有限元分析理论基础-大全-超详细
有限元分析基础(推荐完整)

图1-5 驾驶室受侧向力应力云图
图1-6 接触问题结构件应力云图
10
第一章 概述
图1-7 液压管路速度场分布云图
图1-8 磨片热应力云图
图1-9 支架自由振动云图
11
第二章 结构几何构造分析
2.1 结构几何构造的必要性 2.2 结构计算基本知识 2.3 结构几何构造分析的自由度与约束 2.4 自由度计算公式
(1)结点: ① 铰结点;② 刚结点;③ 混合结点。 (2)支座: ① 活动铰支座;② 固定铰支座 ;
③ 固定支座 ;④ 定向支座
15
第二章 结构几何构造分析
2.2.2 结构的分类与基本特征
(1) 按结构在空间的位置分 结构可分为平面结构和空间结构两大类
(2) 按结构元件的几何特征分 ① 杆系结构: 梁、拱、桁架、刚架、桁构结构等 。 ② 板壳结构 ③ 实体结构实体结构的长、宽、高三个尺寸都很 大,具有同一量级。 ④ 混合结构
d. 超静定结构中的多余约束破坏后,结构仍然保持 几何不变性,因而仍有一定的承载能力, 不致整个结构 遭受破坏。
e. 超静定结构由于具有多余的约束,因而比相应的 静定结构具有较大的刚度和稳定性, 在载荷作用下,内 力分布也较均匀,且内力峰值也较静定结构为小。
18
第二章 结构几何构造分析
2.2.3 结构对称性的利用
对称结构在正对称载荷下,对称轴截面上只能产生 正对称的位移,反对称的位移为零;对称结构在反对称 载荷下,对称轴截面上只有反对称的位移,正对称的位 移为零。 (1) 具有奇数跨的刚架
① 正对称载荷作用
(a) 对称刚架
(b) 变形状态分析
(c) 对称性利用
图2-22对称性利用示意图
19
材料力学有限元分析知识点总结

材料力学有限元分析知识点总结材料力学是研究物质力学性质和行为的学科,而有限元分析是一种利用计算机数值模拟方法对工程问题进行分析和计算的技术。
本文将从理论基础、有限元建模、求解方法和误差分析等方面总结材料力学有限元分析的关键知识点。
一、理论基础1. 材料力学基本原理:包括应力、应变、变形和弹性模量等基本概念,以及胡克定律和应力应变关系等基本理论。
2. 有限元法基本原理:包括将实际结构离散为有限个单元,建立节点和单元之间的关系,以及应用物理原理和数值方法求解得到数值解的基本思想。
3. 有限元离散方法:包括将连续问题离散化为有限个子问题,建立单元刚度矩阵和全局刚度矩阵,以及应用有限元法进行力学问题分析的基本步骤。
二、有限元建模1. 几何建模:将实际工程结构进行几何建模,通常使用CAD软件进行建模,包括建立节点和单元等。
2. 材料建模:根据实际材料的物理性质和力学行为,选择适当的材料模型,如线性弹性模型或非线性材料模型。
3. 网格划分:将结构离散为有限个单元,通常使用三角形单元或四边形单元进行网格划分,确保离散后的单元足够小且保证几何形状的准确性。
三、求解方法1. 单元应力应变计算:通过数值方法计算每个单元的应力和应变,可采用解析解、数值积分或有限元法求解。
2. 节点位移计算:根据应力应变关系和单元的几何形状,计算每个节点的位移,从而得到结构的变形情况。
3. 刚度矩阵的建立:根据单元的几何形状、材料性质和节点位移等信息,建立单元刚度矩阵和全局刚度矩阵,用于力学方程的求解。
4. 边界条件的施加:根据实际工程问题,施加适当的边界条件,如固支约束和荷载条件等,从而得到合理的求解结果。
四、误差分析1. 收敛性分析:通过逐步增加单元数目或减小网格大小,观察求解结果是否趋近于稳定值,从而判断数值解的收敛性。
2. 精度分析:通过与解析解或实验结果进行比较,评估数值解的精度,包括位移误差、应力误差和能量误差等指标。
3. 稳定性分析:判断数值解的稳定性和可靠性,防止数值发散或出现明显的计算错误。
有限元分析基础知识

