馈线自动化技术方案
馈线自动化的实现

36s 7s
C
14s
Ee (f)
AB
15s
ab
A
B
22s 7s
c C
Dd c
C
(c) Ee
(d)
a
A
B
69s 7s
b D 7s d c
闭锁 C
E 14s e (g)
A重合器:一慢二快,第一次重合=15S,第二次重合=5S;
B、D分段器:X=7S,Y=5S;C、E分段器2:020/X6/2=14S,Y=5S
c C
a b Dd
AB 43s 7s
c
C
(e) Ee
(f)
a
b D d Ee
a
b D 7s d E e
AB
15s
ab
A
B
22s 7s
c C
Dd c
C
(c) Ee
(d)
A
B
c 闭锁(g)
43s 7s
a
b CD 7s d
A
B
c
E 14s e
闭锁
69s 7s
C
(h)
A重合器:一慢二快,第一次重合=15S,第二次重合=5S;
器配合,以检测馈线电压为依据进行控制和保 护。
1.电压型方案 1)重合器与电压—时间型分段器配合 (1)辐射状网故障区段隔离过程 (2)环状网开环运行时的故障区段隔离 2)重合器与重合器配合实现故障区段隔离(略) 2.电流型方案 1)重合器与过流脉冲计数型分段器配合 2)重合器与熔断器配合(已讲)
3.当地控制方式馈线自动化系统的不足 1)切断故障时间长 2)频繁动作,减少开关寿命,对用户有影响 3)造成大面积停电(故障侧、联络开关侧) 4)无法完全识别故障(接地、一相和多相断线) 5)无法远方遥控 6)无法实现最优方案
馈线自动化技术方案

分类:
重合器
按绝缘介质和灭弧介质分类
油 真空 SF6
按控制装置分类
液压控制 分立元件控制电路
电子控制 集成电路控制电路 微处理器控制电路
电子液压混合控制
按相数分类
单相 三相
柱上
按安装方式分类 地面
地下
7
2、分段器:是一种提高配电网自动化程度和可靠性的一 种设备,它必须和电源侧前级主保护开关相配合,在失 压或无电流的情况下自动分闸。
电压—时间型分段器:是凭借加压、失压的时间长短来 控制其动作的,失压后分闸,加压后合闸或闭锁。
X时限:分段器电源侧加压开始,到该分段器合闸的时延, 也称为合闸时间。
9
Y时限:又称为故障检测时间,是指分段器合闸后在未超 过Y时限的时间内又失压,则该分段器分闸并被闭锁在 分闸状态,等到下一次再得电时也不自动闭合。
35
FTU的性能: 遥信功能—对柱上开关的当前位置、通信是否正常、贮能完成情况等
状态量进行采集。 遥测功能—采集线路的电压、开关经历的负荷电流、有功和无功功率
的等模拟量,监视电源电压和蓄电池剩余容量等。 遥控功能—接收远方命令控制柱上开关合闸和分闸,以及启动贮能过
程等。 统计功能—对开关的动作次数、动作时间和累计切断电流的水平进行
4
§4.1 基于重合器的馈线自动化
一、基于重合器的馈线自动化:指利用配电自动化开关 设备的相互配合关系,不需要建设通信通道,就能够 达到隔离故障区域和恢复健全区域供电功能的系统。
二、配电自动化的开关设备 1、重合器:是一种自具控制及保护功能的开关设备, 它能按预定的开断和重合顺序自动进行开断和重合操 作,并在操作后自动复位或者闭锁。
馈线自动化的两种技术方案及其实施效果分析

障, 使线路设备保护 与变 电站保护进行有效配合 。 实施馈线 自动 化最 主要 的 目的是对 馈线进行 快速故 障定 位、 故 障隔离 、 非故 障区域快速 复电, 最大 限度地 减少故障引起 的停 电范围 , 缩短故障恢复时间 。因此, 实现馈线 自动化要遵循 以下 几个原则 : ①减少变电站出线开关跳 闸; ②提 高变 电站出线 开关重合 闸成功率 ; ③减少靠近 电源侧的开关动作次数 ; ④ 自动 隔离用户侧单相接地故 障; ⑤馈线 自动化 开关控制器 ( F r U) 应
O 引言
合 闸延 时 6 0 s 。F B 为带 时 限 保 护 ( 过流 0 . 1 5 s , 零序 0 . 6 S ) 和 二 次 重 合 闸功 能 的 主 干 线 分 段 断 路 器 。F S W1~F S W2为 电 压 时 间 型 主干 线 分 段 负 荷 开 关 , 其控制 器具有 无压 分闸 , 有 压 延 时5 S 合闸 , 闭锁 合 闸及 闭 锁 分 闸 功 能 。Z B 1为 分 支 线 分 界 断
随着 社 会 经 济 的发 展 , 重 要 电 力 用 户 日益 增 多 , 对 供 电可
靠性的要求越来越 高。馈线 自动 化 的实 施就是 为 了给广大 电 力用户提供连续 、 优质 、 可靠 的电力服务 , 是 提高供电可靠性 的
重要技术措施之一。
路器 , 若安装在 F B电源侧 , 保 护整定与 F B相 同, 若安装 在 F B 负荷侧 , 则速断保护动作时间整定为 0 s , 过流和零序保 护时 问
界负荷开关的应用有效隔离 l 『用 户侧 单 相 接 地 故 障 , 减少 r 用
态及告警信号上传至后台, 案
2 . 1 方案一( 断 路 器 +负荷 开 关 +智 能控 制 器 )
配电网馈线自动化技术分析

