有限元法的理论基础

合集下载

有限元的理论基础

有限元的理论基础

有限元的理论基础有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

1.加权余量法:是指采用使余量的加权函数为零求得微分方程近似解的方法称为加权余量法。

(Weigh ted residual method WRM )是一种直接从所需求解的微分方程及边界条件出发,寻求边值问题近似解的数学方法。

加权余量法是求解微分方程近似解的一种有效的方法。

设问题的控制微分方程为:在V 域内 在S 边界上式中 :L 、B ——分别为微分方程和边界条件中的微分算子;f 、g ——为与未知函数u 无关的已知函数域值;u ——为问题待求的未知函数 ()0B u g -=(5.1.2)()0L u f -=(5.1.1)混合法对于试函数的选取最方便,但在相同精度条件下,工作量最大。

对内部法和边界法必须使基函数事先满足一定条件,这对复杂结构分析往往有一定困难,但试函数一经建立,其工作量较小。

无论采用何种方法,在建立试函数时均应注意以下几点:(1)试函数应由完备函数集的子集构成。

已被采用过的试函数有幂级数、三角级数、样条函数、贝赛尔函数、切比雪夫和勒让德多项式等等。

(2)试函数应具有直到比消除余量的加权积分表达式中最高阶导数低一阶的导数连续性。

(3)试函数应与问题的解析解或问题的特解相关联。

若计算问题具有对称性,应充分利用它。

显然,任何独立的完全函数集都可以作为权函数。

按照对权函数的不同选择得到不同的加权余量计算方法,主要有:配点法、子域法、最小二乘法、力矩法和伽辽金法。

其中伽辽金法的精度最高。

2、虚功原理——平衡方程和几何方程的等效积分“弱”形式虚功原理包含虚位移原理和虚应力原理,是虚位移原理和虚应力原理的总称。

有限单元法的数学基础

有限单元法的数学基础

有限单元法的数学基础1、引言有限元方法归根结底是一种数值计算方法,它有严格的数学证明作为其近似的客观性和合理性的保证。

力学问题最终归结为一组微分方程的边值问题或者初值问题抑或是混合问题。

比如弹性静力学最终归结为L-N 方程的微分提法。

在很难或者根本不可能得到所得方程的理论解的情况下,究竟用什么样的方法才能得到方程的近似解(这种近似解已经能够满足实际工程的需要),在这种情况下,二十世纪五六十年代由结构力学家进而由数学家提出和证明了这种思想方法的合理性。

有限元方法产生于力学计算,但是,它本质上并不是力学的专利。

世间万物的变化过程很多都可以通过微分方程特别是偏微分方程来描述,也就是说,微分方程是很多现象和过程的数学结构,而大多数的微分方程是不能得到理论解的,这时候就可以使用有限元方法来求其近似解,因为有限元方法是求解微分方程(组)的数值计算方法。

它适用于力学的微分方程,也同样适用于其它领域的相应的微分方程的数值求解。

2、有限元方法数学根源对于一个给定的微分方程定解问题,为了求其近似解,我们可以使用Ritz 方法和Galerkin 方法。

下面分别阐述这两种方法,然后讨论有限元方法和他们的关系。

(1) Ritz 法Ritz 法源于最小势能原理,设H 是可分的Hilbert 空间,在H 中取有限维空间Sn ,它是由N 个线性无关向量12,,,N φφφ 张成,即:121,,(,,)NN n n i i N N i S C C C C R ωωφ=⎧⎫≡=∀∈⎨⎬⎩⎭∑用N S 代替H ,在N S 上求泛函J(w)的极值,即求N U ∈N S ,使得()N J U =min ()N N S N J ωω∈实际上寻求N U 只需通过解一个线性方程组1()(,)()02J D F ωωωω=-≥D--------双线性形式 F--------线性泛函1NN i i i C ωφ==∑111,111()(,)()21(,)()2N N NN i i i i i i i i i NN i j i j i ii j i J D C C F C D C C F C ωφφφφφφ====== =-∑∑∑∑∑-因此,()N J ω是一个以12,,,N C C C 为未知数(自变量)的二次多项式12(,,,)N j C C C ,如果二次项的系数矩阵,1,2,,[(,)]i j i j N D φφ= 是正定的,那么12(,,,)N j j C C C = 在N+1维空间是一个开口向上的椭球抛物面,它有且只有一个极(最)小值点,所谓在N S 上求()N J ω的极值,就是确定00012,,,N C C C ,使得:00012(,,,)N j C C C =1000,,12min (,,,)N C C R N j C C C ∈极值条件:ijC ∂∂|00012,,,N C C C =0 (1,,i N = ) 得:01()()ni ji i i D CF φφφ==∑ (1,,i N = )即:00012[,,,]T N C C C C = 适合方程组:KC=F11[(),,()]T F F F φφ=112111222212(,)(,)(,)(,)(,)(,)(,),(,),,(,)N N N N N N D D D D D D K D D D φφφφφφφφφφφφφφφφφφ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,,,,,, 。