2000,4
ANSYS单元分类
1. 杆单元,包括二维杆单元和三维杆单元,线性调节 元,主要包括: LINK1,LINK8,LINK10,LINK11,LINK180等。 2. 弹簧阻尼单元,包括COMBIN系列: COMBIN7,COMBIN14,COMBIN37,COMBIN40等。 3. 质量元,MASS21。
ANSYS/Structural求解功能
ANSYS/Structural求解功能
Static -- 结构静力问题(包括线性和非线性问题) Modal -- 模态振动特性计算分析(结构固有频率和振型) Harmonic -- 谐波分析 Transient -- 瞬态分析 Spectrum -- 谱分析 Eigen Buckling -- 特征值屈曲分析(线性) Substructural -- 子结构分析 。。。。。。
2000,4
有限元分析步骤(续)
• 集合所有单元的平衡方程,集合依据的是所有相邻 单元在公共节点 处的位移相等;建立总体的有限元方程组。 • 引入边界条件 • 求解有限元方程组,得到未知节点位移 • 计算单元应力,对不同的单元,对应力的处理还有不同的方法
2000,4
ANSYS文件结构
二进制文件 Jobname.db (数据库文件) Jobname.dbb (备份文件) Jobname.rst (结构分析结果文件) Jobname.rth (热分析结果文件) Jobname.rmg (电磁场分析结果文件) Jobname.rfl (流体分析结果文件) Jobname.tri (三角化刚度矩阵文件) Jobname.emat (单元矩阵文件) Jobname.esav (单元保存文件)
2000,4
简例(续)
有限元分析基础教学课件

03
有限元方法
有限元方法的基本思想
划分网格
将连续的求解区域离散为有限个小的单元, 单元之间通过节点连接。
近似解法
用每个小单元上的近似函数来逼近原函数, 从而得到整个求解区域的近似解。
骤。
设定边界条件和载荷
讲述如何运行分析,包括选择求解器、设置 迭代次数、收敛判据等。
运行分析
说明如何为模型设定边界条件和施加载荷, 包括位移、力、温度等。
结果后处理
介绍如何查看和解析结果,包括位移、应力 、应变等。
有限元分析软件编程接口
软件支持的语言
介绍软件支持的编程语言,如 Fortran、C、Python等。
求解平衡方程
通过建立每个小单元上的平衡方程,结合边 界条件和初始条件,求解每个小单元的近似 解。
有限元方法的实现步骤
划分网格
将求解区域离散为有限个小的单 元,选择合适的网格划分方式, 如三角形、四边形等。
求解方程
通过求解刚度矩阵方程,得到每 个小单元的位移分布和应力分布 。
01
建立模型
根据实际问题的需求,建立合适 的数学模型,包括定义求解区域 、定义材料属性、施加边界条件 等。
变形体虚功原理
虚功原理
在变形体上引入虚位移,并计算 虚功,通过虚功等于零的条件, 求解平衡方程。
虚位移
在有限元分析中,将真实位移离 散为多个节点的位移,这些位移 称为虚位移。
最小势能原理与里茨方法
最小势能原理
在变形过程中,物体总势能的变化等 于零,即在平衡状态下,物体的总势 能达到最小值。
元分析理论基础 大全 超详细

非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。
有限元求解非线性问题可分为以下三类: 1)材料非线性问题
材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移 呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普 遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试 验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们 的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分 段线弹性)、弹塑性、粘塑性及蠕变等。
的平均值作为此两个单元合成的较大四边形单元形心处的应力。 如 2 单元的情况下,取平均应力可以采用算术平均, 即平均应力=(单元 1 的应力+单元 2 的应力)/2。 也可以采用精确一些的面积加权平均,
即平均应力=[单元 1 应力× 单元 1 的面积+单元 2 应力× 单元 2 面积](/ 单 元 1 面积+单元 2 面积)
有限元分析概念
有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构 成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成 各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特 性和复杂的边界条件
有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成, 单元之间通过节点连接,并承受一定载荷。
为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插
值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数
02-01有限元分析基础-理论基础

Kq=f——————(1) 其中:K是整体刚度矩阵;
q是节点位移矩阵; f是载荷矩点位移 解有限元方程Kq=f可得到位移。在根据方
程组的特点来选择合适的计算方法。
通过上述分析了解到,有限元分析的基本 思路是“先离散在组装”,离散为了进行单 元分析,组装为了对整体结构进行分析。
σ=Eε—————(2-4) 将式(2-2)、式(2-3)代入到式(2-4) 后简化得到:
F=(AE/l)Δl—————(2-5) 式(2-5)与弹簧方程F=kx很相似。因此, 受轴向力作用的等截面杆看做一个弹簧,则:
keq=AE/l——————(2-6)
一、有限元分析理论基础
根据上述分析,杆件的截面面积都是在 一个方向上变化的。可以将杆件近似地看做 是由4个弹簧串联起来的模型。
(2)假定一个近似描述单元特性解 为研究典型单元的力学特性,不妨先考虑
横截面积为A、长度为l的杆件在外力F作用下 构件的变形。
杆件的平均应力由下式给出: σ=F/A————(2-2) 杆件的平均正应变ε为
ε=Δl/l————(2-3)
一、有限元分析理论基础
在弹性区域内,应力和应变服从胡克定 律,即:
1.2 定义单元特性 (2)定义单元的力学关系
根据单元的材料、形状、尺寸、节点数目、 位置等参数,找出单元节点力和节点位移的 关系式。 (3)计算等效节点力
物理模型离散化后,假定力是通过节点在 单元间进行传递的,但对于实际连续体,力 是通过单元的公共界面在单元间进行传递。
一、有限元分析理论基础
1.3 组装单元 利用结构中力的平衡条件和边界条件将各
利用以上模型,假定力施加在各节点上。 可根据有图中节点1~节点5的受力情况, 得到各节点上力的静平衡: 节点1:R1-k1(u2-u1)=0 节点2:k1(u2-u1)-k2(u3-u2)=0 节点3:k2(u3-u2)-k3(u4-u3)=0 节点2:k3(u4-u3)-k4(u5-u4)=0 节点2:k4(u5-u4)-P=0
有限元分析基础