配电网馈线自动化技术分析随着电力系统的发展和智能化水平的提升,配电网馈线自动化技术逐渐成为电力行业的热点话题。
馈线自动化技术是指利用先进的电力设备、智能化系统和通信技术,对配电网中的馈线进行实时监测、分析和控制,以提高配电网的可靠性、安全性和经济性。
本文将对配电网馈线自动化技术进行深入分析,从技术原理、功能特点、应用案例等方面展开讨论。
一、技术原理配电网馈线自动化技术是基于先进的智能终端设备和通信网络构建的智能化配电系统。
其主要包括以下几个方面的技术原理:1. 智能终端设备:配电网馈线自动化系统需要利用先进的智能终端设备,如智能开关、智能保护装置、智能电能表等,实现对配电网设备状态的检测、监视、保护和控制。
这些智能终端设备具有高精度、高稳定性、快速响应等特点,能够实时采集电力系统数据,为系统的自动化运行提供可靠的数据支持。
2. 通信网络:配电网馈线自动化系统需要建立可靠的通信网络,将各个智能终端设备连接在一起,实现数据的互联互通。
通信网络可以采用有线通信、无线通信等多种技术手段,满足不同环境下的通信需求,确保系统的稳定性和可靠性。
3. 智能控制系统:配电网馈线自动化系统需要配备智能控制系统,利用先进的控制算法和逻辑判定,实现对配电网设备的自动化控制。
智能控制系统能够根据系统状态实时调整操作策略,提高系统的运行效率和安全性。
以上几个方面的技术原理共同构成了配电网馈线自动化技术的核心内容,为电力系统的智能化运行提供了重要的技术支持。
二、功能特点配电网馈线自动化技术具有以下几个主要的功能特点:1. 实时监测与控制:配电网馈线自动化技术能够实时监测配电网设备的运行状态和负荷情况,及时发现故障和异常情况,并采取相应的控制措施,保障系统的安全稳定运行。
2. 智能化分析与判断:配电网馈线自动化技术能够通过智能分析和判断技术,对电力系统的运行情况进行实时评估和分析,为系统的运行优化提供决策支持。
3. 快速故障定位与恢复:配电网馈线自动化技术能够快速定位故障点,并自动切除故障区域,实现自动化的故障恢复,缩短故障处理时间,提高系统的可靠性和供电质量。
chapter6-2馈线自动化(FA)

a
b
c
d
e
A
B
C
D
E
F
15S
7S
联络开关
图6-8 环状网开环运行时故障区段隔离的过程 代表重合器合闸状态; 代表重合器断开状态; 代表分段器合闸状态; 代表分段器断开状态; 代表分段器闭锁状态; 代表联络开关
第二节 馈线自动化(FA)
A合
15
14s 第一次 5s 第二次重
分s
重合
合
B合 分
7s 5s XY
第二节 馈线自动化(FA)
(二)环状开环运行时的故障隔离
a
b
c
d
e
A
B
C
D
E
F
联络开关
图6-8 环状网开环运行时故障区段隔离的过程 代表重合器合闸状态; 代表重合器断开状态; 代表分段器合闸状态; 代表分段器断开状态; 代表分段器闭锁状态; 代表联络开关
第二节 馈线自动化(FA)
(二)环状开环运行时的故障隔离
图6-8 环状网开环运行时故障区段隔离的过程 代表重合器合闸状态; 代表重合器断开状态; 代表分段器合闸状态; 代表分段器断开状态; 代表分段器闭锁状态; 代表联络开关
第二节 馈线自动化(FA)
(二)环状开环运行时的故障隔离
a
b
c
d
e
A
B
C
D
E
F
联络开关
图6-8 环状网开环运行时故障区段隔离的过程 代表重合器合闸状态; 代表重合器断开状态; 代表分段器合闸状态; 代表分段器断开状态; 代表分段器闭锁状态; 代表联络开关
第二节 馈线自动化(FA)
(二)环状开环运行时的故障隔离
馈线自动化技术方案

应用场景:适用于城市配电网、工业园区等需要高可靠供电的场所。
工单派发与处理功能
工单派发:根据馈线自动化系统的监测结果,自动生成工单并派发给相关人员进行处理。
工单处理:相关人员接收到工单后,根据工单内容进行故障定位、隔离和恢复供电等操作。
故障定位:通过馈线自动化系统提供的故障信息,快速准确地定位故障点。
现代馈线自动化技术:采用智能终端和通信技术,实现故障定位、隔离和恢复供电
单击此处输入你的正文,请阐述观点
馈线自动化技术概述
馈线自动化的定义和作用
单击此处输入你的正文,请阐述观点
单击此处输入你的正文,请阐述观点
馈线自动化技术的优缺点和应用范围
单击此处输入你的正文,请阐述观点
单击此处输入你的正文,请阐述观点
馈线自动化技术方案组成
03
馈线自动化主站系统
定义:馈线自动化主站系统是馈线自动化技术方案的重要组成部分,用于实现对配电网的监测、控制和故障处理等功能。
功能:馈线自动化主站系统具备遥测、遥信、遥控、遥调等功能,可以对配电网进行实时监测,及时发现和处理故障,提高供电可靠性和稳定性。
组成:馈线自动化主站系统主要由主站硬件、主站软件、通信设备等组成,其中主站硬件包括服务器、工作站等设备,主站软件包括操作系统、数据库、应用软件等。
减少停电时间和范围,提升用户满意度
降低运维成本,提高经济效益和社会效益
减少人工巡检和操作,降低人力投入
自动化故障定位和隔离,提高处理效率
提高供电服务质量与客户满意度
馈线自动化技术方案能够提高供电可靠性,减少停电时间,提高客户满意度。
通过实时监测和故障定位,馈线自动化技术方案能够快速响应故障,缩短故障恢复时间,提高客户满意度。
馈线自动化