数值模拟偏微分方程的三种方法:FDM、FEM及FVM

数值模拟偏微分方程的三种方法:FDM、FEM及FVM

数值模拟偏微分方程的三种方法:FDM、FEM及FVM偏微分方程数值模拟常用的方法主要有三种:有限差分方法(FDM)、有限元方法(FEM)、有限体积方法(FVM),本文将对这三种方法进行简单的介绍和比较。

有限差分方法有限差分方法(Finite Difference Methods)是数值模拟偏微分方程最早采用的方法,至今仍被广泛运用。

该方法包括区域剖分和差商代替导数两个过程。

具体地,首先将求解区域划分为差分网格,用有限个网格节点代替连续的求解区域。

其次,利用Taylor级数展开等方法将偏微分方程中的导数项在网格节点上用函数值的差商代替来进行离散,从而建立以网格节点上的值为未知量的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

差商代替导数后的格式称为有限差分格式,从格式的精度来考虑,有一阶格式、二阶格式和高阶格式。

从差分的空间离散形式来考虑,有中心格式和迎风格式。

对于瞬态方程,考虑时间方向的离散,有显格式、隐格式、交替显隐格式等。

目前常见的差分格式,主要是以上几种格式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于结构网格,网格的步长一般根据问题模型和Courant稳定条件来决定。

请输入标题有限元方法(Finite Element Methods)的基础是变分原理和分片多项式插值。

该方法的构造过程包括以下三个步骤。

首先,利用变分原理得到偏微分方程的弱形式(利用泛函分析的知识将求解空间扩大)。

其次,将计算区域划分为有限个互不重叠的单元(三角形、四边形、四面体、六面体等)。

再次,在每个单元内选择合适的节点作为求解函数的插值点,将偏微分方程中的变量改写成由各变量或其导数的节点值与所选用的分片插值基函数组成的线性表达式,得到微分方程的离散形式。

利用插值函数的局部支集性质及数值积分可以得到未知量的代数方程组。

有限元方法有较完善的理论基础,具有求解区域灵活(复杂区域)、单元类型灵活(适于结构网格和非结构网格)、程序代码通用(数值模拟软件多数基于有限元方法)等特点。

有限元法的基本原理

有限元法的基本原理

第二章有限单元法的基本原理作为一种比较成熟的数值计算方法,有限元的数学基础是变分原理。

经过半个过世纪的发展,它的数学基础已经比较完善。

从数学角度分析,有限元法是以变分原理和剖分插值为基础的数值计算方法。

它广泛的应用于解算各种类型的偏微分方程,特别对椭圆型方程,因为椭圆型方程的边值问题等价于适当的变分问题,即能量积分的级值问题。

通过变分,导出相应的泛涵,再把作用域从几何上剖分为足够小的单元,这样就能够用简单的图形去拟合复杂的边界,用简单的初等函数去模拟单元的性质。

在解算中先对每个单元进行分析,后在通过连接单元的节点对作用域的整体进行分析,就是对泛涵求极值,从而把一个复杂的偏微分方程求解问题,变成解线形代数方程组的问题。

尽管这样会出现大量的未知数,由于采用了矩阵分析的方法,总体上很有规律,适合编制程序用计算机完成。

通常的数学考虑包括这些:1)从古典变分方法原理去定义微分方程边值问题的广义解以及在古典变分方法的框架对有限元进行理论分析。

2)保证偏微分方程边值问题的提法正确,即要求解存在、唯一和稳定,即保证数值解法是可靠的。

3)有限元中重要的一点是采用了分块多项式插值函数,因此,有限元的误差估计转化为插值逼近的误差估计问题。

4)有限元的收敛性和误差估计。

由于本文是应用有限元的理论解决大地测量中的问题,因此,这里将不讨论上叙问题,而是从固体力学的基本方程出发,通过虚功原理建立起离散化的有限元方程。

另外,还以八节点六面体单元为例,简要叙述了实际中最常用的等参单元的概念及其数值变化的一些公式。

§2.1 弹性力学基本方程有限元法中经常要用到弹性力学的基本方程,这里写出这些方程的矩阵表达式。

2-1-1、平衡方程对任意一点的受力情况分析,沿坐标轴方向x, y ,z分解得到平衡方程0*00000000=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂z y xxz yz xy z y x F F F z yzz x y z y x τττσσσ 记为: 0=+F A σ其中A 是微分算子,F 是体积力向量。