有限元分析基础第⼀讲第⼀章有限元的基本根念Basic Concepts of the Finite Element Method1.1引⾔(introduction)有限元(FEM 或FEA)是⼀种获取近似边值问题的计算⽅法。
边值问题(boundary valueproblems, 场问题field problem )是⼀种数学问题(mathematical problems)(在所研究的区域,⼀些相关变量满⾜微分⽅程如物理⽅程、位移协调⽅程等且满⾜特定的区域边界)。
边值问题也称为场问题,场是指我们研究的区域,并代表⼀种物理模型。
场变量是满⾜微分⽅程的相关变量,边界条件代表场变量在场边界上特定的值(物理边界转化为数学边界)。
根据所分析物理问题的不同,场变量包括位移、温度、热量等。
1.2有限元法的基本思路 (how does the finite element methods work)有限元法的基本思路可以归结为:将连续系统分割成有限个分区或单元,对每个单元提出⼀个近似解,再将所有单元按标准⽅法组合成⼀个与原有系统近似的系统。
下⾯⽤在⾃重作⽤下的等截⾯直杆来说明有限元法的思路。
等截⾯直杆在⾃重作⽤下的材料⼒学解答图1.1 受⾃重作⽤的等截⾯直杆图1.2 离散后的直杆受⾃重作⽤的等截⾯直杆如图所⽰,杆的长度为L ,截⾯积为A ,弹性模量为E ,单位长度的重量为q ,杆的内⼒为N 。
试求:杆的位移分布,杆的应变和应⼒。
)()(x L q x N -=EAdxx L q EA dx x N x dL )()()(-==-==x x Lx EA q EA dx x N x u 02)2()()((1))(x L EAq dx du x -==ε )(x L AqE x x -==εσ等截⾯直杆在⾃重作⽤下的有限元法解答 (1) 离散化如图1.2所⽰,将直杆划分成n 个有限段,有限段之间通过⼀个铰接点连接。
第1章有限元基本理论ppt课件

x dx
li
E i
i
E (ui1ui )
x
x
li
1.8 直杆受自重作用的拉伸问题(续)
❖ 外载荷与结点的平衡方程
EA(uiui1 ) li1
EA(ui1ui ) li
q(li1 li ) 2
q(li1li ) 为第i个结点上承受的外载荷
2
1.8 直杆受自重作用的拉伸问题(续)
❖ 假定将直杆分割成3个单元,每个单元长为a=L/3, 则对结点2,3,4列出的平衡方程为:
单元: 一组节点自由度间相互作用的 数值、矩阵描述(称为刚度或系数 矩阵)。单元有线、面或实体以及二 维或三维的单元等种类。
载荷
有限元模型由一些简单形状的单元组成,单 元之间通过节点连接,并承受一定载荷。
1.6 节点和单元 (续)
信息是通过单元之间的公共节点传递的。
. . 2 nodes ...
. . . 1 node
1.1 有限元分析 (FEA)
有限元分析 是利用数学近似的方法对真实物理
系统(几何和载荷工况)进行模拟。它利用简 单而又相互作用的元素,即单元,用有限数量 的未知量去逼近无限未知量的真实系统。
1.2 有限单元法的基本思想
❖ 将连续的结构离散成有限个单元,并在每一单元中 设定有限个节点,将连续体看作只在节点处相连接 的一组单元的集合体。
I
J
O
N
三维实体结构单元
K UX, UY, UZ
P
M L
J
I
J
K J
O N
K J
三维梁单元 UX, UY, UZ, ROTX, ROTY, ROTZ
三维四边形壳单元 UX, UY, UZ, ROTX, ROTY, ROTZ
CAE课有限元分析理论基础