自适应决策
馈线自动化系统将具备自适应决 策能力,能够根据不同运行环境 和条件,自动调整运行策略,提
高系统的适应性和稳定性。
智能化控制
馈线自动化系统将实现智能化控 制,通过人工智能和机器学习技 术,自动识别和预测馈线的运行 状态,提前采取相应的控制措施
。
自我修复与优化
馈线自动化系统将具备自我修复 和优化能力,能够自动检测和修 复故障,优化运行参数和策略,
配电网优化运行
负荷均衡
馈线自动化系统能够实时监测配电网中的负荷分布,根据实际需求调整运行方 式,实现负荷的均衡分布,提高供电可靠性和稳定性。
经济运行
通过优化运行,馈线自动化系统能够降低线路损耗,提高设备利用率,从而达 到节能降耗、经济运行的目的。
配电网设备状态监测
设备状态监测
馈线自动化系统具备设备状态监测功能,能够实时监测配电 网设备的运行状态,如开关位置、电流、电压等参数,及时 发现潜在的故障或异常情况。
采取必要的安全措施,保障系统 安全稳定运行,防止数据泄露和
系统崩溃。
标准化与可扩展性
遵循国际标准和行业规范,设计 可扩展的系统架构,以满足未来 业务发展和技术升级的需求。
用户界面与操作便捷性
提供直观易用的用户界面和操作 方式,方便用户进行系统配置、
监控和管理。
馈线自动化实施案例分析
01
02
03
案例一
技术挑战与解决方案
技术不成熟
目前馈线自动化技术尚未完全成熟,存在一些 技术难题需要攻克。
解决方案
加大研发投入,鼓励技术创新,推动馈线自动 化技术的研发和应用。
设备兼容性问题
不同厂商的馈线自动化设备之间可能存在兼容 性问题。
配电网馈线自动化技术分析

配电网馈线自动化技术分析
配电网馈线自动化技术是一种新型的电力系统运行监控、设备控制和自动化调节技术,它是通过现代化的电力通信和自动控制技术来实现对配电网馈线的精确监控和控制,从而
实现对配电系统的智能化升级。
目前,配电网馈线自动化技术主要采用网络技术和计算机控制技术,通过大量的传感
器和智能装置对馈线系统中的设备进行实时监测,并采集电量、电压、电流、功率等关键
数据。
同时,系统还采用分布式控制和智能分析技术,通过对数据的分析和处理,实现对
配电网馈线的智能化控制和管理。
具体来讲,配电网馈线自动化技术主要包括以下方面:
1. 遥测、遥信、遥控系统
这是配电网馈线自动化技术的核心系统,它通过网络技术和计算机控制技术实现远程
监测、控制、调节和保护。
主要包括遥测设备、遥信设备、遥控设备和操作终端等。
2. 配电控制中心
配电控制中心是对配电网馈线自动化技术实现的集中控制中心,它能够实时监测、控
制和管理整个配电系统。
主要包括监测、控制、通讯、数据采集和处理等功能。
3. 智能配电网馈线自动化装置
智能配电网馈线自动化装置是一种新型的智能化管理工具,它采用人工智能、云计算、大数据等先进技术,实现对配电网馈线的自动化控制和管理。
具有电力设备自动诊断、无
缝切换、故障检测等功能。
4. 智能分析系统
智能分析系统主要是利用大数据技术和机器学习算法实现对配电网馈线数据的智能分
析和处理,通常包括配电网馈线数据采集、质量分析、性能优化等功能。
总之,配电网馈线自动化技术是电力系统智能化升级的一个重要方向,它将会对未来
的电力系统发展带来深刻的影响。
配电网馈线自动化解决方案的技术方法

配电网馈线自动化解决方案的技术方法摘要:随着人们对高质量生产、生活水平的追求,供电的可靠性越来越受到人们关注,同时,它也是电力企业争创一流的重要技术指标。
配电网的馈线自动化在整个配电网络的自动化领域地位和作用都是很突出的,在配电网自动化能够实现的诸多功能中,馈线自动化是较为主要的一个。
电力工业中,配电网馈线自动化是电力系统的一个重要环节,它的发展对处理配电网故障起着十分重要的作用,是现在电力企业的发展重点和追求目标。
关键词:配电网;馈线自动化;方法1、配电网馈线自动化处理的基本要求1.1故障检测要准确故障自动定位的判据,主要是针对目前配电网中存在的各种故障信息处理,由于在电网馈线自动化故障检测和信号处理中是利用自动化处理为基础依据,要求电网在处理和监测功能中能够满足当前相匹配的故障管理控制措施,为目前的故障控制应用提供依据。
这就要求电网馈线自动化故障检测功能必须要选择与当前保护装置统一的开关,当馈线发生故障的时候开关能够及时的保护线路稳定和安全性。
为保证电网馈线自动化检测故障的准确性,在电网的控制之中是根据当前的监测故障和实践管理方法来处理的,并且通过外界瞬间干扰要求引起的误判来衡量,避免在故障处理中形成一定量的缺陷。
在配电网馈线自动化技术应用之中,要求故障电流整定值和故障持续时间能够通过人为整定,以满足当前各种不同配电网发展要求,同时能够有效的促进目前电网运行效率。
1.2故障隔离要快速在当前,为了实现配电网自动化管理和优化管理要求,在开关的选择和设计中都是通过远程操纵和故障的及时隔离为依据,在目前的控制之中配电子站或主站系统,在接收到来自各个方面的故障时候,要针对存在的各种故障及时分析,并且下达相应的控制命令,实现故障的自动隔离和控制要求。
同时为了保障隔离的快速性,工作中采用在底层的处理和逐步上报方式,为当前的故障处理和隔离提供便捷依据。
为保证故障隔离的快速性,在目前应用最广的是采用底层处理技术和方法,逐步的实现故障处理程序的综合判断,对存在各种不足的地方及时的纠正。
馈线自动化技术方案

