣1)的上方, ∴c >﹣1,故本选项错误;故选B . 二、填空题(每小题3分,共21分) 9.解:设方程的另一个根为t , 根据题意得t=﹣10, 解得t=﹣5, 故答案为:﹣5.10.解:三角形的外接圆的圆心到三顶点距离相等,这样的点在三角形边上,只有这个三角形是直角三角形,并且在斜边上,这样的图形只有直角三角形才符合. 故答案为:直角.11.解:∵点P (m ,2)与点Q (3,n )关于原点对称, ∴m=﹣3,n=﹣2,密 封 线 内 得 答 题∴m ﹣n=﹣3﹣(﹣2)=﹣1. 故答案为:﹣1.12.解:抛物线y=x 2﹣2x ﹣2=(x ﹣1)2﹣3,它的顶点坐标为(1,3),把点(1,﹣3)先向右平移2个单位,再向下平移5个单位得到对应点的坐标为(3,﹣8),所以新的抛物线解析式是y=(x ﹣3)2﹣8. 故答案为y=(x ﹣3)2﹣8.13.解:∵x 1,x 2是方程x 2﹣2x ﹣1=0的两个根, ∴x 1+x 2=2,x 1•x 2=﹣1, ∴+==﹣2.故答案为﹣2. 14.解:直线与x 轴、y 轴分别交于A 、B 两点,求出点,B (0,2),把△AOB 绕点A 顺时针旋转90°后得到△AO ′B ′, 所以点B'的横坐标是:,点B ′的纵坐标是:,则有:由于点B ′在第一象限,所以横坐标、纵坐标都是正号,则有:点B'的坐标是.15.解:作AD ⊥BC 于D , ∵AB=AC ,∴BD=CD=BC=4, ∴AD 垂直平分BC , ∴圆心O 在AD 上, 连结OD ,在Rt △OBC 中,∵BD=4,OB=5, ∴OD==3,当△ABC 为锐角三角形时,AD=OA+OD=5+3=8,此时S △ABC =×8×8=32;当△ABC 为钝角三角形时,AD=OA ﹣OD=5﹣3=2,此时S △ABC =×8×2=8.故答案为32或8.三、解答题(本大题8个小题,共75分) 16.解:(1)x (x ﹣3)+x ﹣3=0 (x ﹣3)(x+1)=0x ﹣3=0,x+1=0 解得:x 1=3,x 2=﹣1. (2)3x 2+5(2x+1)=0密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题3x 2+10x+5=0b 2﹣4ac=100﹣4×3×5=40 x=解得:x 1=,x 2=.17.证明:(1)连接AD ; ∵AB 是⊙O 的直径,∴∠ADB=90°. 又∵DC=BD ,∴AD 是BC 的中垂线. ∴AB=AC . (2)连接OD ; ∵OA=OB ,CD=BD , ∴OD ∥AC . ∴∠0DE=∠CED . 又∵DE ⊥AC , ∴∠CED=90°.∴∠ODE=90°,即OD ⊥DE . ∴DE 是⊙O 的切线.18.解:(1)设平均每年下调的百分率为x , 根据题意得4000(1﹣x )2=3240, 解得x 1=0.1x 2=1.9(舍),所以平均每年下调的百分率为10%;(2)3240×(1﹣10%)×100=291600<(10+20)×10000, 李老师的愿望可以实现.19.解:(1)∵二次函数的图象与x 轴有两个交点, ∴△=22+4m >0 ∴m >﹣1;(2)∵二次函数的图象过点A (3,0), ∴0=﹣9+6+m ∴m=3,∴二次函数的解析式为:y=﹣x 2+2x+3, 令x=0,则y=3, ∴B (0,3),设直线AB 的解析式为:y=kx+b , ∴,解得:,密封不得答∴直线AB的解析式为:y=﹣x+3,∵抛物线y=﹣x2+2x+3,的对称轴为:x=1,∴把x=1代入y=﹣x+3得y=2,∴P(1,2).(3)根据函数图象可知:x<0或x>3.20.解:(1)画出△ABC关于x轴对称的△A1B1C1如图所示:(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2如图所示:(3)①OB2=PB2时,OP=2OA2=2,∴P1(2,0);②OB2=OP时,∵OB=,∴P2(﹣,0),P3(,0);③OP=B2P时,P4(1,0).综上,符合条件的P点坐标为(1,0),(2,0),(,.21.解:(1)∵AC=BC=4,∠ACB=90°,∴AB===4,∵M是AB的中点,∴AM=2,∵∠ACM=45°,∴AM=MC,∴重叠部分的面积是=4,∴周长为:AM+MC+AC=2+2+4=4+4;故答案为:4,4+4;(2)∵叠部分是正方形,∴边长为×4=2,面积为×4×4=4,周长为2×4=8.故答案为:4,8.(3)过点M分别作AC、BC的垂线MH、ME,垂足为H、E,∵M是△ABC斜边AB的中点,AC=BC=4,∴MH=BC,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题ME=AC ,∴MH=ME ,又∵∠NMK=∠HME=90°,∴∠NMH+∠HMK=90°,∠EMG+∠HMK=90°,∴∠HMD=∠EMG , 在△MHD 和△MEG 中,∵,∴△MHD ≌△MEG (ASA ),∴阴影部分的面积等于正方形CEMH 的面积, ∵正方形CEMH 的面积是ME •MH=×4××4=4; ∴阴影部分的面积是4; 故答案为:4. (4)如图所示:过点M 作ME ⊥BC 于点E ,MH ⊥AC 于点H , ∴四边形MECH 是矩形, ∴MH=CE , ∵∠A=45°, ∴∠AMH=45°, ∴AH=MH , ∴AH=CE ,在Rt △DHM 和Rt △GEM 中,,∴Rt △DHM ≌Rt △GEM . ∴GE=DH ,∴AH ﹣DH=CE ﹣GE , ∴CG=AD , ∵AD=1, ∴DH=1. ∴DM==∴四边形DMGC 的周长为: CE+CD+DM+ME =AD+CD+2DM=4+2.22.解:(1)由题意可得:y 1=180+x ,y 2=x ; (2)由题意可得:y=(180+x )(160﹣x ), 即:y=﹣(x ﹣70)2+31250,当x=70时,可获最大日租金收入31250元,因为31250>160×180,又因为每次提价为20元,密 封 不 所以x 是不可能取到70,根据二次函数的对称性,与70最接近的两个数,都能使日租金获得最大化,而与70最接近的两个数分别是60或80,为了使投资少而利润大,每辆车日租金应提高80元. 23.解:(1)若l :y=﹣2x+2,则A (1,0),B (0,2). ∵将△AOB 绕点O 逆时针旋转90°,得到△COD , ∴D (﹣2,0).设P 表示的函数解析式为:y=ax 2+bx+c ,将点A 、B 、D 坐标代入得:, 解得,∴P 表示的函数解析式为:y=﹣x 2﹣x+2; 若P :y=﹣x 2﹣3x+4=﹣(x+4)(x ﹣1), 则D (﹣4,0),A (1,0). ∴B (0,4).设l 表示的函数解析式为:y=kx+b ,将点A 、B 坐标代入得:,解得,∴l 表示的函数解析式为:y=﹣4x+4. (2)直线l :y=mx+n (m >0,n <0), 令y=0,即mx+n=0,得x=﹣;令x=0,得y=n .∴A (﹣,0)、B (0,n ), ∴D (﹣n ,0).设抛物线对称轴与x 轴的交点为N (x ,0), ∵DN=AN ,∴﹣﹣x=x ﹣(﹣n ), ∴2x=﹣n ﹣, ∴P 的对称轴为x=﹣.(3)若l :y=﹣2x+4,则A (2,0)、B (0,4), ∴C (0,2)、D (﹣4,0).可求得直线CD 的解析式为:y=x+2. 由(2)可知,P 的对称轴为x=﹣1.∵以点C ,E ,Q ,F 为顶点的四边形是以CE 形,∴FQ ∥CE ,且FQ=CE .设直线FQ 的解析式为:y=x+b . ∵点E 、点C 的横坐标相差1, ∴点F 、点Q 的横坐标也是相差1. 则|x F ﹣(﹣1)|=|x F +1|=1, 解得x F =0或x F =﹣2.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∵点F 在直线l l :y=﹣2x+4上,∴点F 坐标为(0,4)或(﹣2,8).若F (0,4),则直线FQ 的解析式为:y=x+4, 当x=﹣1时,y=,∴Q 1(﹣1,);若F (﹣2,8),则直线FQ 的解析式为:y=x+9,当x=﹣1时,y=, ∴Q 2(﹣1,).∴满足条件的点Q 有2个,如答图1所示,点Q 坐标为Q 1(﹣1,)、Q 2(﹣1,).(4)如答图2所示,连接OG 、OH . ∵点G 、H 为斜边中点, ∴OG=AB ,OH=CD .由旋转性质可知,AB=CD ,OG ⊥OH , ∴△OGH 为等腰直角三角形. ∵点M 为GH 中点,∴△OMG 为等腰直角三角形, ∴OG=OM=•=2,∴AB=2OG=4. ∵l :y=mx ﹣4m ,∴A (4,0),B (0,﹣4m ).在Rt △AOB 中,由勾股定理得:OA 2+OB 2=AB 2, 即:42+(﹣4m )2=(4)2, 解得:m=﹣2或m=2, ∵点B 在y 轴正半轴, ∴m=2舍去,∴m=﹣2.∴l 表示的函数解析式为:y=﹣2x+8; ∴B (0,8),D (﹣8,0). 又A (4,0),利用待定系数法求得P :y=﹣x 2﹣x+8.密 封 线 题人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、填空题(本大题共8个小题,每小题3分,共24分) 1.关于x 的方程(m ﹣)﹣x+3=0是一元二次方程,则m=.2.设x 1、x 2是方程3x 2+4x ﹣5=0的两根,则= ,x 12+x 22= .3.若抛物线y=x 2﹣6x+c 的顶点在x 轴,则c= . 4.点P (2,3)绕着原点逆时针方向旋转90°与点P ′重合,则P ′的坐标为 .5.抛物线y 1=x 2﹣2x+1与直线y 2=﹣x+1在同一坐标系中相交,当y 1>y 2时自变量x 的取值范围是 .6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A 点时,一共走了 米.7.如图,EF 过平行四边形的对角线的交点O ,若四边形绕O 点旋转一定的角度后能与四边形 CDEF 重合,AB=3,OE=1.5,则四边形EFCD 的周长是 .8.已知二次函数y=ax 2+bx+c (a ≠0),若2a+b=0,且当x=时,y=3,那么当x=3时,y= .二、选择题(本大题共10个小题,每小题3分,共309.如图中,既是轴对称图形又是中心对称图形的是( A .B .C .D .10.方程(x+1)(x ﹣3)=5的解是( )A .x 1=1,x 2=﹣3B .x 1=4,x 2=﹣2C .x 1=﹣1,x 2=3D .﹣4,x 2=211.已知a 、b 满足a+b=5且ab=6,以a 、b 程为( )密线学校 班级 姓名 学号密 封 线 内 不 得 答 题A .x 2+5x+6=0B .x 2﹣5x+6=0C .x 2﹣5x ﹣6=0D .x 2+5x ﹣6=012.若A (﹣,y 1),B (﹣1,y 2),C (,y 3)为二次函数y=﹣x 2﹣4x+5的图象上的三点,则y 1,y 2,y 3的大小关系是( ) A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 2<y 1<y 313.如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B ′位置,A 点落在A ′位置,若AC ⊥A ′B ′,则∠BAC 的度数是( )A .50°B .60°C .70°D .80°14.如图是二次函数y=ax 2+bx+c 的部分图象,y <0时自变量x 的取值范围是( )A.﹣1<x <5 B .x >5 C .x <﹣1且x >5 D .x <﹣1或x >5 15.已知函数y=ax+b 的图象经过二、三、四象限,那么y=ax 2+bx+1的图象大致为( )A .B .C .D .16.如图是一个中心对称图形,A 为对称中心,若∠C=90°,∠B=30°,AC=1,则BB ′的长为( )A .4B .C .D .17.若1人患流感,经过两轮传染后共有121人患了流感,按照这样的传染速度,则经过第三轮传染后共有( )人患流感.A .1210B .1000C .1100D .133118.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出下列结论:①b 2﹣4ac >0;②2a+b <0;③4a ﹣2b+c=0;④a :b :c=﹣1:2:3.其中正确的是( )A .①②B .②③C .③④D .①④不 得 答 题三、解答题 (本大题共7个小题,共66分)解答应写出文字说明、证明过程或演算步骤. 19.(本小题满分8分,每小题4分) 解方程(1)(x ﹣2)2=(2x+5)2 (2)=.20.(本小题满分7分)已知关于x 的方程x 2﹣2(1﹣m )x+m 2=0的两实数根为x 1,x 2.是否存在这样的实数m 使方程的两实根的平方和为14?21.(本小题满分8分)在下图中,把△ABC 向右平移5个方格,再绕点B 的对应点顺时针方向旋转90度.(1)画出平移和旋转后的图形,并标明对应字母; (2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.22.(本小题满分9分)如图所示,某小区规划在一个长40m ,宽26m 的矩形场地ABCD 上修建三条相同宽度的甬路,使其中两条与AB 平行,另一条与AD 平行,其余6块草坪面积都是144m 2,求甬路宽度.23.(本小题满分9分)如图,P 是正三角形ABC PA=6,PB=8,PC=10.若将△PAC 绕点A P ′AB .(1)求点P 与点P ′之间的距离; (2)求∠APB 的度数.24.(本小题满分12分)农业机械化,贴办法,其中购买A 型、B 型农机设备所投资的金额x 与政府补贴的金额y 1(万元)、y 2(图中OA 段是抛物线,A 是抛物线的顶点). (1)分别写出y 1、y 2与x 的函数关系式;密线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)现有一农户计划同时对A 型、B 型两种农机设备共投资10万元,设其共获得的政府补贴金额为y 万元,求y 与其购买B 型设备投资金额x 的函数关系式;(3)在(2)的条件下,请你帮该农户设计一个能获得最大补贴金额的投资方案,并求出按此方案能获得的最大补贴金额.25.(本小题满分13分)如图,对称轴为直线x=的抛物线经过点A (﹣6,0)和点B (0,4). (1)求抛物线的解析式和顶点坐标;(2)设点E (x ,y )是抛物线上的一个动点,且位于第三象限,四边形OEAF 是以OA 为对角线的平行四边形,求▱OEAF 的面积S 与x 的函数关系式,并写出自变量x 的取值范围; ①当▱OEAF 的面积为24时,请判断▱OEAF 是否为菱形? ②是否存在点E ,使▱OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.参考答案与试题解析一、填空题(24分)1.解:∵方程(m ﹣)﹣x+3=0是一元二次方程,∴m 2﹣1=1或m ﹣=0. 解得m=或m=.故答案为:或.2.解:根据题意得x 1+x 2=﹣,x 1•x 2=﹣, 所以===,x 12+x 22=(x 1+x 2)2﹣2x 1•x 2=(﹣)2﹣2×(﹣)=.故答案为,.3.解:根据题意,顶点在x 轴上,顶点纵坐标为0, 即,解得c=9.4.解:∵P (2,3),∴P′的坐标为(﹣3,2).5.解:由题意得:x2﹣2x+1﹣(﹣x+1)>0,即x2﹣x=x(x﹣)>0,解得:x<0或x>.故答案为:x<0或x>.6.解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.7.解:∵四边形ABCD为平行四边形,∴AB=CD=3,AD=BC=4,OA=OC,OB=OD,∵四边形ABFE绕O点旋转180度后能与四边形 CDEF重合,∴AE=CF,OE=OF=1.5,∴四边形EFCD 的周长=DE+CF+OE+OF+CD=BC+2OE+CD =4+3+3=10.故答案为10.8.解:∵2a+b=0,∴b=﹣2a;又当x=﹣1时,y=3,∴3=a﹣b+c=3a+c,即3a+c=3;∴当x=3时,y=9a+3b+c=9a﹣6a+c=3a+c=3;故答案为:3.二、选择题(30分)9.解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题10.解:(x+1)(x ﹣3)=5,x 2﹣2x ﹣3﹣5=0, x 2﹣2x ﹣8=0,化为(x ﹣4)(x+2)=0,∴x 1=4,x 2=﹣2. 故选:B .11.解:∵a+b=5,ab=6,∴以a ,b 为根的一元二次方程可以为x 2﹣5x+6=0. 故选B .12.解:∵二次函数y=﹣x 2﹣4x+5中a=﹣1<0 ∴抛物线开口向下,对称轴为x=﹣=﹣=﹣2∵B (﹣1,y 2),C (,y 3)中横坐标均大于﹣2 ∴它们在对称轴的右侧y 3<y 2,A (﹣,y 1)中横坐标小于﹣2,∵它在对称轴的左侧,它关于x=﹣2的对称点为2×(﹣2)﹣(﹣)=﹣,>﹣>﹣1∵a <0时,抛物线开口向下,在对称轴的右侧y 随x 的增大而减小∴y 3<y 1<y 2. 故选C .13.解:∵△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B ′位置,A 点落在A ′位置 ∴∠BCB ′=∠ACA ′=20° ∵AC ⊥A ′B ′,∴∠BAC=∠A ′=90°﹣20°=70°. 故选C .14.解:由图象可知,抛物线与x 轴的交点坐标分别为(﹣1,0)和(5,0),∴y <0时,x 的取值范围为x <﹣1或x >5. 故选C .15.解:∵函数y=ax+b 的图象经过二、三、四象限, ∴a <0,b <0, ∴x=﹣<0,即二次函数y=ax 2+bx+1的图象开口向下,对称轴位于y 轴左侧, 故选:C .16.解:∵在Rt △ABC 中,∠B=30°,AC=1, ∴AB=2AC=2,得 ∴BB ′=2AB=4. 故选A .17.解:设平均一人传染了x 人, 根据题意,得:x+1+(x+1)x=121 解得:x 1=10,x 2=﹣12(不符合题意舍去)∴经过三轮传染后患上流感的人数为:121+10×121=1331(人). 故选:D .18.解:由二次函数图象与x 轴有两个交点, ∴b 2﹣4ac >0,选项①正确; 又对称轴为直线x=1,即﹣=1,可得2a+b=0(i ),选项②错误; ∵﹣2对应的函数值为负数,∴当x=﹣2时,y=4a ﹣2b+c <0,选项③错误; ∵﹣1对应的函数值为0,∴当x=﹣1时,y=a ﹣b+c=0(ii ), 联立(i )(ii )可得:b=﹣2a ,c=﹣3a ,∴a :b :c=a :(﹣2a ):(﹣3a )=﹣1:2:3,选项④正确, 则正确的选项有:①④. 故选D三、解答题(共66分)19.解:(1)(x ﹣2)2=(2x+5)2, 直接开平方得,x ﹣2=±(2x+5), x ﹣2=2x+5,或x ﹣2=﹣(2x+5), 所以x 1=﹣7,x 2=﹣1; (2)=,方程整理得:x 2+x+6=0, 这里a=1,b=1,c=6, ∵△=1﹣24=﹣23<0, ∴原方程无解.20.解:存在.理由如下:根据题意得△=4(1﹣m )2﹣4m 2≥0,解得m ≤, 由根与系数的关系得到x 1+x 2=2(1﹣m ),x 1x 2=m 2, ∵x 12+x 22=14,∴(x 1+x 2)2﹣2x 1x 2=14, ∴4(1﹣m )2﹣2m 2=14,整理得m 2﹣4m ﹣5=0,解得m 1=5,m 2=﹣1, 而m ≤, ∴m=﹣1.21.解:(1)平移和旋转后的图形如图所示:密线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)能,将△ABC 绕CB 、C ″B ″延长线的交点顺时针旋转90度.22.解:设甬路宽度为x 米,依题意可列方程(40﹣2x )(26﹣x )=144×6, 整理得x 2﹣46x+88=0, 解得x 1=2,x 2=44(舍去) 答:甬路宽度为2米.23.解:(1)连接PP ′,由题意可知BP ′=PC=10,AP ′=AP , ∠PAC=∠P ′AB ,而∠PAC+∠BAP=60°, 所以∠PAP ′=60度.故△APP ′为等边三角形, 所以PP ′=AP=AP ′=6;(2)利用勾股定理的逆定理可知:PP ′2+BP 2=BP ′2,所以△BPP ′为直角三角形,且∠BPP ′=90° 可求∠APB=90°+60°=150°.24.