类型。
精度要求
03
根据问题对精度的要求,选择足够高阶的有限元以保证求解精
度。
常用有限元的介绍
四面体有限元
适用于解决三维问题,具有较高的计算效率 和适应性。
壳体有限元
适用于解决薄壁结构问题,能够模拟结构的 弯曲和变形。
六面体有限元
适用于解决二维和三维问题,精度较高但计 算效率较低。
梁有限元
适用于解决细长结构问题,能够模拟结构的 轴向拉伸和弯曲。
CAE课有限元分析理论基础
目 录
• 引言 • 有限元分析的基本原理 • 有限元的分类和选择 • 有限元分析的实现过程 • 有限元分析的应用实例 • 结论与展望
01 引言
目的和背景
目的
有限元分析(FEA)是一种数值分析方法,用于解决复杂的工程问题,如结构 分析、热传导、流体动力学等。本课程旨在使学生掌握有限元分析的基本原理 和应用。
弯曲有限元
适用于解决大变形问题,如结 构动力学、流体动力学等。
非线性有限元
适用于解决非线性问题,如塑 性力学、断裂力学等。
耦合有限元
适用于解决多物理场耦合问题 ,如流体-结构耦合、电磁-热
耦合等。
有限元的选择
问题特性
01
根据问题的物理特性、边界条件和求解精度要求选择合适的有
限元类型。
计算资源
02
考虑计算资源的限制,选择计算效率高、内存占用小的有限元
04 有限元分析的实现过程
建立模型
确定分析对象和边界条件
首先需要明确分析的对象和所受的边界条件, 这是建立有限元模型的基础。
几何建模
根据分析对象的特点,利用CAD软件建立几何 模型。
模型简化
有限元分析基础理论

有限元分析基础理论我们要说的是板件的有限元分析,板件成形基本属于平面应力状态。
很多人不理解,问我,你看比如压边圈,几十吨的压边力压上去了,为什么说厚向应力接近0呢,不理解。
在AF 中模拟里,我们在不知初始压边力话,我们会选择用压力来,对于板件,一般初始值选3MPA,这个概念是什么呢,说白了这个值就是接近厚向应力(当然二个有差别,一个是宏观的力,一个是微观应力),而板料的其它平面方向应力,动辙是150-400MPA左右的。
所以相对3MPA 的厚向应力,够小了吧,这还是在压边圈上厚向应力大点,在单面接触区更是小得可怜了,所以说我们把板料成形看作平面应力状态。
我们看下模拟过程中板料的主应力和次应力,因为厚向应力不重要,所以AF里也没有这个值给出,我们参考下压边力吧,我选的这个件是个车门外板有压边力,有300T,很大的一个压边力了,一般件是没这么大的。
对比以上三图我们可以看出,厚度方向应力,我们可以忽略。
说清了平面应力,接着我们说,板料拉伸过程中对板料起作用力,板料拉伸过程实际是在外力作用下,产生应力,应力产生应变,而由于进料速度不同,则会使外力方向与主应力方向不同,于是产力剪应力。
比如我们板料的压边圈上的应力状态就是拉压的平面应力状态,再加上剪应力的综合作用下开始变形的。
然后说下应力与主次应力差别,主应力的概念在现面应力中总存在这样一个截面,二个主应力不为0,剪切力为0.反过来说就是主应力的方向,剪应力是为0的。
这个主应力对应AF里的,因为平面应力有二个主应力,AF把这二个主应力分别叫做,常规翻译就是最大应力和最小应力,用AF的人经常叫法是把最大应力叫做主应力,最小应力叫做次应力,其实这二个都是主应力,我们要明白MAJOR STRESS 和MINOR STRESS指和就是主应力就是了(剪应力为0)。
应力则是通称,指任意截面内的应力,我们看下图关于应力与主应力关系。
,我们需要明白的一点就是假如主应力方向与你所需要观察的截面方向不一致,那说明截面上就存在剪应力了。
第二章有限元分析基本理论

第二章有限元分析基本理论有限元分析是一种数值计算方法,广泛应用于结构分析、流体力学、热传导等工程领域。
它通过将连续的物理问题离散化为有限个简单的子问题,再通过数值方法求解这些子问题,最终得到原始问题的近似解。
有限元分析的基本理论包括三个方面:离散化、加权残差和求解方法。
首先是离散化。
离散化是指将原始的连续问题转化为离散的子问题。
有限元分析中常用的离散化方法是将求解区域分割成有限的子域,称为单元。
每个单元内部的场量(如位移、温度等)可以用其中一种函数近似表示。
离散化的关键是选择适当的单元形状和适量的节点,使得子问题的离散解能够较好地近似原问题的解。
接下来是加权残差方法。
加权残差方法是有限元分析的核心思想,用于构造子问题的弱型方程。
弱型方程是原始问题的一种积分形式,由应力平衡和边界条件推导而来。
在加权残差方法中,我们引入加权函数,将弱型方程乘以权函数,再对整个求解区域进行积分,从而将连续问题转化为离散问题。
通过选择合适的权函数,可以使得该离散问题具有良好的数学特性,比如对称、正定等。
最后是求解方法。
有限元分析的求解方法主要包括直接法和迭代法。
直接法适用于小型问题,通过对离散问题的系数矩阵进行直接求解,得到场量的离散解。
而迭代法适用于大型问题,通过迭代求解线性代数方程组,得到场量的近似解。
迭代法的常用算法有雅可比法、高斯-赛德尔法、共轭梯度法等。
在求解中还需要注意计算误差的控制和收敛性的判定。
除了这三个基本理论,有限元分析还有一些相关的概念和技术。
例如,网格生成用于生成离散化的单元网格;后处理用于对离散解进行可视化和数据分析;材料模型用于描述材料的本构关系。
这些概念和技术在具体的有限元分析应用中,有着重要的作用。
综上所述,有限元分析的基本理论包括离散化、加权残差和求解方法。
离散化将连续问题转化为离散子问题,加权残差方法用于构造子问题的弱型方程,求解方法用于求解离散问题。
掌握这些基本理论,对于理解和应用有限元分析方法具有重要意义。
有限元分析基础-文档资料