馈线自动化技术方案1. 引言馈线自动化技术是一种利用先进的物联网、传感器技术以及自动控制系统,实现对电力系统馈线的监测、管理和调度的技术方案。
它可以提供实时的馈线状态信息,帮助电力公司实现对馈线的远程监控和智能化运维,从而提高电力系统的可靠性和经济性。
本文将介绍馈线自动化技术的原理、应用场景以及相关的关键技术,并讨论其在电力系统中的优势和挑战。
最后,本文将给出一个具体的馈线自动化技术方案,并对其可能的改进和发展进行展望。
2. 馈线自动化技术的原理馈线自动化技术基于物联网和传感器技术,通过将各种传感器(如温度传感器、电流传感器等)安装在馈线上,实时监测馈线的参数。
这些传感器会不断地将数据传输到监控中心,监控中心通过自动控制系统对馈线进行远程监测和控制。
馈线自动化技术的核心是数据采集和数据分析。
电力公司可以通过对采集到的馈线数据进行分析,了解馈线的工作状态和负载情况,从而实现对馈线的精细化管理和调度。
同时,通过预测分析和故障诊断,可以及时发现潜在的问题并采取相应的措施,提高馈线的可靠性和运行效率。
3. 馈线自动化技术的应用场景馈线自动化技术可以应用于各种电力系统中,特别是大型电网和分布式能源系统。
以下是一些常见的应用场景:3.1 远程监控和管理通过部署传感器和自动控制系统,电力公司可以实现对馈线的远程监控和管理。
监控中心可以实时接收馈线参数,并根据预设的阈值进行报警和动作控制。
这样,运维人员可以随时了解馈线的运行情况,及时采取措施以确保电力系统的平稳运行。
3.2 负载平衡和调度馈线自动化技术可以帮助电力公司实现对馈线负载的实时监测和调度。
通过分析采集到的负载数据,可以实现对负载的均衡和优化,以提高电力系统的负载能力和效率。
此外,还可以根据实时的负载情况,进行动态的馈线调度,避免出现过载和供电不足的情况。
3.3 故障诊断和维护通过对馈线数据的分析,可以快速发现馈线的故障和异常情况,并及时采取维护措施。
馈线自动化自适应快速保护控制方案

馈线自动化自适应快速保护控制方案随着电力系统的发展,越来越多的高压输电线路开始采用馈线自动化系统(FAS)来实现自动化的保护与控制。
馈线自动化自适应快速保护控制方案(AAPC)是其中的一种新型保护控制方案,它能够快速响应电力系统异常,自适应调整控制策略,确保线路的安全稳定运行。
本文将围绕该方案对其进行详细介绍和分析。
一、AAPC的基本原理AAPC方案的核心是自适应控制算法。
该控制算法采用模糊逻辑控制(FLC)和直接控制(DC)两种控制策略相结合的方式,针对不同的系统状况,选择最优的控制策略。
FLC算法能够对模糊信息进行处理,将模糊的输入和输出映射为清晰的可接受值域,从而实现控制器的自适应性。
而DC算法则是指直接对受控电路进行控制,不需要经过控制器的处理,具有较高的响应速度。
AAPC方案的工作流程如图1所示。
首先,采用集成的智能保护装置实时监测输电线路的电压、电流情况,并对异常情况及时响应。
其次,通过FCL算法对电力系统的状况进行分析判断,根据判断结果选择合适的控制策略进行控制。
最后,利用DC算法实现直接控制,针对不同的负荷变化,对馈线自动化系统进行实时调节,确保系统的安全稳定运行。
图1 AAPC方案的工作流程二、AAPC的关键技术(1)集成的智能保护装置AAPC方案采用集成的智能保护装置,在一个装置中集成保护、控制和监测等功能模块。
该装置具有多种安全保护功能,可以实现过载保护、短路保护、接地保护等多种保护措施。
同时,该装置还具有实时监测、数据记录、远程通信等功能,可以实现对馈线自动化系统的远程监控和管理。
(2)FCL自适应控制算法AAPC方案中采用FCL自适应控制算法,该算法可以分析电力系统的输入与输出之间的关系,根据系统的状态调整控制策略。
该算法最大的优点是能够快速响应和适应复杂且多变的电力系统。
(3)DC直接控制算法AAPC方案还采用DC直接控制算法,该算法可以直接对受控电路进行控制,具有较高的响应速度。
基于智能分布式FTU、智能分布式DTU的智能分布式馈线自动化方案实现