有限元法基础重点归纳(精)

有限元法基础重点归纳(精)
29、常应变三角形单元:当单元确定后。矩阵B是常量,单元中任一点的应变分量也是常量的单元。
30、有限元法的任务:建立和求解整个弹性体的节点位移和节点力之间的关系的平衡方程。31、单元刚度矩阵:表达了单元节点位移与节点力之间的转换关系。
32、单元刚度矩阵的性质:①单元刚度矩阵中每个元素有明确的物理意义②K e是对称矩阵③K e的每一行或每一列元素之和为零,因此K e为奇异矩阵④K e不随单元的平行移动或作n π角度的转动而改变。33、刚度集成法集成规律:①先对每个单元求出其单元刚度矩阵K e ,而且以分块形式按节点编号顺序排列②将单元刚度矩阵扩大阶数为2n*2n ,并将单元刚度矩阵中的子块按局部码与总码的对应关系,搬到扩大后的矩阵中,形成单元贡献矩阵K e。③将所有单元贡献矩阵同一位置上的分块矩阵简单叠加成总体刚度矩阵中的一个子矩阵,各行各列都按以上步骤即形成总体刚度矩阵K。34、整体刚度矩阵的性质:①整体刚度矩阵是对称矩阵②整体刚度矩阵中每一元素的物理意义:整体刚度矩阵的第一列元素代表使第一个节点在x方向有一单元位移,而其余节点位移皆为零时必须在节点上施加的里。对于K的其余各列也有类似意义③整体刚度矩阵K的主对角线上的元素总是正的④整体刚度矩阵K是一个稀疏阵⑤整体刚度矩阵K是一个奇异阵。35、带形矩阵:整体刚度矩阵K的非零元素分布在以主对角线为中心的斜带形区域内的矩阵。
γxy
=E 1−μ
2∗
1−μ2
γxy
42、制造位移函数:{u (x,y =α1+α2x +α3y
v (x,y =α4+α5x +α6y
43、等参单元精度比四边形单元高,四边形精度比三角形精度高。
44、轴对称问题:很多工程物件,它们的几何形状承受的载荷以及约束条件都对称于其一固定轴,这即为对称轴,此时载荷作用下的位移、应变和应力也对称于该对称轴的问题。45、等参数单元:优点:①形状方位任意,适应性好,精度高,容易构造高阶单元②具有统一形式,规律性强,采用数值积分算,程序处理方便③高阶等参单元精度高,描述复杂边界,形状能力强,所需单元少。缺点:①单元各方向尺寸要尽量接近②单元边界不能过于曲折,不能有拐点折点,尽量接近直线或抛物线③边之间夹角要尽量接近直角④单元形状不能过度畸变,边中节点不能过于偏离中间。46、有限元法基础理论:弹性力学,材料力学

有限元分析的基本原理

有限元分析的基本原理

有限元分析的基本原理有限元分析法是一种通用的数值分析技术,它利用有限数目的计算元素来对结构的应力、变形以及失效的可能性进行分析,它简化了复杂的工程结构在实际受力情况下的模拟计算,可以预测出构件的性能、变形和可能失效等。