2019.8
内容结构
第一章 第二章 第三章 第四章 第五章 第六章 第七章 概述 结构几何构造分析 杆系结构静力分析的有限单元法 平面结构问题的有限单元法 等参元 空间问题的有限单元法 轴对称旋转单元
2
第一章 概述
1.1 有限单元法的概念 1.2 有限单元法基本步骤 1.3 工程实例
21
第二章 结构几何构造分析
② 反对称载荷作用
(a) 变形状态分析
(b) 铲运机工作装置插入工况有限元分析
图1-3 WJD-1.5型电动铲运机
8
第一章 概述
(a) KOMATSU液压挖掘机
(b) 某液压挖掘机动臂限元分析
图1-4 液压挖掘机
9
第一章 概述
图1-5 驾驶室受侧向力应力云图
图1-6 接触问题结构件应力云图
10
第一章 概述
图1-7 液压管路速度场分布云图
18
第二章 结构几何构造分析
对称结构在正对称载荷下,对称轴截面上只能产生 正对称的位移,反对称的位移为零;对称结构在反对称 载荷下,对称轴截面上只有反对称的位移,正对称的位 移为零。
(1) 具有奇数跨的刚架 ① 正对称载荷作用
2.2.3 结构对称性的利用
(a) 对称刚架
(b) 变形状态分析 图2-22对称性利用示意图
图1-8 磨片热应力云图
图1-9 支架自由振动云图
11
第二章 结构几何构造分析
2.1 结构几何构造的必要性 2.2 结构计算基本知识 2.3 结构几何构造分析的自由度与约束2.1 结构几何构造的必要性
结构是用来承受和传递载荷的。如果不计材料的 应变,在其受到任意载荷作用时其形状和位置没有发 生刚体位移时,称之为几何不变结构或几何稳定结构, 反之则称为几何可变结构或几何不稳定结构。几何可 变结构不能承受和传递载荷。对结构进行几何构造分 析也是能够对工程结构作有限单元法分析的必要条件。
有限元分析理论基础

16
第17页/共39页
三、物理方程(本构关系)
1、有限元本构关系的矩阵形式为:
s De
对于三维情况有:
1 0
0
0
1
0
0
0
1 0
0
0
De
E
0
(1 )(1 2 )
0
0 1 2 0 2 1 2
0
0 0 0 0
0
2
0
0
0
0
0
1 2 2
2024/7/27
17
第18页/共39页
15
第16页/共39页
二维问题的应变-位移关系可简化为:
u
xx yy xy
x v
y
u x
v y
x
0
y
0
y
uv
u
x
一维问题的应变-位移关系可进一步简化为:
xx
u x
x
u
u
则应变-位移关系可以简记为统一的矩阵形式:
u
2024/7/27
由于有限元采用的多项式位移插值函数全部满 足相容条件,只要求了解这一概念,具体形式不作 要求。
2024/7/27
19
第20页/共39页
虚功原理及虚功方程
PA
C
A
Rc
a
b
A'
A
C
A
图 1-8
PB (a)
B
图1-8a示一平衡的杠杆,对C点
写力矩平衡方程:
PA b
PB
a
图1-8b表示杠杆绕支点C转动时
还要注意,当位移是在某个约束条件下发生时,则在该约束力方向
有限元分析的力学基础

