图的广度优先搜索的应用
信息学竞赛中的广度优先搜索算法
信息学竞赛中的广度优先搜索算法广度优先搜索(Breadth-First Search,BFS)是一种常用的图搜索算法,广泛应用于信息学竞赛中。
本文将介绍广度优先搜索算法的原理、应用场景以及实现方法。
一、算法原理广度优先搜索算法是一种基于队列的搜索算法,通过逐层扩展搜索的方式,从起始节点开始,依次遍历其邻接节点,然后依次遍历邻接节点的邻接节点,直到找到目标节点或遍历完所有节点为止。
该算法的基本过程如下:1. 创建一个队列,并将起始节点加入队列;2. 从队列中取出首个节点,并标记为已访问;3. 遍历该节点的邻接节点,若未被标记为已访问,则将其加入队列;4. 重复步骤2和步骤3,直到队列为空或找到目标节点。
广度优先搜索算法可以用来解决一些与图相关的问题,比如最短路径问题、连通性问题等。
二、应用场景广度优先搜索算法在信息学竞赛中有广泛的应用,以下是一些常见的应用场景。
1. 连通性问题:判断图中两个节点是否连通。
通过广度优先搜索,可以从起始节点开始遍历图,找到目标节点即可判断其连通性。
2. 最短路径问题:找到两个节点之间的最短路径。
广度优先搜索每一层的遍历都是从起始节点到目标节点的可能最短路径,因此可以通过记录路径长度和路径信息,找到最短路径。
3. 迷宫问题:求解迷宫中的最短路径。
迷宫可以看作是一个图,起始位置为起始节点,终点位置为目标节点,通过广度优先搜索可以找到迷宫中的最短路径。
4. 可达性问题:判断一个节点是否可达其他节点。
通过广度优先搜索,可以从起始节点开始遍历图,标记所有可达节点,然后判断目标节点是否被标记。
三、实现方法广度优先搜索算法的实现可以使用队列来辅助完成。
以下是一个基于队列的广度优先搜索算法的伪代码示例:```BFS(start, target):queue = [start] // 创建一个队列,并将起始节点加入队列visited = set() // 创建一个集合,用于标记已访问的节点while queue is not emptynode = queue.pop(0) // 从队列中取出首个节点visited.add(node) // 标记节点为已访问if node == targetreturn True // 找到目标节点,搜索结束for neighbor in node.neighbors // 遍历节点的邻接节点if neighbor not in visitedqueue.append(neighbor) // 将邻接节点加入队列return False // 队列为空,未找到目标节点```四、总结广度优先搜索算法在信息学竞赛中是一种常用的算法,它通过逐层遍历的方式,能够快速的找到目标节点或解决与图相关的问题。
广度优先搜索的原理及应用是什么
广度优先搜索的原理及应用是什么1. 原理广度优先搜索(Breadth-First Search, BFS)是一种图的遍历算法,它从图的起始顶点开始,逐层地向外探索,直到找到目标顶点或者遍历完整个图。
通过利用队列的数据结构,广度优先搜索保证了顶点的访问顺序是按照其距离起始顶点的距离递增的。
广度优先搜索的基本原理如下:1.选择一个起始顶点,将其加入一个待访问的队列(可以使用数组或链表实现)。
2.将起始顶点标记为已访问。
3.从队列中取出一个顶点,访问该顶点,并将其未访问过的邻居顶点加入队列。
4.标记访问过的邻居顶点为已访问。
5.重复步骤3和步骤4,直到队列为空。
广度优先搜索保证了先访问距离起始点近的顶点,然后才访问距离起始点远的顶点,因此可以用来解决一些问题,例如最短路径问题、连通性问题等。
2. 应用广度优先搜索在计算机科学和图论中有着广泛的应用,下面是一些常见的应用场景:2.1 最短路径问题广度优先搜索可以用来找出两个顶点之间的最短路径。
在无权图中,每条边的权值都为1,那么从起始顶点到目标顶点的最短路径就是通过广度优先搜索找到的路径。
2.2 连通性问题广度优先搜索可以用来判断两个顶点之间是否存在路径。
通过从起始顶点开始进行广度优先搜索,如果能够找到目标顶点,就说明两个顶点是连通的;如果搜索完成后仍然未找到目标顶点,那么两个顶点之间就是不连通的。
2.3 图的遍历广度优先搜索可以用来遍历整个图的顶点。
通过从起始顶点开始进行广度优先搜索,并在访问每个顶点时记录下访问的顺序,就可以完成对整个图的遍历。
2.4 社交网络分析广度优先搜索可以用来分析社交网络中的关系。
例如,在一个社交网络中,可以以某个人为起始节点,通过广度优先搜索找出与该人直接或间接连接的人,从而分析人际关系的密切程度、社区结构等。
2.5 网络爬虫广度优先搜索可以用来实现网络爬虫对网页的抓取。
通过从初始网页开始,一层层地向外发现新的链接,并将新的链接加入待抓取的队列中,从而实现对整个网站的全面抓取。
深度优先算法和广度优先算法的时间复杂度
深度优先算法和广度优先算法的时间复杂度深度优先算法和广度优先算法是在图论中常见的两种搜索算法,它们在解决各种问题时都有很重要的作用。
本文将以深入浅出的方式从时间复杂度的角度对这两种算法进行全面评估,并探讨它们在实际应用中的优劣势。
1. 深度优先算法的时间复杂度深度优先算法是一种用于遍历或搜索树或图的算法。
它从图中的某个顶点出发,沿着一条路径一直走到底,直到不能再前进为止,然后回溯到上一个节点,尝试走其他的路径,直到所有路径都被走过为止。
深度优先算法的时间复杂度与图的深度有关。
在最坏情况下,深度优先算法的时间复杂度为O(V+E),其中V表示顶点的数量,E表示边的数量。
2. 广度优先算法的时间复杂度广度优先算法也是一种用于遍历或搜索树或图的算法。
与深度优先算法不同的是,广度优先算法是从图的某个顶点出发,首先访问这个顶点的所有邻接节点,然后再依次访问这些节点的邻接节点,依次类推。
广度优先算法的时间复杂度与图中边的数量有关。
在最坏情况下,广度优先算法的时间复杂度为O(V+E)。
3. 深度优先算法与广度优先算法的比较从时间复杂度的角度来看,深度优先算法和广度优先算法在最坏情况下都是O(V+E),并没有明显的差异。
但从实际运行情况来看,深度优先算法和广度优先算法的性能差异是显而易见的。
在一般情况下,广度优先算法要比深度优先算法快,因为广度优先算法的搜索速度更快,且能够更快地找到最短路径。
4. 个人观点和理解在实际应用中,选择深度优先算法还是广度优先算法取决于具体的问题。
如果要找到两个节点之间的最短路径,那么广度优先算法是更好的选择;而如果要搜索整个图,那么深度优先算法可能是更好的选择。
要根据具体的问题来选择合适的算法。