基于智能分布式FTU、智能分布式DTU的智能分布式馈线自动化方案实现随着电力行业的不断发展,馈线自动化技术已经成为保障电力系统稳定运行的重要手段之一。
传统的馈线自动化方案存在一些问题,例如集中式控制器容易成为故障点,且在大型电网中的应用效果不佳。
为了解决这些问题,基于智能分布式FTU和智能分布式DTU的智能分布式馈线自动化方案被提出并实现。
智能分布式馈线自动化方案是一种基于智能传感器、智能分布式FTU 和智能分布式DTU的自动化方案。
该方案通过传感器对线路进行实时监测,并将数据传输至智能分布式FTU和智能分布式DTU。
这些设备对数据进行处理和分析,并采取相应的控制措施,从而实现馈线自动化。
该方案的原理是基于智能传感器对线路的实时监测,将数据传输至智能分布式FTU和智能分布式DTU,通过这些设备对数据进行处理和分析,并采取相应的控制措施,从而实现馈线自动化。
该方案具有以下优点:1.分布式控制:该方案采用分布式控制,每个智能传感器、智能分布式FTU和智能分布式DTU都是独立的控制单元,可以有效地降低集中式控制的风险。
2.实时监测:该方案能够实时监测线路的运行状态,及时发现故障并进行处理,从而保障电力系统的稳定运行。
3.智能化:该方案采用智能化技术,能够对数据进行处理和分析,并通过相应的控制措施实现自动化控制。
基于智能分布式FTU和智能分布式DTU的智能分布式馈线自动化方案的设计与实现主要分为硬件和软件两个部分。
硬件部分包括智能传感器、智能分布式FTU和智能分布式DTU等设备的选型和配置。
软件部分包括数据传输通道的设计和数据处理算法的实现等。
在硬件部分,需要根据具体的线路情况和需求选择适合的智能传感器、智能分布式FTU和智能分布式DTU等设备。
这些设备的配置需要根据实际情况进行选择,例如需要根据线路的电流、电压等参数进行配置。
在软件部分,需要设计数据传输通道和数据处理算法。
数据传输通道需要保证数据的稳定传输,同时需要考虑抗干扰能力和数据传输速率等因素。
馈线自动化技术方案

馈线自动化技术方案馈线自动化技术方案随着工业现代化进程的加速和智能化水平的不断提高,馈线自动化技术已经成为了电力系统运行的重要手段之一。
馈线自动化系统将馈线监测、保护、控制、测量等功能集成于一体,能够实现快速故障定位、自动接地、智能协调配电等功能。
本文将介绍一个馈线自动化技术方案,包括系统架构、关键技术和应用效果。
一、系统架构馈线自动化系统主要由主站(或叫中心站)、RTU、保护终端和装置组成。
其中,主站是馈线自动化系统的指挥中心,用于监护和管理运行状态、实时获取馈线的各种数据信息和维护系统的各项配置;RTU (Remote Terminal Unit)是连接控制中心和馈线设备的一种终端设备,它的主要功能是将馈线设备产生的信号传输到控制中心,为操作人员提供相应的数据;保护终端主要用于检测馈线的电气参数,并对故障信号进行有效处理,负责保护馈线设备。
装置是指用于控制馈线的设备,如自动开关、隔离开关、负荷开关等。
馈线自动化系统不同于传统的保护系统,它具有更高的智能化程度和完善的功能。
其主要优点包括:数据高速传输、及时准确的故障定位、多层次的用户接口、多种智能控制功能和跨区域的联网能力。
二、关键技术1. 数据采集和分析馈线自动化系统的核心技术之一是数据采集和分析技术。
这种技术主要涉及到数据采集、存储、处理、分析和传输等环节。
系统通过传感器采集馈线各种数据信号,如电流、电压、功率等参数,并通过RTU传输到主站,再由主站实现数据的实时处理、多种复杂的算法计算以及将采集到的数据存储到数据库中,以便于后续的维护和管理。
2. 故障定位和快速接地技术馈线自动化系统的另一个核心技术是故障定位和快速接地技术。
故障定位技术是通过系统自动收集故障信息和数据分析,定位馈线故障点的技术,可以实现快速准确地定位故障点,缩短故障停电时间。
而快速接地技术则是针对馈线发生接地故障时,快速地自动送出高速立即接地指令,有效保障人员安全。
3. 智能控制与协调智能控制和协调技术是馈线自动化系统的另一个重要技术领域。
分布式馈线自动化方案介绍分析

分布式馈线自动化方案介绍分析正文:一、引言在电力系统中,馈线是输送电能的主要通道之一,其可靠运行对于供电可靠性和电网的稳定性至关重要。
然而,传统的馈线管理方式存在一些问题,如人工操作繁琐、时效性差、故障定位困难等。
为了解决这些问题,分布式馈线自动化方案应运而生。
二、分布式馈线自动化方案的概述1、分布式馈线自动化方案的定义分布式馈线自动化方案是指利用现代信息技术和通信技术,对馈线进行状态监测、故障检测、故障隔离、故障恢复等操作的一种自动化系统。
2、分布式馈线自动化方案的组成(1)监测子系统:负责对馈线状态进行实时监测,包括电流、电压等参数的采集和传输。
(2)故障检测子系统:通过分析监测数据,实时识别馈线故障并进行报警。
(3)故障隔离子系统:定位故障位置,并通过智能开关等装置对馈线进行隔离,以减少故障影响范围。
(4)故障恢复子系统:在故障隔离后,自动进行故障恢复操作,尽快恢复馈线的正常供电状态。
(5)通信子系统:负责各个子系统之间的数据传输和交互。
三、分布式馈线自动化方案的优势1、提高供电可靠性和电网稳定性分布式馈线自动化方案能够实时监测馈线状态,及时发现和定位故障,快速进行故障隔离和恢复,从而提高供电可靠性和电网的稳定性。
2、减少人工操作和提高效率传统的馈线管理方式需要大量的人工操作,而分布式馈线自动化方案可以实现自动监测和故障处理,减少了人工干预的需求,提高了工作效率。
3、降低故障处理时间和成本分布式馈线自动化方案可以快速定位故障位置,并进行隔离和恢复操作,大大缩短了故障处理的时间,降低了故障处理的成本。
四、分布式馈线自动化方案的应用案例以某城市电力公司为例,采用分布式馈线自动化方案,实现了对全市馈线的自动化管理和监控。
通过实时监测和故障处理,提高了供电可靠性,减少了故障对用户的影响。
五、未来发展趋势分布式馈线自动化方案在电力系统中的应用前景广阔。
随着智能电网技术的不断发展,分布式馈线自动化方案将更加智能化、高效化,为电力系统运行提供更强大的支持。
配电网馈线自动化技术分析

配电网馈线自动化技术分析
配电网的馈线自动化技术是指利用先进的电力信息技术和通信技术,对配电网的馈线
进行监控、管理和控制的一种技术手段。
通过实时监测和控制馈线的运行状态,提高配电
网的可靠性、经济性和安全性。
配电网馈线自动化技术主要包括两个方面的内容:馈线监控和馈线控制。
馈线监控是指利用传感器、测量仪表等设备对馈线的各项参数进行实时监测,并将监
测数据传输给监控中心,实现对馈线状态的全方位掌握。
馈线监控主要包括电流、电压、
功率因数、功率负荷等参数的监测,还可以对损耗、故障和负荷变化等情况进行监测。
监
测数据可以通过通信网络传输,实现对馈线状态的实时监测。
馈线控制是指通过控制设备,对馈线的运行状态进行调节和控制,以实现对馈线的智
能化管理。
馈线控制主要包括对电流、电压、功率因数等参数的调节和控制,以及对开关、断路器等设备的开闭控制。
通过对馈线的调节和控制,可以实现对馈线的负荷均衡、功率
因数的调整、故障的快速隔离和恢复等功能。
1.提高馈线的可靠性。
通过实时监测和控制,可以及时发现和隔离馈线的故障,减少
停电时间,提高供电的可靠性。
2.提高馈线的经济性。
通过对馈线的负荷均衡和功率因数的调整,可以有效减少功率
损耗,提高配电网的运行效率,降低供电成本。
4.提高调度的灵活性。
通过对馈线的智能化管理,可以实现对馈线的即时调度,根据
需求进行负荷调整,提高供电的灵活性。
馈线自动化技术方案

故障隔离技术
供电恢复技术
通过自动重合闸、分段开关等设备,实现 故障区域的自动隔离,避免故障扩大。
根据配电网拓扑结构和负荷情况,制定合 理的供电恢复策略,如网络重构、负荷转 移等,确保非故障区域的正常供电。
系统架构与功能模块
系统架构
包括主站层、通信层和终端层三层架 构,主站层负责数据处理和决策分析 ,通信层负责数据传输,终端层负责 数据采集和执行控制命令。
功能模块
包括数据采集与处理模块、故障定位 与隔离模块、供电恢复模块、人机界 面模块等。各模块之间相互协作,实 现馈线自动化的各项功能。
04 馈线自动化技术应用案例及效果分析
CHAPTER
应用案例介绍
案例一
某大型城市电网馈线自动 化改造
背景
为满足城市不断增长的用 电需求,提高电网供电可 靠性和运行效率。
供电可靠性。
优化资源配置
通过馈线自动化技术,可以实现对 电力设备的远程监控和管理,优化 资源配置,提高设备利用率。
适应新能源接入
随着新能源的大规模接入,电网运 行方式日趋复杂,馈线自动化技术 能够适应新能源的接入,保障电网 安全稳定运行。
馈线自动化技术的意义
提升电网智能化水平
降低运维成本
馈线自动化技术是智能电网的重要组成 部分,能够实现电网的实时监测、控制 和优化,提升电网的智能化水平。
关键技术研发
在故障检测、定位、隔离以及供电恢复等方面取得了一系 列关键技术突破,提高了馈线自动化的可靠性和效率。
实际应用效果
通过在实际配电网中的应用,验证了馈线自动化技术方案 的有效性和实用性,显著提高了供电可靠性和用户满意度。
未来研究方向与展望
深化技术研究
针对现有技术存在的问题和不足,进一步开展深入研究,提升馈线自动化的智能化水平和 自适应能力。
配网自动化及馈线自动化技术探讨

配网自动化及馈线自动化技术探讨引言概述:配网自动化及馈线自动化技术是电力系统中的重要组成部份,通过应用先进的技术手段,实现电力系统的自动化管理和运行,提高电网的可靠性、安全性和经济性。
本文将从五个大点来探讨配网自动化及馈线自动化技术的相关内容。
正文内容:一、配网自动化技术1.1 智能电网概述:智能电网是配网自动化的核心,通过信息化和通信技术,实现电力系统的智能化运行和管理。
1.2 配电自动化系统:配电自动化系统是配网自动化的基础,包括监测与控制、自动化装置和通信网络等组成部份。
二、馈线自动化技术2.1 馈线自动化系统:馈线自动化系统是实现馈线自动化的关键,包括监测与控制、自动化装置和通信网络等模块。
2.2 馈线保护与自动重合闸:通过智能保护装置和自动重合闸技术,实现对馈线的保护和自动化操作。
2.3 馈线故障定位与恢复:利用故障定位装置和自动化恢复技术,快速定位馈线故障并恢复供电。
三、配网自动化及馈线自动化技术的优势3.1 提高电网可靠性:自动化技术能够快速发现故障并采取相应措施,提高电网的可靠性和稳定性。
3.2 提高电网安全性:自动化技术能够实时监测电网运行状态,及时发现和处理潜在的安全隐患。
3.3 提高电网经济性:自动化技术能够提高电网的运行效率,降低运维成本,提高电网的经济性。
四、配网自动化及馈线自动化技术的应用案例4.1 某市配网自动化项目:通过引入配网自动化技术,该市实现了对配电网络的远程监控和自动化控制,提高了供电质量和可靠性。
4.2 某电力公司馈线自动化项目:通过引入馈线自动化技术,该公司实现了对馈线的实时监测和故障快速定位,提高了电网的安全性和运行效率。
五、总结配网自动化及馈线自动化技术的应用,能够提高电网的可靠性、安全性和经济性。
通过智能化的监测与控制、自动化装置和通信网络等技术手段,实现对配电网络和馈线的智能化管理和运行,为电力系统的稳定供电提供有力支撑。
随着科技的不断进步,配网自动化及馈线自动化技术将会得到更广泛的应用和发展。
配电自动化PART3馈线自动化

协调控制
馈线自动化系统能够根据配电网的运 行情况和分布式能源的出力情况,对 分布式能源进行协调控制,确保配电 网的安全、稳定、经济运行。
04 馈线自动化实施方案与案 例分析
馈线自动化实施方案
1 2 3
基于集中式的馈线自动化方案
提高服务质量
馈线自动化能够提供实时 监测和预警功能,及时发 现和解决用户投诉,提高 服务质量。
馈线自动化的发展历程与趋势
发展历程
馈线自动化经历了从传统模式到智能模式的发展历程,从简 单的遥测、遥信功能到具备故障定位、隔离和非故障区域快 速恢复供电的复杂功能。
发展趋势
随着物联网、云计算、大数据等新技术的不断发展,馈线自 动化将向更加智能化、自适应化和集成化方向发展,进一步 提高配电网的运行和管理水平。
通过主站系统对配电网进行集中监控和故障定位, 实现快速故障隔离和非故障区域恢复供电。
基于分布式的馈线自动化方案
利用智能终端和故障指示器等设备,实现故障区 域的快速定位和隔离,并通过就地控制或主站系 统进行恢复供电。
基于混合式的馈线自动化方案
结合集中式和分布式方案的优势,实现快速故障 定位、隔离和恢复供电,提高配电网的供电可靠 性和运行效率。
电源系统
稳定性
节能环保
电源系统能够提供稳定的电源供应, 确保馈线自动化系统的正常运行。
电源系统采用节能技术,降低能耗, 同时符合环保要求。
可靠性
电源系统具备高可靠性,能够应对各 种突发情况。
03 馈线自动化功能与应用
故障定位与隔离
故障定位
馈线自动化系统能够快速准确地 定位线路故障位置,减少故障排 查时间,提高故障处理效率。
几种馈线自动化方式

1.集中控制式集中控制式的故障处理方案是基于主站、通信系统、终端设备均已建成并运行完好的情况下的一种方案,它是由主站通过通信系统来收集所有终端设备的信息,并通过网络拓扑分析,确定故障位置,最后下发命令遥控各开关,实现故障区域的隔离和恢复非故障区域的供电。
优点:非故障区域的转供有着更大的优势,准确率高,负荷调配合理。
缺点:终端数量众多易拥堵,任一环节出错即失败。
案例:假设F2处发生永久性故障,则变电站1处断路器CB1因检测到故障电流而分闸,重合不成功然后分闸闭锁。
定位:位于变电站内的子站或配电监控中间单元因检测到线路上各个FTU的状态及信息,发现只有FTU1流过故障电流而FTU2~FTU5没有。
子站或配电监控中间单元判断出故障发生在FTU1~FTU2之间。
隔离:子站或配电监控中间单元发出命令让FTU1与FTU2跳闸,实现故障隔离。
恢复:子站或配电监控中间单元发出命令让FTU3合闸,实现部分被甩掉的负荷的供电。
子站或配电监控中间单元将故障信息上传配调中心,请求合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。
配调中心启动故障处理软件,产生恢复供电方案,自动或由调度员确认。
配调中心下发遥控命令,合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。
等故障线路修复后,由人工操作,遥控恢复原来的供电方式。
2.就地自动控制2.1负荷开关(分段器)主要依靠自具一定功能的开关本身来完成简单的自动化,它与电源侧前级开关配合,在线路具备其本身特有的功能特性时,在失压或无流的情况下自动分闸,达到隔离故障恢复部分供电的目的。
这种开关一般或者有“电压-时间”特性,或者有“过流脉冲计数”特性。
前者是凭借加压、失压的时间长短来控制其动作的,失压后分闸,加压后合闸或闭锁。
后者是在一段时间内,记忆前级开关开断故障电流动作次数,当达到其预先设定的记录次数后,在前级开关跳开又重合的间隙分闸,从而达到隔离故障区域的目的。
在“电压-时间”方案中,开关动作次数多,隔离故障的时间长,变电站出口开关需重合两次,转供时容易有再次故障冲击,但它的优点是控制简单。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主站系统根据终端上送 的故障告警信息,进行 故障定位
(3)故障信息 上送主站
a
b
c
CB1 K1
K2
DTU
K1
K2
DTU
d
FS1 LS
FS2 FS3 CB2
HK01
HK02
a
b
c
CB1 K1
K2
DTU
K1
K2
DTU
HK01
HK02
a
b
c
CB1 K1
K2
DTU
K1
K2
DTU
d
FS1 LS
d
FS1 LS
FS2 FS3 CB2
目录
2.1 馈线自动化建设目标
管理 保障
人员和物资 快速响应
1
2
3
4
5
模流指信物
式程标息资
优优考传调 化化核递配
装备和自动 化技术基础
技术 手段
1
2
3
4
设 配网抢 备 电架修 监 自优技 控 动化术
化
故障快速复电
2.1 馈线自动化建设目标
目标
配网故障快速复电
要求 手段 平台
快速报告、快速诊断、快速定位、 快速隔离、快速修复、快速沟通。
d
CB1 FS1 FS2 FS3 LS
FS4 FS5 CB2 FS4 FS5 CB2 FS4 FS5 CB2
若是瞬时性故障自 动躲避,恢复送电
(4)FS2开关关 合至故障点
a
b
c
d
CB1 FS1 FS2 FS3 LS
FS4 FS5 CB2
主站
FS2 FS3 CB2
确定故障类型和区段,主 站遥控隔离故障和恢复非 故障区供电
(4)主站进行 故障定位并隔 离a
b
c
CB1 K1
K2
DTU
K1
K2
DTU
d
FS1 LS
主站
FS2 FS3 CB2
HK01
HK02
3.1主站集中型
特点分析
– 需要配置三遥型配电终端; – 故障处理过程依赖通信,需要采用光纤通信方式; – 能够快速恢复非故障区域的供电。
馈线自动化技术方案
2020年8月1日星期六
1 馈线自动化的认识 2 馈线自动化建设目标 3 典型馈线自动化方案 4 馈线自动化建设原则
目录
1 馈线自动化的认识 2 馈线自动化建设目标 3 典型馈线自动化方案 4 馈线自动化建设原则
目录
1.1馈线自动化定义
定义:指对配电线路运行状态进行监测和控制,在故障发生 后实现快速准确定位和迅速隔离故障区段,恢复非故 障区域供电。(Feeder Automation,简称FA)
故
障
快
速
复
无闪隔离区段故障
电
拦截用户出门故障
快速报告故障
2.2 馈线自动化与故障快速 复电
馈线自动化与故障快速复电
“自愈” 经常被误解,我们认为自愈包括: 事前:概率风险评估与预防性控制
1)结合负荷预测进行方式调整避免过负荷 2)结合在线检测(温度、局部放电)进行
相应控制避免酿成严重后果 3)。。。。。。 事中:馈线自动化 事后:配电自动化修正性控制(转供电)
FS4
FS5 CB2 FS5 CB2 FS5 CB2
3.2电压时间型
电压时间型FA---故障处理过程
(1)正常工作
接地 故障
(2)人工拉线
a
b
c
d
CB1 FS1 FS2 FS3 LS
a
b
c
d
CB1 FS1 FS2 FS3 LS
变电站绝缘监测装 置监测到零序电压
(3)试送电
a 1735ss b 1735ss c
❖ 就地型线路自动化
1.重合器式馈线自动化 2.智能分布式馈线自动化 3.分界看门狗型 4.继电保护型
❖ 集中调控馈线自动化
1.主站集中全自动型 2.主站集中半自动型
1.2馈线自动化分类
CB FS
FS
LS
FTU FTU
FTU FTU
就地型馈线自动化的衍生
1.3就地型馈线自动化派生
1 馈线自动化的认识 2 馈线自动化建设目标 3 典型馈线自动化方案 4 馈线自动化建设原则
3.2电压时间型
电压时间型FA---建设方案
✓ 站内出线CB配置常规保护,具备一次或二次重合闸; ✓ 自动化分段及联络点采用电压时间型智能成套设备。
电压时间型成套设备FS
➢ 线路分段点设置为“分段”模式,具备“ 失压分闸”、“来电延时合闸”以及 电 压时间型逻辑的闭锁功能;
➢ 联络点设置为“L(联络)”模式,具备 单侧失电延时合闸、两侧有压闭锁合 闸、瞬时来电闭锁合闸等功能。
集中型成套设备
➢ 主干线分段点开关,采 用“三遥”集中型成套设 备。
➢ “三遥”终端与主站建立 光纤或无线通信信道
建设成效
主站系统综合判断,确 定故障类型和故障区段 ,自动或手动隔离故障 点,恢复非故障区段的 供电。
3.1主站集中型
主站集中型FA——故障处理过程
发生 故障
(1)正常工作 (2)故障跳闸
建设成效
不依赖于主站及通信,就地实现故障 的定位与隔离;
单相接地故障采用“零序电压突变法” ,同步解决小电流系统接地故障的精 确选线选段。
3.2电压时间型
电压时间型FA---故障处理过程
短路 故障
若是瞬时性故障自 动躲避,恢复送电
若是永久性故障, 再次跳闸
故障隔离完毕 恢复正常区段供电
(1)正常工作
a
CB1
b
c
d
FS1 FS2 FS3 LS
(2)故障跳闸
a
CB1
b
c
d
FS1 FS2 FS3 LS
(3)第一次重合
513ssa
1735ss b 1735ssc
d
CB1 FS1 FS2 FS3 LS
FS4 FS5 CB2 FS4 FS5 CB2 FS4 FS5 CB2
(4)FS2开关关 合至故障点
a
CB1
配电自动化(馈线自动化)
设备自动化
2.1 馈线自动化建设目标
减少变电站故障跳闸率
馈
提高站内出线开关重合闸成功率
线
自
有效躲避瞬时性故障
动
快速恢复非故障区域供电
化
减少靠近电源侧的开关动作次数
避免某一用户故障波及主干线路及相邻用户
2.2 馈线自动化与故障快速复电
快速定位故障 快速隔离故障 躲避瞬时故障
故障快速报告 故障快速诊断 故障快速定位 故障快速隔离 故障快速复电
1 馈线自动化的认识 2 馈线自动化建设目标 3 典型馈线自动化方案 4 馈线自动化建设原则
目录
3.1主站集中型
主站集中型FA---建设方案
✓ 建立配电自动化系统,建立光纤通信信道; ✓ 站内出线CB配置常规短路和零序保护; ✓ 关键分段点及联络点实现“三遥”。
b
c
d
FS1 FS2 FS3 LS
FS4 FS5 CB2
(5)再次跳闸
a
b
c
d
CB1 FS1 FS2 FS3 LS
FS4
(6)第二次重合, 513ssa 1735ss b
c
d
正常段供电
CB1 FS1 FS2 FS3 LS
FS4
(7)故障区后 端恢复供电
14350ss
a
b
c
d
CB1 FS1 FS2 FS3 LS