应用场景:流体 动力学分析广泛 应用于航空航天、 汽车、船舶、能 源等领域如飞机 机翼的气动性能 分析、汽车发动 机的流体动力学 分析等。
优势:有限元分 析能够处理复杂 的几何形状和边 界条件提供高精 度和可靠的分析 结果有助于优化 设计和改进产品 性能。
未来发展:随着 计算技术和数值 方法的不断进步 有限元分析在流 体动力学分析中 的应用将更加广 泛和深入有望在 解决复杂流体动 力学问题方面发 挥更大的作用。
特点:适用于大规模复杂问题的求解但需要设置合适的初值和解的精度要求。
有限元分析的精度与收敛性
精度:有限元分析的精度取决于网格划分的大小和形状以及所选择的近似函数。 收斂性:有限元分析的收敛性是指随着网格的细化解的近似值将逐渐接近真实解。 收敛速度:收敛速度取决于所选择的有限元类型和边界条件。 误差估计:通过误差估计可以确定所需的网格细化程度以确保解的精度。
弹性力学的 应用实例
塑性力学基础
定义:塑性力学是研究材料在达到屈服点后发生不可逆变形时行为规律的学科。 特点:塑性变形过程中外力的大小和方向可以发生变化而材料的内部结构保持不变。 塑性力学的基本方程:包括应力-应变关系、屈服准则、流动法则等。 应用:塑性力学在工程领域中广泛应用于金属成型、压力容器设计等领域。
局限性:塑性力 学模型忽略了材 料在塑性变形过 程中的微观结构 和相变行为因此 对于某些特定材 料或极端条件下 的应用可能存在 局限性。
流体动力学模型
简介:流体动力 学模型是有限元 分析中用于描述 流体运动的数学 模型包括流体压 力、速度、密度
等参数。
方程形式:流体 动力学模型通常 由一组偏微分方 程表示如NvierSkes方程描述了 流体的运动规律。
单元分析: 对每个单元 进行力学分 析包括内力、 外力、位移 等
有限元分析的力学基础

2.1 变形体的描述与变量定义
(1) 变形体
变形体:即物体内任意两点之间可发生相对移动。 有限元方法所处理的对象:任意变形体
38
(2) 基本变量的定义
可以用以下各类变量作为任意变形体的描述
量
因此,在材料确定的情况下,基本的力学变量应该有:
位移、应变、应力
39
目的:对弹性体中的位移、应力、应变进行 定义和表达,进而建立平衡方程、几何方程 和材料物理方程
+
∂τ yz
∂y
dy dxdz
dy 2
+τ
yz dxdz
dy 2
−
τ
zy
+
∂τ zy
∂z
dz dxdy
dz 2
−τ zydxdy
dz 2
=
0
全式除以dxdydz,合并相同的项,得
τ
yz
+
1 2
∂τ yz
∂y
dy
−τ
zy
−
1 2∂τ zy∂z Nhomakorabeadz
=
0
略去微量项,得 τ yz = τ zy
∑ MY = 0 τ zx = τ xz
各个方向上具有相同特性;
(4) 线性弹性假定:物体的变形与外来作用的关系是线性的, 外力去除后,物体可恢复原状;
(5) 小变形假定:物体变形远小于物体的几何尺寸,在建立方 程时,可以高阶小量(二阶以上)。
以上基本假定将作为问题简化的出发点。
41
2.3 基本变量的指标表达
指标记法的约定:
自由指标:在每项中只有一个下标出现,如 σ ij ,i,
∑MZ =0
τ xy = τ yx
有限元分析基础知识70页文档

有限元分析基础知识
26、机遇对于有定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
有限元分析理论基础-大全-超详细

应力的单元平均或节点平均处理方法
最简单的处理应力结果的方法是取相邻单元或围绕节点各单元应力的平均值。
• 1.取相邻单元应力的平均值 这种方法最常用于 3 节点三角形单元中。这种最简单而又相当实用的单元得
到的应力解在单元内是常数。可以将其看作是单元内应力的平均值,或是单元 形心处的应力。由于应力近似解总是在精确解上下振荡,可以取相邻单元应力
们的平均值作为该节点的最后应力值 ,即 i
i
1
m
m
e i
e 1
其中,1~m 是围绕在 i 节点周围的全部单元。取平均值时也可进行面积加权。
有限元法求解问题的基本步骤
1.结构离散化
对整个结构进行离散化,将其分割成若干个单元,单元间彼此通过节点相连;
2.求出各单元的刚度矩阵[K](e)
虚应力原理的力学意义:如果位移是协调的,则虚应力和虚边界约束反力在他们 上面所作的功的总和为零。反之,如果上述虚力系在他们上面所作的功的和为零,则 它们一定是满足协调的。所以,虚应力原理表述了位移协调的必要而充分条件。
虚应力原理可以应用于线弹性以及非线性弹性等不同的力学问题。但是必须指 出,无论是虚位移原理还是虚应力原理,他们所依赖的几何方程和平衡方程都是基于 小变形理论的,他们不能直接应用于基于大变形理论的力学问题。
虚位移原理是平衡方程和力的边界条件的等效积分的“弱”形式; 虚应力原理是几何方程和位移边界条件的等效积分“弱”形式。 虚位移原理的力学意义:如果力系是平衡的,则它们在虚位移和虚应变上所作的 功的总和为零。反之,如果力系在虚位移(及虚应变)上所作的功的和等于零,则它 们一定满足平衡方程。所以,虚位移原理表述了力系平衡的必要而充分条件。一般而 言,虚位移原理不仅可以适用于线弹性问题,而且可以用于非线性弹性及弹塑性等非 线性问题。
有限元分析基础知识