5. 总结和回顾本文从时间复杂度的角度对深度优先算法和广度优先算法进行了全面评估,探讨了它们的优劣势和实际应用中的选择。
通过对两种算法的时间复杂度进行比较,可以更全面、深刻和灵活地理解深度优先算法和广度优先算法的特点和适用场景。
迷宫最短路径算法
迷宫最短路径算法一、引言迷宫最短路径算法是指在迷宫中找到从起点到终点的最短路径的算法。
在实际应用中,迷宫最短路径算法可以用于机器人导航、游戏设计等领域。
本文将介绍几种常见的迷宫最短路径算法,包括深度优先搜索、广度优先搜索、Dijkstra 算法和 A* 算法。
二、深度优先搜索深度优先搜索是一种基于栈的搜索算法,其主要思想是从起点开始,沿着某个方向一直走到底,直到无路可走时回溯到上一个节点。
具体实现时,可以使用递归或手动维护栈来实现。
三、广度优先搜索广度优先搜索是一种基于队列的搜索算法,其主要思想是从起点开始,依次将与当前节点相邻且未被访问过的节点加入队列,并标记为已访问。
然后从队列头部取出下一个节点作为当前节点,并重复以上操作直到找到终点或队列为空。
四、Dijkstra 算法Dijkstra 算法是一种贪心算法,在图中寻找从起点到终点的最短路径。
具体实现时,首先将起点标记为已访问,并将其与所有相邻节点的距离加入一个优先队列中。
然后从队列中取出距离最小的节点作为当前节点,并更新其相邻节点到起点的距离。
重复以上操作直到找到终点或队列为空。
五、A* 算法A* 算法是一种启发式搜索算法,其主要思想是在广度优先搜索的基础上引入启发函数,用于评估每个节点到终点的估计距离。
具体实现时,将起点加入开放列表,并计算其到终点的估价函数值。
然后从开放列表中取出估价函数值最小的节点作为当前节点,并将其相邻未访问节点加入开放列表中。
重复以上操作直到找到终点或开放列表为空。
六、总结以上介绍了几种常见的迷宫最短路径算法,包括深度优先搜索、广度优先搜索、Dijkstra 算法和 A* 算法。
不同算法适用于不同场景,需要根据实际情况选择合适的算法。
在实际应用中,还可以结合多种算法进行优化,以提高寻路效率和精确度。
广度优先搜索
一:交通图问题
表示的是从城市A到城市H 表示的是从城市A到城市H的交通图。从图中可以 看出,从城市A到城市H 看出,从城市A到城市H要经过若干个城市。现要 找出一条经过城市最少的一条路线。
分析该题
分析:看到这图很容易想到用邻接距阵来表示,0 分析:看到这图很容易想到用邻接距阵来表示,0表示能 走,1表示不能走。如图5 走,1表示不能走。如图5。
用数组合表示 8个城市的相互 关系
procedure doit; begin h:=0; d:=1; a.city[1]:='A'; a.pre[1]:=0; s:=['A']; repeat {步骤2} {步骤 步骤2} inc(h); {队首加一,出队} {队首加一 出队} 队首加一, for i:=1 to 8 do {搜索可直通的城市} {搜索可直通的城市 搜索可直通的城市} if (ju[ord(a.city[h])-64,i]=0)and ju[ord(a.city[h])-64,i]=0) not(chr(i+64) s)) ))then {判断城市是否走 (not(chr(i+64) in s))then {判断城市是否走 过} begin inc(d); {队尾加一,入队} {队尾加一 入队} 队尾加一, a.city[d]:=chr(64+i); a.pre[d]:=h; s:=s+[a.city[d]]; if a.city[d]='H' then out; end; until h=d; end; begin {主程序} {主程序 主程序} doit; end. 输出: 输出: H-F--A --A
深度优先搜索: 深度优先搜索:状态树
深度优先搜索和广度优先搜索
深度优先搜索和⼴度优先搜索 深度优先搜索和⼴度优先搜索都是图的遍历算法。
⼀、深度优先搜索(Depth First Search) 1、介绍 深度优先搜索(DFS),顾名思义,在进⾏遍历或者说搜索的时候,选择⼀个没有被搜过的结点(⼀般选择顶点),按照深度优先,⼀直往该结点的后续路径结点进⾏访问,直到该路径的最后⼀个结点,然后再从未被访问的邻结点进⾏深度优先搜索,重复以上过程,直⾄所有点都被访问,遍历结束。
⼀般步骤:(1)访问顶点v;(2)依次从v的未被访问的邻接点出发,对图进⾏深度优先遍历;直⾄图中和v有路径相通的顶点都被访问;(3)若此时图中尚有顶点未被访问,则从⼀个未被访问的顶点出发,重新进⾏深度优先遍历,直到图中所有顶点均被访问过为⽌。
可以看出,深度优先算法使⽤递归即可实现。
2、⽆向图的深度优先搜索 下⾯以⽆向图为例,进⾏深度优先搜索遍历: 遍历过程: 所以遍历结果是:A→C→B→D→F→G→E。
3、有向图的深度优先搜索 下⾯以有向图为例,进⾏深度优先遍历: 遍历过程: 所以遍历结果为:A→B→C→E→D→F→G。
⼆、⼴度优先搜索(Breadth First Search) 1、介绍 ⼴度优先搜索(BFS)是图的另⼀种遍历⽅式,与DFS相对,是以⼴度优先进⾏搜索。
简⾔之就是先访问图的顶点,然后⼴度优先访问其邻接点,然后再依次进⾏被访问点的邻接点,⼀层⼀层访问,直⾄访问完所有点,遍历结束。
2、⽆向图的⼴度优先搜索 下⾯是⽆向图的⼴度优先搜索过程: 所以遍历结果为:A→C→D→F→B→G→E。
3、有向图的⼴度优先搜索 下⾯是有向图的⼴度优先搜索过程: 所以遍历结果为:A→B→C→E→F→D→G。
三、两者实现⽅式对⽐ 深度优先搜索⽤栈(stack)来实现,整个过程可以想象成⼀个倒⽴的树形:把根节点压⼊栈中。
每次从栈中弹出⼀个元素,搜索所有在它下⼀级的元素,把这些元素压⼊栈中。
并把这个元素记为它下⼀级元素的前驱。
广度优先和深度优先的例子
广度优先和深度优先的例子广度优先搜索(BFS)和深度优先搜索(DFS)是图遍历中常用的两种算法。
它们在解决许多问题时都能提供有效的解决方案。
本文将分别介绍广度优先搜索和深度优先搜索,并给出各自的应用例子。
一、广度优先搜索(BFS)广度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,逐层扩展,先访问起始节点的所有邻居节点,再依次访问其邻居节点的邻居节点,直到遍历完所有节点或找到目标节点。
例子1:迷宫问题假设有一个迷宫,迷宫中有多个房间,每个房间有四个相邻的房间:上、下、左、右。
现在我们需要找到从起始房间到目标房间的最短路径。
可以使用广度优先搜索算法来解决这个问题。
例子2:社交网络中的好友推荐在社交网络中,我们希望给用户推荐可能认识的新朋友。
可以使用广度优先搜索算法从用户的好友列表开始,逐层扩展,找到可能认识的新朋友。
例子3:网页爬虫网页爬虫是搜索引擎抓取网页的重要工具。
爬虫可以使用广度优先搜索算法从一个网页开始,逐层扩展,找到所有相关的网页并进行抓取。
例子4:图的最短路径在图中,我们希望找到两个节点之间的最短路径。
可以使用广度优先搜索算法从起始节点开始,逐层扩展,直到找到目标节点。
例子5:推荐系统在推荐系统中,我们希望给用户推荐可能感兴趣的物品。
可以使用广度优先搜索算法从用户喜欢的物品开始,逐层扩展,找到可能感兴趣的其他物品。
二、深度优先搜索(DFS)深度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,沿着一条路径一直走到底,直到不能再继续下去为止,然后回溯到上一个节点,继续探索其他路径。
例子1:二叉树的遍历在二叉树中,深度优先搜索算法可以用来实现前序遍历、中序遍历和后序遍历。
通过深度优先搜索算法,我们可以按照不同的遍历顺序找到二叉树中所有节点。
例子2:回溯算法回溯算法是一种通过深度优先搜索的方式,在问题的解空间中搜索所有可能的解的算法。
回溯算法常用于解决组合问题、排列问题和子集问题。
例子3:拓扑排序拓扑排序是一种对有向无环图(DAG)进行排序的算法。
图的搜索与应用实验报告(附源码)(word文档良心出品)
哈尔滨工业大学计算机科学与技术学院实验报告课程名称:数据结构与算法课程类型:必修实验项目名称:图的搜索与应用实验题目:图的深度和广度搜索与拓扑排序设计成绩报告成绩指导老师一、实验目的1.掌握图的邻接表的存储形式。
2.熟练掌握图的搜索策略,包括深度优先搜索与广度优先搜索算法。
3.掌握有向图的拓扑排序的方法。
二、实验要求及实验环境实验要求:1.以邻接表的形式存储图。
2.给出图的深度优先搜索算法与广度优先搜索算法。
3.应用搜索算法求出有向图的拓扑排序。
实验环境:寝室+机房+编程软件(NetBeans IDE 6.9.1)。
三、设计思想(本程序中的用到的所有数据类型的定义,主程序的流程图及各程序模块之间的调用关系)数据类型定义:template <class T>class Node {//定义边public:int adjvex;//定义顶点所对应的序号Node *next;//指向下一顶点的指针int weight;//边的权重};template <class T>class Vnode {public:T vertex;Node<T> *firstedge;};template <class T>class Algraph {public:Vnode<T> adjlist[Max];int n;int e;int mark[Max];int Indegree[Max];};template<class T>class Function {public://创建有向图邻接表void CreatNalgraph(Algraph<T>*G);//创建无向图邻接表void CreatAlgraph(Algraph<T> *G);//深度优先递归搜索void DFSM(Algraph<T>*G, int i);void DFS(Algraph<T>* G);//广度优先搜索void BFS(Algraph<T>* G);void BFSM(Algraph<T>* G, int i);//有向图的拓扑排序void Topsort(Algraph<T>*G);/得到某个顶点内容所对应的数组序号int Judge(Algraph<T>* G, T name); };主程序流程图:程序开始调用关系:主函数调用五个函数 CreatNalgraph(G)//创建有向图 DFS(G) //深度优先搜索 BFS(G) //广度优先搜索 Topsort(G) //有向图拓扑排序 CreatAlgraph(G) //创建无向图其中 CreatNalgraph(G) 调用Judge(Algraph<T>* G, T name)函数;DFS(G)调用DFSM(Algraph<T>* G , int i)函数;BFS(G) 调用BFSM(Algraph<T>* G, int k)函数;CreatAlgraph(G) 调选择图的类型无向图有向图深 度 优 先 搜 索广度优先搜索 深 度 优 先 搜 索 广度优先搜索拓 扑 排 序程序结束用Judge(Algraph<T>* G, T name)函数。
广度优先搜索算法利用广度优先搜索解决的最短路径问题
广度优先搜索算法利用广度优先搜索解决的最短路径问题广度优先搜索算法(BFS)是一种图算法,用于解决最短路径问题。
其主要思想是从起始节点开始,不断扩展和访问其邻居节点,直到找到目标节点或者遍历完所有节点。
BFS算法可以用于解决许多问题,其中包括最短路径问题。
下面将介绍广度优先搜索算法的基本原理及其应用于最短路径问题的具体步骤。
同时,通过示例来进一步说明算法的执行过程和实际应用。
一、广度优先搜索算法原理广度优先搜索算法是一种层次遍历的算法,它从起始节点开始,按照距离递增的顺序,依次遍历节点。
在遍历的过程中,任意两个节点之间的距离不超过2,因此,BFS算法可以用于求解最短路径问题。
二、广度优先搜索算法的具体步骤1. 创建一个队列,用于存储待访问的节点。
2. 将起始节点放入队列中,并将其标记为已访问。
3. 当队列不为空时,执行以下步骤:a. 从队列中取出一个节点。
b. 访问该节点,并根据需求进行相应操作。
c. 将该节点的所有未访问过的邻居节点放入队列中,并将它们标记为已访问。
d. 重复步骤a~c,直到队列为空。
4. 完成以上步骤后,如果找到目标节点,则算法终止;否则,表示目标节点不可达。
三、广度优先搜索算法在最短路径问题中的应用最短路径问题是指从一个节点到另一个节点的最短路径,其长度可以通过广度优先搜索算法得到。
考虑以下示例:假设有一个迷宫,迷宫由多个格子组成,其中一些格子是墙壁,不可通过,而其他格子可以自由通行。
任务是找到从起始格子到达目标格子的最短路径。
利用广度优先搜索算法解决最短路径问题的具体步骤如下:1. 创建一个队列,并将起始格子放入队列中。
2. 将起始格子标记为已访问。
3. 当队列不为空时,执行以下步骤:a. 从队列中取出一个格子。
b. 如果该格子是目标格子,则算法终止。
c. 否则,获取该格子的邻居格子,并将未访问过的邻居格子放入队列中。
d. 将该格子的邻居格子标记为已访问。
e. 重复步骤a~d,直到队列为空。
广度优先搜索详解及应用场景
广度优先搜索详解及应用场景广度优先搜索(BFS)是一种图遍历算法,用于在图或树中遍历节点。
它从根节点开始,并按照离根节点的距离逐层访问节点,直到找到目标节点或遍历完整个图。
BFS算法采用队列数据结构来实现,它按照先进先出(FIFO)的原则遍历节点。
下面我们将详细介绍BFS的执行步骤,并探讨其应用场景。
1. 步骤:a. 创建一个空队列,并将根节点入队。
b. 从队列中取出第一个节点,并访问该节点。
c. 将该节点的所有未访问过的邻居节点入队。
d. 标记当前节点为已访问。
e. 重复步骤b-d,直到队列为空或者找到目标节点。
2. 应用场景:a. 最短路径:BFS可以用于寻找两个节点之间的最短路径。
在无权图中,BFS会按照距离逐层遍历,当找到目标节点时,路径的层数即为最短路径长度。
b. 连通性检测:BFS可以判断图中两个节点是否连通。
通过遍历所有节点,如果能够访问到目标节点,则说明两个节点是连通的。
c. 图的遍历:BFS可以用于遍历整个图的节点。
通过BFS算法,可以按照节点的层次顺序进行遍历,并获取图的结构信息。
d. 二叉树的层次遍历:BFS可用于二叉树的层次遍历,从上到下逐层访问二叉树的节点。
总结:广度优先搜索是一种有效的图遍历算法,通过队列实现节点的层次遍历。
它可以在图中寻找最短路径,判断节点的连通性,以及进行图的遍历和二叉树的层次遍历。
对于涉及层次关系和连通性的问题,BFS 是一种重要的算法工具。
通过掌握BFS算法的原理和应用场景,我们可以更好地应用它来解决实际问题。
在实际开发中,我们可以将BFS应用于推荐系统、社交网络分析、路径规划等领域,进一步提升算法的效率和准确性。
总之,广度优先搜索作为一种重要的图遍历算法,具有广泛的应用前景。
在日常的学习和实践中,我们应该深入理解BFS的原理,并善于运用它解决各种实际问题。
搜索算法二分查找深度优先搜索和广度优先搜索
搜索算法二分查找深度优先搜索和广度优先搜索搜索算法:二分查找、深度优先搜索和广度优先搜索引言:搜索算法是计算机科学中重要的算法之一,它用来在给定的数据集中查找特定的元素或解决某个问题。
本文将重点介绍三种常用的搜索算法:二分查找、深度优先搜索和广度优先搜索。
通过对这些算法的介绍,读者将了解它们的原理、特点以及应用场景,从而更好地理解搜索算法的工作原理及其在实际开发中的应用。
一、二分查找二分查找(Binary Search)是一种高效的查找算法,它适用于有序数组。
算法的基本思路是从数组的中间元素开始比较,如果要查找的元素小于中间元素,则去数组的左半部分继续查找,否则去数组的右半部分继续查找。
通过不断缩小查找范围,最终可以找到目标元素或确定目标元素不存在于数组中。
二、深度优先搜索深度优先搜索(Depth First Search,DFS)是一种用于遍历或搜索树或图的算法。
它从起始节点开始,尽可能深地访问每个节点的未访问邻居,直到遇到无法继续前进的节点,然后回溯到上一个节点,继续深入访问其他未访问的节点,直到所有节点都被访问完毕。
DFS通常采用递归或栈的方式实现。
三、广度优先搜索广度优先搜索(Breadth First Search,BFS)也是一种用于遍历或搜索树或图的算法。
与深度优先搜索不同,BFS先访问起始节点的所有邻居节点,然后再访问邻居节点的邻居节点,依次向外拓展。
BFS通常采用队列的方式实现。
四、二分查找的应用场景1. 在有序数组中查找指定元素。
由于二分查找的时间复杂度为O(logN),因此它在处理大规模数据集时非常高效。
例如,在一个包含百万个元素的数组中,通过二分查找可以迅速确定某个元素是否存在。
五、深度优先搜索的应用场景1. 图的遍历。
深度优先搜索可以用来遍历图的所有节点,查找特定节点或判断两个节点之间是否存在路径。
例如,可以使用DFS查找一个社交网络中与某个人关系最近的所有人。
六、广度优先搜索的应用场景1. 最短路径问题。
C++算法-8.广度优先搜索
int main() { int i,j; char s[100],ch; scanf("%d%d\n",&m,&n); for (i=0; i<=m-1;i++ ) for (j=0;j<=n-1;j++ ) bz[i][j]=1; //初始化 for (i=0;i<=m-1;i++) { gets(s); for (j=0;j<=n-1;j++) if (s[j]=='0') bz[i][j]=0; } for (i=0;i<=m-1;i++) for (j=0;j<=n-1;j++) if (bz[i][j]) doit(i,j); //在矩阵中寻找细胞 printf("NUMBER of cells=%d",num); return 0; }
void doit() { int head,tail,i; head=0;tail=1; //队首为0、队尾为1 a[1]=1; //记录经过的城市 b[1]=0; //记录前趋城市 s[1]=1; //表示该城市已经到过 do //步骤2 { head++; //队首加一,出队 for (i=1;i<=8;i++) //搜索可直通的城市 if ((ju[a[head]][i]==0)&&(s[i]==0)) //判断城市是否走过 { tail++; //队尾加一,入队 a[tail]=i; b[tail]=head; s[i]=1; if (i==8) { out(tail);head=tail;break; //第一次搜到H城市时路线最短 } } }while (head<tail); } int main() //主程序 { memset(s,false,sizeof(s)); doit(); //进行Bfs操作 return 0; }
广度优先算法和迪杰斯特拉算法
一、引言在计算机科学领域,广度优先算法和迪杰斯特拉算法是两种常用的图算法。
它们分别用于解决不同类型的问题,但都是优化路径的算法。
本文将首先介绍广度优先算法和迪杰斯特拉算法的基本原理和特点,然后比较两种算法的异同点,最后分别探讨它们在实际应用中的使用场景和注意事项。
二、广度优先算法的原理和特点1. 广度优先搜索算法,简称BFS(Breadth-First Search),是一种用于图中节点搜索的算法。
它从图的起始节点开始,逐层遍历图中的节点,直到找到目标节点为止。
2. BFS算法是以队列的方式进行遍历,先访问当前节点的所有邻居节点,然后再以同样的方式访问邻居节点的邻居节点,以此类推,直到找到目标节点或者遍历完整个图。
3. 广度优先算法适用于解决无权图中的最短路径问题,因为它能够确保在遍历过程中找到的路径是最短的。
4. 由于广度优先算法需要记录和遍历所有已经访问过的节点,因此对于大规模的图来说,它的空间复杂度较高。
三、迪杰斯特拉算法的原理和特点1. 迪杰斯特拉算法,简称Dijkstra算法,是一种用于解决带权图中最短路径问题的算法。
它是以图中某一节点为起始点,求解该节点到其它所有节点的最短路径。
2. Dijkstra算法通过维护一个距离数组来记录起始节点到其他节点的最短距离,并通过贪心思想逐步更新最短距离。
3. 迪杰斯特拉算法的时间复杂度为O(V^2),其中V为图中节点的数量。
当图中的节点数量较大时,该算法的效率会有所下降。
4. 与广度优先算法相比,迪杰斯特拉算法的空间复杂度相对较低,因为它只需记录起始节点到其他节点的最短距离。
四、广度优先算法与迪杰斯特拉算法的比较1. 适用范围:广度优先算法适用于解决无权图中的最短路径问题,而迪杰斯特拉算法适用于解决带权图中的最短路径问题。
2. 时间复杂度:广度优先算法的时间复杂度为O(V+E),其中V为图中节点的数量,E为图中边的数量;而迪杰斯特拉算法的时间复杂度为O(V^2)或O(ElogV)。
深度优先搜索和广度优先搜索
深度优先搜索和广度优先搜索深度优先搜索(DFS)和广度优先搜索(BFS)是图论中常用的两种搜索算法。
它们是解决许多与图相关的问题的重要工具。
本文将着重介绍深度优先搜索和广度优先搜索的原理、应用场景以及优缺点。
一、深度优先搜索(DFS)深度优先搜索是一种先序遍历二叉树的思想。
从图的一个顶点出发,递归地访问与该顶点相邻的顶点,直到无法再继续前进为止,然后回溯到前一个顶点,继续访问其未被访问的邻接顶点,直到遍历完整个图。
深度优先搜索的基本思想可用以下步骤总结:1. 选择一个初始顶点;2. 访问该顶点,并标记为已访问;3. 递归访问该顶点的邻接顶点,直到所有邻接顶点均被访问过。
深度优先搜索的应用场景较为广泛。
在寻找连通分量、解决迷宫问题、查找拓扑排序等问题中,深度优先搜索都能够发挥重要作用。
它的主要优点是容易实现,缺点是可能进入无限循环。
二、广度优先搜索(BFS)广度优先搜索是一种逐层访问的思想。
从图的一个顶点出发,先访问该顶点,然后依次访问与该顶点邻接且未被访问的顶点,直到遍历完整个图。
广度优先搜索的基本思想可用以下步骤总结:1. 选择一个初始顶点;2. 访问该顶点,并标记为已访问;3. 将该顶点的所有邻接顶点加入一个队列;4. 从队列中依次取出一个顶点,并访问该顶点的邻接顶点,标记为已访问;5. 重复步骤4,直到队列为空。
广度优先搜索的应用场景也非常广泛。
在求最短路径、社交网络分析、网络爬虫等方面都可以使用广度优先搜索算法。
它的主要优点是可以找到最短路径,缺点是需要使用队列数据结构。
三、DFS与BFS的比较深度优先搜索和广度优先搜索各自有着不同的优缺点,适用于不同的场景。
深度优先搜索的优点是在空间复杂度较低的情况下找到解,但可能陷入无限循环,搜索路径不一定是最短的。
广度优先搜索能找到最短路径,但需要保存所有搜索过的节点,空间复杂度较高。
需要根据实际问题选择合适的搜索算法,例如在求最短路径问题中,广度优先搜索更加合适;而在解决连通分量问题时,深度优先搜索更为适用。
深度优先遍历算法和广度优先遍历算法实验小结
深度优先遍历算法和广度优先遍历算法实验小结一、引言在计算机科学领域,图的遍历是一种基本的算法操作。
深度优先遍历算法(Depth First Search,DFS)和广度优先遍历算法(Breadth First Search,BFS)是两种常用的图遍历算法。
它们在解决图的连通性和可达性等问题上具有重要的应用价值。
本文将从理论基础、算法原理、实验设计和实验结果等方面对深度优先遍历算法和广度优先遍历算法进行实验小结。
二、深度优先遍历算法深度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,沿着一条路径一直向前直到不能再继续前进为止,然后退回到上一个节点,尝试下一个节点,直到遍历完整个图。
深度优先遍历算法通常使用栈来实现。
以下是深度优先遍历算法的伪代码:1. 创建一个栈并将起始节点压入栈中2. 将起始节点标记为已访问3. 当栈不为空时,执行以下步骤:a. 弹出栈顶节点,并访问该节点b. 将该节点尚未访问的邻居节点压入栈中,并标记为已访问4. 重复步骤3,直到栈为空三、广度优先遍历算法广度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,依次类推,直到遍历完整个图。
广度优先遍历算法通常使用队列来实现。
以下是广度优先遍历算法的伪代码:1. 创建一个队列并将起始节点入队2. 将起始节点标记为已访问3. 当队列不为空时,执行以下步骤:a. 出队一个节点,并访问该节点b. 将该节点尚未访问的邻居节点入队,并标记为已访问4. 重复步骤3,直到队列为空四、实验设计本次实验旨在通过编程实现深度优先遍历算法和广度优先遍历算法,并通过对比它们在不同图结构下的遍历效果,验证其算法的正确性和有效性。
具体实验设计如下:1. 实验工具:使用Python编程语言实现深度优先遍历算法和广度优先遍历算法2. 实验数据:设计多组图结构数据,包括树、稠密图、稀疏图等3. 实验环境:在相同的硬件环境下运行实验程序,确保实验结果的可比性4. 实验步骤:编写程序实现深度优先遍历算法和广度优先遍历算法,进行多次实验并记录实验结果5. 实验指标:记录每种算法的遍历路径、遍历时间和空间复杂度等指标,进行对比分析五、实验结果在不同图结构下,经过多次实验,分别记录了深度优先遍历算法和广度优先遍历算法的实验结果。
广度优先搜索的原理及应用
广度优先搜索的原理及应用一、原理介绍广度优先搜索(Breadth-First Search, BFS)是一种图搜索算法,也是图的遍历算法之一。
该算法从图的起始顶点开始,依次访问其邻接顶点,再依次访问邻接顶点的邻接顶点,直到访问完所有可以访问到的顶点为止。
通过使用队列(Queue)来辅助实现,可确保访问顺序符合广度优先的原则。
广度优先搜索的核心思想是先访问距离起始顶点最近的顶点,在逐渐扩展距离起点更远的顶点。
在实际应用中,广度优先搜索常用于解决以下问题:1.寻找最短路径,即在图中寻找从起点到终点的最短路径。
2.检测图中是否存在环,即判断图是否为无环图。
3.求解迷宫问题,即通过搜索寻找从起点到终点的路径。
二、应用场景广度优先搜索在许多领域都有着广泛的应用。
以下是一些常见的应用场景:1. 搜索引擎搜索引擎使用广度优先搜索算法来遍历网页的链接,以便建立网页的链接图。
通过这个链接图,搜索引擎可以更快地找到与特定关键词相关的网页。
2. 社交网络社交网络中的好友关系可以被看作是一个图,通过广度优先搜索可以找到与某个人距离为2的好友,即朋友的朋友。
这种应用可以用于推荐朋友、推荐加入群组等场景。
3. 迷宫求解广度优先搜索算法也可以用于解决迷宫问题。
迷宫可以看作是一个二维的网格图,每个格子可以表示一个状态。
通过广度优先搜索,可以找到从迷宫的起点到终点的最短路径,从而解决迷宫问题。
4. 规划问题在规划问题中,广度优先搜索可以用于找到最优解。
比如,在旅行销售员问题中,我们可以使用广度优先搜索算法来找到销售员需要走的最短路径。
三、算法步骤广度优先搜索的算法步骤如下:1.初始化队列,并将起始顶点入队。
2.将起始顶点标记为已访问。
3.取出队首顶点,访问该顶点,并将其未访问的邻接顶点入队。
4.如果队列不为空,重复步骤3;否则搜索结束。
四、实例演示下面通过一个实例来演示广度优先搜索的过程。
假设有以下一个图:图:A -- B| |C -- D| \\ |E -- F现在以A为起点,来进行广度优先搜索。
广度优先搜索详解
广度优先搜索详解广度优先搜索(Breadth First Search,简称BFS)是一种重要的图遍历算法,常用于解决图中的可达性问题或路径搜索问题。
本文将详细介绍广度优先搜索算法的原理、应用场景和实现步骤,并结合示例来帮助读者更好地理解和掌握这一算法。
一、算法原理广度优先搜索算法是一种基于图的搜索策略,采用了“先搜遍历起始节点的所有相邻节点,再搜索遍历这些节点的相邻节点,依此类推”的方式,以广度优先的方式逐层遍历整个图结构。
具体来说,广度优先搜索算法通过使用队列(Queue)这种数据结构来实现,将起始节点放入队列中,然后从队列中依次取出节点,并将其所有相邻节点加入队列中。
这样,一层一层地遍历直到队列为空。
二、应用场景广度优先搜索算法在很多领域都有广泛的应用,以下是几个常见的应用场景:1. 最短路径问题:广度优先搜索算法可以用来确定两个节点之间的最短路径。
通过在遍历过程中记录路径信息,可以找到从起始节点到目标节点的最短路径。
2. 连通性问题:广度优先搜索算法可以用来判断两个节点之间是否存在路径。
如果两个节点可以通过广度优先搜索遍历到的路径相连,则它们之间存在路径。
3. 图的遍历:广度优先搜索算法可以用来遍历整个图结构,查找图中的特定节点或执行某种操作。
三、算法实现步骤下面是广度优先搜索算法的实现步骤:1. 创建一个队列,并将起始节点放入队列中。
2. 创建一个集合,用于记录已访问过的节点。
3. 循环执行以下操作,直到队列为空:a) 从队列中取出一个节点。
b) 如果该节点已经被访问过,则跳过该节点。
c) 将该节点标记为已访问,并将其所有相邻未访问过的节点加入队列中。
4. 遍历结束后,已访问过的节点集合即为广度优先搜索的结果。
四、示例说明为了更好地理解广度优先搜索算法的实现过程,下面以一个简单的图结构为例进行说明。
假设有如下图所示的图结构:(这里省略了图的具体形状,用文字描述)A——B——C——D——E| |F G根据广度优先搜索算法的步骤,我们可以按照以下流程进行遍历:1. 将起始节点A放入队列中。
数据结构与算法(13):深度优先搜索和广度优先搜索
2.2.2 有向图的广广度优先搜索
下面面以“有向图”为例例,来对广广度优先搜索进行行行演示。还是以上面面的图G2为例例进行行行说明。
第1步:访问A。 第2步:访问B。 第3步:依次访问C,E,F。 在访问了了B之后,接下来访问B的出边的另一一个顶点,即C,E,F。前 面面已经说过,在本文文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访 问E,F。 第4步:依次访问D,G。 在访问完C,E,F之后,再依次访问它们的出边的另一一个顶点。还是按 照C,E,F的顺序访问,C的已经全部访问过了了,那么就只剩下E,F;先访问E的邻接点D,再访 问F的邻接点G。
if(mVexs[i]==ch)
return i;
return -1;
}
/* * 读取一一个输入入字符
*/
private char readChar() {
char ch='0';
do {
try {
ch = (char)System.in.read();
} catch (IOException e) {
数据结构与算法(13):深度优先搜索和 广广度优先搜索
BFS和DFS是两种十十分重要的搜索算法,BFS适合查找最优解,DFS适合查找是否存在解(或者说 能找到任意一一个可行行行解)。用用这两种算法即可以解决大大部分树和图的问题。
一一、深度优先搜索(DFS)
1.1 介绍
图的深度优先搜索(Depth First Search),和树的先序遍历比比较类似。 它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点V出发,首首先访问该顶点, 然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至至图中所有和V有路路径相通 的顶点都被访问到。若此时尚有其他顶点未被访问到,则另选一一个未被访问的顶点作起始点,重 复上述过程,直至至图中所有顶点都被访问到为止止。 显然,深度优先搜索是一一个递归的过程。
深度优先搜索和广度优先搜索的比较和应用场景
深度优先搜索和广度优先搜索的比较和应用场景在计算机科学中,深度优先搜索(DFS)和广度优先搜索(BFS)是两种常用的图搜索算法。
它们在解决许多问题时都能够发挥重要作用,但在不同的情况下具有不同的优势和适用性。
本文将对深度优先搜索和广度优先搜索进行比较和分析,并讨论它们在不同应用场景中的使用。
一、深度优先搜索(DFS)深度优先搜索是一种通过遍历图的深度节点来查找目标节点的算法。
它的基本思想是从起始节点开始,依次遍历该节点的相邻节点,直到到达目标节点或者无法继续搜索为止。
如果当前节点有未被访问的相邻节点,则选择其中一个作为下一个节点继续进行深度搜索;如果当前节点没有未被访问的相邻节点,则回溯到上一个节点,并选择其未被访问的相邻节点进行搜索。
深度优先搜索的主要优势是其在搜索树的深度方向上进行,能够快速达到目标节点。
它通常使用递归或栈数据结构来实现,代码实现相对简单。
深度优先搜索适用于以下情况:1. 图中的路径问题:深度优先搜索能够在图中找到一条路径是否存在。
2. 拓扑排序问题:深度优先搜索能够对有向无环图进行拓扑排序,找到图中节点的一个线性排序。
3. 连通性问题:深度优先搜索能够判断图中的连通分量数量以及它们的具体节点组合。
二、广度优先搜索(BFS)广度优先搜索是一种通过遍历图的广度节点来查找目标节点的算法。
它的基本思想是从起始节点开始,先遍历起始节点的所有相邻节点,然后再遍历相邻节点的相邻节点,以此类推,直到到达目标节点或者无法继续搜索为止。
广度优先搜索通常使用队列数据结构来实现。
广度优先搜索的主要优势是其在搜索树的广度方向上进行,能够逐层地搜索目标节点所在的路径。
它逐层扩展搜索,直到找到目标节点或者遍历完整个图。
广度优先搜索适用于以下情况:1. 最短路径问题:广度优先搜索能够在无权图中找到起始节点到目标节点的最短路径。
2. 网络分析问题:广度优先搜索能够在图中查找节点的邻居节点、度数或者群组。
三、深度优先搜索和广度优先搜索的比较深度优先搜索和广度优先搜索在以下方面有所不同:1. 搜索顺序:深度优先搜索按照深度优先的顺序进行搜索,而广度优先搜索按照广度优先的顺序进行搜索。
数据结构之的遍历深度优先搜索和广度优先搜索的实现和应用
数据结构之的遍历深度优先搜索和广度优先搜索的实现和应用深度优先搜索和广度优先搜索是数据结构中重要的遍历算法,它们在解决各种问题时起着关键作用。
本文将介绍深度优先搜索和广度优先搜索的实现方法以及它们的应用。
一、深度优先搜索的实现和应用深度优先搜索(Depth First Search,DFS)是一种用于图或树的遍历算法。
它的基本思想是从起始节点开始,一直沿着某一分支深入直到不能再深入为止,然后回溯到前一个节点,再沿另一分支深入,直到遍历完所有节点。
深度优先搜索可以通过递归或者栈来实现。
在实现深度优先搜索时,可以采用递归的方式。
具体的实现步骤如下:1. 创建一个访问数组,用于标记节点是否已经被访问过。
2. 从起始节点开始,将其标记为已访问。
3. 遍历当前节点的邻接节点,对于每个邻接节点,如果该节点未被访问过,则递归调用深度优先搜索函数。
4. 重复步骤3,直到所有节点都被访问过。
深度优先搜索的应用非常广泛,以下是几个常见的应用场景:1. 图的连通性判断:深度优先搜索可以用于判断图中的两个节点是否连通。
2. 拓扑排序:深度优先搜索可以用于对有向无环图进行拓扑排序,即按照一种特定的线性顺序对节点进行排序。
3. 岛屿数量计算:深度优先搜索可以用于计算给定矩阵中岛屿的数量,其中岛屿由相邻的陆地单元组成。
二、广度优先搜索的实现和应用广度优先搜索(Breadth First Search,BFS)是一种用于图或树的遍历算法。
它的基本思想是从起始节点开始,逐层遍历,先访问当前节点的所有邻接节点,然后再依次访问下一层的节点,直到遍历完所有节点。
广度优先搜索可以通过队列来实现。
在实现广度优先搜索时,可以采用队列的方式。
具体的实现步骤如下:1. 创建一个访问数组,用于标记节点是否已经被访问过。
2. 创建一个空队列,并将起始节点入队。
3. 当队列不为空时,取出队首节点,并标记为已访问。
4. 遍历当前节点的邻接节点,对于每个邻接节点,如果该节点未被访问过,则将其入队。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图的广度优先搜索的应用◆内容提要广度优先搜索是分层次搜索,广泛应用于求解问题的最短路径、最少步骤、最优方法等方面。
本讲座就最短路径问题、分酒问题、八数码问题三个典型的范例,从问题分析、算法、数据结构等多方面进行了讨论,从而形成图的广度优先搜索解决问题的模式,通过本讲座的学习,能明白什么样的问题可以采用或转化为图的广度优先搜索来解决。
在讨论过程中,还同时对同一问题进行了深层次的探讨,进一步寻求解决问题的最优方案。
◆知识讲解和实例分析和深度优先搜索一样,图的广度优先搜索也有广泛的用途。
由于广度优先搜索是分层次搜索的,即先将所有与上一层顶点相邻接的顶点搜索完之后,再继续往下搜索与该层的所有邻接而又没有访问过的顶点。
故此,当某一层的结点出现目标结点时,这时所进行的步骤是最少的。
所以,图的广度优先搜索广泛应用于求解问题的最短路径、最少步骤、最优方法等方面。
本次讲座就几个典型的范例来说明图的广度优先搜索的应用。
先给出图的广度优先搜索法的算法描述:F:=0;r:=1;L[r]:=初始值;H:=1;w:=1;bb:=true;While bb dobeginH:=h+1;g[h]:=r+1;For I:=1 to w doBeginF:=f+1;For t:=1 to 操作数doBegin⑴m:=L[f]; {出队列};⑵判断t操作对m结点的相邻结点进行操作;能则设标记bj:=0,并生成新结点;不能,则设标记bj:=1;if bj:=0 then {表示有新结点生成}beginfor k:=1 to g[h]-1 doif L[k]=新结点then {判断新扩展的结点是否以前出现过}beginbj:=1;k:=g[h]-1end;if bj<>1 then {没有出现过} beginr:=r+1;L[r]:=新结点;{新结点进队列}b[r]:=f;c[r]:=t;{并链接指针,保存操作数} end; end; end; end;w:=r+1-g[h];s:=0;{计算新生成的一层的结点数}for k:=g[h] to r do {在新生成的一层结点中,判断是否有目标结点存在} if L[k]=目标结点 then begins:=s+1; {累计解的条数} 根据链接指针求出路径; end;if s:<>0 then begin输出s 条路径;bb:=false; {设程序结束条件} end; end;例1:最短路径问题求从任意一个顶点V i 出发,对给出的图,求到达任意顶点V j (i<>j )的所有最短路径 [问题分析]1、首先用邻接表表示此图各端点的邻接关系。
2、数据结构4 78constd:array[1..8,1..4] of byte=((2,3,4,0),(1,3,7,0),(1,2,4,5),(1,3,6,0),(3,6,7,8),(4,5,8,0),(2,5,8,0),(5,6,7,0)){二维数组存放邻接表}n:array[1..8] of byte=(3,3,4,3,4,3,3,3); {存放邻接顶点数}varL:array[1..64] of byte {队列}F,r:byte {f队头指针,r队尾指针}B:array[1..64] of byte {链接表,表示某一个结点的前趋结点}G:array[1..10] of byte {表示层结点的首结点在队列开始的位置}H:byte {搜索的层次}由于搜索过的点不再进行搜索,故设置一个数组E[M]为标记,表示结点M是否访问过e:array[1..8] of 0..1;{用1表示已访问过,0表示还没有访问}c:array[1..8,1..8]of byte; {C[s,j]存储到达目标结点后各最短路径的线路}bb:Boolean {搜索结束标记}3、算法描述⑴设立初值,并令起始结点进队:f:=0;r:=1;lL[r]:=st,E[st]:=1;w:=1;h:=1;⑵将此时第h层(开始h=1,表示第一层)的w(开始时w=1,表示一个结点)顶点的顺序出队,并访问与该层各顶点相邻接但又没有访问过的顶点,同时将这些结点进队列,且设立前趋链接指针和访问过标记,若此时的结点为目标结点,则只设立前趋链接指针而不设立访问过标记⑶计算此时第h+1层的顶点个数w:=r+1-g[h],然后看该层有多少个顶点为目标结点,凡是出现目标顶点的,就将其个数累计,也就是为最短路径的条数,同时从这个目标结点按前趋链接指针将到达该目标结点的路径的各个顶点编号存入c[s,j]中,然后转⑷,若目标顶点累计个数为0,表明该层没有出现目标结点,则转⑵。
⑷打印搜索到的各条最短路径的各结点编号,并结束程序。
程序如下:(见exp7_1.pas)program exp7_1;constd:array[1..8,1..4] of byte=((2,3,4,0),(1,3,7,0),(1,2,4,5),(1,3,6,0),(3,6,7,8),(4,5,8,0),(2,5,8,0),(5,6,7,0));n:array[1..8] of byte=(3,3,4,3,4,3,3,3);varL,b:array[1..64] of byte;F,r,h,m,st,ed,I,j,t,k,s,p,w:byte;G:array[1..10] of byte;e:array[1..8] of 0..1;c:array[1..8,1..8]of byte;bb:Boolean;beginwrite('start:');readln(st);write('end:');readln(ed);fillchar(e,sizeof(e),0); {标记数组清零}fillchar(c,sizeof(c),0); {路径数组清零}f:=0;r:=1;L[r]:=st;h:=1;w:=1;bb:=true;while bb dobeginh:=h+1;g[h]:=r+1; {记录h+1层的首地址}for i:=1 to w dobeginf:=f+1;m:=L[f];e[m]:=1; {取队首结点,并设访问过标记}for t:=1 to n[m] do {依次访问m结点的相邻结点}if e[d[m,t]]=0 then {若m的相邻结点没有访问过}beginr:=r+1;L[r]:=d[m,t];b[r]:=f; {则进队列}end;end;w:=r+1-g[h]; {计算第h层的新结点数目}s:=0;for k:=g[h] to r do {检查第h层上的新结点是否存在目标结点}if L[k]=ed then {等于目标结点}begins:=s+1;p:=b[k];j:=1;c[s,j]:=L[k];while p<>1 dobegin j:=j+1;c[s,j]:=L[p];p:=b[p]; end;j:=j+1;c[s,j]:=L[p];for t:=j downto 1 doif t=1 then writeln(c[s,t]) else write(c[s,t],'-→');end;if s<>0 thenbeginwriteln(st,'-→',ed,'total=',s,'step=',j-1);bb:=false;end;end;end.输入:start:1end:8输出:1-→2-→7-→81-→3-→5-→81-→4-→6-→81-→8 total=3 step=3输入:start:2end:6输出:2-→1-→4-→6 2-→3-→4-→6 2-→3-→5-→6 2-→7-→5-→6 2-→7-→8-→6 2-→1-→4-→62-→6 total=5 step=3 推广应用(作业题1):如下图表示的是从城市A 到城市H 的交通图,从图中可以看出,从城市A 到城市H 要经过若干个城市。
现要找出一条经过城市最少的一条路线。
例2:分酒问题有一8斤酒瓶装满酒,没有量器,只有两个分别能装5斤和3斤的空酒瓶。
试设计一程序将8斤酒对分为两个4斤,并以最少的步骤给出答案。
[问题分析]1、 分析在倒酒过程中,看起来是每一次倒酒,上面的六种操作都可能进行,然而有此操作却是无意义的。
如8斤瓶空时,则8→3、8→5是无意义的。
又如8斤瓶满时,则5→8、3→8操作无意义。
因此,每次倒酒操作后,都必须知道此时三个酒瓶到底多少酒,这样才能准确判断此时何种操作不能进行,何种操作可以进行。
为了表示每操作一次后各酒瓶中的酒量,设变量M 表示8斤瓶在进行第i 操作后装的酒量,N 表示5斤瓶在进行第i 操作后装的酒量,A 表示3斤瓶在进行第i 操作后装的酒量,由于整个酒量为8,所有A=8-M-N 。
对以上六种操作能和不能进行的条件如下:8→5操作:不能进行的条件为:N=5或M=0能进行时,剩余量为:N=N+M ,此时如果N>5,则M=N-5,N=5,否则M=0 8→3操作:不能进行的条件为:8-N-M=3或M=0 能进行时,剩余量为:如果M<3-(8-M-N ),则M=0,否则M=5-N ,N 不变 5→8操作:不能进行的条件为:M=8或N=0能进行时,剩余量为:M=N+M 且N=0 5→3操作:不能进行的条件为:8-N-M=3或N=0能进行时,剩余量为:如果N<3-(8-M-N ),则N=0,否则N=5-M ,M 不变 3→8操作:不能进行的条件为:8-N-M=0或M=8 能进行时,剩余量为:M=8-N ,N 不变A B C D G E FH3→5操作:不能进行的条件为:8-N-M=0或N=5能进行时,剩余量为:N=8-M,M不变2、定义数据结构constd:array[1..6] of string[4]=(‘8->5’,’8->3’,’5->8’,’5-3’,’3-8’,’3-5’); {6种操作}varL:array[1..50,1..2] of shortint; {表示倒酒后8斤和5斤瓶中的剩余量}B:array[1..50] of shortint; {每一层的各结点的前趋结点的链指针}C: array[1..50] of shortint; {每进行一次操作的操作数}E:array[1..10,1..20] of shortint;{最少步骤的所有解中,该层各结点是由上一层各结点通过何种操作而得到的操作数}X,y:array[1..10,1..20] of shortint ;{在最少步骤所有解中,各层的结点其8斤和5斤瓶中的剩余量}G:array[1..20] of shortint; {各层结点的首结点在队列的位置}F,r,h,w,n,m:shortint; {f为队列首指针,r为队列尾指针,m,n分别表示8斤和5斤瓶中的剩余量,h为搜索的层数,w为每一层结点的个数}3、算法描述:⑴设立队首队尾指针初值,f=0,r=1。