解::(1)当0≤x ≤4时设y 1=kx ,将(4,1.6)代入得: 1.6=4k , 解得:k=0.4,当k >4时,设y 1=kx+b ,将点(4,1.6)(8.2.4)代入得:解得:k=0.2,b=0.8 故y 1=∵顶点A 的坐标为(4,3.2), ∴设y 2=a (x ﹣4)2+3.2, ∵经过点(0,0) ∴0=a (0﹣4)2+3.2 解得a=﹣0.2,∴y 2=﹣0.2(x ﹣4)2+3.2=﹣0.2x 2+1.6x (0≤x ≤4) 当x >4时,y 2=3.2;(2)假设投资购买B 型用x 万元、A 型为(10﹣x )万元, 当0≤x ≤4时:y=y 1+y 2=0.2(10﹣x )+0.8﹣0.2x 2+1.6x ;答 题=﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+3.4125,当4<x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6; 当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2;(3)当0≤x <4时:y=﹣0.2x 2+1.4x+2.8=﹣0.2(x ﹣3.5)2+5.25,当4≤x <6时:y=y 1+y 2=0.2(10﹣x )+0.8+3.2=﹣0.2x+6; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=4时有最大值5.25万元;当x ≥6时:y=y 1+y 2=0.4(10﹣x )+3.2=﹣0.4x+7.2; ∵k <0,∴当x 取得最小值时有最大值, ∴当x=6时有最大值4.8万元;∴当投资B 型机械4万元,A 型机械6万元能获得最大补贴,最大补贴金额为5.25万元.25.解:(1)设抛物线的解析式为y=a (x+)2+k (k ≠0), 则依题意得:a+k=0,a+k=4,解之得:a=, k=﹣即:y=(x+)2﹣,顶点坐标为(﹣,﹣);(2)∵点E (x ,y )在抛物线上,且位于第三象限.∴S=2S △OAE =2××0A ×(﹣y ) =﹣6y=﹣4(x+)2+25 (﹣6<x <﹣1); ①当S=24时,即﹣4(x+)2+25=24, 解之得:x 1=﹣3,x 2=﹣4∴点E 为(﹣3,﹣4)或(﹣4,﹣4)当点E 为(﹣3,﹣4)时,满足OE=AE ,故▱OEAF 当点E 为(﹣4,﹣4)时,不满足OE=AE ,故▱OEAF ②不存在.当0E ⊥AE 且OE=AE 时,▱OEAF 是正方形,此时点E (﹣3,﹣3),而点E 不在抛物线上,故不存在点E ,使▱OEAF密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期九年级数学(上)期中测试卷及答案(满分:120分 时间: 100分钟)一、选择题(共10小题,每小题3分,共30分)1.方程3x 2﹣4x ﹣1=0的二次项系数和一次项系数分别为( ) A .3和4 B .3和﹣4 C .3和﹣1 D .3和1 2.二次函数y=x 2﹣2x+2的顶点坐标是( )A .(1,1)B .(2,2)C .(1,2)D .(1,3) 3.将△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则直线AB 与直线A 1B 1的夹角(锐角)为( ) A .130° B .50° C .40° D .60°4.用配方法解方程x 2+6x+4=0,下列变形正确的是( ) A .(x+3)2=﹣4 B .(x ﹣3)2=4 C .(x+3)2=5 D .(x+3)2=± 5.下列方程中没有实数根的是( ) A .x 2﹣x ﹣1=0 B .x 2+3x+2=0 C .2015x 2+11x ﹣20=0 D .x 2+x+2=06.平面直角坐标系内一点P (﹣2,3)关于原点对称的点的坐标是( )A .(3,﹣2)B .(2,3)C .(﹣2,﹣3)D .(2,﹣3) 7.如图,⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OC=3:5,则AB 的长为( )A . cmB .8cmC .6cmD .4cm8.已知抛物线C 的解析式为y=ax 2+bx+c ,则下列说法中错误的是( )A .a 确定抛物线的形状与开口方向B .若将抛物线C 沿y 轴平移,则a ,b 的值不变 C .若将抛物线C 沿x 轴平移,则a 的值不变D .若将抛物线C 沿直线l :y=x+2平移,则a 、b 、c 的值全变 9.如图,四边形ABCD 的两条对角线互相垂直,AC+BD=16,则四边形ABCD 的面积最大值是( )A .64B .16C .24D .3210.已知二次函数的解析式为y=ax 2+bx+c (a 、b 、c 为常数,a ≠0),且a 2+ab+ac <0,下列说法:题号一 二 三 总分 得分。
2020-2021学年河北省保定师范附属学校九年级(上)期中数学试卷(重测卷)
2020-2021学年河北省保定师范附属学校九年级(上)期中数学试卷(重测卷)一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)方程x(x+1)=0的解是()A.x=0B.x=﹣1C.x1=0,x2=﹣1D.x1=0,x2=1 2.(3分)有一实物如图,那么它的主视图是()A.B.C.D.3.(3分)某市2011年绿化面积为200公顷,经过园林部门的努力,到2013年底绿化面积增加到320公顷.若设绿化面积年平均增长率为x,则由题意,所列方程正确的是()A.200(1+x)=320B.200(1+2x)=320C.200(1+x)2=320D.320(1﹣x)2=2004.(3分)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.掷一个质地均匀的正六面体骰子,向上的面点数是4D.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球5.(3分)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为()A.4B.4C.4D.286.(3分)如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.7.(3分)折叠一张长为5,宽为3的矩形纸片,折痕长不可能是()A.3B.4C.5D.68.(3分)已知线段a,b,c,求作线段x,使x=,以下作法正确的是()A.B.C.D.9.(3分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB是()A.4米B.4.5米C.5米D.5.5米10.(3分)已知关于x的一元二次方程(k﹣1)x2+3x+k2﹣1=0有一根为0,则k=()A.1B.﹣1C.±1D.011.(2分)如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3B.1:4C.1:5D.1:2512.(2分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB ,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.1813.(2分)关于x的一元二次方程ax2+bx=0(a≠0)的一根为x=2018,则关于x的方程a(x+2)2+b(x+2)=0的根为()A.2020B.2018C.2017D.2016和﹣214.(2分)如图①、图②,在给定的一张矩形纸片上作一个正方形,甲、乙两人的作法如下:甲:以点A为圆心,AD长为半径画弧,交AB于点E,以点D为圆心,AD长为半径画弧,交CD于点F,连接EF,则四边形AEFD即为所求;乙:作∠DAB的平分线,交CD于点M,同理作∠ADC的平分线,交AB于点N,连接MN,则四边形ADMN即为所求.对于以上两种作法,可以做出的判定是()A.甲正确,乙错误B.甲、乙均正确C.乙正确,甲错误D.甲、乙均错误15.(2分)如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)16.(2分)定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,已知﹣2≤x<2,则方程[x]=x2的解为()A.0或B.0或1C.1或D.或﹣二、填空题(本大题有3个小题,共10分:18、17题3分,19小题,每空2分,把答案写在题中横线上)17.(3分)已知=(a≠0),那么=.18.(3分)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为19.(4分)如图,在矩形ABCD中,AB=6,BC=8.(1)如果E、F分别是AD、BC的中点,G是对角线AC上的点,∠EGF=90°,则AG 的长为;(2)如果E、F分别是AD、BC上的点,G,H是对角线AC上的点.下列判断正确的是.①在AC上存在无数组G,H,使得四边形EGFH是平行四边形;②在AC上存在无数组G,H,使得四边形EGFH是矩形;③在AC上存在无数组G,H,使得四边形EGFH是菱形;④当AG=时,存在E、F、H,使得四边形EGFH是正方形.三.解答题(共7小题)20.(12分)解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.21.(8分)在如图的方格纸中,△OAB的顶点坐标分别为O(0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),△O1A1B1与△OAB是关于点P为位似中心的位似图形.(1)在图中标出位似中心P的位置,并写出点P及点B的对应点B1的坐标;(2)以原点O为位似中心,在位似中心的同侧画出△OAB的一个位似△OA2B2,使它与△OAB的位似比为2:1,并写出点B的对应点B2的坐标;(3)△OAB的内部一点M的坐标为(a,b),写出M在△OA2B2中的对应点M2的坐标.22.(8分)如图,四边形EBGD和四边形BFDH是两个全等的矩形,其中ED、BH交于点A,BG、FD交于点C.(1)判断四边形ABCD的形状、并说明理由.(2)若矩形的长是6,宽是3,求四边形ABCD的面积.23.(10分)如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)在第n个图中,第一横行共块瓷砖,第一竖列共有块瓷砖(均用含n的代数式表示),铺设地面所用瓷砖的总块数为.(用含n的代数式表示,n表示第n个图形)(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)是否存在黑瓷转与白瓷砖块数相等的情形?请通过计算加以说明.24.(8分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.25.(10分)某商场销售一批小家电,平均每天可售出20台,每台盈利40元.为了去库存,商场决定采取适当的降价措施.经调查发现,在一定范围内,小家电的单价每降5元,商场平均每天可多售出10台.如果商场将这批小家电的单价降低x元,通过销售这批小家电每天盈利y元.(1)每天的销售量是台(用含x的代数式表示);(2)求y与x之间的关系式;(3)如果商场通过销售这批小家电每天要盈利1050元,那么单价应降多少元?(4)若这批小家电的单价有三种降价方式:降价10元、降价20元、降价30元,如果你是商场经理,你准备采取哪种降价方式?说说理由.26.(12分)请你认真阅读下面的小探究系列,完成所提出的问题.(1)如图1,将角尺放在正方形ABCD上,使角尺的直角顶点E与正方形ABCD的顶点D重合,角尺的一边交CB于点F,将另一边交BA的延长线于点G.求证:EF=EG.(2)如图2,移动角尺,使角尺的顶点E始终在正方形ABCD的对角线BD上,其余条件不变,请你思考后直接回答EF和EG的数量关系:EF EG(用“=”或“≠”填空)(3)运用(1)(2)解答中所积累的活动经验和数学知识,完成下题:如图3,将(2)中的“正方形ABCD”改成“矩形ABCD”,使角尺的一边经过点A(即点G、A重合),其余条件不变,若AB=4,BC=3,求的值.2020-2021学年河北省保定师范附属学校九年级(上)期中数学试卷(重测卷)参考答案与试题解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)方程x(x+1)=0的解是()A.x=0B.x=﹣1C.x1=0,x2=﹣1D.x1=0,x2=1【解答】解:∵x(x+1)=0∴x=0,x+1=0∴x1=0,x2=﹣1.故选:C.2.(3分)有一实物如图,那么它的主视图是()A.B.C.D.【解答】解:正面看,它是中间小两头大的一个图形,里面有两条虚线,表示看不到的棱.故选B.3.(3分)某市2011年绿化面积为200公顷,经过园林部门的努力,到2013年底绿化面积增加到320公顷.若设绿化面积年平均增长率为x,则由题意,所列方程正确的是()A.200(1+x)=320B.200(1+2x)=320C.200(1+x)2=320D.320(1﹣x)2=200【解答】解:设绿化面积平均每年的增长率为x,根据题意即可列出方程200(1+x)2=320.故选:C.4.(3分)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.掷一个质地均匀的正六面体骰子,向上的面点数是4D.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球【解答】解:A、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为,故A选项错误;B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是:=;故B选项错误;C、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为≈0.17,故C选项正确.D、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球的概率为,故D选项错误;故选:C.5.(3分)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为()A.4B.4C.4D.28【解答】解:∵E,F分别是AB,BC边上的中点,EF=,∴AC=2EF=2,∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=,OB=BD=2,∴AB==,∴菱形ABCD的周长为4.故选:C.6.(3分)如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.【解答】解:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选:C.7.(3分)折叠一张长为5,宽为3的矩形纸片,折痕长不可能是()A.3B.4C.5D.6【解答】解:因为矩形的长、宽分别为5、3,所以根据勾股定理对角线长为=.故折痕的长不会超过,而6>,故选:D.8.(3分)已知线段a,b,c,求作线段x,使x=,以下作法正确的是()A.B.C.D.【解答】解:A.由平行线分线段成比例可得,即,选项错误;B.由平行线分线段成比例可得,即,选项错误;C.由平行线分线段成比例可得,,即,选项正确,D.由平行线分线段成比例可得,即x=,选项错误.故选:C.9.(3分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB是()A.4米B.4.5米C.5米D.5.5米【解答】解:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得:BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m,即树高5.5m.故选:D.10.(3分)已知关于x的一元二次方程(k﹣1)x2+3x+k2﹣1=0有一根为0,则k=()A.1B.﹣1C.±1D.0【解答】解:把x=0代入一元二次方程(k﹣1)x2+3x+k2﹣1=0,得k2﹣1=0,解得k=﹣1或1;又k﹣1≠0,即k≠1;所以k=﹣1.故选:B.11.(2分)如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3B.1:4C.1:5D.1:25【解答】解:∵DE∥AC,∴△DEO∽△CAO,∴=()2=,∴DE:AC=BE:BC=1:5,∴BE:EC=1:4,∴S△BED:S△DEC=1:4,故选:B.12.(2分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB ,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.18【解答】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×8=8,∴S阴=8+8=16,(本题也可以证明两个阴影部分的面积相等,由此解决问题)故选:C.13.(2分)关于x的一元二次方程ax2+bx=0(a≠0)的一根为x=2018,则关于x的方程a(x+2)2+b(x+2)=0的根为()A.2020B.2018C.2017D.2016和﹣2【解答】解:∵关于x的方程:a(x+2)2+b(x+2)=0,且关于x的一元二次方程ax2+bx =0(a≠0)的一根为x=2018,∴x+2=2018或x+2=0,解得x=2016或﹣2.故选:D.14.(2分)如图①、图②,在给定的一张矩形纸片上作一个正方形,甲、乙两人的作法如下:甲:以点A为圆心,AD长为半径画弧,交AB于点E,以点D为圆心,AD长为半径画弧,交CD于点F,连接EF,则四边形AEFD即为所求;乙:作∠DAB的平分线,交CD于点M,同理作∠ADC的平分线,交AB于点N,连接MN,则四边形ADMN即为所求.对于以上两种作法,可以做出的判定是()A.甲正确,乙错误B.甲、乙均正确C.乙正确,甲错误D.甲、乙均错误【解答】解:由甲的作法可得:DF=AD=AE,∵四边形ABCD是矩形,∴AB∥DC,∠A=90°,∵DF AE,∴四边形AEFD是平行四边形,∵∠A=90°,∴平行四边形AEFD是矩形,∵AD=AE,∴矩形AEFD是正方形;故甲的作法正确;∵四边形ABCD是矩形,∠CDA=∠DAB=90°,由乙的作法可得:∠ADN=∠MDN=∠DAM=∠NAM=45°,则AD=AN=DM,在△MDA和△NAD中,∴△MDA≌△NAD(ASA),∴DM=AN,∴DM AN,∴四边形ANMD是平行四边形,∵∠DAB=90°,∴平行四边形ANMD是矩形,∵AD=AN,∴矩形ANMD是正方形;故乙的作法正确.故选:B.15.(2分)如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)【解答】解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意;故选:B.16.(2分)定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,已知﹣2≤x<2,则方程[x]=x2的解为()A.0或B.0或1C.1或D.或﹣【解答】解:当1≤x<2时,x2=1,解得x1=,x2=﹣(舍去);当0≤x<1时,x2=0,解得x=0;当﹣1≤x<0时,x2=﹣1,方程没有实数解;当﹣2≤x<﹣1时,x2=﹣2,方程没有实数解;所以方程[x]=x2的解为0或.故选:A.二、填空题(本大题有3个小题,共10分:18、17题3分,19小题,每空2分,把答案写在题中横线上)17.(3分)已知=(a≠0),那么=.【解答】解:∵=(a≠0),∴=,∴=﹣1=﹣1=.故答案为:.18.(3分)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为﹣1【解答】解:x(x+1)+ax=0,原方程可变形为x2+(a+1)x=0.∵该方程有两个相等的实数根,∴Δ=(a+1)2﹣4×1×0=0,解得:a=﹣1.故答案为:﹣1.19.(4分)如图,在矩形ABCD中,AB=6,BC=8.(1)如果E、F分别是AD、BC的中点,G是对角线AC上的点,∠EGF=90°,则AG 的长为2或8;(2)如果E、F分别是AD、BC上的点,G,H是对角线AC上的点.下列判断正确的是①②③④.①在AC上存在无数组G,H,使得四边形EGFH是平行四边形;②在AC上存在无数组G,H,使得四边形EGFH是矩形;③在AC上存在无数组G,H,使得四边形EGFH是菱形;④当AG=时,存在E、F、H,使得四边形EGFH是正方形.【解答】解:(1)如图,∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,AD=BC,∴AC===10,∵AD∥BC,∴∠EAO=∠FCO,∵E、F分别是AD、BC的中点,∴AE=CF=BF=DE,∴四边形ABFE是平行四边形,∴EF=AB=6,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO=3,AO=CO=5,当点G在点O上方时,∵∠EGF=90°,EO=FO,∴GO=EO=3,∴AG=AO﹣GO=5﹣3=2,当点G'在点O下方时,∵∠EG'F=90°,EO=FO,∴G'O=EO=3,∴AG'=AO+G'O=5+3=8,综上所述:AG=2或8;(2)①在AC上存在无数组G,H,使得四边形EGFH是平行四边形,故该说法正确;②在AC上存在无数组G,H,使得四边形EGFH是矩形,故该说法正确;③在AC上存在无数组G,H,使得四边形EGFH是菱形,故该说法正确;④当AG=时,存在E、F、H,使得四边形EGFH是正方形,故答案为①②③④.三.解答题(共7小题)20.(12分)解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.【解答】解:(1)x2﹣14x+49=57,(x﹣7)2=57,x﹣7=±,所以x1=7+,x2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121,x=,所以x1=9,x2=﹣2;(3)(2x+3)2﹣4(2x+3)=0,(2x+3)(2x+3﹣4)=0,2x+3=0或2x+3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.21.(8分)在如图的方格纸中,△OAB的顶点坐标分别为O(0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),△O1A1B1与△OAB是关于点P为位似中心的位似图形.(1)在图中标出位似中心P的位置,并写出点P及点B的对应点B1的坐标;(2)以原点O为位似中心,在位似中心的同侧画出△OAB的一个位似△OA2B2,使它与△OAB的位似比为2:1,并写出点B的对应点B2的坐标;(3)△OAB的内部一点M的坐标为(a,b),写出M在△OA2B2中的对应点M2的坐标.【解答】解:(1)位似中心P如图所示,P(﹣5,﹣1),B1(3,﹣5);(2)△OA2B2如图所示,B2(﹣2,﹣6);(3)点M2(2a,2b).22.(8分)如图,四边形EBGD和四边形BFDH是两个全等的矩形,其中ED、BH交于点A,BG、FD交于点C.(1)判断四边形ABCD的形状、并说明理由.(2)若矩形的长是6,宽是3,求四边形ABCD的面积.【解答】解:(1)四边形ABCD是菱形;如图所示:理由如下:∵四边形EBGD和四边形BFDH是两个全等的矩形,∴BE=BF,∠E=∠EBG=∠FBH=∠F=90°,DE∥BG,BH∥DF,∴∠EBA=∠FBC,四边形ABCD是平行四边形,在△ABE和△CBF中,,∴△ABE≌△CBF(ASA),∴AB=CB,∴四边形ABCD是菱形;(2)∵四边形ABCD是菱形,∴AB=AD,设AB=AD=x,则AE=6﹣x,在Rt△ABE中,根据勾股定理得:AE2+BE2=AB2,即(6﹣x)2+32=x2,解得:x=,∴AD=,∴菱形ABCD的面积=AD•BE=×3=.23.(10分)如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)在第n个图中,第一横行共(n+3)块瓷砖,第一竖列共有(n+2)块瓷砖(均用含n的代数式表示),铺设地面所用瓷砖的总块数为(n2+5n+6)块.(用含n的代数式表示,n表示第n个图形)(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)是否存在黑瓷转与白瓷砖块数相等的情形?请通过计算加以说明.【解答】解:(1)第1个图中,第一横行共4块瓷砖,第一竖列共有3块瓷砖;第2个图中,第一横行共5块瓷砖,第一竖列共有4块瓷砖;第3个图中,第一横行共6块瓷砖,第一竖列共有5块瓷砖;……第n个图中,第一横行共(n+3)块瓷砖,第一竖列共有(n+2)块瓷砖,铺设地面所用瓷砖的总块数为(n+3)(n+2)=(n2+5n+6)块.故答案为:(n+3);(n+2);(n2+5n+6)块.(2)依题意得:n2+5n+6=506,整理得:n2+5n﹣500=0,解得:n1=20,n2=﹣25(不合题意,舍去).答:此时n的值为20.(3)不存在,理由如下:第n个图中,黑瓷转的数量为2[(n+3)+(n+2)]﹣4=(4n+6)块,白瓷砖的数量为n2+5n+6﹣(4n+6)=(n2+n)块.依题意得:4n+6=n2+n,整理得:n2﹣3n﹣6=0,解得:n1=,n2=.又∵n为正整数,∴n1=,n2=均不符合题意,舍去,∴不存在黑瓷转与白瓷砖块数相等的情形.24.(8分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.【解答】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是=.25.(10分)某商场销售一批小家电,平均每天可售出20台,每台盈利40元.为了去库存,商场决定采取适当的降价措施.经调查发现,在一定范围内,小家电的单价每降5元,商场平均每天可多售出10台.如果商场将这批小家电的单价降低x元,通过销售这批小家电每天盈利y元.(1)每天的销售量是(20+2x)台(用含x的代数式表示);(2)求y与x之间的关系式;(3)如果商场通过销售这批小家电每天要盈利1050元,那么单价应降多少元?(4)若这批小家电的单价有三种降价方式:降价10元、降价20元、降价30元,如果你是商场经理,你准备采取哪种降价方式?说说理由.【解答】解:(1)根据题意,得每天的销售量为(20+2x)台.故答案为20+2x.(2)根据题意,得y=(40﹣x)(20+2x)=﹣2x2+60x+800(0<x<40).(3)根据题意,得(40﹣x)(20+2x)=1050x2﹣30x+125=0解得x1=5,x2=25.为了去库存,∴x=5应舍去.答:单价应降25元.(4)选择降价20元的方式.理由如下:当降价10元时,利润=(40﹣10)(20+2×10)=1200(元)当降价20元时,利润=(40﹣20)(20+2×20)=1200(元)当降价30元时,利润=(40﹣30)(20+2×30)=800(元)∵1200=1200>800,且要去库存,∴选择降价20元的方式.答:采取20元的降价方式.26.(12分)请你认真阅读下面的小探究系列,完成所提出的问题.(1)如图1,将角尺放在正方形ABCD上,使角尺的直角顶点E与正方形ABCD的顶点D重合,角尺的一边交CB于点F,将另一边交BA的延长线于点G.求证:EF=EG.(2)如图2,移动角尺,使角尺的顶点E始终在正方形ABCD的对角线BD上,其余条件不变,请你思考后直接回答EF和EG的数量关系:EF=EG(用“=”或“≠”填空)(3)运用(1)(2)解答中所积累的活动经验和数学知识,完成下题:如图3,将(2)中的“正方形ABCD”改成“矩形ABCD”,使角尺的一边经过点A(即点G、A重合),其余条件不变,若AB=4,BC=3,求的值.【解答】解:(1)证明:∵∠AEF+∠AEG=90°,∠AEF+∠CEF=90°,∴∠AEG=∠CEF,又∵∠GAE=∠C=90°,EA=EC,∴△EAG≌△ECF(ASA)∴EG=EF(2)EF=EG;过点E作EM⊥AB于点M,作EN⊥BC于点N,如图2所示,则∠MEN=90°,EM=EN,∴∠GEM=∠FEN,又因为∠EMG=∠ENF=90°,∴△EMG≌△ENF∴EF=EG.故答案为:=.(3)过点E作EM⊥AB于点M,作EN⊥BC于点N,如图3所示:则∠MEN=90°,EM∥BC,EN∥AB,∴,∴,又∵∠GEM+∠MEF=90°,∠FEN+∠MEF=90°,∴∠FEN=∠GEM,∴Rt△GME∽Rt△FNE,∴。
河北省保定市阜平县2020-2021学年九年级上学期期中数学试题(解析版)
2020—2021学年度第一学期期中教学质量检测九年级数学试卷(A )一、选择题(48分)1. 已知x=-1是方程2x +mx+1=0的一个实数根,则m 的值是( )A. 0B. 1C. 2D. -2【答案】C【解析】试题分析:将x=-1代入方程可得:1-m+1=0,解得:m=2.考点:一元二次方程的解2. 若一个正多边形的一个内角是144°,则这个多边形的边数为( ) A. 12B. 11C. 10D. 9 【答案】C【解析】【分析】设这个正多边形的边数为n ,根据n 边形的内角和为(n ﹣2)×180°得到(n ﹣2)×180°=144°×n ,然后解方程即可. 【详解】解:设这个正多边形的边数为n ,∴(n ﹣2)×180°=144°×n , ∴n=10.故选:C .【点睛】本题考查了多边形内角与外角:n 边形的内角和为(n ﹣2)×180°;n 边形的外角和为360°.3. 用配方法解下列方程,其中应在左右两边同时加上4的是( )A. 225x x -=B. 2245x x -= C 245x x +=D. 225x x += 【答案】C【解析】【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:A 、因为本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;B 、将该方程的二次项系数化为1x 2-2x=52,所以本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;C 、因为本方程的一次项系数是4,所以等式两边同时加上一次项系数一半的平方4;故本选项正确;D 、因为本方程的一次项系数是2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误; 故选C 此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4. 将23y x =通过平移,先向上平移2个单位,再向左平移3个单位,可得到抛物线是( )A. ()2332y x =+-B. ()2332y x =++C. ()2323y x =+-D. ()2323y x =-+ 【答案】B【解析】【分析】 根据平移的规则,“左加右减,上加下减”的规律即可求解.【详解】解:抛物线y=3x 2先向上平移2个单位,再向左平移3个单位得到()2332y x =++.故选:B .【点睛】考查了二次函数图象与几何变换,属于基础题,解决本题的关键是掌握“左加右减,上加下减”的规律.5. 如图,ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将ABC 绕点B 顺时针旋转到A B C '''的位置,且点A '、C '仍落在格点上,则线段AB 扫过的图形的面积是( )平方单位(结果保留)A. 254πB.134πC.132πD.136π【答案】B【解析】【分析】在Rt△ABC中,由勾股定理求AB,观察图形可知,线段AB扫过的图形为扇形,旋转角为90°,根据扇形面积公式求解.【详解】解:在Rt△ABC中,由勾股定理,得22223213AC BC+=+=由图形可知,线段AB扫过的图形为扇形ABA′,旋转角为90°,∴线段AB扫过的图形面积=229013n13= 3603604AB⨯=πππ.故选:B.【点睛】本题考查了旋转的性质,扇形面积公式的运用,关键是理解题意,明确线段AB扫过的图形是90°的扇形,难度一般.6. 一项工程,甲单独做要x天完成,乙单独做要y天完成,则甲、乙合做完成工程需要的天数为()A.xyx y+B.2x y+C.xyyx+D. x y+【答案】A 【解析】根据工程问题的关系:工作量=工作效率×工作时间,把总工作量看作单位“1”,可知甲的工作效率为1x,乙的工作效率为1y,因此甲乙合作完成工程需要:1÷(1x+1y)=xyx y+.故选A.7. 在图形的旋转中,下列说法错误的是()A. 图形上的每一点到旋转中心的距离都相等B. 图形上的每一点转动的角度都相同C. 图形上可能存在不动的点D. 旋转前和旋转后的图形全等【答案】A【解析】【分析】根据旋转的性质作答即可【详解】A 、图形上对应点到旋转中心的距离相等,故A 错误;B 、图形上的每一点转动的角度都等于旋转角,即一定相同,故B 正确;C 、图形上的点若是旋转中心,则旋转中心不动,故C 正确;D 、旋转前后的两个图形全等,故D 正确.故选A.【点睛】本题主要考查旋转图形的性质,解决本题的关键要熟练掌握旋转性质.8. 二次函数2241y m x x =-+有最小值3-,则m 等于( ) A. 1B. 1-C. 1±D. 12± 【答案】C【解析】【分析】 对二次函数2241y m x x =-+,20a m =>,存在最小值,且在顶点取得,有2434ac b a -=-,求得m 的值即可.【详解】解:在2241y m x x =-+中,20m >,则在顶点处取得最小值, 2224416344ac b m a m--==-, 解得:1m =±.故选C .【点睛】考查了二次函数的性质以及抛物线顶点坐标的运用,掌握抛物线2y ax bx c =++的顶点坐标为24,.24b ac b aa ⎛⎫-- ⎪⎝⎭9. 在同一坐标系中一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( ) A. B. C. D.【答案】A【解析】【详解】根据二次函数的解析式可得:二次函数图像经过坐标原点,则排除B 和C ,A 选项中一次函数a>0,b<0,二次函数a>0,b<0,符合题意.故选A.【点睛】本题考查了(1)、一次函数的图像;(2)、二次函数的图像10. 若圆锥的底面半径为5cm ,侧面积为265cm π,则该圆锥的高是( )A. 13cmB. 12cmC. 11cmD. 10cm【答案】B【解析】【分析】先根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12•2π•5•OA=65π,可求出OA=13,然后利用勾股定理计算圆锥的高. 【详解】解:根据题意得12•2π•5•OA=65π,解得:OA=13, 所以圆锥的高2213512.故选:B .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.11. 若m 、n 是方程210x x +-=的两个实数根,则22m m n ++的值为( )A. 0B. 2C. -1D. 3 【答案】A【解析】【分析】根据根与系数的关系及方程的解的定义即可求解.【详解】∵m 、n 是方程210x x +-=的两个实数根,∴210m m +-=,m+n=-b a=-1 ∴22m m n ++=2m m m n +++=1-1=0故选A .【点睛】此题主要考查根与系数的关系,解题的关键是熟知根与系数的关系、一元二次方程根的定义. 12. 在平面直角坐标系中,点A 的坐标是()3,a ,点B 的坐标是(),1b -,若点A 与点B 关于原点O 对称,则ab =( )A. 3B. 2C. -6D. -3 【答案】D【解析】【分析】直接利用关于原点对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点A 的坐标为()3,a ,点B 的坐标是(),1b -,点A 与点B 关于原点O 对称, ∴a =1,b =-3,则ab =−3.故选D .【点睛】此题主要考查了关于原点对称点的性质,正确得出a ,b 的值是解题关键.13. 如图,PA ,PB 是O 的切线,A ,B 为切点,AC 是O 的直径,若25BAC ∠=︒,则P ∠=( )度.A. 30B. 60C. 50D. 75【答案】C【解析】【分析】根据切线性质得出PA =PB ,∠PAO =90°,求出∠PAB 的度数,得出∠PAB =∠PBA ,根据三角形的内角和定理求出即可.【详解】∵PA 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∴∠CAP =90°,PA =PB ,∴∠PAB =∠PBA ,∵∠BAC =25°,∴∠PBA =∠PAB =90°−25°=65°,∴∠P =180°−∠PAB−∠PBA =180°−65°−65°=50°,故选:C .【点睛】本题考查了切线长定理,切线性质,三角形的内角和定理,等腰三角形的性质的应用,主要考查学生运用定理进行推理和计算的能力,题目具有一定的代表性,难度适中.14. 方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( )A. 12B. 15C. 12或15D. 18 【答案】B【解析】【分析】首先求出方程的根,再根据三角形三边关系定理列出不等式,确定是否符合题意.【详解】解:解方程x 2-9x+18=0,得x 1=3,x 2=6,当3为腰,6为底时,不能构成等腰三角形;当6为腰,3为底时,能构成等腰三角形,周长为6+6+3=15.故选:B . 【点睛】本题考查了解一元二次方程,从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去. 15. 以半径为1的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则( )A. 不能构成三角形B. 这个三角形是等腰三角形C. 这个三角形是直角三角形D. 这个三角形是钝角三角形【答案】C【解析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形解答.解:(1)因为OC=1,所以OD=1×sin30°=12;(2)因为OB=1,所以OE=1×sin45°=22;(3)因为OA=1,所以OD=1×cos30°=32.因为(12)2+(22)2=(3)2,所以这个三角形是直角三角形.故选C .“点睛”解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答. 16. 要在抛物线()4y x x =-上找点(),P a b ,针对b 不同取值,所找点P 的个数,三人的说法如下( )甲:若5b =,则点P 的个数为0乙:若4b =,则点P 的个数为1丙:若3b =,则点P 的个数为1A. 甲乙错,丙对B. 甲丙对,乙错C. 甲乙对,丙错D. 乙丙对,甲错【答案】C【解析】【分析】求出抛物线的顶点坐标为(2,4),由二次函数的性质对甲、乙、丙三人的说法分别进行判断,即可得出结论.【详解】解:y=x (4-x )=-x 2+4x=-(x-2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P 的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C .【点睛】本题考查了二次函数图象上点的坐标特征、抛物线的顶点坐标等知识;熟练掌握二次函数图象上点的坐标特征是解题的关键.二、填空题(9分)17. 将方程2831x x =-化为一般形式为__________.【答案】23810x x --=【解析】【分析】根据一元二次方程的一般式的特点即可求解.【详解】将方程2831x x =-化为一般形式为23810x x --=故答案为:23810x x --=.【点睛】此题主要考查一元二次方程的一般形式,解题的关键是熟知一元二次方程的特点与性质. 18. 九年级(3)班全体同学在圣诞节将自己的贺卡向本班其他同学各赠送一张,全班共互赠了1980张,若全班共有x 名学生,则根据题意列出的方程是__________.【答案】()11980x x -=【解析】【分析】设全班有x 名同学,根据全班互赠贺卡,每人向本班其他同学各赠送一张,全班共相互赠送了1980张可列出方程.【详解】解:∵全班有x 名同学,∴每名同学要送出贺卡(x-1)张;又∵是互送贺卡,∴总共送的张数应该是x (x-1)=1980.故答案为:x (x-1)=1980.【点睛】本题考查了一元二次方程的应用,关键是理解题意后,类比数线段来做,互赠张数就像总线段条数,人数类似线段端点数.19. 观察下列各式数:0,3,8,15,24,.试按此规律写出第n 个数是________.【答案】21n -【解析】【分析】0,3,8,15,24,…,则可看成12-1,22-1,32-1…,依此类推,从而得出结论.【详解】解:∵ 0=12-1,3=22-1,8=32-1,15=42-1,…∴第n 个数是n 2-1,故答案为21n -.【点睛】本题主要考查数字的变化规律,解决此类问题要从数字中间找出一般规律(符号或数),进一步去运用规律解答.三、解答题(63分)20. 解方程(1)2280x x --= (2)()()2322x x x -=- 【答案】(1)12x =-,24x = (2)12x =,23x = 【解析】【分析】(1)根据因式分解法即可求解;(2)根据因式分解法即可求解.【详解】(1)2280x x --=()()240x x +-=∴x+2=0或x-4=0∴12x =-,24x = (2)()()2322x x x -=- ()()23220x x x ---= ()()2320x x x ---=⎡⎤⎣⎦()()2260x x --=∴x-2=0或2x-6=012x =,23x =.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的应用.21. 如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,10AC BD ,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?【答案】当AC=BD=5时,四边形ABCD 的面积最大.【解析】【分析】 直接利用对角线互相垂直的四边形面积求法得出12S AC BD =⋅,再利用配方法求出二次函数最值即可. 【详解】解:设AC=x ,四边形ABCD 面积为S ,则BD=10-x , 则:211125(10)(5)2222S AC BD x x x =⋅=-=--+, ∴当x=5时,S 最大=252, 所以当AC=BD=5时,四边形ABCD 的面积最大.【点睛】本题考查二次函数的应用.理解对角线互相垂直的四边形面积等于对角线乘积的一半是解题关键. 22. 如图,已知ABC 和A B C ''''''△及点O .(1)画出ABC 关于点O 对称的A B C ''';(2)若A B C ''''''△与A B C '''关于点O '对称,请确定点O '的位置.【答案】(1)详见解析(2)详见解析【解析】【分析】(1)分别作A 、B 、C 三点关于点O 对称点A B C '''、、,再顺次连接即可;(2)若A B C ''''''△与A B C '''关于点O '对称,连接两组对应点的连线的交点即为所求点.【详解】(1)如图,分别作A 、B 、C 三点关于点O 对称点A B C '''、、,连接A B B C A C ''''''、、,则所得A B C '''为所求三角形;(2)如图,连接C C '''、A A '''相交于点O '、则点O '即为所求点.【点睛】本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,解题关键是看图. 23. AB 为O 的直径,C 是O 上的一点,D 在AB 的延长线上,且DCB A ∠=∠,(1)CD 与O 相切吗?如果相切,请你加以证明;如果不相切,请说明理由.(2)若30D ∠=︒,10cm BD =.求O 的半径. 【答案】(1)相切,证明见解析;(2)10cm【解析】【分析】(1)相切,由已知可证得∠OCD=90°即CD 是⊙O 的切线;(2)由已知可推出∠A=∠BCD=30°,即BC=BD=10,从而得到AB=20即可得到半径的长.【详解】解:(1)CD 与⊙O 相切.证明:∵AB 为⊙O 的直径,C 是⊙O 上一点,∴∠ACB=90°,即∠ACO+∠OCB=90°;∵∠A=∠OCA ,且∠DCB=∠A ,∴∠OCA=∠DCB ,∴∠OCD=90°,∴CD 是⊙O 的切线.(2)在Rt △OCD 中,∠D=30°;∴∠COD=60°,∴∠A=30°,∴∠BCD=30°,∴BC=BD=10,∴AB=20,∴r=10.【点睛】本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.24. 有一块缺角矩形地皮ABCDE (如下图),其中110m AB =,80m BC =,90m CD =,135EDC ∠=︒,现准备用此地建一座地基为长方形(图中用阴影部分表示)的数学大楼,建筑公司在接受任务后,设计了A 、B 、C 、D 四种方案,请你研究探索应选用哪一种方案,才能使地基面积最大?(1)求出A 、B 两种方案的面积.(2)若设地基的面积为S ,宽为x ,写出方案C (或D )中S 与x 的关系式.(3)根据(2)完成下表 地基的宽()m x 50 60 70 75 78 79 80 81 82地基的面积(2m )(4)根据上表提出你的猜测.(5)用配方法对(2)中的S 与x 之间的关系式进行分析,并检验你的猜测是否正确.(6)你认为A 、B 、C 、D 中哪一种方案合理?【答案】(1)方案A 的面积为27200m ,方案B 的面积为26600m ;(2)2170S x x =-+;(3)S 的值从左到右依次为6000,6600,7000,7125,7176,7189,7200,7209,7216;(4)当80x ≤时,S 随x 的增大而增大;(5)当80x =时,S 最大值为27200m ,见解析;(6)选A 种方案【解析】【分析】(1)根据矩形的面积公式求解即可;(2)选方案C ,由等腰直角三角形的性质可得DF=MF=80﹣x ,可用x 表示出长BN=170﹣x ,根据矩形的面积公式表示出S 与x 的关系式;(3)根据(2)中关系式,分别代入x 值,求出对应的S 值,即可完成填表;(4)通过配方,分析S 随x 的变化情况即可得出结论;(5)结合(4)中分析即可做出判断.【详解】(1)根据题意,方案A 的面积为280907200m ⨯=,方案B :如图B ,DF ⊥EG ,∵∠EDC=135°,∴△EFD 是等腰直角三角形,又AB=110,CD=90,∴EF=FD=110﹣90=20,∴方案B 的面积为()211080206600m ⨯-=;;(2)如图,∵MN=x ,80MF x =-,135EDC ∠=︒,∴△MFD 是等腰直角三角形,∴80DF x =-,()9080170NB CD DF x x =+=+-=-,∴()170S x x =-,即2170S x x =-+;(3)S 的值从左到右依次为6000,6600,7000,7125,7176,7189,7200,7209,7216;(4)猜想:当80x ≤时,S 随x 的增大而增大;(5)配方,得:()2221708585S x x x =-+=--+,∵﹣1<0,∴当85x ≤时,S 随x 的增大而增大,∵80x ≤,∴当80x =时,S 最大值为27200m .(6)根据当x=80时,S 取得最大值,故选A 种方案合理.【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质、二次函数的性质,解答的关键是掌握等腰直角三角形的性质,会借助二次函数求最值的方法求最大面积,注意x 的取值范围.。
2020-2021学年河北保定九年级上数学期中试卷
2020-2021学年河北保定九年级上数学期中试卷一、选择题1. 已知线段a,b,c,d是成比例线段,其中a=2,b=4,d=3,则c的值为( )A.8 3B.6C.1D.322. 矩形不一定具备的性质是( )A.对角线互相垂直B.对角线相等C.是轴对称图形D.是中心对称图形3. 如图,以边长为6的正方形ABCD的中心为原点建立平面直角坐标系,点A的横坐标为3,则点C的坐标为( )A.(3,−3)B.(−3,−3)C.(−6,6)D.(−3,3)4. 物体形状的比例在匀称与协调上提供了一种美感的参考,在数学上,这个比例称为黄金分割.当矩形的宽与长之比约为0.618时,这个矩形称为黄金矩形.下列物品的形状不能看作黄金矩形的有( )A.3个B.2个C.0个D.1个5. 将一元二次方程y2−y−34=0化成(y+ℎ)2=b(ℎ,b为常数)的形式,则ℎ,b的值分别是( )A.−1,14B.12,34C.12,1 D.−12,16. 小明在一次用频率估计概率的试验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的试验可能是()A.去掉一副扑克牌中的大小王和四个花色的扑克牌2后,从中任意抽取一张,所抽扑克牌的花色是梅花的概率B.路旁停放着青桔、摩拜和美团共4辆共享单车,后来小明骑走一辆,则小明骑走的刚好是青桔单车的概率C.抽屉里有初中各年级数学课本共6册,随机取出1册书,刚好是九年级上册的概率D.任意买一张电影票,座位号是2的倍数的概率7. 下表列出几组x和ax2+bx+c的对应值.若关于x的一元二次方程ax2+bx+c=1的一较小根为x1,则对x1的估计正确的是()A.2.72<x1<2.8B.−0.73<x1<−0.7C.−0.8<x1<−0.78D.−0.78<x1<−0.738. 图1大矩形的长为9,宽为x,把它按如图方式从两侧向中间折叠成一个小矩形(如图2).若图2这个小矩形与图1原矩形相似,则x的值为( )A.2.7B.3√2C.3√3D.2√39. 如图,A转盘被平分为两部分,B转盘被平分为三部分.转动A,B转盘各一次,当转盘停止转动时,两个指针分别落在某个颜色的区域.如果一个转盘转出了红色,另一转盘转出了蓝色,就配成了紫色.那么同时转动两个转盘,配成紫色的概率为( )A.2 3B.13C.16D.1510. 如图,某铁道口栏杆的短臂长1.6m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高( )A.8mB.6mC.5mD.5.5m11. 若关于x的方程(k+1)x2+2x+2=0没有实数根,则k的取值范围是( )A.k>−2且k≠−1B.k>−12C.k=−1D.k<−212. 如图,在▱ABCD中,点E在DC边上,连接AE,交BD于点F,若DE:EC=2:1,则△DEF的面积与△BAF 的面积之比为( )A.4:9B.1:4C.2:1D.2:313. 近两年来,肉类价格逐渐攀升,据统计,某地2018年初猪肉单价为14元/斤,2020年初猪肉单价为29元/斤.设猪肉单价的年平均增长率为x,根据题意,列方程为( )A.14+14(1+x)2=29B.14(1+x)2=29C.14(1+x)=29D.14(1−x)2=2914. 如图,在平面直角坐标系xOy中,正方形ABCD的边AD在x轴上,AO=2,OD=1,按住AD不动,将正方形沿箭头方向推至变形为AB′C′D,点B落在y轴正半轴上点B′处,点C落在点C′处,则点C′的坐标为( )A.(1,√5)B.(3,√5)C.(2,2)D.(1,√3)15. 在实数范围内,对于任意实数m,n(m≠0)规定一种新运算:m⊗n=m n+mn−3,如:3⊗2=32+3×2−3=12.则关于代数式(−y)⊗2的说法正确的是( )A.有最小值,为−4B.有最大值,为0C.其值为0D.其值总是负数16. 如图,在▱ABCD中,AB=5,AD=3,对角线BD=6,点E在BD上,BE=4,点P从点B出发,以每秒1个单位长度的速度沿BA向点A运动,连接PE并延长,交DC于点F,设运动时间为t秒.甲、乙、丙对这个问题进行了研究,并得出自己的结论如下.甲:当t=103秒时,四边形PADF是平行四边形;乙:当t=103秒时,四边形PADF是矩形;丙:在点P运动过程中,总有S四边形EBCF−S四边形EPAD=3S△EDF.下列判断正确的是( )A.乙不正确,甲、丙正确B.甲正确,乙、丙不正确C.丙正确,甲、乙不正确D.甲不正确,乙、丙正确二、填空题若关于x的一元二次方程(a−2)x2+2x+a2−4=0有一个根为0,则a的值为________.如图,BD是正方形ABCD的对角线,点E在CD上,连接AE,BE.若CE=3,△ABE的面积为8,则BC=________,△DBE的周长为________.如图,点T是等腰△ABC的底边AB上的一点,且BC2=BT⋅BA,连接CT.(1)△CBT与△ABC________(填“相似”或“不相似”);(2)点P在CT上(不与点C,T重合),过点P作直线截得一些小三角形,其中与△ABC相似的小三角形(以CT 或CP为边的除外)共有________个.三、解答题(1)解方程x2−4x−5=0;(2)已知关于x的一元二次方程x2−(2m−1)x−m−1=0. ①判别式b2−4ac=________,该方程的根的情况是有________个实数根;②当m=0时,解这个一元二次方程.如图,已知∠BAE+∠ABF=180∘,∠ABF的平分线交AE于点D,在BF上截取BC=AB,连接CD.若BC= 6,求四边形ABCD的周长.如图,在Rt△ABC中,∠ACB=90∘,CD是斜边上的中线,过点B作BE⊥CD,BE分别与CD,AC相交于点F,E,且FB=2CF.求证:CF=2EF.一个不透明的布袋里有材质、形状、大小完全相同的4个小球,它们的表面分别印有数字1,2,3,4(每个小球只印有一个数字).(1)若从布袋中随机取走1个小球,然后放入1个印有数字3的小球,充分搅匀后,再从布袋中随机摸出1个小球,则摸出的小球恰好印有数字3的概率是________.(2)从布袋里随机摸出一个小球,把该小球上的数字记为x,从剩下的3个小球中随机摸出一个小球,把该小球上的数字记为y.利用画树状图或列表的方法,求点(x,y)在直线y=4上的概率.如图,在▱ABCD中,点E,F分别在边BC,AD上,BE=DF,∠AEC=90∘.(1)求证:四边形AECF是矩形;(2)连接EF,∠2=∠1,AB=5,BE:AE=1:2,求EF的长.某果蔬批发商进口一批榴莲,每天可卖出1000千克,每千克可盈利(毛利润)18元.经市场调查后发现,在进价不变的情况下,若每千克榴莲的售价每降低0.7元,每天可多售出56千克榴莲.(1)若每千克榴莲可盈利16元,①每天能卖出________千克;②每天能盈利多少元?(2)暑假期间商家准备降价促销,一方面要让顾客明显感受到榴莲便宜了,同时又能保证每天销售榴莲的毛利润为18480元,那么每千克榴莲应降价多少元?在菱形ABCD中,∠DAB=60∘,AB=4,点P为射线AB上一动点,连接DP,作∠DPE=∠DAB,PE交射线DA于点E,点O是△APE三边的垂直平分线的交点.(1)如图1,当点O在AB边上时,∠DPA=________°,AE=__________;(2)如图2,若点E在边DA的延长线上,当AP长为多少时,PE//AC?(3)若点E在边AD上,当AP长为何值时,AE长有最大值?并求出AE长的最大值.参考答案与试题解析2020-2021学年河北保定九年级上数学期中试卷一、选择题1.【答案】此题暂无答案【考点】比较熔段【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】矩来兴性质【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】正方来的性稳坐标正测形性质中心对称都的坐标变证【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】黄明分护【解析】此题暂无解析【解答】此题暂无解答5. 【答案】此题暂无答案【考点】解因末二什方似-配方法一因顿即方奇的一般形式【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】频数(率)分布直方水利用频都升计概率【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】估计水于二术方程洲近似解【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】相似多明形研性质【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】列表法三树状图州概水常式【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】相似三使形的应以【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案【考点】一元二较方程熔定义根体判展式【解析】此题暂无解析【解答】此题暂无解答12.【答案】此题暂无答案【考点】平行四表形型性质相验极角家的锰质与判定【解析】此题暂无解析【解答】此题暂无解答13.【答案】此题暂无答案【考点】一元二射方程的象多——爱长率问题【解析】此题暂无解析【解答】此题暂无解答14. 【答案】此题暂无答案【考点】坐标正测形性质勾体定展正方来的性稳【解析】此题暂无解析【解答】此题暂无解答15.【答案】此题暂无答案【考点】定射新从号非负数的常树:偶次方【解析】此题暂无解析【解答】此题暂无解答16.【答案】此题暂无答案【考点】动表问擦相验极角家的锰质与判定平行四射形的判放【解析】此题暂无解析【解答】此题暂无解答二、填空题【答案】此题暂无答案【考点】一元二表方病的解一元二较方程熔定义【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角表的病积正方来的性稳勾体定展【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】相似三使形的判碳【解析】此题暂无解析【解答】此题暂无解答三、解答题【答案】此题暂无答案【考点】解一较燥次延程抗因式分解法根体判展式解于视二南方创-公式法【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】角平都北的定义等常三树力良性质与判定菱因顿判定【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】相验极角家的锰质与判定【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】概水常式等可能表件型概率列表法三树状图州一次常数图按上点入适标特点【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】平行四表形型性质矩根的惯定相验极角家的锰质与判定矩来兴性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一元水于方技散应用——利润问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】菱形的来定与筒质含因梯否角样直角三角形等三三程形写建质与判定平行线明判轮与性质相三三疫续的都定与性质【解析】此题暂无解析【解答】此题暂无解答。
2020-2021学年河北省保定市阜平县九年级(上)期中数学试卷(附答案详解)
2020-2021学年河北省保定市阜平县九年级(上)期中数学试卷一、选择题(本大题共16小题,共48.0分)1.已知x=−1是方程x2+mx+1=0的一个实数根,则m的值是()A. 0B. 1C. 2D. −22.若一个正多边形的一个内角是144°,则这个多边形的边数为()A. 12B. 11C. 10D. 93.用配方法解下列方程,其中应在方程左右两边同时加上4的是()A. x2−2x=5B. 2x2−4x=5C. x2+4x=5D. x2+2x=54.将y=3x2通过平移,先向上平移2个单位,再向左平移3个单位,可得到抛物线是()A. y=3(x+3)2−2B. y=3(x+3)2+2C. y=3(x+2)2−3D. y=3(x−2)2+35.如图,△ABC的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B顺时针旋转到△A′BC′的位置,且点A′、C′仍落在格点上,则线段AB扫过的图形的面积是()平方单位(结果保留π).A. 25π4B. 13π4C. 13π2D. 13π66.一项工程,甲队独做要x天,乙队独做要y天,若甲乙两队合作,所需天数为()A. xyx+y B. x+y2C. x+yxyD. x+y7.在图形的旋转中,下列说法错误的是()A. 图形上的每一点到旋转中心的距离都相等B. 图形上的每一点转动的角度都相同C. 图形上可能存在不动的点D. 旋转前和旋转后的图形全等8.二次函数y=m2x2−4x+1有最小值−3,则m等于()A. 1B. −1C. ±1D. ±129.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A. B.C. D.10.若圆锥的底面半径为5cm,侧面积为65πcm2,则该圆锥的高是()A. 13cmB. 12cmC. 11cmD. 10cm11.若m、n是方程x2+x−1=0的两个实数根,则m2+2m+n的值为()A. 0B. 2C. −1D. 312.在平面直角坐标系中,点A的坐标是(3,a),点B的坐标是(b,−1),若点A与点B关于原点O对称,则ab=()A. 3B. 2C. −6D. −313.如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,若∠BAC=25°,则∠P=()度.A. 30B. 60C. 50D. 7514.方程x2−9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A. 12B. 15C. 12或15D. 不能确定15.以半径为1的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则()A. 不能构成三角形B. 这个三角形是等腰三角形C. 这个三角形是直角三角形D. 这个三角形是钝角三角形16.要在抛物线y=x(4−x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下()甲:若b=5,则点P的个数为0乙:若b=4,则点P的个数为1丙:若b=3,则点P的个数为1A. 甲乙错,丙对B. 甲丙对,乙错C. 甲乙对,丙错D. 乙丙对,甲错二、填空题(本大题共3小题,共9.0分)17.将方程8x=3x2−1化为一般形式为______ .18.九年级(3)班全体同学在圣诞节将自己的贺卡向本班其他同学各赠送一张,全班共互赠了1980张.若全班共有x名学生,则根据题意列出的方程是______ .19.观察下列各式数:0,3,8,15,24,…,试按此规律写出第n个数是______.三、解答题(本大题共5小题,共63.0分)20.解方程:(1)x2−2x−8=0;(2)3(x−2)2=x(x−2).21.如图,四边形的对角线AC、BD互相垂直,AC+BD=10,当AC、BD的长是多少时,四边形ABCD的面积最大?22.如图,已知△ABC和△A″B″C″及点O.(1)画出△ABC关于点O对称的△A′B′C′;(2)若△A″B″C″与△A′B′C′关于点O′对称,请确定点O′的位置.23.如图,AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)CD与⊙O相切吗?如果相切,请你加以证明;如果不相切,请说明理由.(2)若CD与⊙O相切,且∠D=30°,BD=10,求⊙O的半径.24.有一块缺角矩形地皮ABCDE(如图),其中AB=110m,BC=80m,CD=90m,∠EDC=135°,现准备用此地建一座地基为长方形(图中用阴影部分表示)的数学大楼,建筑公司在接受任务后,设计了A、B、C、D四种方案,请你研究探索应选用哪一种方案,才能使地基面积最大?(1)求出A、B两种方案的面积.(2)若设地基的面积为S,宽为x,写出方案C(或D)中S与x的关系式.(3)根据(2)完成下表.地基的506070757879808182宽x(m)地基的______ ______ ______ ______ ______ ______ ______ ______ ______ 面积(m2)(4)根据上表提出你的猜测.(5)用配方法对(2)中的S与x之间的关系式进行分析,并检验你的猜测是否正确.(6)你认为A、B、C、D中哪一种方案合理?答案和解析1.【答案】C【解析】解:把x=−1代入方程x2+mx+1=0得:1−m+1=0,解得:m=2,故选:C.把x=−1代入方程x2+mx+1=0得出1−m+1=0,求出方程的解即可.本题考查了解一元一次方程和一元二次方程的解的应用,主要考查学生的理解能力和计算能力,解此题的关键是得出关于m的方程.2.【答案】C【解析】【分析】本题考查了多边形内角与外角:n边形的内角和为(n−2)×180°;n边形的外角和为360°.设这个正多边形的边数为n,根据n边形的内角和为(n−2)×180°得到(n−2)×180°= 144°×n,然后解方程即可.【解答】解:设这个正多边形的边数为n,∴(n−2)×180°=144°×n,∴n=10.故选C.3.【答案】C【解析】【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方分,据此分析即可.【解答】解:A.因为本方程的一次项系数是−2,所以等式两边同时加上一次项系数一半的平方是1,故本选项错误;B.先在等式的两边同时除以2,得到x2−2x=52,因为此方程的一次项系数是−2,所以等式两边同时加上一次项系数一半的平方是1,故本选项错误;C.因为本方程的一次项系数是4,所以等式两边同时加上一次项系数一半的平方是4,故本选项正确;D.因为本方程的一次项系数是2,所以等式两边同时加上一次项系数一半的平方是1,故本选项错误.故选C.4.【答案】B【解析】解:由“上加下减”的原则可知,将抛物线y=3x2向上平移2个单位所得抛物线的解析式为:y=3x2+2;由“左加右减”的原则可知,将抛物线y=3x2+2向左平移3个单位所得抛物线的解析式为:y=3(x+3)2+2.故选:B.直接根据“上加下减,左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知二次函数图象平移的法则是解答此题的关键.5.【答案】B【解析】解:在Rt△ABC中,由勾股定理,得AB=√AC2+BC2=√32+22=√13,由图形可知,线段AB扫过的图形为扇形ABA′,旋转角为90°,∴线段AB扫过的图形面积=nπ×AB2360=90π×(√13)2360=13π4.故选:B.在Rt△ABC中,由勾股定理求AB,观察图形可知,线段AB扫过的图形为扇形,旋转角为90°,根据扇形面积公式求解.本题考查了旋转的性质,扇形面积公式的运用,关键是理解题意,明确线段AB扫过的图形是90°的扇形,难度一般.6.【答案】A【解析】解:依题意得:1 1x +1y=xyx+y.故选:A.把总的工作量看作单位“1”,然后根据工作时间=工作总量工作效率列出代数式.本题考查了列代数式(分式),找到合适的等量关系是解决问题的关键.本题考查工作时间=工作总量÷工作效率这个等量关系.7.【答案】A【解析】解:A、在图形上的对应点到旋转中心的距离相等,所以A选项的说法错误;B、图形上每一点移动的角度相同,都等于旋转角,所以B选项的说法正确;C、图形上可能存在不动的,所以C选项的说法正确;D、旋转前和旋转后的图形全等,所以D选项的说法正确;故选:A.由旋转的性质依次判断可求解.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.【答案】C【解析】解:在y=m2x2−4x+1中,m2>0,则在顶点处取得最小值,4ac−b24a =4m2−164m2=−3,解得:m=±1.故选:C.对二次函数y=m2x2−4x+1,a=m2>0,存在最小值,且在顶点取得,有4ac−b24a=−3,求得m的值即可.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.9.【答案】A【解析】解:根据题意可知二次函数y=ax2+bx的图象经过原点O(0,0),故B选项错误;当a<0时,二次函数y=ax2+bx的图象开口向下,一次函数y=ax+b的斜率a为负值,故D选项错误;>0,一次函数y=ax+b 当a<0、b>0时,二次函数y=ax2+bx的对称轴x=−b2a与y轴的交点(0,b)应该在y轴正半轴,故C选项错误;>0,一次函数y=ax+b 当a>0、b<0时,二次函数y=ax2+bx的对称轴x=−b2a与y轴的交点(0,b)应该在y轴负半轴,故A选项正确.故选A.根据二次函数的性质首先排除B选项,再根据a、b的值的正负,结合二次函数和一次函数的性质逐个检验即可得出答案.本题主要考查了二次函数的性质和一次函数的性质,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.10.【答案】B【解析】解:设母线长为R,则:65π=π×5R,解得R=13cm.故圆锥的高为:√132−52=12cm,故选:B.圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解求得母线长,然后利用勾股定理求得圆锥的高即可.本题考查圆锥侧面积公式的灵活运用,掌握公式是关键.11.【答案】A【解析】解:∵m、n是方程x2+x−1=0的两个实数根,∴m+n=−1,m2+m=1,∴m2+2m+n=m2+m+m+n=1−1=0.故选:A.由于m、n是方程x2+x−1=0的两个实数根,根据根与系数的关系可以得到m+n=−1,并且m2+m=1,然后把m2+2m+n可以变为m2+m+m+n,把前面的值代入即可求出结果此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.12.【答案】D【解析】解:∵点A的坐标是(3,a),点B的坐标是(b,−1),点A与点B关于原点O对称,∴b=−3,a=1,则ab=−3.故选:D.直接利用关于原点对称点的性质得出a,b的值,进而得出答案.此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号关系是解题关键.13.【答案】C【解析】解:∵PA,PB是⊙O是切线,∴∠OAP=∠OBP=90°,∵OA=OB,∠BAC=25°,∴∠AOB=180°−2∠BAC=130°,又∵∠OAP+∠OBP+∠AOB+∠P=360°,∴∠P=360°−∠OAP−∠OBP−∠AOB=360°−90°−90°−130°=50°,故选:C.由三角形内角和可求得∠AOB,再根据切线的性质得到∠OAP=∠OBP=90°,在四边形PAOB中由四边形内角和为360°可求得∠P的度数.本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,注意四边形内角和的应用.14.【答案】B【解析】解:方程变形得:(x−3)(x−6)=0,解得:当x=3或x=6,当3为腰,6为底时,三角形三边为3,3,6,不能构成三角形,舍去;当3为底,6为腰时,三角形三边为6,6,3,周长为6+6+3=15,故选:B .利用因式分解法求出方程的解得到x 的值,分类讨论腰与底,利用三角形边角关系判断即可确定出周长.此题考查了解一元二次方程−因式分解法,熟练掌握分解因式的方法是解本题的关键.15.【答案】C【解析】解:(1)因为OC =1,所以OD =1×sin30°=12; (2)因为OB =1,所以OE =1×sin45°=√22;(3)因为OA =1,所以OD =1×cos30°=√32. 因为(12)2+(√22)2=(√32)2, 所以这个三角形是直角三角形.故选:C .由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形解答. 解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答.16.【答案】C【解析】解:y=x(4−x)=−x2+4x=−(x−2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.求出抛物线的顶点坐标为(2,4),由二次函数的性质对甲、乙、丙三人的说法分别进行判断,即可得出结论.本题考查了二次函数图象上点的坐标特征、抛物线的顶点坐标等知识;熟练掌握二次函数图象上点的坐标特征是解题的关键.17.【答案】3x2−8x−1=0【解析】解:方程整理得:3x2−8x−1=0.故答案为:3x2−8x−1=0.方程移项,化为一般形式即可.此题考查了一元二次方程的一般形式,其一般形式为ax2+bx+c=0(a≠0).18.【答案】x(x−1)=1980【解析】解:∵全班有x名同学,∴每名同学要送出贺卡(x−1)张;又∵是互送贺卡,∴总共送的张数应该是x(x−1)=1980.故答案为:x(x−1)=1980.设全班有x名同学,根据全班互赠贺卡,每人向本班其他同学各赠送一张,全班共相互赠送了1980张可列出方程.本题考查了一元二次方程的应用,关键是理解题意后,类比数线段来做,互赠张数就像总线段条数,人数类似线段端点数.19.【答案】n2−1【解析】解:由0=12−1,3=22−1,8=32−1,15=42−1,…因此第n个数是n2−1.故答案为:n2−1.每一个数字都是位置数字平方与1的差.本题考查了探索规律的问题,解决此类问题要从数字中间找出一般规律(符号或数),进一步去运用规律解答.20.【答案】解:(1)(x−4)(x+2)=0,x−4=0或x+2=0,所以x1=4,x2=−2;(2)3(x−2)2−x(x−2)=0,(x−2)(3x−6−x)=0,x−2=0或3x−6−x=0,所以x1=2,x2=3.【解析】(1)利用因式分解法解方程;(2)先移项得到3(x−2)2−x(x−2)=0,然后利用因式分解法解方程.本题考查了解一元二次方程−因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.21.【答案】解:设AC=x,四边形ABCD面积为S,则BD=10−x,S=12x(10−x)=−12x2+5x,∵−12<0,∴抛物线开口向下,当x=−52×(−12)=5时,S最大=−12×52+5×5=252,即当AC=5,BD=5时,四边形ABCD面积最大,最大值为252.【解析】根据已知设四边形ABCD面积为S,AC为x,则BD=10−x,进而求出S=−12x2+5x,再求出最值即可.此题主要考查了二次函数的应用,根据已知正确得出二次函数关系是解题关键.22.【答案】解:【解析】(1)连接三角形的各顶点与O的连线,并延长相同长度,找到对应点,顺次连接.(2)若△A″B″C″与△A′B′C′关于点O′对称,连接两组对应点的连线的交点O就是对称点.本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,看图是关键.23.【答案】解:(1)CD与⊙O相切.证明:∵AB为⊙O的直径,C是⊙O上一点,∴∠ACB=90°,即∠ACO+∠OCB=90°;∵∠A=∠OCA,且∠DCB=∠A,∴∠OCA=∠DCB,∴∠OCD=90°,∴CD是⊙O的切线.(2)在Rt△OCD中,∠D=30°;∴∠COD=60°,∴∠A=30°,∴∠BCD=30°,∴BC=BD=10,∴AB=20,∴r=10.【解析】(1)相切,由已知可证得∠OCD=90°即CD是⊙O的切线;(2)由已知可推出∠A=∠BCD=30°,即BC=BD=10,从而得到AB=20即可得到半径的长.本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.24.【答案】600066007000712571767189720072097216【解析】解:(1)根据题意,方案A的面积为80×90=7200m2;方案B的面积为110×(80−20)=6600m2.(2)选择方案C计算.设CD的延长线与NM的延长线交于点F,如图:∵MF=80−x,∠EDC=135°,∴DF=80−x,NB=CD+DF=90+(80−x)=170−x,S=(170−x)x即S=−x2+170x.(3)将表中数据分别代入S=−x2+170x计算可得:S的值从左到右依次为6000,6600,7000,7125,7176,7189,7200,7209,7216;故答案为:6000,6600,7000,7125,7176,7189,7200,7209,7216.(4)猜想:当x≤80时,S随x的增大而增大.(5)∵S=−x2+170x=−(x−85)2+852∴当x≤85时,S随x的增大而增大,∵x≤80,∴当x=80时,S最大值为7200m2.(6)根据当x=80时,S取得最大值,故选A种方案.(1)根据矩形的面积公式求解即可.(2)选择方案C计算,由等腰直角三角形的性质可得DF=MF=80−x,可用x表示出BN 的长,再根据矩形的面积公式写出S与x的关系式.(3)将表中数据分别代入S=−x2+170x计算可得答案.(4)根据表中数据的变化可得猜测结论.(5)对S=−x2+170x配方,根据二次函数的性质及x的取值范围可得答案.(6)结合(5)中的分析可得答案、本题主要考查了二次函数在实际问题中的应用,数形结合并熟练掌握二次函数的性质是解题的关键.。
2021-2022学年河北省保定市顺平县九年级(上)期中数学试卷祥细答案与解析
2021-2022学年河北省保定市顺平县九年级(上)期中数学试卷一、选择题(本大题共16个小题,1~10题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有项是符合题目要求的)1. 下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.2. 已知m是方程x2−x−1=0的一个根,则代数式m2−m的值等于()A.−1B.0C.1D.23. 如图,在平面直角坐标系中,将点P(2, 3)绕原点O顺时针旋转90∘得到点P′,则P′的坐标为( )A.(3, 2)B.(3, −1)C.(2, −3)D.(3, −2)4. 关于函数y=−(x+2)2−1的图象叙述正确的是()A.开口向上B.顶点(2, −1)C.与y轴交点为(0, −1)D.对称轴为直线x=−25. 下列方程中,有两个不等实数根的是()A.x2=3x−8B.x2+5x=−10C.7x2−14x+7=0D.x2−7x=−5x+36. 二次函数y=x2−6x−4的顶点坐标为()A.(3, 5)B.(3, −13)C.(3, −5)D.(3, 13)7. 若二次函数的图象的顶点坐标为(2, −1),且抛物线过(0, 3),则二次函数的解析式是()(x−2)2−1A.y=−(x−2)2−1B.y=−12(x−2)2−1C.y=(x−2)2−1D.y=128. 用配方法解方程x2+4x+1=0,配方后的方程是( )A.(x+2)2=3B.(x−2)2=3C.(x−2)2=5D.(x+2)2=59. 抛物线y=−3x2向左平移2个单位,再向上平移5个单位,所得抛物线解析式为()A.y=−3(x−2)2+5B.y=−3(x−2)2−5C.y=−3(x+2)2−5D.y=−3(x+2)2+510. 某机械厂七月份生产零件50万个,九月份生产零件72万个.设该厂八九月份平均每月的增长率为x,那么x满足的方程是()A.500(1+x)2=72B.50(1+x)=72C.50(1+x)2=72D.50(1+2x)=7211. 若关于x的一元二次方程kx2−6x+9=0有实数根,则k的取值范围是()A.k<1B.k≤1C.k<1且k≠0D.k≤1且k≠012.二次函数y=ax2+bx+c(a≠0)的图象上部分点的坐标(x, y)对应值列表如图,则该函数图象的对称轴是()A.直线x=−3B.直线x=−2C.直线x=−1D.直线x=013. 一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是()A. B.C. D.14. 如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,将△ABP绕点B 顺时针旋转60∘到△CBQ位置.连接PQ,则以下结论错误的是()A.∠QPB=60∘B.∠PQC=90∘C.∠APB=150∘D.∠APC=135∘15.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是( )A.−1<x<4B.−1<x<3C.x<−1或x>4D.x<−1或x>316. 已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a−b<0;③b2>(a+c)2;④点(−3, y1),(1, y2)都在抛物线上,则有y1>y2.其中正确的结论有( )A.4个B.3个C.2个D.1个二、填空题(本大题共4个小题;每小题3分,共12分。
2020-2021学年河北省保定二中分校九年级(上)期中数学试卷(附答案详解)
2020-2021学年河北省保定二中分校九年级(上)期中数学试卷1.下列等式是一元二次方程的是()A. x2=−5B. x2+5=2x+x2C. ax2+bx+c=0D. 1x+x=12.已知关于x的一元二次方程(m−1)x2+2x+1=0有实数根,则m的取值范围是()A. m<2B. m≤2C. m<2且m≠1D. m≤2且m≠13.下列四组线段中,是成比例线段的是()A. 5cm,6cm,7cm,8cmB. 3cm,6cm,2cm,5cmC. 2cm,4cm,6cm,8cmD. 3cm,4cm,6cm,8cm4.如图,菱形ABCD的对角线AC,BD的长分别是6和8,则这个菱形的面积是()A. 20B. 24C. 40D. 485.顺次连接菱形四边中点得到的四边形是()A. 平行四边形B. 菱形C. 矩形D. 正方形6.根据下面表格中的对应值:x 3.23 3.24 3.25 3.26ax2+bx+c−0.06−0.020.030.09判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是()A. 3<x<3.23B. 3.23<x<3.24C. 3.24<x<3.25D. 3.25<x<3.267.为庆祝新中国成立70周年,河南省实验中学开展了以“我和我亲爱的祖国”为主题的“快闪”活动,学校准备从两名男生和两名女生中选出两名同学领唱,如果每名同学被选中的机会均等,则选出的恰为一名男生一名女生的概率是()A. 13B. 14C. 23D. 348.下列说法正确的是()A. 对角线相等的四边形是矩形B. 对角线互相垂直且相等的四边形是正方形C. 对角线互相垂直平分的四边形是菱形D. 四边相等的四边形是正方形9.若点A(−1,y1),B(1,y2),C(3,y3)在反比例函数y=−2x的图象上,则y1,y2,y3的大小关系是()A. y1<y2<y3B. y2<y3<y1C. y3<y2<y1D. y2<y1<y310.如图,是反比例函数y1=k1x 和y2=k2x(k1<k2)在第一象限的图象,直线AB//x轴,并分别交两条曲线于A、B两点,若S△AOB=3,则k2−k1的值是()A. 8B. 6C. 4D. 211.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A. 45°B. 55°C. 60°D. 75°12.两张全等的矩形纸片ABCD,AECF按如图方式交叉叠放在一起,AB=AF,AE=BC.若AB=2,BC=6,则图中阴影部分的面积为()A. 4B. 83C. 163D. 613.函数y=kx−k与y=kx(k≠0)在同一坐标系中的图象可能是()A. B. C. D.14.若一个三角形的两边长分别是4和7,第三边的边长是方程x2−10x+21=0的一个根,则这个三角形的周长为()A. 13B. 18C. 15D. 1615.如图,在矩形ABCD中,AB=8,AD=10,E、F、G、H分别为矩形边上的点,HF过矩形的中心O.且HF=AD,E为AB的中点,G为CD的中点,则四边形EFGH的周长为()A. 12√5B. 6√5C. 8√3D. 6√316.如图,在正方形ABCD中,BF⊥CE于点F,交AC于点G,有以下结论:①∠ABG=∠AGB;②∠OBG=∠OCE;③AG=BE;④△BCG≌△CDE.则下列结论正确的是()A. ①②③B. ①②④C. ①③④D. ②③④17.已知x4=y3=z2,则x−y+2zx=______.18.在双曲线y=2−kx的每一支上,y都随着x的增大而减小,则k的取值范围为______.19.①已知关于x的一元二次方程x2−4m+3m2=0(m>0)的一个根比另一个根大2,则m的值为______.②如图,函数y1=x+1与函数y2=2的图象相交于点M(1,m),N(−2,n).x若y1>y2,则x的取值范围是______.20.解下列方程(1)(配方法)x2−2x−8=0;(2)(公式法)2x2−5x−1=0;(3)(x−1)2+2x(x−1)=0;(4)(3x−11)(x−2)=2.21.医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援某地的防汛救灾工作.(1)若随机选一位医生和护士,用树状图(或列表法)表示所有可能出现的结果.(2)求恰好选中医生甲和护士A的概率.22.东方超市销售一种利润为每千克20元的水产品,一个月能销售出500千克.经市场分析,销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,若设单价每千克涨价x元,请解答以下问题:(1)填空:每千克水产品获利______元,月销售量减少______千克;(2)要使得月销售利润达到12000元,又要“薄利多销”,销售单价应涨价为多少元?23.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD//BC,AE//DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.24.如图,将直角边长为4的等腰直角三角形ABC放置在平面直角坐标系中,∠ACB=90°,AC在x轴上,点C的坐标为(3,0).(1)点A的坐标为______,点B的坐标为______;(k≠0)的图象在第一象限内与(2)反比例函数y=kxAB,BC分别交于点D,E,连接DE,若DE⊥AB,①点E坐标为______(用含k的代数式表示),点D坐标为______(用含k的代数式表示);②求反比例函数的表达式.25.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.答案和解析1.【答案】A【解析】解:A、该方程符合一元二次方程的定义,故本选项符合题意.B、由已知方程得到2x−5=0,属于一元一次方程,故本选项不符合题意.C、当a=0时,该方程不是一元二次方程,故本选项不符合题意.D、该方程属于分式方程,故本选项不符合题意.故选:A.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2.【答案】D【解析】解:∵关于x的一元二次方程(m−1)x2+2x+1=0有实数根,解得:m≤2且m≠1.故选:D.根据二次项系数非零及根的判别式Δ≥0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式Δ≥0,找出关于m的一元一次不等式组是解题的关键.3.【答案】D【解析】解:A、5×8≠6×7,故选项不符合题意;B、3×5≠6×2,故选项不符合题意;C、2×8≠4×6,故选项不符合题意;D、3×8=4×6,故选项符合题意.故选:D.如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.对选项一一分析,排除错误答案.此题考查了比例线段,根据成比例线段的概念,注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.同时注意单位要统一.4.【答案】B【解析】解:∵菱形ABCD的对角线AC,BD的长分别是6和8,∴菱形ABCD的面积=12BD×AC=12×8×6=24.故选:B.根据菱形的对角线的长度即可直接计算菱形ABCD的面积.本题考查了菱形对角线互相平分的性质,本题中菱形ABCD的面积等于对角线乘积的一半是解题的关键.5.【答案】C【解析】解:如图,∵E、F分别是AB、BC的中点,∴EF//AC且EF=12AC,同理,GH//AC且GH=12AC,∴EF//GH且EF=GH,∴四边形EFGH是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,又根据三角形的中位线定理,EF//AC,FG//BD,∴EF⊥FG,∴平行四边形EFGH是矩形.故选:C.作出图形,根据三角形的中位线平行于第三边并且等于第三边的一半判定出四边形EFGH是平行四边形,再根据菱形的对角线互相垂直可得EF⊥FG,然后根据有一个角是直角的平行四边形是矩形判断.本题主要考查了三角形的中位线定理,菱形的性质,以及矩形的判定,连接四边形的中点得到的四边形的形状主要与原四边形的对角线的关系有关,原四边形的对角线相等,则得到的四边形是菱形,原四边形对角线互相垂直,则得到的四边形是矩形,连接任意四边形的四条边的中点得到的四边形都是平行四边形.6.【答案】C【解析】解:∵x=3.24时,ax2+bx+c=−0.02;x=3.25时,ax2+bx+c=0.01,∴关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是3.24<x<3.25.故选:C.根据表中数据得到x=3.24时,ax2+bx+c=−0.02;x=3.25时,ax2+bx+c=0.01,则x取2.24到2.25之间的某一个数时,使ax2+bx+c=0,于是可判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是3.24<x<3.25.本题考查了估算一元二次方程的近似解:用列举法估算一元二次方程的近似解,具体方法是:给出一些未知数的值,计算方程两边结果,当两边结果愈接近时,说明未知数的值愈接近方程的根.7.【答案】C【解析】解:设男生标记为A、B;女生标记为1、2,可能出现的所有结果列表如下:共有12种可能的结果,且每种的可能性相同,其中刚好所选出的两名同学恰好是一名男生一名女生的结果有8种,则P(一男一女)=812=23;故选:C.列表得出所有等可能的情况数,找出刚好所选出的两名同学恰好是一名男生一名女生的情况数,即可求出所求的概率.本题考查了列表法与树状图法求概率,正确画出图形,同时熟悉概率公式是解题的关键.8.【答案】C【解析】解:A、对角线平分且相等的四边形是矩形,说法错误,不符合题意;B、对角线平分互相垂直且相等的四边形是正方形,说法错误,不符合题意;C、对角线互相垂直平分的四边形是菱形,说法正确,符合题意;D、四边相等的四边形是菱形,说法错误,不符合题意;故选:C.根据矩形、正方形、菱形的判定判断即可.此题考查正方形的判定,关键是根据矩形、正方形、菱形的判定解答.9.【答案】B的图象上,【解析】解:∵点A(−1,y1),B(1,y2),C(3,y3)在反比例函数y=−2x∴y1=2,y2=−2,y3=−2,3∴y2<y3<y1.故选:B.根据反比例函数图象上点的坐标特征,把三个点的坐标分别代入解析式计算出y1、y3、y2的值,然后比较大小即可.(k为常数,k≠0)的图本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.10.【答案】B【解析】【分析】本题考查了反比例函数比例系数k的几何意义,解答时注意观察图中三角形面积关系以构造.设直线AB交y轴于点C,应用反比例函数比例系数k的几何意义,表示△BOC、△AOC的面积,利用S△BOC−S△AOC=S△AOB构造方程即可.【解答】解:设直线AB交y轴于点C,由反比例函数比例系数k的几何意义可知,S△BOC=k22,S△AOC=k12,∵S△BOC−S△AOC=S△AOB=3,∴k22−k12=3,∴k2−k1=6,故选B.11.【答案】C【解析】解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°−150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:C.根据正方形的性质及等边三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.12.【答案】B【解析】解:如图所示:∵两张全等的矩形纸片ABCD,AECF按如图方式交叉叠放在一起,∴AD//BC,AE//CF,∠B=∠BAD=∠EAF=∠F=90°,AD=BC=6,∴四边形AHCG是平行四边形,∠BAH=∠FAG,在△AFG和△ABH中,{∠F=∠BAF=AB∠FAG=∠BAH,∴△AFG≌△ABH(ASA),∴AG=AH,∴平行四边形AHCG是菱形,∴AH=CH,设AH=CH=x,则BH=6−x,在Rt△ABH中,由勾股定理得:22+(6−x)2=x2,解得:x=103,∴BH=6−103=83,∴图中阴影部分的面积=12BH×AB=12×83×2=83,故选:B.先证四边形AHCG是平行四边形,∠BAH=∠FAG,再证△AFG≌△ABH(ASA),得AG= AH,则平行四边形AHCG是菱形,得AH=CH,设AH=CH=x,则BH=6−x,然后在Rt△ABH中,由勾股定理得出方程,解得x=103,得BH=83,由三角形面积公式即可得出答案..本题考查了菱形的判定与性质、矩形的性质、平行四边形的判定与性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质和全等三角形的判定与性质是解题的关键.13.【答案】D【解析】解:A、∵由反比例函数的图象在一、三象限可知,k>0,∴−k<0,∴一次函数y=kx−k的图象经过一、三、四象限,故本选项错误;B、∵由反比例函数的图象在一、三象限可知,k>0,∴−k<0,∴一次函数y=kx−k 的图象经过一、三、四象限,故本选项错误;C、∵由反比例函数的图象在二、四象限可知,k<0,∴−k>0,∴一次函数y=kx−k 的图象经过一、二、四象限,故本选项错误;D、∵由反比例函数的图象在二、四象限可知,k<0,∴−k>0,∴一次函数y=kx−k 的图象经过一、二、四象限,故本选项正确;故选:D.分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.本题考查的是反比例函数及一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k的符号,再根据一次函数的性质进行解答.14.【答案】B【解析】解:∵x2−10x+21=0,∴(x−3)(x−7)=0,∴x=3或x=7,当x=3时,∵4+3=7,∴4、3、7不能组成三角形,当x=7时,∵4+7>7,∴4、7、7能够组成三角形,∴这个三角形的周长为4+7+7=18,故选:B.根据一元二次方程的解法可求出第三边,然后根据三角形三边关系即可求出答案.本题考查解一元二次方程,解题的关键是熟练运用一元二次方程的解法以及三角形三边关系,本题属于基础题型.15.【答案】A【解析】解:如图,连接EG,∵四边形ABCD是矩形,∴AB=CD,AB//CD,∵E为AB的中点,G为CD的中点,∴AE=DG,AE//DG,∴四边形AEGD是平行四边形,∴AD=EG,∵矩形是中心对称图形,HF过矩形的中心O.∴EG过点O,且OH=OF,OE=OG,∴四边形EHGF是平行四边形,∵HF=AD,∴EG=AD,∴四边形EHGF是矩形,∴∠EHG=90°,∵∠A=∠D=90°,∴∠AHE+∠AEH=∠AHE+∠DHG=90°,∴∠AEH=∠DHG,∴△AEH∽△DHG,∴ AHDG =AEDH,设AH=x,则DH=10−x,∵AE=DG=12AB=4,∴ x4=410−x,解得,x=2或8,∴AH=2或8,当AH=2时,DH=8,则HE=√AH2+AE2=√4+16=2√5,HG=√DH2+DG2=√64+16=4√5,∴四边形EFGH的周长=2(2√5+4√5)=12√5;同理,当AH=8时,四边形EFGH的周长=12√5.故选:A.连接EG,证明四边形EHGF是矩形,再证明△AEH∽△DHG,求得AH与DH的长度,由勾股定理求得EH与HG,再由矩形的周长公式求得结果.本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,关键在于证明四边形EHGF是矩形.16.【答案】D【解析】解:∵四边形ABCD是正方形,∴∠BCD=90°,∠BCG=∠CDE=45°,BC=CD,∵BF⊥CE,∴∠BFC=90°,∴∠CBG+∠BCF=∠BCF+∠DCE=90°,∴∠CBG=∠DCE,∴△BCG≌△CDE(ASA),故④正确;∵△BCG≌△CDE,∴CG=DE,∵正方形ABCD中,AC=BD,∴AG=BE,故③正确;∵△BCG≌△CDE,∴∠CBG=∠DCE,∵正方形ABCD中∠OBC=∠OCD=45°,∴∠OBG=∠OCE,故②正确;∵E是OD上的任意一点,∴当BE≠BC时,有AB≠BE,∵AG=BE,∴AB≠AG,∴∠ABG≠∠AGB,故①错误;故选:D.由正方形的性质得∠BCD=90°,∠BCG=∠CDE=45°,BC=CD,再由BF⊥CE,根据同角的余角相等得∠CBG=∠DCE,进而由相似三角形的判定得△BCG≌△CDE,故④正确;由△BCG≌△CDE得CG=DE,根据正方形的对角线相等得AC=BD,由等式性质得AG=BE,故③正确;由△BCG≌△CDE得∠CBG=∠DCE,根据正方形的性质得∠OBC=∠OCD=45°,再根据等式性质得∠OBG=∠OCE,故②正确;由E是OD上的任意一点,当BE≠BC时,得到AB≠AG,此时∠ABG≠∠ACB,故①错误.本题主要考查了正方形的性质,等腰三角形的性质,全等三角形的性质与判定,关键是证明三角形全等.17.【答案】54【解析】解:∵x4=y3=z2,∴设x=4a,则y=3a,z=2a,则x−y+2zx =4a−3a+4a4a=54.故答案为:54.直接利用已知用同一未知数表示出x,y,z的值,进而化简得出答案.此题主要考查了比例的性质,正确表示出各数是解题关键.18.【答案】k<2【解析】解:由题意得:2−k>0,解得:k<2,故答案为:k<2.根据反比例函数的性质可得2−k>0,再解即可.此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质:(1)反比例函数y=kx(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.19.【答案】1 −2<x<0或x>1【解析】解:(1)设方程的两根分别为t,t+2,根据题意得t+t+2=4m,t(t+2)=3m2,把t=2m−1代入t(t+2)=3m2得(2m−1)(2m+1)=3m2,整理得m2−1=0,解得m=1或m=−1(舍去),所以m的值为1.故答案为1;(2)函数y1=x+1与函数y2=2x的图象相交于点M(1,m),N(−2,n).根据图象得到若y1>y2,则x的取值范围是−2<x<0或x>1,故答案为−2<x<0或x>1.(1)设方程的两根分别为t,t+2,利用根与系数的关系得到t+t+2=4m,t(t+2)= 3m2,利用代入消元法得到(2m−1)(2m+1)=3m2,然后解关于m的方程得到满足条件的m的值;(2)观察函数图象得到当−2<x<0或x>1时,函数y1=x+1的图象都在函数y2=2x的图象的上方,即y1>y2.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca;也考查了反比例函数与一次函数的交点问题,观察函数图象的能力是解题的关键.20.【答案】解:(1)∵x2−2x−8=0,∴x2−2x+1=1+8,∴(x−1)2=9,∴x−1=±3,∴x1=−2,x2=4;(2)∵2x 2−5x −1=0,∴a =2,b =−5,c =−1,∴△=b 2−4ac=(−5)2−4×2×(−1)=25+8=33>0,∴x =−b±√b 2−4ac 2a =5±√334, ∴x 1=5−√334,x 2=5+√334;(3)∵(x −1)2+2x(x −1)=0,(x −1)(x −1+2x)=0,∴(x −1)(3x −1)=0,∴x −1=0或3x −1=0,∴x 1=1,x 2=13;(4)∵(3x −11)(x −2)=2,∴3x 2−6x −11x +22−2=0,∴3x 2−17x +20=0,∴(3x −5)(x −4)=0,∴(3x −5)=0或(x −4)=0,∴x 1=53,x 2=4.【解析】(1)利用题中所要求的配方法求解即可;(2)利用题中所要求的公式法求解即可;(3)利用因式分解法中的提取公因式法求解即可;(4)先整理,再利用因式分解法中的十字相乘法求解即可.本题考查了利用配方法、公式法及因式分解法解一元二次方程,熟练掌握相关解法是解题的关键.21.【答案】解:(1)画树状图为:共有6种等可能的结果数;(2)其中恰好选中医生甲和护士A的结果数为1,.所以恰好选中医生甲和护士A的概率=16【解析】(1)利用树状图展示所有6种等可能的结果数;(2)找出恰好选中医生甲和护士A的结果数,然后根据概率公式求解.本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.【答案】(20+x)10x【解析】解:(1)设单价每千克涨价x元,则每千克水产品获利(20+x)元,月销售量减少10x千克.故答案为:(20+x);10x.(2)依题意,得:(20+x)(500−10x)=12000,整理,得:x2−30x+200=0,解得:x1=10,x2=20.又∵要“薄利多销”,∴x=10.答:销售单价应涨价为10元.(1)设单价每千克涨价x元,则每千克水产品获利(20+x)元,月销售量减少10x千克;(2)根据月销售利润=每千克的利润×月销售量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.【答案】证明:(1)∵AD//BC,AE//DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,BC,∴AE=CE=12∴四边形AECD是菱形;(2)过A作AH⊥BC于点H,∵∠BAC=90°,AB=6,BC=10,∴AC=√102−62=8,∵S△ABC=12BC⋅AH=12AB⋅AC,∴AH=6×810=245,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S▱AECD=CE⋅AH=CD⋅EF,∴EF=AH=245.法二:连接ED交AC于O,由题意得:AC=8,计算得ED=6.S△ECD=12⋅DC⋅EF=12⋅ED⋅OC.计算得5EF=6×4,EF=245.【解析】(1)根据平行四边形和菱形的判定证明即可;(2)根据菱形的性质和三角形的面积公式解答即可.此题考查菱形的判定和性质,关键是根据平行四边形和菱形的判定和性质解答.24.【答案】(−1,0)(3,4)(3,13k)(1+16k,2+16k)【解析】解:(1)∵AC=BC=4,而点C的坐标为(3,0),即OC=3,故OA=AC−OC=4−1=1,故点A的坐标为(−1,0)、点B的坐标为(3,4),故答案为(−1,0),(3,4);(2)①设点D(m,m+1),过点D作DH⊥BE于点H,∵△ABC为等腰直角三角形,则∠B=45°,而∠BDE为直角,故△BDH为等腰直角三角形,则BH=DH=3−m=12BH,则BH=6−2m,则EC=BC−BE=4−(6−2m)= 2m−2,故点E的坐标为(3,2m−2),将点E的坐标代入反比例函数表达式得:3(2m−2)=k,解得m=1+k6,故点E、D的坐标分别为(3,13k)、(1+16k,2+16k),故答案为:(3,13k)、(1+16k,2+16k);②将点D、E的坐标代入反比例函数表达式得:k=3(2m−2)=m(m+1),解得{m=2k=6(不合题意的值已舍去),故反比例函数表达式为y=6x.(1)AC=BC=4,而点C的坐标为(3,0),即OC=3,故OA=AC−OC=4−1=1,即可求解;(2)证明△BDH为等腰直角三角形,则BH=DH=3−m=12BH,则BH=6−2m,则EC=BC−BE=4−(6−2m)=2m−2,故点E的坐标为(3,2m−2),将点E的坐标代入反比例函数表达式得:3(2m−2)=k,解得m=1+k6,故点E、D的坐标分别为(3,13k)、(1+16k,2+16k),将点D、E的坐标代入反比例函数表达式,即可求解.本题考查的是反比例函数综合运用,涉及到一次函数的性质、等腰直角三角形的性质等,其中,确定△BDE、△BDH为等腰直角三角形是解题的关键.25.【答案】解:(1)①∵四边形ABCD是矩形,∴AD//BC,∴∠CAD=∠ACB,∠AEF=∠CFE,∵EF垂直平分AC,垂足为O,∴OA=OC,∴△AOE≌△COF,∴OE=OF,∴四边形AFCE为平行四边形,又∵EF⊥AC,∴四边形AFCE为菱形,②设菱形的边长AF=CF=xcm,则BF=(8−x)cm,在Rt△ABF中,AB=4cm,由勾股定理得42+(8−x)2=x2,解得x=5,∴AF=5cm.(2)①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;同理P点在AB上时,Q点在DE或CE上或P在BF,Q在CD时不构成平行四边形,也不能构成平行四边形.因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=5t,QA=CD+AD−4t=12−4t,即QA=12−4t,∴5t=12−4t,,解得t=43∴以A、C、P、Q四点为顶点的四边形是平行四边形时,t=4秒.3②由题意得,四边形APCQ是平行四边形时,点P、Q在互相平行的对应边上.分三种情况:i)如图1,当P点在AF上、Q点在CE上时,AP=CQ,即a=12−b,得a+b=12;ii)如图2,当P点在BF上、Q点在DE上时,AQ=CP,即12−b=a,得a+b=12;iii)如图3,当P点在AB上、Q点在CD上时,AP=CQ,即12−a=b,得a+b=12.综上所述,a与b满足的数量关系式是a+b=12(ab≠0).【解析】(1)先证明四边形AFCE为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;根据勾股定理即可求得AF的长;(2)①分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;②分三种情况讨论可知a与b满足的数量关系式.本题综合性较强,考查了矩形的性质、菱形的判定与性质、勾股定理、平行四边形的判定与性质,注意分类思想的应用.。
河北省保定市新秀2020-2021学年九年级上学期期中考试数学试题
2020年秋季学期期中联考九年级数学试卷本试卷分卷I 和卷II 两部分;卷I 为选择题,卷II 为非选择题。
本试卷满分为120分,考试时间为120分钟。
卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
答在试卷上无效。
一、选择题(本大题共16个小题;1-10小题,每小题3分;11-16小题,每小题2分,共42分。
在每小题给出的四个选项中,只有一个选项符合题意)1.下列方程中,一定是关于x 的一元二次方程的是【】A .x 2﹣y =2B .ax 2﹣3x +3=0C .2x 2﹣21x =x D .3x 2﹣2x =3x 22.若432cb a ==,18=++c b a ,则a 的值为【】A .1B .2C .3D .43.如图,公路AC ,BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AB 的长为2.6km ,则M ,C 两点间的距离为【】A .0.8kmB .1.3kmC .1.2kmD .5.2km4.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断,其中合理的是【】①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.A .①B .②C .①②D .①③5.将方程0162=+-x x 化为b a x =+2)(的形式,则b a +的值为【】A .2;B .3;C .4;D .5.6.如图,已知D 、E 分别为AB 、AC 上的两点,且DE ∥BC ,AE =2CE ,AB =6,则AD 的长为【】A .2B .3C .4D .57.如图,菱形ABCD 的边长为2,BC AE B ⊥︒=∠,45,则这个菱形的面积是【】A .2B .22C .8D .48.关于x 的一元二次方程(m -1)x 2-2x -1=0有两个实数根,则实数m 的取值范围是【】A .m ≥0B .m >0C .m ≥0且m ≠1D .m >0且m ≠19.如图,李明打网球时,球恰好打过网,且落在离网4m 的位置上,则网球拍击球的高度h 为【】A .1.1mB .1.2mC .1.3mD .1.4m10.如图,在平面直角坐标系中,菱形ABCD 的边长为6,它的一边AB 在x 轴上,且AB 的中点是坐标原点,点D 在y 轴正半轴上,则点C 的坐标为【】A .(3,33)B .(6,33)C .(6,3)D .(33,3)11.矩形ABCD 的边BC 上有一动点E ,连接AE 、DE ,以AE 、DE 为边作平行四边形AEDF .在点E 从点B 移动到点C 的过程中,平行四边形AEDF 的面积【】A .先变大后变小B .先变小后变大C .一直变大D .保持不变12.如图,已知∠DAB =∠CAE ,那么添加下列一个条件后,仍然无法判定△ABC ∽△ADE 的是【】A .DEBCAD AB =B .AEACAD AB =C .∠B =∠D D .∠C =∠AED13.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为x ,则可列方程为【】A .200+200(1+x )2=1400B .200+200(1+x )+200(1+x )2=1400C .200(1+x )2=1400D .200(1+x )+200(1+x )2=140014.如图,P 是线段AB 的黄金分割点,PA >PB ,若S 1表示以AP为边正方形的面积,S 2表示以AB 为长PB 为宽的矩形的面积,则S 1、S 2大小关系为【】A .S 1=S 2B .S 1>S 2C .S 1<S 2D .不能确定15.如图,在边长为2的正方形ABCD 中,点M 为对角线BD 上一动点,ME ⊥BC 于点E ,MF ⊥CD 于点F ,连接EF ,则EF 的最小值为【】A .1B .22C .3D .216.如图,正方形ABCD 中,AB =12,点E 、G 分别在边DC 、BC 上,且BG =CG ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②∠EAG =45°;③CE=2DE ;④AG ∥CF ;⑤572=∆FGC S .其中正确结论的个数是【】A .2个B .3个C .4个D .5个卷II (非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚。
2022-2023学年河北省保定市顺平县九年级(上)期中数学试题及答案解析
2022-2023学年河北省保定市顺平县九年级(上)期中数学试卷一、选择题(本大题共16小题,共42.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列图案中是中心对称图形的是( )A. B. C. D.2. 将方程3x2+1=5x化成ax2+bx+c=0的形式,则a,b,c的值分别为( )A. 3,5,1B. 3,5,−1C. 3,−5,−1D. 3,−5,13. 抛物线y=−(x−2)2+3的对称轴是( )A. 直线x=−2B. 直线x=2C. 直线x=3D. 直线x=−34. 一元二次方程x2+1=0的根是( )A. x1=x2=1B. x1=x2=−1C. x1=−1,x2=1D. 无根5. 平面直角坐标系中点P(3,−5)关于原点的对称点坐标是( )A. (−5,3)B. (−3,5)C. (3,5)D. (−3,−5)6. 用配方法解方程x2+6x+3=0时,配方结果正确的是( )A. (x+3)2=12B. (x−3)2=12C. (x−3)2=6D. (x+3)2=67. 二次函数y=x2+2x的图象可能是( )A. B.C. D.8. 关于x的一元二次方程kx2+2x−1=0有两个相等的实数根,则k=( )A. −2B. −1C. 0D. 19. 二次函数y=ax2+bx+c的图象如图所示,则下列判断不正确的是( )A. a>0B. b<0C. c>0D. b2−4ac>010. 1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?意思是:矩形面积为864平方步,宽比长少12步,问宽和长各几步?设长为x步,可列方程为( )A. x(x−12)=864B. x(x+12)=864C. 2x+2(x+12)=864D. 2x+2(x−12)=86411. 如图,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是( )A. OB=OB′B. ∠ACB=∠A′B′C′C. 点A的对称点是点A′D. BC//B′C′12. 若二次函数y=x2−4x+c的图象经过点(0,3),则函数的最小值是( )A. −1B. 3C. 5D. 713. 如图,△ABD经过旋转后到达△ACE的位置,∠BAC=60°,下列说法错误的是( )A. 点A是旋转中心B. ∠DAC是一个旋转角C. 顺时针旋转,则至少旋转300°D. 逆时针旋转,则至少旋转60°14. 已知点A(−3,y1)、B(0,y2)、C(1,y3)在抛物线y=−(x+2)2上,则下列结论正确的是( )A. y1<y2<y3B. y1<y3<y2C. y2<y1<y3D. y3<y2<y115. 如图所示,二次函数y=−x2+2x+k的图象与x轴的一个交点坐标为(3,0),则关于x的一元二次方程−x2+2x+k=0的解为( )A. x1=3,x2=−2B. x1=3,x2=−1C. x1=1,x2=−1D. x1=3,x2=−316. 某书店销售某种中考复习资料,若每本可获利x元,一天可售出(100−5x)本,则该书店出售该种中考复习资料的日利润最大为( )A. 250元B. 500元C. 750元D. 1000元二、填空题(本大题共3小题,共9.0分)17. 若x=−1是方程x2+x+m=0的一个根,则该方程的另一个根为______.18. 如图,△ABC绕点A顺时针旋转110°得到△AEF,若∠EAF=50°,则∠α=______°.19. 下面是三位同学对某个二次函数的描述.甲:图象的形状、开口方向与y=2x2的相同;乙:顶点在x轴上;丙:对称轴是直线x=−1请写出这个二次函数解析式的一般式:______.三、解答题(本大题共7小题,共69.0分。
河北省 保定市北王力中学 2020-2021学年度九年级上学期 期中考试数学试卷(图片版,有答案)
一、选择题(共42 分,1---10 小题每小题3分;11 -- 16 小题,每小题2分)题号12345678910 11 12 13 14 15 16 答案B C D D B A B C B B C C C B B C二、填空题(共10 分,其中17,18 题各3 分,19 题每空2 分)17. (1+x)2=14418. 12 或 2719. (1)100°(2)90°三、解答题(本大题共7个小题,共68(解答题答案不唯一)20. (共 20 分,每小题 5 分)(1) x 2+ 8x +16 = 0 解: (x + 4)2= 0x 1 = x 2 = —4.................................................................................. 5 分(2) 2 x 2+ 4x - 3 = 0 解: x 2+ 2x = 3 2x 2 + 2x + 1 = 52 (x + 1)2= 5 2x + 1 = ± 10 2x 1 =10 —1,x = -2210 —1 …………………………………………………………10 分2(3) 6 (x + 3) = x (x + 3)解:6 (x + 3) — x (x + 3) = 0(x + 3() 6 — x )= 0∴ x 1 = —3 ,x 2 = 6………………………………………………………………15 分word 版 初中数学(4) (3x -11)(x - 2) = 2解:原方程可变形为: 3x 2 -17x + 20 = 0a = 3,b = —17,c = 20b 2 - 4ac =(—17)2 - 4 ⨯ 3⨯ 20 =49>0,x = 17 ± 649 =17 ± 76 5x 1 = 4,x 2 = 321.(本小题满分 6 分) 1 ………………………………………………………………20 分 解:(1)3………………………………………………………………………2 分(2)共有 6 的有 4 种,所以 P (和为奇数)= 4 = 2…………………………………………………………6 分6322.(本小题满分 8 分)证明: ∵AF||BC∴∠AFE=∠DCE∵E 是 AD 的中点∴AE=DE∵∠AEF=∠DEC∴△AEF ≌△DEC ∴AF=DC∵AF=BD∴BD=CD∴D 是B C 的中点........................................................ 4分(2)四边形A FBD 是矩形.................................................... 5 分证明:∵AB=AC,D 是BC 的中点∴AD⊥BC∴∠ADB=90°∵AF=BD,AF||BC∴四边形AFBD 是平行四边形∴四边形AFBD 是矩形 ................................................. 8 分23.(本小题满分 6 分)解:设花圃的宽为xm,那么它的长是(24-3x)m 根据题意得方程x(24-3x)=45, ......................................................... 3 分即x2-8x+15=0解得x1=3,x2=5,........................................................................................................ 5 分因为24-3x≤10,所以x≥14 .3所以x=5 .............................................................................................................................. 6 分答:花圃的宽为5m.24. (本小题满分 10 分)证明:(1)∵四边形ABCD 为平行四边形,∴AB∥DF、AD∥BC,∴∠BAF=∠F ,∠ABD=∠FDB .∴△DOF∽△BOA,同理△AOD∽△EOB,∴OF = OD,OA = OD.OA OB∴OF = OAOA OEOE OB即O A2=OE•OF.................................................... 5 分(2)∵△AOD∽△EOB,△DOF∽△BOA,25.(本小题满分 8 分) …………………………………………………10 分(1) 设两次降价的百分率为x . 由题意得:40(1−x)2=32.4解得: 1 x 1= =10 %, x 2= 19 (舍去). 10 答:两次下降的百分率为 10% ......................................................................... 4 分(2) 由题意得:该商品每降价 1 元,每天可多销售 8 件.①设每件应降价x 元,由题意得:(40−x−30)(48+8x)=512.解得:x 1= x 2=2.答:每件应降价 2 元; .......................................... 6 分 ②不能获得 520 元利润,理由如下:设每件降价x 元,则(40−x−30)(48+8x)=520.整理得:x 2−4x+5=0.∵Δ=(−4)2−4×5=−4<0,∴ 方程无解.∴ 不能获得 520 元利润 ..................................................................................... 8 分 26. 解:(1)(答案不唯一)如图 1 所示:连接 A C ,过点 D 作AC 的平行线交BC 的延长线于点 E ,连接 A E ,△ABE 即为所求的三角形; ................................................................. 2 分(2) △BDF 的面积不变.理由如下: .......................................... 3 分 连接CF ,如图 2 所示:10word版初中数学13 / 13∵BD、CF 分别为正方形ABCD 和正方形GCEF 的对角线,∴∠BDC=∠DCF=45°,∴BD∥CF,∴S△BDF=S△CBD=50; (6)分(3)连接BD,过点C 作BD 的平行线交BE 的延长线于M,连接DM,如图3 所示:则S△BDM=S△CBD,∴S△BDM-S△BDE=S△CBD-S△BDE,即:S△DME=S△ECB,∴补偿后的四边形的面积与原来的正方形ABCD 的面积相等且M 在射线BE 上.……………………………………………………10 分。
保定市2021年九年级上学期期中数学试卷A卷
保定市2021年九年级上学期期中数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)的倒数是()A .B . -C .D . -2. (2分) (2015九上·淄博期中) 化简的结果是()A . ﹣x﹣yB . y﹣xC . x﹣yD . x+y3. (2分) (2015九上·淄博期中) 下列各式从左到右的变形中,是因式分解的是()A . (a+3)(a﹣3)=a2﹣9B . a2﹣b2=(a+b)(a﹣b)C . a2﹣4a﹣5=a(a﹣4)﹣5D .4. (2分) (2015九上·淄博期中) 如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A . a2﹣b2=(a+b)(a﹣b)B . (a+b)2=a2+2ab+b2C . (a﹣b)2=a2﹣2ab+b2D . (a+2b)(a﹣b)=a2+ab+b25. (2分) (2015九上·淄博期中) 解方程﹣3去分母得()A . 1=1﹣x﹣3(x﹣2)B . 1=x﹣1﹣3(2﹣x)C . 1=x﹣1﹣3(x﹣2)D . ﹣1=1﹣x﹣3(x﹣2)6. (2分) (2015九上·淄博期中) 如果正数x、y同时扩大10倍,那么下列分式中值缩小10倍的是()A .B .C .D .7. (2分) (2015九上·淄博期中) 已知5个正数a1 , a2 , a3 , a4 , a5的平均数是a,且a1>a2>a3>a4>a5 ,则数据:a1 , a2 , a3 , 0,a4 , a5的平均数和中位数是()A . a,a3B . a,C . a,D . ,8. (2分) (2015九上·淄博期中) 甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:班级参加人数中位数方差平均数甲55149191135乙55151110135某同学根据表中数据分析得出下列结论:1)甲、乙两班学生成绩的平均水平相同;2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀);3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是()A . (1)(2)(3)B . (1)(2)C . (1)(3)D . (2)(3)9. (2分) (2015九上·淄博期中) 对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A . 1个B . 2个C . 3个D . 4个10. (2分) (2015九上·淄博期中) 南京到上海铁路长300km,为了适应两市经济的发展,客车的速度比原来每小时增加了40km,因此从南京到上海的时间缩短了一半,设客车原来的速度是xkm/h,则根据题意列出的方程是()A .B .C .D .二、填空题 (共8题;共10分)11. (1分)(2019·莲都模拟) 若a﹣2b=﹣3,则代数式1﹣a+2b的值为________.12. (1分)计算:=________ .13. (1分) (2017七下·武进期中) 若x+y=3,则的值为________.14. (3分)的倒数是________,绝对值是________,相反数是________.15. (1分)(2020·孟津模拟) 计算: ________.16. (1分) (2019八下·武昌月考) 已知,则的值是________.17. (1分)有六张完全相同的卡片,其正面分别标有数字:﹣2,,π,0,,,将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数字为无理数的概率是________.18. (1分) (2019九上·新蔡期末) 将根式,,,化成最简二次根式后,随机抽取其中一个根式,能与的被开方数相同的概率是________.三、解答题 (共6题;共62分)19. (15分) (2017七上·抚顺期中) 某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)星期一二三四五六日增减﹣5+7﹣3+4+10﹣9﹣25(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加还是减少?并求出增加或减少的数量(3)产量最多的一天比产量最少的一天多生产了多少辆?20. (10分) (2016七上·临洮期中) 计算:(1)3×(﹣4)+18÷(﹣6)(2)(﹣2)2×5+(﹣2)3÷4.21. (10分)(2019·成都模拟)(1)计算:|﹣ |+ ﹣4sin45°﹣.(2)解不等式组,并把它的解集在如下的数轴上表示出来.22. (10分) (2015八下·扬州期中) 已知A= ﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.23. (12分)(2019·毕节) 某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2 , 22 ,﹣22}=________;②min{sin30°,cos60°,tan45°}=________;(2)若M{﹣2x,x2 , 3}=2,求x的值;(3)若min{3﹣2x,1+3x,﹣5}=﹣5,求x的取值范围.24. (5分) (2015九上·淄博期中) 新世纪广场进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商场又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商场销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商场共赢利多少元?四、选做题 (共1题;共13分)25. (13分) (2017七上·章贡期末) 已知式子M=(a+5)x3+7x2﹣2x+5是关于x的二次多项式,且二次多项式系数为b,数轴上A、B两点所对应的数分别是a和b.(1)则a=________,b=________.A、B两点之间的距离=________;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2015次时,求点P 所对应的有理数.(3)在(2)的条件下,点P会不会在某次运动时恰好到达某一位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,并直接指出是第几次运动,若不可能请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共62分)19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、四、选做题 (共1题;共13分) 25-1、25-2、25-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年河北省保定市顺平县九年级(上)期中数学试卷一、选择题(本大题共16个小题,1~10题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有项是符合题目要求的)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.﹣1B.0C.1D.23.如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)4.关于函数y=﹣(x+2)2﹣1的图象叙述正确的是()A.开口向上B.顶点(2,﹣1)C.与y轴交点为(0,﹣1)D.对称轴为直线x=﹣25.下列方程中,有两个不等实数根的是()A.x2=3x﹣8B.x2+5x=﹣10C.7x2﹣14x+7=0D.x2﹣7x=﹣5x+36.二次函数y=x2﹣6x﹣4的顶点坐标为()A.(3,5)B.(3,﹣13)C.(3,﹣5)D.(3,13)7.若二次函数的图象的顶点坐标为(2,﹣1),且抛物线过(0,3),则二次函数的解析式是()A.y=﹣(x﹣2)2﹣1B.y=﹣(x﹣2)2﹣1C.y=(x﹣2)2﹣1D.y=(x﹣2)2﹣18.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3B.(x﹣2)2=3C.(x﹣2)2=5D.(x+2)2=5 9.抛物线y=﹣3x2向左平移2个单位,再向上平移5个单位,所得抛物线解析式为()A.y=﹣3(x﹣2)2+5B.y=﹣3(x﹣2)2﹣5C.y=﹣3(x+2)2﹣5D.y=﹣3(x+2)2+510.某机械厂七月份生产零件50万个,九月份生产零件72万个.设该厂八九月份平均每月的增长率为x,那么x满足的方程是()A.500(1+x)2=72B.50(1+x)=72C.50(1+x)2=72D.50(1+2x)=7211.(2分)若关于x的方程kx2﹣6x+9=0有实数根,则k的取值范围是()A.k<1B.k≤1C.k<1且k≠0D.k≤1且k≠0 12.(2分)二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的对称轴是()A.直线x=﹣3B.直线x=﹣2C.直线x=﹣1D.直线x=0 13.(2分)一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是()A.B.C.D.14.(2分)如图,P是等边三角形ABC内的一点,且P A=3,PB=4,PC=5,将△ABP绕点B顺时针旋转60°到△CBQ位置.连接PQ,则以下结论错误的是()A.∠QPB=60°B.∠PQC=90°C.∠APB=150°D.∠APC=135°15.(2分)已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4B.﹣1<x<3C.x<﹣1或x>4D.x<﹣1或x>3 16.(2分)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个二、填空题(本大题共4个小题;每小题3分,共12分。
把答案写在题中横线上)17.一元二次方程x2﹣6x=0的解是.18.在直角坐标系中,点M(5,7)关于原点O对称的点N的坐标是(x,y),则x+y=.19.已知二次函数y=2(x﹣1)2的图象如图所示,则△ABO的面积是.20.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,则∠A的度数是.三、解答题(本大题共6个小题;共66分。
解答应写出文字说明、证明过程或演算步骤)21.(16分)用适当的方法解下列方程:(1)x2﹣3x﹣4=0;(2)2(x﹣3)2=10;(3)x(4x﹣5)=4x﹣5;(4)x2﹣2x=168.22.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标都在格点上,且△A1B1C1与△ABC关于原点O成中心对称,C点坐标为(﹣2,1).(1)请直接写出A1的坐标;并画出△A1B1C1.(2)P(a,b)是△ABC的AC边上一点,将△ABC平移后点P的对称点P'(a+2,b﹣6),请画出平移后的△A2B2C2.(3)若△A1B1C1和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.23.(9分)如图,某中学准备用长为20m的篱笆围成一个长方形生物园ABCD饲养小兔,生物园的一面靠墙(围墙MN最长可利用15m)试设计一种围法,使生物园的面积为32m2.24.(10分)如图,已知二次函数y=ax2+2x+c图象经过点A(1,4)和点C(0,3).(1)求该二次函数的解析式;(2)结合函数图象,直接回答下列问题:①当﹣1<x<2时,求函数y的取值范围:.②当y≥3时,求x的取值范围:.25.(11分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM =10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.26.(12分)某公司研制出新产品,该产品的成本为每件2400元.在试销期间,购买不超过10件时,每件销售价为3000元;购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为2600元.请解决下列问题:(1)直接写出:购买这种产品件时,销售单价恰好为2600元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y元,求y与x之间的函数表达式;(3)该公司的销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使购买数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)2020-2021学年河北省保定市顺平县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共16个小题,1~10题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有项是符合题目要求的)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故A不符合题意;B、既不是轴对称图形,不是中心对称图形,故B不符合题意;C、既是轴对称图形,又是中心对称图形,故C符合题意;D、不是轴对称图形,是中心对称图形,故D不符合题意;故选:C.2.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.﹣1B.0C.1D.2【分析】将x=m代入方程即可求出所求式子的值.【解答】解:将x=m代入方程得:m2﹣m﹣1=0,m2﹣m=1.故选:C.3.如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)【分析】作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.【解答】解:作PQ⊥y轴于Q,如图,∵P(2,3),∴PQ=2,OQ=3,∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,∴点P′的坐标为(3,﹣2).故选:D.4.关于函数y=﹣(x+2)2﹣1的图象叙述正确的是()A.开口向上B.顶点(2,﹣1)C.与y轴交点为(0,﹣1)D.对称轴为直线x=﹣2【分析】根据题目中的函数图象和二次函数的性质可以判断各个选项中的说法是否正确,本题得以解决.【解答】解:∵函数y=﹣(x+2)2﹣1,∴该函数图象开口向下,故选项A错误,顶点坐标为(﹣2,﹣1),故选项B错误,当x=0时,y=﹣5,即该函数与y轴的交点坐标为(0,﹣5),故选项C错误,对称轴是直线x=﹣2,故选项D正确,故选:D.5.下列方程中,有两个不等实数根的是()A.x2=3x﹣8B.x2+5x=﹣10C.7x2﹣14x+7=0D.x2﹣7x=﹣5x+3【分析】整理每个方程后,利用△与0的关系来判断每个方程的根的情况.有两个不等实数根即△>0.【解答】解:(1)△=9﹣32=﹣23<0,方程无根.(2)△=25﹣40=﹣15<0,方程无根.(3)△=196﹣196=0,方程有两个相等的实数根.(4)△=4+12=16>0,方程有两个不相等的实数根.故选:D.6.二次函数y=x2﹣6x﹣4的顶点坐标为()A.(3,5)B.(3,﹣13)C.(3,﹣5)D.(3,13)【分析】将题目中的函数解析式化为顶点式,即可求得该函数的顶点坐标,从而可以解答本题.【解答】解:∵y=x2﹣6x﹣4=(x﹣3)2﹣13,∴该函数的顶点坐标为(3,﹣13),故选:B.7.若二次函数的图象的顶点坐标为(2,﹣1),且抛物线过(0,3),则二次函数的解析式是()A.y=﹣(x﹣2)2﹣1B.y=﹣(x﹣2)2﹣1C.y=(x﹣2)2﹣1D.y=(x﹣2)2﹣1【分析】根据二次函数的顶点式求解析式.【解答】解:设这个二次函数的解析式为y=a(x﹣h)2+k∵二次函数的图象的顶点坐标为(2,﹣1),∴二次函数的解析式为y=a(x﹣2)2﹣1,把(0,3)代入得a=1,所以y=(x﹣2)2﹣1.故选:C.8.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3B.(x﹣2)2=3C.(x﹣2)2=5D.(x+2)2=5【分析】方程常数项移到右边,两边加上4变形后,即可得到结果.【解答】解:方程移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3.故选:A.9.抛物线y=﹣3x2向左平移2个单位,再向上平移5个单位,所得抛物线解析式为()A.y=﹣3(x﹣2)2+5B.y=﹣3(x﹣2)2﹣5C.y=﹣3(x+2)2﹣5D.y=﹣3(x+2)2+5【分析】先确定抛物线y=﹣3x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移所得对应点的坐标为(﹣2,5),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=﹣3x2的顶点坐标为(0,0),点(0,0)向左平移2个单位,再向上平移5个单位所得对应点的坐标为(﹣2,5),所以平移后的抛物线解析式为y=﹣3(x+2)2+5.故选:D.10.某机械厂七月份生产零件50万个,九月份生产零件72万个.设该厂八九月份平均每月的增长率为x,那么x满足的方程是()A.500(1+x)2=72B.50(1+x)=72C.50(1+x)2=72D.50(1+2x)=72【分析】设该厂八九月份平均每月的增长率为x,根据该厂7、9月份生产零件的数量,即可得出关于x的一元二次方程,此题得解.【解答】解:设该厂八九月份平均每月的增长率为x,根据题意得:50(1+x)2=72.故选:C.11.(2分)若关于x的方程kx2﹣6x+9=0有实数根,则k的取值范围是()A.k<1B.k≤1C.k<1且k≠0D.k≤1且k≠0【分析】由于k的取值范围不能确定,故应分k=0和k≠0两种情况进行解答.【解答】解:(1)当k=0时,﹣6x+9=0,解得x=;(2)当k≠0时,此方程是一元二次方程,∵关于x的方程kx2﹣6x+9=0有实数根,∴△=(﹣6)2﹣4k×9≥0,解得k≤1,由(1)、(2)得,k的取值范围是k≤1.12.(2分)二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的对称轴是()A.直线x=﹣3B.直线x=﹣2C.直线x=﹣1D.直线x=0【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣2.故选:B.13.(2分)一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是()A.B.C.D.【分析】可先根据一次函数的图象判断a、b的符号,再判断二次函数图象与实际是否相符,判断正误.【解答】解:A、由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+bx+c的图象应该开口向上,错误;B、由一次函数y=ax+b的图象可得:a>0,b>0,此时二次函数y=ax2+bx+c的图象应该开口向上,对称轴x=﹣<0,错误;C、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+bx+c的图象应该开口向下,对称轴x=﹣<0,正确.D、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+bx+c的图象应该开口向下,错误;14.(2分)如图,P是等边三角形ABC内的一点,且P A=3,PB=4,PC=5,将△ABP绕点B顺时针旋转60°到△CBQ位置.连接PQ,则以下结论错误的是()A.∠QPB=60°B.∠PQC=90°C.∠APB=150°D.∠APC=135°【分析】根据等边三角形性质以及勾股定理的逆定理,即可判断B;依据△BPQ是等边三角形,即可得到∠QPB=∠BPQ=∠BQP=60°,进而得出∠BP A=∠BQC=60°+90°=150°,求出∠APC+∠QPC=150°和PQ≠QC即可判断D选项.【解答】解:∵△ABC是等边三角形,∴∠ABC=60°,∵将△ABP绕点B顺时针旋转60°到△CBQ位置,∴△BQC≌△BP A,∴∠BP A=∠BQC,BP=BQ=4,QC=P A=3,∠ABP=∠QBC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,∴△BPQ是等边三角形,∴PQ=BP=4,∵PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,即△PQC是直角三角形,故B正确,∵△BPQ是等边三角形,∴∠QPB=∠BPQ=∠BQP=60°,故A正确,∴∠BP A=∠BQC=60°+90°=150°,故C正确,∴∠APC=360°﹣150°﹣60°﹣∠QPC=150°﹣∠QPC,∵∠PQC=90°,PQ≠QC,∴∠QPC≠45°,即∠APC≠135°,故选项D错误.15.(2分)已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4B.﹣1<x<3C.x<﹣1或x>4D.x<﹣1或x>3【分析】根据抛物线与x轴的交点坐标及对称轴求出它与x轴的另一交点坐标,求当y <0,x的取值范围就是求函数图象位于x轴的下方的图象相对应的自变量x的取值范围.【解答】解:由图象知,抛物线与x轴交于(﹣1,0),对称轴为x=1,∴抛物线与x轴的另一交点坐标为(3,0),∵y<0时,函数的图象位于x轴的下方,且当﹣1<x<3时函数图象位于x轴的下方,∴当﹣1<x<3时,y<0.故选:B.16.(2分)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个【分析】观察图象判断出a、b、c的符号,即可得出结论①正确,利用对称轴公式x>﹣1,可得结论②错误;利用平方差公式,可得结论③正确,利用图象法可以判断出④正确;【解答】解:∵抛物线开口向上,∴a>0,∵﹣<0,∴b>0,∵抛物线交y轴于负半轴,∴c<0,∴abc<0,故①正确,∵﹣>﹣1,a>0,∴b<2a,∴2a﹣b>0,故②错误,∵x=1时,y>0,∴a+b+c>0,∴a+c>﹣b,∵x=﹣1时,y<0,∴a﹣b+c<0,∴(a+c)2﹣b2=(a+b+c)(a﹣b+c)<0,∴b2>(a+c)2,故③正确,∵点(﹣3,y1),(1,y2)都在抛物线上,观察图象可知y1>y2,故④正确.故选:B.二、填空题(本大题共4个小题;每小题3分,共12分。