有限元分析基础知识目录1. 有限元分析概述 (2)1.1 有限元分析的概念 (3)1.2 有限元分析的应用领域 (3)1.3 有限元分析的优点与局限性 (5)2. 有限元分析的基本步骤 (6)3. 有限元方法的核心要素 (6)3.1 基函数与形状函数 (8)3.2 位移离散化 (9)3.3 本构关系与刚度矩阵 (11)3.4 载荷矩阵与边界条件 (12)4. 有限元分析的软件工具 (13)4.1 常见的有限元分析软件 (14)4.2 软件的基本操作界面 (16)4.3 用户界面与数学建模 (17)5. 有限元分析的验证与应用 (19)5.1 有限元分析的验证方法 (21)5.2 有限元分析在结构工程中的应用 (21)5.3 有限元分析在其他工程领域的应用 (23)6. 有限元分析的实际案例分析 (24)6.1 简化的结构分析案例 (26)6.2 复杂的结构分析案例 (27)6.3 特殊情况下的有限元分析案例 (28)7. 有限元分析的优化与数值模拟 (30)7.1 有限元固有频率分析 (32)7.2 疲劳寿命模拟分析 (33)7.3 有限元分析在优化设计中的应用 (34)8. 有限元分析的国际标准与规范 (35)8.1 ANSYS、ABAQUS等软件的标准 (37)8.2 国际有限元分析协议与规范 (38)9. 有限元分析的发展趋势 (39)9.1 高性能计算与有限元分析 (40)9.2 云计算环境下的有限元分析 (42)9.3 人工智能在有限元分析中的应用 (43)1. 有限元分析概述有限元分析基于基本的几何和物理原理,如刚体变形、弹性力学或断裂力学等,适用于静态、动态、线性或非线性分析。
它广泛应用于各种工程领域,包括土木工程、机械工程、航空航天和汽车工程等,帮助工程师们预测和优化设计,确保结构安全、可靠,并进行成本效益的设计改进。
的核心优势在于其能够处理复杂的几何形状和边界条件,而不会因为计算复杂性而变得不可行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性能的形式储存在物体中,即为应变能。 由 n 个单元和 m 个节点组成的物体的总势能为总应变能和外力所做功的差:
n
m
= (e ) Fiui
e 1
i 1
最小势能原理:对于一个稳定的系统,相对于平衡位置发生的位移总会使系统
(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分 为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作, 这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之 外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和 相应的边界值。
们的平均值作为该节点的最后应力值 ,即 i
i
1
m
m
e i
e 1
其中,1~m 是围绕在 i 节点周围的全部单元。取平均值时也可进行面积加权。
有限元法求解问题的基本步骤
1.结构离散化
对整个结构进行离散化,将其分割成若干个单元,单元间彼此通过节点相连;
2.求出各单元的刚度矩阵[K](e)
说,要保证不发生单元的相互脱离开裂和相互侵入重叠。要做到这一点,就要求函 数在公共边界上能由公共节点的函数值唯一确定。对一般单元,协调性保证了相邻 单元边界位移的连续性。
但是,在板壳的相邻单元之间,还要求位移的一阶导数连续,只有这样,才能 保证结构的应变能是有界量。
总的说来,协调性是指在相邻单元的公共边界上满足连续性条件。 前三条又叫完备性条件,满足完备条件的单元叫完备单元;第四条是协调性要 求,满足协调性的单元叫协调单元;否则称为非协调单元。完备性要求是收敛的必 要条件,四条全部满足,构成收敛的充分必要条件。
线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。
非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。
有限元求解非线性问题可分为以下三类: 1)材料非线性问题
材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移 呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普 遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试 验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们 的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分 段线弹性)、弹塑性、粘塑性及蠕变等。
4.引入支撑条件,求出各节点的位移
节点的支撑条件有两种: 一种是节点 n 沿某个方向的位移为零, 另一种是节点 n 沿某个方向的位移为一给定值。
5.求出各单元内的应力和应变。
对于有限元方法,其基本思路和解题步骤可归纳为: (1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微
分方程初边值问题等价的积分表达式,这是有限元法的出发点。
2、虚功原理 ——平衡方程和几何方程的等效积分“弱”形式
虚功原理包含虚位移原理和虚应力原理,是虚位移原理和虚应力原理的总称。他 们都可以认为是与某些控制方程相等效的积分“弱”形式。虚功原理:变形体中任意 满足平衡的力系在任意满足协调条件的变形状态上作的虚功等于零,即体系外力的虚 功与内力的虚功之和等于零。
的总势能最小,即:
ui
ui
n (e)
e 1
ui
m
Fiui 0 ,i=1,2,3,……,n
i 1
有限元法的收敛性
有限元法是一种数值分析方法,因此应考虑收敛性问题。 有限元法的收敛性是指: 当网格逐渐加密时,有限元解答的序列收敛到精确解; 或者当单元尺寸固定时,每个单元的自由度数越多,有限元的解答就越趋近于 精确解。
2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一
般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应 变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为 大应变问题。
