初中数学厦门市九年级上期末考试数学考试卷含答案 .docx

合集下载

福建省厦门市九年级上学期期末数学试卷

福建省厦门市九年级上学期期末数学试卷

福建省厦门市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分)关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根为0,则实数a的值为()A . 1B . -1C . 0D . ﹣1或12. (2分)的值为()A . 5B . 5-C . 1D . 2-13. (2分)下列说法正确的是()A . 面积相等的两个三角形全等B . 矩形的四条边一定相等C . 一个图形和它旋转后所得图形的对应线段相等D . 随机投掷一枚质地均匀的硬币,落地后一定是正面朝上4. (2分)如图,直线l与半径为3的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连结PA,设PA=m,PB=n,则m﹣n的最大值是()A . 3B . 2C .D .5. (2分) (2016九上·龙湾期中) 如图,正五边形ABCDE内接于⊙O,则∠OAB的度数为()A . 36°B . 72°C . 54°D . 108°6. (2分)一个质地均匀的小正方体的六面上都标有数字,1,2,3,4,5,6。

如果任意抛掷小正方体两次,那么下列说法正确的是()A . 得到的数字之和必然是4B . 得到的数字之和可能是3C . 得到的数字之和不可能是2D . 得到的数字之和有可能是17. (2分) (2020九上·米易期末) 不透明的口袋内装有红球和白球和黄球共20个,这些球除颜色外其它都相同,将口袋内的球充分搅拌均匀,从中随机摸出一个球,记下颜色后放回,不断重复该摸球过程,共摸取2020次球,发现有505次摸到白球,则口袋中白球的个数是()A . 5B . 10C . 15D . 208. (2分)东营市出租车的收费标准是:起步价8元(即行驶距离不超过3 km都需付8元车费),超过3 km以后,每增加1 km,加收1.5元(不足1 km按1 km计).某人从甲地到乙地经过的路程是x km,出租车费用为15.5元,那么x的最大值是()A . 11B . 8C . 7D . 59. (2分) (2020九上·浦城期末) 在平面直角坐标系xoy中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将△OAB放大,若B点的对应点B′的坐标为(﹣6,0),则A 点的对应点A′坐标为()A . (﹣2,﹣4)B . (﹣4,﹣2)C . (﹣1,﹣4)D . (1,﹣4)10. (2分) (2019九上·苍南期中) 如图,在Rt△ABC中,∠C=90°,若AB=5,AC=4,则cosB的值()A .B .C .D .11. (2分)一段拦水坝横断面如图所示,迎水坡AB的坡度为i=1:,坝高BC=6m,则坡面AB的长度()A . 12mB . 18mC . 6D . 1212. (2分)小华拿着一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影不可能是()A .B .C .D .13. (2分)(2017·河南模拟) 如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是()A .B .C .D .14. (2分) (2020九上·宁津期末) 如图是小玲设计用手电来测家附近“新华大厦”高度的示意图.点处放一水平的平面镜,光线从点出发经平面镜反射后刚好射到大厦的顶端处,已知,且测得米,米,米,那么该大厦的高度约为()A . 8米B . 16米C . 24米D . 36米15. (2分) (2020九上·晋州期中) 如图所示,在△ABC中D为AC边上一点,若∠DBC=∠A, BC=3,AC=6,则CD的长为()A . 1B . 2C .D .16. (2分)函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A .B .C .D .二、填空题 (共4题;共4分)17. (1分)已知抛物线y=ax2-4ax+c经过点A(0,2),顶点B的纵坐标为3.将直线AB向下平移,与x 轴、y轴分别交于点C、D,与抛物线的一个交点为P,若D是线段CP的中点,则点P的坐标为________ .18. (1分)如图,反比例函数y=-图象上有一点P,PA⊥x轴于A,点B在y轴的负半轴上,那么△PAB的面积是________19. (1分)(2019·婺城模拟) 如图,已知在△ABC中,AB=AC,BC=8,D、E两点分别在边BC、AB上,将△ABC 沿着直线DE翻折,点B正好落在边AC上的点M处,并且AC=4AM,设BD=m,那么∠ACD的正切值是________(用含m的代数式表示)20. (1分)在Rt△ABC中,∠C=90°,如果AB=6,cosA=,那么AC=________三、解答题 (共6题;共30分)21. (5分)解方程:3x(x﹣2)=2(2﹣x);22. (5分)在x2□2x□1的空格中,任意填上“+”“﹣”,求其中能构成完全平方的概率(列出表格或画出树形图)23. (5分)如图,以Rt△ABC的直角边AB为直径作☉O,与斜边AC交于点D,过点D作☉O的切线交BC边于点E.求证:EB=EC=ED24. (5分)(2017·长春) 如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)25. (5分)已知二次函数y=-的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.26. (5分) (2019九上·西城期中) 如图,在四边形ABCD中,,,,,如果,求CD的长.参考答案一、单选题 (共16题;共32分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:二、填空题 (共4题;共4分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共6题;共30分)答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:解析:答案:24-1、考点:解析:答案:25-1、考点:解析:答案:26-1、考点:解析:第21 页共21 页。

福建省厦门市2021-2022学年九年级(上)期末考数学试卷及参考答案

福建省厦门市2021-2022学年九年级(上)期末考数学试卷及参考答案

准考证号: 姓名: _________(在此卷上答题无效)2021—2022学年第一学期初中毕业班期末考试数学本试卷共5页.试卷满分:150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.核对答题卡上粘贴的条形码的“准考证号、姓名”与本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.全卷三大题,26小题,试卷共5页.4.可以直接使用2B铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.图1是抛物线y = ax2 + bx + c的示意图,则a的值可以是A.1B.0C. - 1D. - 22.如图2,△ABC内接于圆,弦BD交AC于点P,连接AD.下列角中,是AB̂所对圆周角的是A.∠APBB.∠ABDC.∠ACBD.∠BAC3.抛物线y = ax2 + bx + c的对称轴是A. = ba B.x =- baC.x = b2aD.x=-baa4.方程(x-1)2 = 0的根是A.x = - 1B.x1 = x2 = 1C.x1 =x2= - 1D.x1 = 1,x2 = -15.在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是A.( - 1, - 3)B.( - 1,3)C.(1, - 3)D.(3,1)6.如图3,E是正方形ABCD中CD边上的点,以点A为中心,把△ADE顺时针旋转,得到△ABF.下列角中,是旋转角的是A.∠DAEB.∠EABC.∠DABD.∠DAF7.某种爆竹点燃后升空,并在最高处燃爆.该爆竹点燃后离地高度h(单位:m)关于离地时间t(单位:s)的函数解析式是h = 20 t - 5 t2,其中t的取值范围是8.某区为了解初中生体质健康水平,在全区进行初中生体质健康的随机抽测,结果如表一:根据抽测结果,下列对该区初中生体质健康合格的概率的估计,最合理的是A.0.92B.0.905C.0.903D.0.99.某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P. A,P分别位于B的西北方向和东北方向,如图4所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B 原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是A.20 mB.20√2mC.(20√2 - 20)mD.(40 - 20√2)m10.在平面直角坐标系中,点M的坐标为(m,m2 - bm),b为常数且b > 3.若m2 - bm > 2 - √2b,m < b2,则点M的横坐标m的取值范围是A.0 < m < √2B.m < √2C.√2 < m < 32 D.m < 32二、填空题(本大题有6小题,每小题4分,共24分)11.抛物线y =(x-2)2 + 3的顶点坐标是 _________ .12.不透明袋子中装有1个红球和2个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,摸出红球的概率是 _________ .13.如图5,四边形ABCD内接于圆,E为CD延长线上一点,图中与∠ADE相等的角是 _________ .14.如图6,矩形ABCD的对角线AC,BD交于点O,M在BC边上,连接MO并延长交AD边于点N.若BM = 1,∠OMC = 30°,MN = 4,则矩形ABCD的面积为 _________ .15.阅读下列材料:早在公元1世纪左右,我国著名的数学典籍《九章算术》中就已经对一元二次方程进行了研究:在“勾股”章中,根据实际问题列出方程x2 + 34x - 71000 = 0,给出该方程的正根为x = 250,并简略指出解该方程的方法:开方除之.其后,受此启发,有数学家研究了利用几何图形求解该方程的方法,对于丰富我国古代有关一元二次方程的研究具有重要的价值.用该方法求解的过程如下(如图7):第一步:构造已知小正方形边长为x,将其边长增加17,得到大正方形.第二步:推理根据图形中面积之间的关系,可得(x+17)2= x 2+ 2 × 17x + 172. 由原方程x 2+ 34x - 71000 = 0,得x 2+ 34x = 71000. 所以(x+17)2= 71000 + 172. 所以(x+17)2 = 71289. 直接开方可得正根x = 250.依照上述解法,要解方程x 2+ bx + c = 0(b > 0),请写出第一步“构造”的具体内容: 与第二步中“(x+17)2= 71000 + 172n相应的等式是 _________ .16.在△ABC 中,AB = AC ,以AB 为直径的00交BC 边于点D .要使得00与AC 边的交点E 关于直线AD 的对称点在线段OA 上(不与端点重合),需满足的条件可以是 _________ .(写出所有正确答案的序号)①∠B .AC > 60°;②45° < ∠ABC < 60°;③BD > 12AB ;④ 12AB < DE <√2 2AB .三、解答题(本大题有10小题,共86分) 17.(本题满分7分) 解方程:x 2- 4x - 1 = 0.18.(本题满分7分)如图8,四边形ABCD 是平行四边形,E ,F 是对角线AC 的三等分点,连接BE ,DF .证明BE = DF .19.(本题满分7分) 先化简,再求值:(a + 1 a−2) ÷(a−1)2 a+1,其中a = √3 + 2.20.(本题满分7分)2021年是中欧班列开通十周年.某地自开通中欧班列以来,逐渐成为我国主要的集贸区域之一.2019年该地中欧班列的开行量为500列,2021年达到1280列.求该地这两年中欧班列开行量的年平均增长率.21.(本题满分8分)如图9,AB 为⊙O 的直径,点C 在⊙O 上,点P 在BA 的延长线上,连接BC ,PC .若AB = 6,AC ̂的长为π,BC = PC .求证:直线PC 与⊙O 相切.某生物制剂公司以箱养的方式培育一批新品种菌苗,每箱有40株菌苗.若某箱菌苗失活率大于10%,则需对该箱菌苗喷洒营养剂.某日工作人员随机抽检20箱菌苗,结果如表二:(1)抽检的20箱平均每箱有多少株失活菌苗?(2)该日在这批新品种菌苗中随机抽取一箱,记事件A为:该箱需要喷洒营养剂.请估计事件A的概率.23.(本题满分9分)如图10,在△ABC中,P是BC边的中点,∠BAP = α(α为锐角).把点P绕点A顺时针旋转得到点Q,旋转角为2α.(1)在图10中求作以A,B,P,D为顶点的四边形,使得点Q是该四边形AD边的中点;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若AD = BC,探究直线PQ与直线BD的位置关系.24.(本题满分10分)我们将平面内点与多边形的位置关系分为三类:①点在多边形的内部;②点在多边形的边上;③点在多边形的外部.在平面直角坐标系x0y中,抛物线y = ax2 - 2ax - 3a(a > 0)与y轴交于点A,过顶点B作BC⊥x 轴于点C,P是BC的中点,连接OP.将线段OP平移后得到线段O’P’.(1)若平移的方向为向右,当点P’在该抛物线上时,判断点C是否在四边形OPP’O’的边上,并说明理由;(2)若平移的方向为向下,平移的距离是(a + 1)个单位长度,其中a < 1.记抛物线上点A,B之4间的部分(不含端点)为图象T,M是图象T上任意一点,判断点M与四边形OPP’O’的位置关系,并说明理由.如图11,在四边形ABCD中,BA = BC,AC⊥BD,垂足为O.P是线段OD上的点(不与点O重合),把线段AP绕点A逆时针旋转得到AQ,∠OAP = ∠PAQ,连接PQ,E是线段PQ的中点,连接OE交AP于点F.(1)若BO = DO,求证:四边形ABCD是菱形;(2)探究线段PO,PE,PF之间的数量关系.26.(本题满分12分)行驶中的汽车刹车后,由于惯性还会继续向前滑行一段距离,这段距离称为“刹车距离”.某公司设计了M,N两款型号的新型汽车,它们在平坦路面上的“刹车距离”y(单位:m)与车速x(单位:km/h)之间的函数关系分别可以用二次函数y1 = ax2 + 3100 x(0≤x≤200),y2 = 1500x2 + b100+c(0≤x≤200,b≥1)近似地表示.为了估计a的值,公司综合考虑各种路面情况,选择了六种有代表性的路面进行刹车试验,具体的数据如表三:(1)依据上述数据,合理估计a的值,并求M款型号汽车的“刹车距离”为3.15 m时所对应的车速;(2)当50≤x≤200时,是否存在实数b,使得在相同的车速下N款型号汽车的“刹车距离”始终比M款型号汽车的“刹车距离”小?若存在,求出相应的b的取值范围;若不存在,请说明理由.2021—2022 学年第一学期初中毕业班期末考试数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分. 一、选择题 (本大题共 10 小题, 每小题 4 分, 共 40 分)二、填空题 (本大题共 6 小题, 每题 4 分,共 24 分)11. (2 ,3). 12. 13. ∠B .15.(1)已知小正方形边长为 x ,将其边长增加,得到大正方形; 16.②④.14.4+4 .(2)(x +) 2=-c +三、解答题(本大题有 10 小题, 共 86 分) 17. (本题满分 7 分)解法一:a =1 ,b =-4 ,c =- 1.因为△=b 2 -4ac =20>0,………………………… 3 分 所以方程有两个不相等的实数根: -b ±2a4±==2± .…………………………5 分 即 x 1=2+,x 2=2-.…………………………7 分解法二:由原方程得 x 2 -4x =1 .…………………………1 分 x 2 -4x +4=5 .…………………………3 分 (x -2) 2=5 .…………………………4 分 可得 x -2=±…………………………5 分 x 1=2+,x 2=2-.…………………………7 分= x 3 .2118. (本题满分 7 分)解法一: 证明:∵ E ,F 是对角线AC 的三等分点,13 B ∵ 四边形ABCD 是平行四边形,∴ AB ∥CD ,AB =CD .………………………………3 分 ∴ ∠BAE = ∠DCF . ………………………………4 分 ∵ AB =CD , ∠BAE = ∠DCF ,AE =CF ,∴ △BAE ≌△DCF . ∴ BE =DF . ………………………………6 分 ………………………………7 分A DC解法二: 证明:分别连接 DE ,BF ,BD ,BD 交AC 于点 O , ∵ E ,F 是对角线AC 的三等分点,13 B ∵ 四边形ABCD 是平行四边形,∴ OA =OC ,OB =OD .……………………………3 分 又∵ AE =CF ,∴ OA -AE =OC -CF ,∴ OE =OF , ……………………………4 分 ∴ 四边形 BFDE 是平行四边形,…………………6 分 ∴ BE =DF . ……………………………7 分A DC19.(本题满分 7 分) 解: (a + )÷= · ……………………………2 分= · ……………………………3 分= · ……………………………4 分= ………………………………………5 分 当 a =+2 时, 原式=+2+1 +2 -2=+33 =1+…………………………7 分EE Oa -2 (a -1)2 a 2 -2a +1 a +1 a -2 a +1a (a -2)+1 a +1 a -2 (a -1)2 (a -1)2 a +1 a -2 (a -1)21 (a -1)2a +1a -2 ∴ AE =CF = AC . ………………………………1 分∴ AE =CF = AC . (1)分解:设该地这两年中欧班列开行量的年平均增长率为x ,依题意得: ……………………1 分500 (1+x )2=1280. ……………………4 分解方程,得: x 1=-2.6(不合题意, 舍去),x 2=0.6 . ……………………6 分 答: 该地这两年中欧班列开行量的年平均增长率为为 0.6 .…………………………7 分21.(本题满分 8 分)证明: 连接 OC .∵ AB 为⊙O 的直径,AB =6,∴ OA =3. ………………………1 分设∠AOC =n °. ∵ AC 的长为 π, 3πn180∴ n =60,即∠AOC =60°. ………………………3 分 ∵ ∠B 与∠AOC 所对的弧都是AC, ∴ ∠B = ∠AOC =30°. ………………………5 分∵ BC =PC , ∴ ∠P = ∠B =30°,………………………6 分 ∴ 在△OCP 中, ∠OCP =180° - ∠AOC -∠P =90°, ∴ OC ⊥CP .………………………7 分 ∵ OC 是⊙O 的半径, ∴ 直线 PC 与⊙O 相切.………………………8 分BOAPC22.(本题满分 8 分)解:( 1)(本小题满分 5 分) 抽检的 20 箱平均每箱中失活菌苗数为0×6+1×2+2×5+3×4+5×2+6×1 x→20=2 . ………………………5 分 (2)(本小题满分 3 分) 估计事件 A 的概率为………………………4 分答:( 1)抽检的 20 箱平均每箱中失活菌苗数为 2;(2)事件 A 的概率为 ………………8 分20.20.= 2 3 31︵ ︵∴ =π,解:( 1)(本小题满分 4 分)如图四边形ADBP 即为所求.…………………4 分解法 1(作等角):DQAB P C解法 2(作全等三角形):ADB P C解法 3(作轴对称点):AB P C(2)(本小题满分 5 分) 直线PQ 与直线 BD 互相平行.理由如下: 方法一: ∵ 把点 P 绕点A 顺时针旋转得到点 Q ,旋转角为2α, 又∵ ∠BAP =α,∴ AQ =AP , ∠QAB =α . …………………5 分∵ P 是 BC 边的中点,12 ∵ Q 是AD 边的中点,∴ AQ =DQ =2AD . ∵ AD =BC ,∴ AQ =DQ =BP . …………………6 分 ∴ AP =BP .DAB P CQQD1∴ BP =BC .Q∴ ∠ABP = ∠BAP =α. ∴ ∠ABP = ∠QAB . ∴ AD ∥BC ,即 DQ ∥BP . …………………7 分∴ 四边形BPQD 为平行四边形. …………………8 分 ∴ BD ∥PQ .…………………9 分 方法二:设 PQ 与AB 交点为 M . ∵ 把点 P 绕点A 顺时针旋转得到点 Q ,旋转角为2α, 又∵ ∠BAP =α, ∴ AQ =AP , ∠QAB =α . …………………5 分∵ P 是 BC 边的中点,12 ∵ Q 是AD 边的中点, ∴ AQ =2AD . ∵ AD =BC ,∴ AQ =BP . …………………6 分 ∴ AP =BP ,∴ ∠ABP = ∠BAP =α. ∴ ∠ABP = ∠QAB .∴ AD ∥BC . …………………7 分 ∴ ∠QAM = ∠PBM , ∠AQM = ∠BPM . 又∵ AQ =BP ,∴ △AQM ≌△BPM . ∴ AM =BM ,即 M 为线段 AB 中点. ∵ Q 是AD 边的中点,∴ QM 是△ABD 的中位线. …………………8 分 ∴ BD ∥QM .∴ BD ∥PQ . …………………9 分DABP C Q1∴ BP =BC .24.(本题满分 10 分)(1)(本小题满分 5 分)解: 点 C 在四边形 OP P ′O ′的边上. 理由如下: 因为y =ax 2 -2ax -3a =a (x -1)2 -4a , 所以抛物线顶点 B 的坐标为( 1 ,-4a ). 因为 BC ⊥x 轴于点 C ,所以点 C 的坐标为(1 ,0). 因为点 P 是 BC 的中点,所以点 P 的坐标为(1 ,-2a ).………………………………1 分………………………………2 分 因为将线段 OP 向右平移得到线段 O ′P ′,且点P ′在此抛物线上, 所以当y =-2a 时,-2a =a (x -1)2 -4a . 解得 x =1±.所以x P ′=1+ . ………………………………3 分 即 P ′(1+ ,-2a ).所以线段 OP 向右平移个单位. 所以点 O ′的坐标为(,0).因为 0< 1<,所以 点 C 在线段 OO ′上. 即点 C 在四边形 OP P ′O ′的边上. ………………………………4 分……………………………5 分(2)(本小题满分 6 分) 解法一:将线段 OP 向下平移a +1 个单位, 得到 O ′(0 ,-a -1),P ′(1 ,-3a -1). …………………………6 分 又因为 A (0 ,-3a ),B (1 ,-4a ),0<a <4, 所以y O ′-y B =( -a -1)-( -4a )=3a -1<0, y A -y P =-3a -( -2a ) =-a <0. 所以y O ′<y B ,y A <y P .由 O (0 ,0),P (1 ,-2a ),可得线段 OP 的函数表达式为y =-2ax (0<a <4 ,0≤x ≤1). 因为-2a <0, 所以y 随x 的增大而减小, 所以当x =1 时,该函数的最小值为y P . 因为线段 OP 向下平移a +1 个单位得到线段 O ′P ′,所以线段 O ′P ′的函数表达式为y =-2ax -a -1 (0<a <4 ,0≤x ≤1). 同理, 当 x =0 时, 该函数的最大值为y O ′. 对于函数y =a (x -1)2 -4a ,(0<a <4 ,0≤x ≤1), 因为a >0 ,抛物线开口向上,当 0≤x ≤1 时, y 随x 的增大而减小. 所以y B ≤y ≤y A .所以对于图象 T 上的任意一点 M ,有 y B <y M <y A . …………………………9 分 又因为y O ′<y B ,y A <y P ,11 11所以y O ′<y M <y P . 因为 0<x M <1, 点 M 在四边形 OP P ′O ′的内部. …………………………10 分解法二: 解:将线段 OP 向下平移a +1 个单位,得到O ′(0 ,-a -1),P ′(1 ,-3a -1). …………………………6 分由 O (0 ,0),P (1 ,-2a ),可得线段 OP 的函数表达式为y =-2ax (0<a <4 ,0≤x ≤1). 所以线段 O ′P ′的函数表达式为y =-2ax -a -1 (0<a <4 ,0≤x ≤1).由题可设点 M 的横坐标为 m (0<m <1),过点 M 作 x 轴的垂线分别交线段 OP ,O ′P ′于点 N ,Q , 则y M =am 2 -2am -3a ,y N =-2am ,y Q =-2am -a -1. 所以y M -y N =am 2-3a ,y M -y Q =am 2 -2a +1. 令 t =am 2-3a ,因为a >0 ,抛物线 t = am 2-3a 开口向上, 当 0<m <1 时, t 随m 的增大而增大. 当 m =1 时, t =-2a <0. 所以 t <0. 也即y M <y N .令 q =am 2 -2a +1,因为 a >0,抛物线 q =am 2 -2a +1 开口向上, 当 0<m <1 时, q 随m 的增大而增大. 