有限元分析是用数学模型来模拟生活用来模拟工程中结构抗压、抗弯、抗剪、抗疲劳等性能。

有限元分析有三个基本原理:结构变形、力学方程和材料本构方程。

首先,有限元分析的基础原理是结构变形。

结构变形是指在施加外力作用下,受力的结构的空间变形和大小的变化,它是有限元分析的基础,该原理说明了满足力学方程的解决方法如何以有限元的形式出现。

通常情况下,我们会把构件的耦合变形分成很多小的计算元(这些计算元之间有连接约束),减少变形的不确定性,从而提高分析的准确性。

其次,有限元分析的基础原理是力学方程。

满足力学方程条件的解决方案就是有限元分析,也就是把问题分解成很多小的子问题来求解。

力学方程最常见的形式是基于有限元技术的动态和静态结构分析。

动态结构分析是指结构在某个加载下的振动反应,涉及到施加外力、弹性和惯性效应。

静态结构分析则指结构在不同类型外力作用下的变形。

最后,有限元分析的基础原理是材料本构方程。

材料本构方程是指材料受拉力作用而形成变形和应力的关系,它可以用来描述材料在承受外力时的作用。

本构方程有很多不同的形式,最常用的形式是弹性体的本构方程,它说明了当受到外力作用时,材料的拉伸和压缩的反应,从而将其应用于有限元分析技术。

以上就是有限元分析的基本原理,它是构成有限元分析的基础,而且这些基本原理也被广泛应用于工程中对结构性能进行模拟和分析。

有限元分析可以帮助工程师准确地估算出结构在特定加载条件下的变形和应力,也可以帮助他们判断结构在疲劳荷载作用下是否会发生破坏。

有限元分析也可以帮助设计者更好地分析结构在复杂(多变)条件下的性能,以确定结构的最优设计。

所以,有限元分析的基本原理是工程分析的基础,合理的运用可以节约大量的时间和精力,从而达到性能最优的结构设计。

有限元法的基础理论

有限元法的基础理论

一、里兹法与迦辽金法(摘自电磁场有限元方法 金建铭) 1. 里兹法里兹法是一种变分方法,其中边值问题用变分表达式(也称泛函)表示,泛函的极小值对应于给定边界条件下的控制微分方程。

通过求泛函相对于其变量的极小值可得到近似解。

2. 伽辽金法伽辽金法属于残数加权方法类型,它通过对微分方程的残数求加权的方法得到方程的解。

若u是方程的近似解,将u 代入方程可得到非零的残数: r Luf =- u的最佳近似应能使残数r 在Ω内所有点上有最小值。

残数加权方法要求: 0i i R rd ωΩ=Ω=⎰这里i R 表示残数的加权积分,i ω是所选的加权函数。

在伽辽金法中,加权函数与近似解展开中所用的函数相同。

通常,这样可得到最精确的解。

二、有限元方法里兹法和伽辽金法中,在整个解域内找出能表示或至少近似表示问题真实解的试探函数是非常重要的。

然而对于许多问题,这个步骤是十分困难的,对二维和三维问题尤其如此。

为此,我们可将整个区域划分成小子域,并应用定义在每个子域上的试探函数。

因为子域是小区域,因而在每一子域内函数的变化不大,所以定义在子域上的试探函数通常比较简单。

这正是有限元法的基本思想。

应用里兹法的过程通常称为里兹有限元法或变分有限元法,而应用伽辽金方法的过程通常称为伽辽金有限元方法。

有限元法与经典里兹法和伽辽金法的不同之处是在试探函数的公式上。

在经典里兹法和伽辽金法中,试探函数由定义在全域上的一组基函数组成。

这种组合必须能够(至少近似)表示真实解,也必须满足适当的边界条件。

在有限元法中,试探函数是由定义在组成全域的子域上的一组基函数构成。

因为子域很小,所以定义在子域上的基函数能够十分简单。

三、关于形函数(摘自有限元法在电磁计算中的应用 张榴晨)对于一个待求的微分方程,用一组线性独立的尝试函数i ψ和待定系数i C 来表示方程的近似解,并用加权余数法(迦辽金法)来求解这些待定系数。

求解待定系数的代数方程组为:1[]1,2,,ni j i j i d C q d j n ψψψΩΩ=∇∇Ω=Ω=∑⎰⎰这里j ψ为所选择的加权函数,应用迦辽金法时,所选取的加权函数即为尝试函数。

有限元分析法概述

有限元分析法概述

第十一章 有限元分析方法概述1、基本概念有限元分析方法是随着电子计算机的发展而迅速发展起来的一种现代没计计算方法。

它是20世纪50年代首先在连续体力学领域—飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快就广泛地应用于求解热传导、电磁场、流体力学等连续性问题。