3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属
有限元的收敛条件包括如下四个方面: 1)单元内,位移函数必须连续。多项式是单值连续函数,因此选择多项式作 为位移函数,在单元内的连续性能够保证。 2)在单元内,位移函数必须包括常应变项。每个单元的应变状态总可以分解 为不依赖于单元内各点位置的常应变和由各点位置决定的变量应变。当单元的尺寸 足够小时,单元中各点的应变趋于相等,单元的变形比较均匀,因而常应变就成为 应变的主要部分。为反映单元的应变状态,单元位移函数必须包括常应变项。 3)在单元内,位移函数必须包括刚体位移项。一般情况下,单元内任一点的 位移包括形变位移和刚体位移两部分。形变位移与物体形状及体积的改变相联系, 因而产生应变;刚体位移只改变物体位置,不改变物体的形状和体积,即刚体位移 是不产生变形的位移。空间一个物体包括三个平动位移和三个转动位移,共有六个 刚体位移分量。 由于一个单元牵连在另一些单元上,其他单元发生变形时必将带动单元做刚体 位移,由此可见,为模拟一个单元的真实位移,假定的单元位移函数必须包括刚体 位移项。 4)位移函数在相邻单元的公共边界上必须协调。对一般单元而言,协调性是 指相邻单元在公共节点处有相同的位移,而且沿单元边界也有相同的位移,也就是
虚位移原理是平衡方程和力的边界条件的等效积分的“弱”形式; 虚应力原理是几何方程和位移边界条件的等效积分“弱”形式。 虚位移原理的力学意义:如果力系是平衡的,则它们在虚位移和虚应变上所作的 功的总和为零。反之,如果力系在虚位移(及虚应变)上所作的功的和等于零,则它 们一定满足平衡方程。所以,虚位移原理表述了力系平衡的必要而充分条件。一般而 言,虚位移原理不仅可以适用于线弹性问题,而且可以用于非线性弹性及弹塑性等非 线性问题。
有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行 模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼 近无限未知量的真实系统。
线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设 的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应 力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少 的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时 间。
(1)试函数应由完备函数集的子集构成。已被采用过的试函数有幂级数、三角 级数、样条函数、贝赛尔函数、切比雪夫和勒让德多项式等等。
(2)试函数应具有直到比消除余量的加权积分表达式中最高阶导数低一阶的导 数连续性。
(3)试函数应与问题的解析解或问题的特解相关联。若计算问题具有对称性, 应充分利用它。
显然,任何独立的完全函数集都可以作为权函数。按照对权函数的不同选择得 到不同的加权余量计算方法,主要有:配点法、子域法、最小二乘法、力矩法和伽 辽金法。其中伽辽金法的精度最高。
的平均值作为此两个单元合成的较大四边形单元形心处的应力。 如 2 单元的情况下,取平均应力可以采用算术平均, 即平均应力=(单元 1 的应力+单元 2 的应力)/2。 也可以采用精确一些的面积加权平均,
即平均应力=[单元 1 应力× 单元 1 的面积+单元 2 应力× 单元 2 面积](/ 单 元 1 面积+单元 2 面积)
虚应力原理的力学意义:如果位移是协调的,则虚应力和虚边界约束反力在他们 上面所作的功的总和为零。反之,如果上述虚力系在他们上面所作的功的和为零,则 它们一定是满足协调的。所以,虚应力原理表述了位移协调的必要而充分条件。
虚应力原理可以应用于线弹性以及非线性弹性等不同的力学问题。但是必须指 出,无论是虚位移原理还是虚应力原理,他们所依赖的几何方程和平衡方程都是基于 小变形理论的,他们不能直接应用于基于大变形理论的力学问题。
[K](e)是由单元节点位移量 {Φ}(e)求单元节点力向量 {F}(e)的转移矩阵
其关系式为:{F}(e)= [K](e) {Φ}(e)
3.集成总体刚度矩阵[K]并写出总体平衡方程:
总体刚度矩阵[K]是由整体节点位移向量 {Φ}求整体节点力向量的转移矩阵, 其关系式为{F}= [K] {Φ},此即为总体平衡方程。
有限元分析概念
有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构 成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成 各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特 性和复杂的边界条件
有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成, 单元之间通过节点连接,并承受一定载荷。
(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足 一定插值条件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取 的,由于各单元 具有规则的几何形状,在选取基函数时可遵循一定的法则。
于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振
器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑 非线性边界条件。
实际的非线性可能同时出现上述两种或三种非线性问题。
有限元理论基础
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分
(5.1.2)
式中 :
L、B——分别为微分方程和边界条件中的微分算子;
f、g ——为与未知函数 u 无关的已知函数域值;
u——为问题待求的未知函数
混合法对于试函数的选取最方便,但在相同精度条件下,工作量最大。对内部 法和边界法必须使基函数事先满足一定条件,这对复杂结构分析往往有一定困难, 但试函数一经建立,其工作量较小。 无论采用何种方法,在建立试函数时均应注意以下几点: