高中数学定积分知识点

合集下载

高二数学定积分知识点总结

高二数学定积分知识点总结

高二数学定积分知识点总结一、定积分的概念1.1 定积分的引入在高中数学中,我们学过了不定积分的概念和性质,定积分就是在这个基础上引入的。

当我们对一个函数进行积分时,如果我们要计算的量是函数在一个区间上的面积或者体积,那么我们就需要用到定积分。

定积分可以看做是一个变量的特定区间上的累积和。

1.2 定积分的定义设函数f(x)在区间[a, b]上有定义,将[a, b]分成n等分,每个小区间的长度为Δx=n(b-a),在第i个小区间上任取一点ξi,则f(x)在[a, b]上的定积分为:∫[a,b]f(x) dx=lim{n→∞}∑{i=1}^{n}f(ξi)Δx其中lim{n→∞}表示当n趋向于无穷大时的极限。

1.3 定积分的几何意义定积分的几何意义即函数f(x)在[a, b]上的定积分就是函数y=f(x)与x轴所围区域的有向面积。

1.4 定积分的性质(1)定积分的线性性质:∫[a,b][f(x)+g(x)] dx=∫[a,b]f(x) dx+∫[a,b]g(x) dx(2)定积分的估值性质:若f(x)在[a, b]上连续,则必定存在α∈[a, b],使得∫[a,b]f(x)dx=f(α)(b-a)1.5 定积分的计算定积分的计算主要是通过不定积分的计算来实现。

通过不定积分求出F(x)的原函数后,即可得到∫[a,b]f(x) dx=F(b)-F(a)。

二、定积分的应用2.1 定积分的物理意义定积分在物理学中有着重要的应用,它可以用来计算物体的质量、重心、压力、力矩等。

在力学中,定积分常用来计算物体的质心以及转动惯量等。

2.2 定积分的几何应用定积分可以用来求曲线与坐标轴所围成的曲边梯形或者曲边梯形的面积,也可以用来计算曲线的弧长、曲线旋转体的体积等几何问题。

2.3 定积分的工程应用在工程问题中,定积分可以用来计算各种曲线的长度、曲线所围成的区域面积、曲线所绕成的物体的体积等。

2.4 定积分的经济应用在经济学中,定积分可以用来计算总收益、总成本、总利润等与变量有关的经济指标。

定积分知识点总结文字

定积分知识点总结文字

定积分知识点总结文字一、定积分的基本概念定积分是微积分中的一个重要内容,它是对给定区间内函数值的“积分”,通俗地说就是曲线下的面积。

设函数f(x)在闭区间[a, b]上有界,将[a, b]区间分成n份,在第i个区间上任取一点ξi,作出任意形式的ξi对于x的函数值f(ξi),再用第i个小区间长度Δx为宽、f(ξi)为高的长方形来逼近曲线f(x)围成的图形,然后将n个小矩形的面积加在一块,且去极限,即可得到[a, b]上函数f(x)的定积分。

二、定积分的计算方法定积分的计算方法主要有几种:几何法、牛顿-莱布尼茨公式、定积分的分部积分法、定积分的换元积分法、定积分的定积分法、定积分的换限积分法等。

(一) 几何法:如计算函数y = x^2在区间[0, 1]上的定积分,可以通过几何法计算曲线y = x^2和x轴所围成的面积。

首先画出y = x^2曲线和x轴,然后在区间[0, 1]上做垂直于x轴的线段,对于每一个x值,可以得到一个矩形,然后得到所有矩形的面积之和,即为y = x^2在区间[0, 1]上的定积分值。

(二) 牛顿-莱布尼茨公式:若函数f(x)在区间[a, b]上连续,则f(x)在[a, b]间的定积分为该函数的一个不定积分在区间[a, b]上的值。

即如果F(x)是f(x)的一个不定积分,则∫[a, b]f(x)dx = F(b) - F(a)。

(三) 分部积分法:设u = u(x)和v = v(x)是定义在闭区间[a, b]上具有连续导数的函数,令u(x)v'(x)dx =u(x)v(x) - ∫v(x)u'(x)dx,那么∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx。

(四) 换元积分法:设φ(x)是[a, b]上的可导函数,且φ'(x)在[a, b]上连续,f(φ(x))φ'(x)定义在φ[a, b](a ≤ x ≤ b)上,则∫[a, b]f(φ(x))φ'(x)dx = ∫[φ(a), φ(b)]f(u)du。

高中数学定积分的概念及相关题目解析

高中数学定积分的概念及相关题目解析

高中数学定积分的概念及相关题目解析在高中数学中,定积分是一个重要的概念,它在数学和实际问题中都有广泛的应用。

本文将介绍定积分的概念,并通过具体的题目解析来说明其考点和解题技巧,帮助高中学生更好地理解和应用定积分。

一、定积分的概念定积分是微积分中的一个重要概念,它是对函数在一个区间上的积分结果的确定值。

定积分的符号表示为∫,下面是定积分的定义:设函数f(x)在区间[a, b]上有定义,将[a, b]分成n个小区间,每个小区间的长度为Δx,选取每个小区间中的一个点ξi,作为f(x)在该小区间上的取值点。

那么,定积分的近似值可以表示为:∫[a, b]f(x)dx ≈ Σf(ξi)Δx当n趋向于无穷大时,定积分的近似值趋向于定积分的准确值,即:∫[a, b]f(x)dx = lim(n→∞)Σf(ξi)Δx这个准确值就是函数f(x)在区间[a, b]上的定积分。

二、定积分的考点和解题技巧1. 计算定积分的基本方法对于一些简单的函数,可以直接使用定积分的定义进行计算。

例如,计算函数f(x) = x²在区间[0, 1]上的定积分:∫[0, 1]x²dx = lim(n→∞)Σf(ξi)Δx = lim(n→∞)Σ(ξi)²Δx在这个例子中,可以将区间[0, 1]等分成n个小区间,每个小区间的长度为Δx = 1/n。

然后,选取每个小区间中的一个点ξi,可以选择ξi = i/n。

这样,定积分的近似值可以表示为:∫[0, 1]x²dx ≈ Σ(ξi)²Δx = Σ(i/n)²(1/n)当n趋向于无穷大时,可以求出定积分的准确值。

在这个例子中,计算过程如下:∫[0, 1]x²dx = lim(n→∞)Σ(i/n)²(1/n)= lim(n→∞)(1/n³)Σi²= lim(n→∞)(1/n³)(1² + 2² + ... + n²)= lim(n→∞)(1/n³)(n(n+1)(2n+1)/6)= 1/3因此,函数f(x) = x²在区间[0, 1]上的定积分的值为1/3。

定积分的知识点总结

定积分的知识点总结

定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。

定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。

定积分的符号表示为∫。

对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。

定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。

二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。

这就是定积分的计算方法。

在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。

这就是黎曼和的基本思想。

2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。

对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。

这个面积就是曲线下的面积。

如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。

3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。

在物理学中,可以用定积分来计算物体的质量、质心等物理量。

对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。

其中c1、c2为常数,f1(x)、f2(x)为函数。

定积分的计算知识点总结

定积分的计算知识点总结

定积分的计算知识点总结一、定积分的定义。

1. 概念。

- 设函数y = f(x)在区间[a,b]上连续,用分点a=x_0将区间[a,b]等分成n个小区间,每个小区间长度为Δ x=(b - a)/(n)。

在每个小区间[x_i - 1,x_i]上取一点ξ_i(i =1,2,·s,n),作和式S_n=∑_i = 1^nf(ξ_i)Δ x。

当nto∞时,如果S_n的极限存在,则称这个极限为函数y = f(x)在区间[a,b]上的定积分,记作∫_a^bf(x)dx,即∫_a^bf(x)dx=limlimits_n→∞∑_i = 1^nf(ξ_i)Δ x。

- 这里a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积表达式。

2. 几何意义。

- 当f(x)≥slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形的面积。

- 当f(x)≤slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形面积的相反数。

- 当f(x)在[a,b]上有正有负时,∫_a^bf(x)dx表示位于x轴上方的曲边梯形面积减去位于x轴下方的曲边梯形面积。

二、定积分的基本性质。

1. 线性性质。

- ∫_a^b[k_1f(x)+k_2g(x)]dx = k_1∫_a^bf(x)dx + k_2∫_a^bg(x)dx,其中k_1,k_2为常数。

2. 区间可加性。

- ∫_a^bf(x)dx=∫_a^cf(x)dx+∫_c^bf(x)dx,其中a < c < b。

3. 比较性质。

- 如果在区间[a,b]上f(x)≥slant g(x),那么∫_a^bf(x)dx≥slant∫_a^bg(x)dx。

- 特别地,<=ft∫_a^bf(x)dxright≤slant∫_a^b<=ftf(x)rightdx。

(完整版)定积分知识点汇总

(完整版)定积分知识点汇总

(完整版)定积分知识点汇总定积分是高中数学教学的重点难点之一,也是高数的基础知识。

我们通过汇总定积分的相关知识点,帮助同学们更好地掌握定积分的相关知识,以便在考试中取得好的成绩。

一、定积分的定义定积分是对函数在一定区间上的积分,也就是函数在此区间上的面积。

1. 定积分与区间的选取无关,即如果函数在 $[a,b]$ 上是可积的,则定积分$\int_a^b f(x) \mathrm{d}x$ 的值是唯一的。

2. 定积分具有可加性,即对于任意的 $c \in [a,b]$,有 $\int_a^b f(x)\mathrm{d}x = \int_a^c f(x) \mathrm{d}x + \int_c^b f(x) \mathrm{d}x$。

三、定积分的求解方法1. 函数曲线与坐标轴相交的情况:对于函数曲线与 $x$ 轴相交的区间,可以根据定义式直接求出该区间内的面积。

对于函数曲线与 $y$ 轴相交的区间,则要将积分区间平移后,再根据定义式计算面积。

2. 利用基本积分法和牛顿-莱布尼茨公式:可以利用基本积分法求出一个函数的原函数,然后利用牛顿-莱布尼茨公式,即$\int_a^b f(x) \mathrm{d}x = F(b) - F(a)$,其中 $F(x)$ 是 $f(x)$ 的一个原函数。

3. 利用换元积分法:换元积分法是利用一些特殊的代换,将积分式转化为某些基本形式的积分。

常见的代换包括:$u=g(x), x=h(u)$ 和 $\mathrm{d}u = f(x) \mathrm{d}x$。

分部积分法是将原积分式做一个变形,转化成两个积分乘积的形式,从而更容易求解。

5. 利用定积分的对称性:如积分区间对于 $0$ 对称,或者函数具有四象限对称性等,可以根据对称性减少计算量。

1. 几何应用:用定积分可以求解函数曲线与坐标轴围成的图形的面积、体积和质心等几何特征。

利用定积分可以求解质点运动的速度、加速度、位移和质量等物理量。

高三定积分知识点总结

高三定积分知识点总结

高三定积分知识点总结高三阶段,定积分是数学学科中重要的一部分,掌握定积分的知识点对学生来说至关重要。

在这篇文章中,我将对高三阶段定积分的知识点进行总结和归纳,以便帮助同学们更好地复习和掌握这一部分内容。

一、定积分的概念定积分是微积分的重要概念之一,它可以理解为曲线与坐标轴之间的有界区域的面积。

定积分的基本概念包括定积分的上下限、积分区间的分割以及极限等。

二、定积分的计算方法1. 函数的原函数在计算定积分的过程中,首先需要找到被积函数的原函数,也就是导函数。

通过求导反过来求解原函数,即可得到被积函数的原函数。

2. 定积分的基本计算方法定积分的基本计算方法包括积分的线性性质、定积分的区间可加性、换元积分法等。

这些方法能够简化定积分的计算过程,使得计算更加方便快捷。

3. 特殊函数的定积分计算对于一些特殊函数,如指数函数、对数函数、三角函数等,需要掌握相应的定积分计算公式和技巧,以便能够快速准确地计算出定积分的结果。

三、定积分的应用1. 几何应用定积分在几何中有着广泛的应用。

通过定积分,可以计算曲线和坐标轴之间的面积、曲线的弧长以及曲线的旋转体体积等几何问题。

2. 物理应用定积分在物理学中也有着重要的应用。

例如,通过定积分可以计算物体的质量、质心位置、重心位置以及力学和流体力学中的有关问题。

3. 经济和金融应用定积分在经济学和金融学中也有广泛的应用。

例如,通过定积分可以计算收益曲线下的总收益、消费曲线下的总消费等经济和金融问题。

四、定积分的性质1. 积分的性质定积分具有线性性质、区间可加性、保号性等性质。

这些性质在定积分的计算过程中起到了重要的作用,可以帮助我们更好地理解和运用定积分。

2. 无穷定积分无穷定积分是定积分的一种特殊形式,其中上下限存在无穷大的情况。

掌握无穷定积分的计算方法和性质,可以更好地解决一些复杂的数学问题。

五、定积分的应用举例在高三阶段,定积分的应用举例如下:1. 计算曲线下的面积,如椭圆的面积、抛物线的面积等;2. 计算曲线的弧长,如圆的弧长、正弦曲线的弧长等;3. 计算平面图形的重心位置和质心位置,如矩形的质心位置、三角形的重心位置等;4. 计算物体的质量和质量分布情况,如线密度、面密度和体密度的计算等。

高中数学知识点归纳定积分基础知识

高中数学知识点归纳定积分基础知识

高中数学知识点归纳定积分基础知识高中数学的定积分是数学中非常重要的一个概念,它是微积分的核心内容之一。

在学习定积分的过程中,我们需要了解一些基础知识,本文将对高中数学中定积分的基础知识进行归纳总结。

一、定积分的概念定积分是积分学中重要的概念之一,它可以看作是函数在一个区间上的加权平均。

定积分的定义是:设函数f(x)在区间[a,b]上有定义,将[a,b]等分成n个小区间,每个小区间的长度为Δx,然后在每个小区间上取一点ξ_i,构成一个积分和S_n,当n趋向于无穷大时,若极限存在且与ξ_i的选法无关,则称该极限为函数f(x)在区间[a,b]上的定积分,记作∫(a,b)f(x)dx。

二、定积分的计算方法在计算定积分时,可以使用不同的方法,具体的计算方法如下:1. 几何意义法:根据定积分的几何意义,可以将定积分看作是曲线与坐标轴所围成的面积。

根据几何图形的性质,可以求得定积分的值。

2. 定积分的性质法:根据定积分的性质,可以利用一些性质对定积分进行化简。

比如定积分的线性性质、区间可加性等。

3. 换元法:对于一些较复杂的函数,可以通过变量代换的方法将其化简为简单的形式,然后进行定积分的计算。

4. 分部积分法:对于一些乘积形式的函数,可以通过分部积分的方法将其化简为简单的形式,然后进行定积分的计算。

5. 积分表法:对于一些常见的函数,可以通过积分表中的公式直接进行定积分的计算。

三、定积分的应用领域定积分在数学中有广泛的应用领域,具体包括以下几个方面:1. 几何应用:定积分可以用来计算曲线与坐标轴所围成的面积、曲线的弧长、曲线的平均值等。

2. 物理应用:在物理学中,定积分可以用来求解物体在一定时间内的位移、速度、加速度等。

3. 统计学应用:在统计学中,定积分可以用来计算概率密度函数下的概率、求解统计分布的期望值等。

4. 经济应用:在经济学中,定积分可以用来计算收入曲线下的总收入、成本曲线下的总成本等。

总结:高中数学中的定积分是微积分学习的重要内容,通过学习定积分的基础知识,我们可以更好地理解和应用定积分。

定积分知识点汇总

定积分知识点汇总

定积分知识点汇总在微积分学中,定积分是一个基本概念。

它是将一个区间上的函数的值乘以这个区间的长度进行求和的过程。

在这篇文章中,我们将详细介绍定积分的相关知识点,包括定义、性质、计算方法以及一些重要的定理。

一、定积分的定义定积分的定义是将一个连续函数$f(x)$在某个区间$[a, b]$上的面积或体积表示出来的过程。

这里我们主要探讨二维平面内的定积分。

在数学语言中,定积分的定义可以写作:$\int_a^bf(x)\,dx=\lim_{n\rightarrow\infty}\sum_{i=1}^nf(x_i)\Del ta x$其中$n$表示将区间$[a, b]$等分成$n$份,$\Delta x=\frac{b-a}{n}$表示每份长度。

$x_i$是第$i$份区间的中间点,即$a+(i-\frac{1}{2})\Delta x$。

$\sum_{i=1}^nf(x_i)\Delta x$表示的是矩形的面积之和,$\lim_{n\rightarrow\infty}$表示将矩形的数量趋近于无穷大。

最后的定积分即两个端点为$a$和$b$的函数$f(x)$的积分。

二、定积分的性质1. 线性性$\int_a^b[c_1f_1(x)+c_2f_2(x)]dx=c_1\int_a^bf_1(x)dx+c_2\int_a^ bf_2(x)dx$2. 区间可加性$\int_a^bf(x)dx+\int_b^cf(x)dx=\int_a^cf(x)dx$3. 积分中值定理如果$f(x)$在$[a, b]$上是连续的,则存在一个$c\in[a, b]$,使得$\int_a^bf(x)dx=f(c)(b-a)$。

其中$c$称为积分中值。

4. 牛顿-莱布尼茨公式$\int_a^bf(x)dx=F(b)-F(a)$,其中$F(x)$是$f(x)$的一个原函数(即$F'(x)=f(x)$)。

三、定积分的计算方法1. 分段函数对于分段函数$f(x)$,我们需要将其分段拆分并分别进行计算。

定积分知识点

定积分知识点
19. 提示: ; ;20. 提示: ,4a;
21. 提示: , ;22. (1) ;(2) .
23. 首先求出函数 的零点: , , .又易判断出在 内,图形在 轴下方,在 内,图形在 轴上方,所以所求面积为

THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
分析:一般的,设被积函数 ,若 在 上可取负值。
考察和式
不妨设
于是和式即为
阴影 的面积—阴影 的面积(即 轴上方面积减 轴下方的面积)
3.定积分的性质
性质1 ;
性质2 (定积分的线性性质);
性质3 (定积分的线性性质);
性质4 (定积分对积分区间的可加性)
(1) ; (2) ;
说明:①推广:
②推广:
A. B. C. D.
5.由抛物线 和直线x=1所围部分的面积是( )
A. B. C. D.
7. =( )A. B. C. D.
8. =()A. B.2e C. D.
9.曲线 与坐标轴围成的面积( )
A.4 B.2 C. D.3
10. =( ) A. B. C. D.
二.填空题:
11.若 =a3-2(a>1),则a=
12.曲线 与直线 所围成的图形的面积等于
13.由曲线 与直线 所围成的平面图形的面积为
14.已知弹簧每拉长0. 02米要用9. 8N的力,则把弹簧拉长0. 1米所作的功为
15.
三.计算下列定积分的值
16. ; 17. ; 18. ;
19. ; 20. 21. ;
四.解答题:
22.设 是二次函数,方程 有两个相等的实根,且 .
(1)求 的表达式.(2)若直线 把 的图象与坐标轴所围成的图形的面积二等分,求t的值.

高数定积分知识点总结

高数定积分知识点总结

高数定积分知识点总结一、定积分的定义定积分是微积分中的一个重要概念,它是对一个函数在一个区间上的积分结果进行计算的过程。

在数学上,定积分是用来计算曲线下面的面积或者函数在某一区间上的平均值的方法。

定积分可以写成以下形式:\[ \int_{a}^{b} f(x)dx \]其中,\( f(x) \)是被积函数,\( a \)和\( b \)是积分区间的端点。

定积分的计算过程就是求解被积函数在给定区间上的曲线下面的面积。

定积分在物理学、工程学和经济学等领域都有着广泛的应用,是微积分中不可或缺的重要工具。

二、定积分的性质1. 定积分的可加性如果函数\( f(x) \)在区间\([a, b]\)上是可积的,那么对于任意的\( c \)满足\( a \leq c \leq b \),都有:\[ \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \]这个性质表明了定积分的可加性,即在一个区间上进行积分的结果可以根据任意划分点\( c \)进行分割。

2. 定积分的线性性对于任意的实数\( \alpha, \beta \)和函数\( f(x), g(x) \),如果\( f(x), g(x) \)在区间\([a, b]\)上是可积的,那么有:\[ \int_{a}^{b} (\alpha f(x) + \beta g(x))dx = \alpha \int_{a}^{b} f(x)dx + \beta \int_{a}^{b} g(x)dx \]这个性质表明了定积分的线性性,即在一个区间上进行线性组合的函数的积分等于线性组合的函数的积分的线性组合。

3. 定积分的保号性如果在区间\([a, b]\)上有\( f(x) \geq 0 \),那么有:\[ \int_{a}^{b} f(x)dx \geq 0 \]这个性质表明了定积分的保号性,即当被积函数在一个区间上非负时,其积分结果也是非负的。

高考定积分知识点总结

高考定积分知识点总结

高考定积分知识点总结定积分是高等数学中的重要内容之一,也是高考数学考试中常见的题型。

本文将对高考中常见的定积分知识点进行总结和归纳,以帮助同学们更好地准备考试。

一、定积分的基本概念定积分是对一个区间上的函数进行求和的过程。

区间可以是有限区间,也可以是无限区间。

定积分的计算可以看作是曲线下的面积,也可以理解为函数的反导数。

二、定积分的性质定积分具有一些重要的性质,包括线性性质、区间可加性、保号性等。

这些性质在定积分的计算和性质分析中起到了重要作用。

三、定积分的计算方法在高考中,求定积分通常通过几种基本的计算方法来完成,包括换元法、分部积分法、定积分的性质等。

不同的计算方法适用于不同的函数和题目类型,需要根据具体情况选择合适的方法。

四、定积分的应用定积分在数学中有广泛的应用。

在高考中,常见的应用包括计算面积、求曲线的弧长、求平均值等。

理解和掌握这些应用可以帮助我们更好地解决与定积分相关的题目。

五、典型题目解析以下是一些高考中常见的定积分题目及其解析,供同学们参考和练习:例题一:计算定积分∫(0 to 1) x^2 dx解析:根据定积分的计算公式,我们有∫(0 to 1) x^2 dx = [x^3/3] (0 to 1) = 1/3例题二:计算不定积分∫(2 to 5) (2x+1) dx解析:根据定积分的计算公式,我们有∫(2 to 5) (2x+1) dx = [x^2+x] (2 to 5) = (5^2+5) - (2^2+2) = 24例题三:求函数f(x)=2x在区间[0,3]上的平均值。

解析:函数的平均值可以通过定积分来计算,平均值=1/(b-a) * ∫(a to b) f(x) dx = 1/(3-0) * ∫(0 to 3) 2x d x = 1/3 * [x^2] (0 to 3) = 1/3 * (3^2-0^2) = 3通过以上例题解析,我们可以看到定积分的计算方法和应用的具体过程,希望同学们通过练习更加熟练掌握这些知识点。

高中数学定积分讲义

高中数学定积分讲义

高中数学定积分讲义一、理解定积分的概念1、产生背景:2、曲边梯形的概念:如图所示,我们把由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形.yi记n 个小曲边梯形的面积分别为:△S 1, △S 2,…, △S n , 则曲边梯形的面积S=△S 1+△S 2+…+△S n 第二步 近似代替在每个小区间],[1i i x x -上任取一点),,2,1(,n i i =ξ 则i i i x f s ∆⋅≈∆)(ξ, 第三步 求和 i i ni x f s ∆⋅≈∑=)(1ξ第四步 取极限∑=∞→∆⋅=ni ii n x f s1)(lim ξ阿基米德问题:求由抛物线y=x 2与直线x=1,y=0所围成的平面图形的面积.°分割:将区间[0,1]分成n 等份: △s1,,,1n n -⎡⎡⎢⎢⎣⎣2°近似代替:x n i xn i f s s ii ∆-=∆-='∆≈∆2)1()1(),,2,1(1)1(2n i nn i =⋅-=3°求和: S n =n n i x n i f s sni ni ni i ni i1)1()1(21111⋅-=∆-='∆≈∆∑∑∑∑====nn n n n n n n 1)1(1)2(1)1(10222⋅-+⋅+⋅+⋅= ])1(321[122223-++++=n n6)12()1(13--⋅=n n n n )211)(11(31nn --= 4°取极限: 31)211)(11(31lim lim 1=--='∆=∞→=∞→∑n n s s n ni i n 求曲边梯形面积的“四步曲”:1°分割 化整为零以直代曲3°求和积零为整刨光磨平1、定积分的概念:例2、已知二次函数c bx ax x f ++=2)(,直线2:1=x l ,直线t t y l 8:22+-=(其中0≤t ≤2,t 为常数)。

定积分知识点汇总

定积分知识点汇总

定积分知识点汇总定积分是微积分中的一个重要概念,它在数学、物理、工程等领域都有着广泛的应用。

下面就来对定积分的相关知识点进行一个全面的汇总。

一、定积分的定义如果函数\(f(x)\)在区间\(a,b\)上连续,用分点\(a =x_0 < x_1 < x_2 <\cdots < x_n = b\)将区间\(a,b\)等分成\(n\)个小区间,在每个小区间\(x_{i 1}, x_i\)上取一点\(\xi_i\)(\(i = 1, 2, \cdots, n\)),作和式\(\sum_{i = 1}^n f(\xi_i) \Delta x\)(其中\(\Delta x =\dfrac{b a}{n}\))。

当\(n\)无限趋近于正无穷大时,上述和式无限趋近于某个常数,这个常数叫做函数\(f(x)\)在区间\(a,b\)上的定积分,记作\(\int_{a}^{b} f(x)dx\)。

二、定积分的几何意义1、当函数\(f(x)\)在区间\(a,b\)上恒为正时,定积分\(\int_{a}^{b} f(x)dx\)表示由曲线\(y = f(x)\),直线\(x = a\),\(x = b\)和\(x\)轴所围成的曲边梯形的面积。

2、当函数\(f(x)\)在区间\(a,b\)上恒为负时,定积分\(\int_{a}^{b} f(x)dx\)的值为上述曲边梯形面积的相反数。

3、当函数\(f(x)\)在区间\(a,b\)上有正有负时,定积分\(\int_{a}^{b} f(x)dx\)表示曲线\(y = f(x)\)在\(x\)轴上方部分与\(x\)轴所围成的面积减去曲线\(y = f(x)\)在\(x\)轴下方部分与\(x\)轴所围成的面积。

三、定积分的性质1、\(\int_{a}^{a} f(x)dx = 0\)2、\(\int_{a}^{b} f(x)dx =\int_{b}^{a} f(x)dx\)3、\(\int_{a}^{b} f(x) ± g(x)dx =\int_{a}^{b} f(x)dx ±\int_{a}^{b} g(x)dx\)4、\(\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx\)(其中\(k\)为常数)四、定积分的计算1、牛顿莱布尼茨公式如果函数\(F(x)\)是连续函数\(f(x)\)在区间\(a,b\)上的一个原函数,那么\(\int_{a}^{b} f(x)dx = F(b) F(a)\)。

定积分知识点总结高中

定积分知识点总结高中

定积分知识点总结高中一、定积分的概念定积分是微积分中的重要概念之一,它是对一个区间上函数的积分进行求解的一种方法。

在数学上,定积分可以用来求解曲线与坐标轴所围成的图形的面积、求解物体的质量、求解物体的质心和求解函数的平均值等。

二、定积分的符号表示定积分的符号表示为∫abf(x)dx,其中∫表示积分的意思,a和b分别表示积分的区间,f(x)表示被积函数,而dx表示自变量。

三、定积分的基本性质1. 定积分的区间可以是一个闭区间也可以是一个开区间。

2. 定积分的积分域是一段区间上的一个函数。

3. 定积分的值只与积分的上限和下限以及积分函数的具体形式有关,与被积函数在区间上函数值的具体大小无关。

四、定积分的计算方法1. 定积分的计算方法有多种,其中最常用的方法有两种:换元积分法和分部积分法。

2. 换元积分法是将定积分中的自变量进行替换,从而使积分的形式更容易计算。

3. 分部积分法是将被积函数进行分解,从而使积分的形式更容易计算。

五、定积分的应用1. 定积分可以用来求解曲线与坐标轴所围成的图形的面积。

这是定积分最基本的应用之一。

2. 定积分可以用来求解物体的质量。

例如,如果我们知道一个物体的密度分布函数,在定积分的帮助下可以求解出物体的总质量。

3. 定积分可以用来求解物体的质心。

通过定积分可以计算出物体在某一方向上的平均位置。

4. 定积分可以用来求解函数的平均值。

通过定积分可以求解被积函数在一段区间上的平均值。

六、定积分的图形表示1. 在定积分的图形表示中,定积分表示的是曲线与坐标轴所围成的图形的面积。

2. 定积分的图形表示与被积函数在指定区间上的图像有关,可以通过被积函数的图像来判断定积分的正负值,从而得到面积的正负值。

七、定积分的应用实例1. 一块形状不规则的地块的面积可以通过定积分来求解。

2. 一根线密度不均匀的杆子的质量可以通过定积分来求解。

3. 一个质点在一段区间内的平均位置可以通过定积分来求解。

定积分知识点总结

定积分知识点总结

定积分知识点总结一、定积分的概念定积分是微积分中的一个重要概念,它是求解曲线下面积的一种方法。

当我们要计算一个曲线在两个点之间的面积时,可以使用定积分来求解。

定积分通常由一个区间上的函数来定义,它表示这个函数在这个区间上的面积。

二、定积分的符号表示定积分通常用符号∫关于x代表积分,下限和上限之间的函数表示要积分的函数,dx表示积分变量。

即∫ab f(x)dx表示在区间[a, b]上的函数f(x)的定积分。

三、定积分的性质1. 线性性质:若f(x)和g(x)是[a, b]上的可积函数,k1和k2是常数,则有∫ab(k1f(x)+k2g(x))dx=k1∫abf(x)dx+k2∫abg(x)dx。

2. 区间可加性:若f(x)在[a, b]和[b, c]上都可积,则有∫ac f(x)dx=∫ab f(x)dx+∫bc f(x)dx。

3. 积分的保号性:若在[a, b]上有f(x)≥0,则∫ab f(x)dx≥0。

4. 积分的单调性:若在[a, b]上有f(x)≥g(x),则∫ab f(x)dx≥∫ab g(x)dx。

五、定积分的计算方法1. 几何法:通过几何图形的面积来计算定积分,通常使用在能够用几何图形表示的函数上,例如多项式函数。

2. 积分表法:通过积分表中的已知积分公式,来计算定积分,通常用于一些常见函数。

3. 定积分的换元积分法:通过变量替换的方法来进行定积分的计算,通常适用于需要进行一定变量替换后才能计算的函数。

4. 定积分的分部积分法:通过分部积分的方法来进行定积分的计算,通常适用于需要进行一定的分部积分后才能计算的函数。

六、定积分的应用定积分在数学和物理学中有着极其重要的应用,例如计算曲线下面积、求解函数的平均值、求解体积、求解质量、质心和弧长等。

在数学中,定积分是微积分的基础,它还被广泛应用于概率统计、微分方程、傅立叶变换等领域。

在物理学中,定积分被用来求解各种场和力的功、能量、质心等问题。

高中数学定积分知识点

高中数学定积分知识点

数学选修2-2知识点总结一、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,可正,可负,可零。

注2:函数的平均变化率可以看作是物体运动的平均速度。

2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。

4导数的背景(1)切线的斜率;(2)瞬时速度;6、常见的导数和定积分运算公式:若()g x均可导(可积),则有:f x,()用导数求函数单调区间的步骤:①求函数f(x)的导数'()f x②令'()f x>0,解不等式,得x的范围就是递增区间.③令'()f x<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。

7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。

(2) 求函数f(x)的导数'()f x(3)求方程'()f x=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如检查/()果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。

高中数学定积分

高中数学定积分

下 方 为 y 2 , 自 变 量 的 取 值 范 围 为 E,F , 其 中 x
y E:
y
2 x x1
x 2 , F 4,0 , 所 以 所 求 面 积 为

D. 4 2ln 2
4
2
S
x 1 dx
2
x
1 x2
x
2ln x
4 2
4 2ln2
2
答案: D
例 8:如图所示,正弦曲线 y sin x ,余弦曲线 y cosx 与两直线 x 0, x
2 x2 x 1 dx
1
b
(3) f x dx a
2 x2dx
2
xdx
2
1dx
1
1
1
c
b
f x dx f x dx ,其中 a c b
a
c
作用: 当被积函数含绝对值, 或者是分段函数时, 可利用此公式将所求定积分按区间进行拆
分,分别求解。
5、若 f x 具备奇偶性,且积分限关于原点对称,则可利用奇偶性简化定积分的计算
f t xt x2
b
2、定积分 f x dx 的几何意义:表示函数 f x 与 x 轴, x a, x b 围成的面积( x 轴 a
上方部分为正, x 轴下方部分为负)和,所以只有当 f x 图像在 a,b 完全位于 x 轴上方
b
b
时, f x dx 才表示面积。 f x dx 可表示数 f x 与 x 轴, x a, x b 围成的面积
再调整系数,
例如: f x
x3 ,则判断属于幂函数类型, 原函数应含 x 4 ,但 x 4 '
4x3 ,而 f x
x
3

高中数学-定积分的概念

高中数学-定积分的概念
1.5.3 定积分的概念
求曲线y=f(x)对应的曲边梯形面积的方法
(1)分割: 在区间[a,b]
y
上等间隔地插入n-1个点,将
它等分成n个小区间:
a, x1,x1, x2 , xi1, xi ,
, xn1,b,
每个小区间宽度△x
b
a
.
n
Oa
y=f(x)
xi xi xi+1
b
x
x
y
(2)取近似求和:
i 1
f (xi )x.
Oa
y=f(x)
xi xi xi+1
b
x
x
1.定积分的计算和简单应用.(重点) 2.利用定积分求平面区域围成的面积. (难点)
探究点1 定积分的定义
从求曲边梯形面积S的过程中可以看出, 通过以
下四步:
分割——近似代替——求和——取极限得到解
决.
曲边梯形面积
n
S lim f x0 i1
a
f
(xi ).
这里,a和b分别叫做积分下限和积分上限, 区间[a, b]叫做积分区间,函数f (x)叫做被积函数, x叫做积分变量,f (x)dx叫做被积式.
定积分的定义的理解:
b a
f
( x)dx
lim
n
n i 1
ba n
f
(xi ).
定积分的相关名称:
———叫做积分号, y
y f (x)
那么定积分 b f (x)dx 表示 a
由直线 x=a,x=b,y=0 和曲线 y=f(x) 所围成的曲边梯形的面积.
y yf (x)
Oa
bx
思考:试用定积分的几何意义说明
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学选修2-2知识点总结一、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,可正,可负,可零。

注2:函数的平均变化率可以看作是物体运动的平均速度。

2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。

4导数的背景(1)切线的斜率;(2)瞬时速度;6、常见的导数和定积分运算公式:若()g x均可导(可积),则有:f x,()用导数求函数单调区间的步骤:①求函数f(x)的导数'()f x②令'()f x>0,解不等式,得x的范围就是递增区间.③令'()f x<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。

7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。

(2) 求函数f(x)的导数'()f x(3)求方程'()f x=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如检查/()果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。

[注]:实际问题的开区间唯一极值点就是所求的最值点;9.求曲边梯形的思想和步骤:分割→近似代替→求和→取极限 (“以直代曲”的思想)10.定积分的性质根据定积分的定义,不难得出定积分的如下性质: 性质1a b dx ba-=⎰1性质5 若[]b a x x f ,,0)(∈≥,则0)(≥⎰b adx x f①推广:1212[()()()]()()()bb bbm m aaaaf x f x f x dx f x dx f x dx f x ±±±=±±±⎰⎰⎰⎰②推广:121()()()()kbc c baac c f x dx f x dx f x dx f x dx =+++⎰⎰⎰⎰11定积分的取值情况:定积分的值可能取正值,也可能取负值,还可能是0.( l )当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于x 轴上方的图形面积;(2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于x 轴上方图形面积的相反数;(3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于x 轴上方图形的面积减去下方的图形的面积.12.物理中常用的微积分知识(1)位移的导数为速度,速度的导数为加速度。

(2)力的积分为功。

二、推理与证明知识点13.归纳推理的定义: 从个别事实....中推演出一般性...的结论,像这样的推理通常称为归纳推理。

归纳推理是由部分到整体..,由个别到一般..的推理。

14.归纳推理的思维过程大致如图:15.归纳推理的特点:实验、观察概括、推广猜测一般性结论①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。

②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具。

③归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。

16.类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。

类比推理是由特殊..的推理。

..到特殊17.类比推理的思维过程18.演绎推理的定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。

演绎推理是由一般..的推理。

..到特殊19.演绎推理的主要形式:三段论20.“三段论”可以表示为:①大前题:M是P②小前提:S是M ③结论:S是P。

其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。

21.直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。

直接证明包括综合法和分析法。

22.综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。

23.分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。

要注意叙述的形式:要证A,只要证B,B应是A成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。

24反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。

25.反证法的一般步骤(1)假设命题结论不成立,即假设结论的反面成立;(2)从假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不正确...,即所求证命题正确。

26常见的“结论词”与“反义词”27.反证法的思维方法:正难则反....28.归缪矛盾 (1)与已知条件....矛盾: (2)与已有公理、定理、定义..........矛盾; (3)自相..矛盾.29.数学归纳法(只能证明与正整数...有关的数学命题)的步骤 (1)证明:当n 取第一个值....()00n n N *∈时命题成立;(2)假设当n=k (k ∈N *,且k ≥n 0)时命题成立,证明当n=k+1.....时命题也成立. 由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确 [注]:常用于证明不完全归纳法推测所得命题的正确性的证明。

三、数系的扩充和复数的概念知识点30.复数的概念:形如a+bi ....的数叫做复数,其中i 叫虚数单位,a 叫实部, b 叫虚部,数集{}|,C a bi a b R =+∈叫做复数集。

规定:a bi c di +=+⇔a=c ...且.b=d ..., 强调:两复数不能比较大小,只有相等或不相等。

31.数集的关系:0000b Z a b a =⎧⎪≠⎧⎨⎪≠⎨⎪=⎪⎩⎩实数 ()复数一般虚数()虚数 ()纯虚数()32.复数的几何意义:复数与平面内的点或有序实数对一一对应。

33.复平面:根据复数相等的定义,任何一个复数bi a z +=,都可以由一个有序实数对),(b a 唯一确定。

由于有序实数对),(b a 与平面直角坐标系中的点一一对应,因此复数集与平面直角坐标系中的点集之间可以建立一一对应。

这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。

实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数。

34.求复数的模(绝对值)与复数z 对应的向量OZ 的模r 叫做复数bi a z +=的模(也叫绝对值)记作bi a z +或。

由模的定义可知:22b a bi a z +=+=35.复数的加、减法运算及几何意义①复数的加、减法法则:12z a bi c di =+=+与z ,则12()z z a c b d i ±=±+±。

注:复数的加、减法运算也可以按向量..的加、减法来进行。

②复数的乘法法则:()()()()a bi c di ac bd ad bc i ++=-++。

③复数的除法法则:2222()()()()a bi a bi c di ac bd bc adi c di c di c di c d c d++-+-==+++-++其中c di -叫做实数化因子 36.共轭复数:两复数a bi a bi +-与互为共轭复数,当0b ≠时,它们叫做共轭虚数。

常见的运算规律(1);(2)2,2;z z z z a z z bi =+=-=2222(3);(4);(5)z z z z a b z z z z z R ⋅===+==⇔∈41424344(6),1,,1;n n n n ii iii i++++==-=-=()2211(7)1;(8),,11i i i i i i i i i +-±=±==-=±-+)9(设231i +-=ω是1的立方虚根,则012=++ωω,1,,332313===+++n n n ωωωωω。

相关文档
最新文档