在工程分析和科学研究中,常常会遇到大量的由常微分方程、偏微分方程及相应的边界条件描述的场问题,如位移场、应力场和温度场等问题。

求解这类场问题的方法主要有两种:用解析法求得精确解;用数值解法求其近似解。

应该指出,能用解析法求出精确解的只是方程性质比较简单且几何边界相当规则的少数问题。

而对于绝大多数问题,则很少能得出解析解。

这就需要研究它的数值解法,以求出近似解。

目前工程中实用的数值解法主要有三种:有限差分法、有限元法和边界元法。

其中,以有限元法通用性最好,解题效率高,目前在工程中的应用最为广泛。

下面通过一个具体例子,分别采用解析法和数值解法进行求解,从而体会一下有限元分析方法的含义及其相关的一些基本概念。

如下图所示为一变横截面杆,杆的一端固定,另一端承受负荷P ,试求杆沿长度方向任一截面的变形大小。

其中,杆的上边宽度为1w ,下边宽度为2w ,厚度为t ,长度为L ,杆的材料弹性模量为E 。

已知P =4450N ,1w =50mm ,2w =25mm ,t =3mm ,L =250mm ,E =72GPa 。

① 采用解析法精确求解假设杆任一横截面面积为)(y A ,其上平均应力为σ,应变为ε。

根据静力平衡条件有:0)(=-y A P σ根据虎克定律有:εσE =而任一横截面面积为:t y L w w w y A )()(121-+= 任一横截面产生的应变为:dydu=ε将上述方程代入静力平衡条件,进行变换后有:dy y EA Pdu )(=沿杆的长度方向对上式两边进行积分,可得:⎰⎰⎰-+==y yudy y Lw w w Et P dy y EA P du 01210)()(将)(y A 表达式代入上式,并对两边进行积分,得杆沿长度方向任一横截面的变形量:]ln )[ln()()(112112w y Lw w w w w Et PL y u --+-=当y 分别取0、62.5、125、187.5、250值时,变截面杆相应横截面处的沿杆长方向的变形量分别为:m u m u m u m u m u 6564636211080.142 ;1083.96 ;1027.59 ;1051.27 ;0----⨯=⨯=⨯=⨯==② 采用数值解法近似求解将变横截面杆沿长度方向分成独立的4小段,每一小段采用等截面直杆近似,等截面直杆的横截面面积为相应的变截面杆横截面面积的平均面积表示,每一小段称为一个单元,小段之间通过节点连接起来。

有限元法的理论基础

有限元法的理论基础

有限元法的理论基础有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。

能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。

下面介绍有限元法中经常使用的虚位移原理和最小势能原理。

1.虚位移原理虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。

反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。

可以看出,虚位移原理等价于平衡微分方程与力学边界条件。

所以虚位移原理表述了力系平衡的必要而充分的条件。

虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。

2.最小势能原理最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。

根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。

最小势能原理仅适用于弹性力学问题。

2.2有限元法求解问题的基本步骤弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。

2.2.1问题的分类求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么?比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。

对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。

2.2.2建模在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。

有限元基础及应用PPT.

有限元基础及应用PPT.
设想一下该工作需要的知识水平和技能,看是否可能通过本次招聘为单位注入新知识、新技能?还要考虑该工作是否需要较强的沟通
传热学; 技巧,比如是否需要与客户或其他部门密切联系?
做到专业
电磁场; 1 请学生说说遇到地震时我们该如何自护自救。
师:那么今天我们就一起来研究食物的变质!然后师生大声齐读课题
流体力学 ; (5)乘车时不要看书,否则会损害眼睛。
(二)应用实例
3.1.1记录下你的直觉
2.5.7技能测有试 限元法已经成功地应用在以下一些领域:
(7)参加篮球、足球等项目的训练时,要学会保护自己,也不要在争抢中蛮干而伤及他人。
固体力学:包括强度、稳定性、振动和瞬态问 1、先用清水将伤口周围的泥土、污物、血块彻底冲洗干净,再用淡盐水冲洗(消毒药水)冲洗伤口。 题的分析; 我们常用的一节电池的电压为1.5伏;民用电压为220伏;工业用电为380伏;高压输电电压在万伏以上。
预算紧张迫使重新评估
写回绝信:不能给未被录取的应聘者尽快寄回绝信,会让人感觉到你的公司没有礼貌,管理混乱。
1.1.4搜集信息
神经毒者,血循毒者,混和毒者。
临床表现:三种毒素致病的局部和全身的表现特征。
请您回答下面的问题。
教学难点:
两个雇员齐心协力共同完成主管指定的任务。
(4)利用结构力的平衡条件和边界条件把各个 单元按原来的结构重新连接起来,集合成整体 的有限元方程,求解出节点位移。
重点:对于不同的结构,要采用不同的单元,但 各种单元的分析方法又是一致的。
四、有限元法的学习路线
从最简单的杆、梁及平面结构入 手,由浅入深,介绍有限元理论以 及应用。利用ANSYS软件分析问题。
这两个问题非常具有普遍性和代表性,是我们在汽车销售的过程中经常遇到的问题。

第一章 有限元法的理论基础

第一章 有限元法的理论基础
k12 " k1i " k1n ⎤ ⎡ δ1 ⎤ ⎫ ⎢δ ⎥ ⎪ k22 " k2i " k2 n ⎥ ⎥ ⎢ 2 ⎥⎪ # " # " # ⎥ ⎢ # ⎥⎪ ⎪ ⎥ ⎢ ⎥⎬ ki 2 " kii " kin ⎥ ⎢ δ i ⎥⎪ # " # " # ⎥ ⎢ # ⎥⎪ ⎥ ⎢ ⎥⎪ kn 2 " kni " knn ⎥ ⎪ ⎦⎢ ⎣δ n ⎥ ⎦⎭
法得到了广泛的应用。本课程主要介绍位移法。
9/23/2014 北京航空航天大学 17
第1章 有限元法的理论基础__简例
♦梯形悬臂梁的有限元分析:
(1)结构离散化
假定:梁的长度比宽度大得多,为简单均匀的梁单元。
9/23/2014
北京航空航天大学
18
第1章 有限元法的理论基础__简例
♦梯形悬臂梁的有限元分析:
9/23/2014 北京航空航天大学 2
第1章 有限元法的理论基础__概述 ¾刚度矩阵: 对n个点,可写出n个表示式
写成矩阵形式为
⎡ F1 ⎤ ⎡ k11 ⎢ F ⎥ ⎢k ⎢ 2 ⎥ ⎢ 21 ⎢" ⎥ ⎢ # ⎢ ⎥= ⎢ ⎢ Fi ⎥ ⎢ ki1 ⎢" ⎥ ⎢ # ⎢ ⎥ ⎢ ⎢ ⎣ Fn ⎥ ⎦ ⎢ ⎣ kn1
[ p]
式中
9/23/2014
= [ k ] [δ ]
e
e
⎡ k1 e k = [ ] ⎢ ⎣ − k1
− k1 ⎤ ⎡ k11 =⎢ ⎥ k1 ⎦ ⎣ k21
k12 ⎤ k22 ⎥ ⎦
为单元刚度矩阵
8
北京航空航天大学
第1章 有限元法的理论基础__简例

《有限元法基础讲义》课件

《有限元法基础讲义》课件

常见材料本构关系及其有限元 表示
讨论了不同材料的本构关系和应力-应变关系,以及如何将它们表示为有限元 模型中的材料属性。
有限元网格划分与质量控制
讲解了有效的有限元网格划分算法、质量控制策略和改善网格质量的技巧, 以提高计算结果的精确性和稳定性。
有限元求解算法
探索了常用的有限元求解算法,包括直接法和迭代法,以及并行计算和加速 技术。
《有限元法基础讲义》 PPT课件
通过《有限元法基础讲义》PPT课件,我们深入探讨了有限元法的各个方面, 包括基础概述、一维到三维有限元法、材料本构关系、网格划分与质量控制、 求解算法、静态与动态分析,以及在结构、流体力学、热传导和电磁场中的 应用。
有限元法基础概述
介绍了有限元法的定义、原理和应用领域,以及有限元分析的基本步骤和注意事项。
一维有限元法
详细讲解了一维有限元法的原理、单元类型、边界条件的处理方法,并演示 了一维结构的有限元分析过程。
二维有限元法
探讨了二维有限元法的理论基础、常见单元类型、网格生成算法,以及处理复杂边界条件和材料非线性性的技 巧。
三维有限元法
介绍了三பைடு நூலகம்有限元法的基本原理、常用稳定性判据、网格生成策略,以及处理大规模问题和高性能计算的方法。
静态分析与动态分析
介绍了有限元法在静态和动态分析中的应用,如结构强度分析、模态分析和 响应谱分析等。

(完整版)有限元法的基本原理

(完整版)有限元法的基本原理

第二章有限元法的基本原理有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。

有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。

2.1等效积分形式与加权余量法加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。

在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。

2.1.1微分方程的等效积分形式工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组⎛A 1(u )⎫ ⎪A (u )= A 2(u )⎪=0(在Ω内)(2-1) M ⎪⎝⎭域Ω可以是体积域、面积域等,如图2-1所示。

同时未知函数u 还应满足边界条件⎛B 1(u )⎫ ⎪B (u )= B 2(u )⎪=0(在Γ内)(2-2)M ⎪⎝⎭要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。

A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。

微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。

所以在以上两式中采用了矩阵形式。

以二维稳态的热传导方程为例,其控制方程和定解条件如下:A (φ)=∂∂φ∂∂φ(k )+(k )+q =0(在Ω内)(2-3)∂x ∂x ∂y ∂y⎧φ-φ=0⎪B(φ)=⎨∂φ-q=0⎪k⎩∂n (在Γφ上)(在Γq上)(2-4)这里φ表示温度(在渗流问题中对应压力);k是流度或热传导系数(在渗流问题中对应流度K/μ);φ和q是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n是有关边界Γ的外法线方向;q是源密度(在渗流问题中对应井的产量)。

有限元分析理论基础

有限元分析理论基础

有限元分析概念有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件有限元模型:它是真实系统理想化的数学抽象。

由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。

有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。

并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。

线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。

在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。

如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。

线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。

非线性问题与线弹性问题的区别:1)非线性问题的方程是非线性的,一般需要迭代求解;2)非线性问题不能采用叠加原理;3)非线性问题不总有一致解,有时甚至没有解。

有限元求解非线性问题可分为以下三类:1)材料非线性问题材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。

由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。

在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。

2)几何非线性问题几何非线性问题是由于位移之间存在非线性关系引起的。

当物体的位移较大时,应变与位移的关系是非线性关系。

研究这类问题一般都是假定材料的应力和应变呈线性关系。

它包括大位移大应变及大位移小应变问题。

有限元基本理论

有限元基本理论

一、有限单元法的基本思想(1)将一个连续域化为有限个单元并通过有限个结点相连接的等效集合体。

由于单元能按照不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。

(2)有限元法利用在每一个单元内假设的近似函数来分片地表示全求解域上待求的未知场数。

单元内的近似函数由未知场函数在单元的各个结点的数值和其插值函数来表达。

(3)一个问题的有限元分析中,未知场函数在各个结点上的数值就成为新的未知量,从而使一个连续的无限自由度问题变成离散的有限自由度问题。

(4)一经求解出这些未知量,就可以通过插值函数计算出各个单元内场函数的近似值,从而得到整个求解域上的近似解。

显然,随着单元数目的增加,也即单元尺寸的缩小,或者随着单元自由度的增加以及插值函数精度的提高,解的近似程度将不断改进,如果单元是满足收敛要求的,近似解最后将收敛于精确解。

图1 有限元分析流程图二、有限元分析过程概述1 结构的离散化结构的离散化是有限单元法分析的第一步,它是有限单元法的基本概念。

所谓离散化简单地说,就是将要分析的结构物分割成有限个单元体,并在单元体的指定点设置结点,使相邻单元的有关参数具有一定的连续性,并构成一个单元的集合体,以它代替原来的结构。

如果分析的对象是桁架,那么这种划分十分明显,可以取每根杆件作为一个单元,因为桁架本来是由杆件组成的。

但是如果分析的对象是连续体,那么为了有效地逼近实际的连续体,就需要考虑选择单元的形状和分割方案以及确定单元和结点的数目等问题。

2 选择位移模式在完成结构的离散之后,就可以对典型单元进行特性分析。

此时,为了能用结点位移表示单元体的位移、应变和应力,在分析连续体问题时,必须对单元中位移的分布作出一定的假设,也就是假定位移是坐标的某种简单的函数,这种函数称为位移模式或插值函数。

选择适当的位移函数是有限单元法分析中的关键。

通常选择多项式作为位移模式。

其原因是因为多项式的数学运算(微分和积分)比较方便,并且由于所有光滑函数的局部,都可以用多项式逼近。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元法的理论基础-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
有限元法的理论基础
有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。

能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。

下面介绍有限元法中经常使用的虚位移原理和最小势能原理。

1.虚位移原理
虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。

反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。

可以看出,虚位移原理等价于平衡微分方程与力学边界条件。

所以虚位移原理表述了力系平衡的必要而充分的条件。

虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。

2.最小势能原理
最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。

根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。

最小势能原理仅适用于弹性力学问题。

有限元法求解问题的基本步骤
弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。

2.2.1问题的分类
求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。

对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。

2.2.2建模
在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。

因此,我们可以忽略几何不规则性,把一些载荷看做是集中载荷,并把某些支撑看做是固定的。

材料可以理想化为线弹性和各向同性的。

根据问题的维数、载荷以及理论化的边界条件,我们能够决定采用梁理论、板弯曲理论、平面弹性理论或者一些其他分析理论描述结构性能。

在求解中运用分析理论简化问题,建立问题的模型。

2.2.3连续体离散化
连续体离散化,习惯上称为有限元网络划分,即将连续体划分为有限个具有规则形状的单元的集合,两相邻单元之间只通过若干点相互连接,每个连接点称为节点。

单元节点的设置、性质、数目等应视问题的性质、描述变形的需要和计算精度而定,如二维连续体的单元可为三角形、四边形,三维连续体的单元
可以是四面体、长方体和六面体等。

为合理有效地表示连续体,需要适当选择单元的类型、数目、大小和排列方式。

离散化的模型与原来模型区别在于,单元之间只通过节点相互连接、相互作用,而无其他连接。

因此这种连接要满足变形协调条件。

离散化是将一个无限多自由度的连续体转化为一个有限多自由度的离散体过程,因此必然引起误差。

主要有两类:建模误差和离散化误差。

建模误差可以通过改善模型来减少,离散化误差可通过增加单元数目来减少。

因此当单元数目较多,模型与实际比较接近时,所得的分析结果就与实际情况比较接近。

单元分析
(1)选择位移模式在有限元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分力一部分节点位移作为基本未知量时称为混合法。

与力法相比,位移法具有易于实现计算机自动化的优点,因此,在有限元法中,位移法应用最广。

如采用位移法计算,单元内的物理量如位移、应力、应变就可以通过节点位移来描述。

在有限元法中,首先将单元内的位移表示成单元节点位移函数,称为位移函数或者位移模式,位移函数通常为多项式,最简单的情况是线性多项式。

(2)分析单元的力学性质根据单元的材料性质、形状、尺寸、节点数目、位移和含义等,应用弹性力学中的几何方程和物理方程来建立节点载荷和节点位移的方程式,导出单元的刚度矩阵。

设节点载荷向量用Fͤ表示,节点位移向量用△表示,则单元的载荷和位移的关系式为
Fͤ= Kͤ△
式中,k为单元刚度矩阵。

(3)计算等效节点载荷连续体离散化后,力是通过节点从一个单元传递到另一个单元的。

但在实际的连续体中,力是由一个单元传递到另一个单元的,故要把作用在单元边界上的表面力、体积力或集中力等效地移到节点上,即用等效的节点力来代替所有在单元上的力。

组成物体的整体方程组
由已知的单元刚度矩阵和单元等效节点载荷列阵集成得到整个结构的总刚度矩阵和结构载荷列阵,从而建立起整个节点载荷与节点位移的关系式。

设总刚度矩阵为K、载荷向量为F,节点位移向量为△,则整个结构的平衡方程为
F=K△
得到整个结构的平衡方程后,还需要考虑其边界条件或初始条件,才能求解上述方程组。

求解有限元方程和结果解释
求解上述的结构平衡方程。

求解结果是单元节点处状态变量的近似值,对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。

简言之,有限元分析可分成三个阶段,前处理、求解和后处理。

前处理是建立有限元模型,完成单元网格划分;后处理则是采集求解分析结果,使用户能简便提取信息,了解计算结果。

由于在实际工程问题中,结构件的几何形状、边界条件、约束条件和外载荷一般比较复杂,需要进行相应的简化。

这种简化必须尽可能反映实际情况,且不会使计算过于复杂。

在进行力学模型的简化时要注意以下几点:
1)判别实际结构是属于哪一种类型,是属于一维问题、二维问题还是三维问题。

如果是二维问题,要分清是平面应力问题还是平面变力问题,若能简化成平面问题的就不要用三维实体单元去分析。

2)注意实际结构的对称性,如果对称,可以利用结构的对称性进行计算简化。

3)对实际机构建模时可以去掉一些不必要的细节,比如倒角等。

4)简化后的力学模型须是静定结构或是超静定结构。

高级仿真综述
UG NX4 高级仿真是一个综合性的有限元建模和结果可视化的产品,旨在满足设计工
程师与分析师的需要。

高级仿真包括一整套前处理和后处理工具,并支持广泛的产品性能
评估解法。

高级仿真工作流程
在开始一个分析前,应该对试图求解的问题有一彻底了解。

应该知道将利用哪个求解
器,正在执行什么类型的分析和需要什么类型的解决方案。

下列简要摘录了在结构仿真中
通用的工作流程。

(1)在NX 中,打开一部件文件。

(2)启动高级仿真应用。

为FEM 和仿真文件规定默认求解器(设置环境,或语言)。

注意:也可以选择先建立FEM 文件,然后再建立仿真文件。

(3)建立一解决方案。

选择求解器(如NX Nastran)、分析类型(如Structural)和
解决方案类型(如Linear Statics)。

(4)如果需要,理想化部件几何体。

一旦使理想化部件激活,可以移去不需要的细节,
如孔或圆角,分隔几何体准备实体网格划分或建立中面。

(5)使FEM 文件激活,网格划分几何体。

首先利用系统默认自动地网格化几何体。

在许多情况下系统默认提供一好的高质量的网格,可无须修改使用。

(6)检查网格质量。

如果需要,可以用进一步理想化部件几何体细化网格,此外在
FEM 中可以利用简化工具,消除当网格划分模型时由CAD 几何体可能引起的不希望结果
的问题。

(7)应用一材料到网格。

(8)当对网格满意时,使仿真文件激活、作用载荷与约束到模型。

(9)求解模型。

(10)在后处理中考察结果。

相关文档
最新文档