当 m =0 时, q =-2a +1. 因为 a <4, 所以 q >2>0.所以y M >y Q . …………………………9 分所以对于图象 T 上的任意一点 M ,都有y Q <y M <y N . 又因为 0<m <1, 所以点 M 在四边形 OP P ′O ′的内部. …………………………10 分1 1 11A 25. (本题满分 11 分)(1)(本小题满分 5 分) 证明: 方法一:∵ BA =BC ,AC ⊥BD ,∴ AO =CO . …………………………2 分 ∵ BO =DO ,∴ 四边形ABCD 是平行四边形. ……………………4 分又∵ AC ⊥BD ,∴ 四边形ABCD 是菱形. 方法二:∵ AC ⊥BD ,BO =DO , ∴ BA =DA ,BC =DC . ∵ BA =BC ,∴ BA =BC =DA =DC . ∴ 四边形ABCD 是菱形.(2)(本小题满分 6 分)…………………………5 分…………………………3 分…………………………4 分 …………………………5 分 解: PO 2+PF 2=4PE 2.理由如下: 连接AE ,FQ ,设∠OAP = ∠PAQ =α, ∵ AC ⊥BD , ∴ ∠AOP =90°. ∵ AP =AQ , ∴ ∠APQ = ∠AQP =2 (180°- ∠PAQ )=90°-2α.QEFB DO PCQAEFB DO PC又∵ E 是线段 PQ 的中点, ∴ AE ⊥PQ , ∠PAE =2∠PAQ =2α . …………………………6 分 ∴ ∠AEP =90°.∴ A ,O ,P ,E 在以AP 为直径的圆上.…………………………7 分 ∴ ∠AOE = ∠APQ =90°-2α , ∠POE = ∠PAE =2α . …………………………8 分 ∵ 在△AOP 中, ∠AOP =90°,∠OAP =α, ∴ ∠APO =90°-α.∴ ∠AFO = ∠APO +∠POE =90°- α.∴ ∠AOE = ∠AFO . ∴ AO =AF .又∵ ∠OAP = ∠PAQ ,AP =AQ , ∴ △AOP ≌△AFQ .…………………………9 分…………………………10 分∴ FQ =PO , ∠AFQ = ∠AOP =90°. ∴ ∠PFQ =90°.∴ 在 Rt △PFQ 中, FQ 2+PF 2=PQ 2. ∴ PO 2+PF 2=PQ 2. 又∵ PQ =2PE , ∴ PO 2+PF 2=4PE 2 . …………………………11 分1 1 1 111 2 126 (本题满分 12 分)(1)(本小题满分 5 分) 解法一: 解: 当车速 x =100 时, 综合考虑各种路面情况, 可估计“刹车距离”为 y 1 = 6 =28 .………………………………2 分 把 x =100,y 1=28 代入y 1=ax 2+100x (0≤x ≤200),得 a ·1002+ ×100=28.解得a =400 . ……………………………………………………………4 分 所以y 1=400x 2+100x (0≤x ≤200). 当y 1=3.15 时, 可得400x 2+100x =3.15.解得 x 1=30,x 2=-42(不合题意, 舍去). 所以 M 款型号汽车的 “刹车距离”为 3. 15 m 时所对应的车速是 30 km/h .……………………5 分解法二:解:在路面一中, 当x =100 时, y 1=26.5, 代入y 1=ax 2+100x (0≤x ≤200),得 a ·1002+100×100=26.5.解得a =0.00235 .…………………………………………………………………………………2 分 同理可得, 在路面二至路面六中, 相应的 a 的值依次为 0.00242,0.00245,0.00245,0.00262,0.00271. 综合考虑各种路面情况, 此时 a = 6 =0.0025 = ……………………………………………………………………………………………4 分所以y 1=400x 2+100x (0≤x ≤200). 当y 1=3.15 时, 可得400x 2+100x =3.15.解得 x 1=30,x 2=-42(不合题意, 舍去). 所以 M 款型号汽车的 “刹车距离”为 3. 15 m 时所对应的车速是 30 km/h .……………………5 分(2)(本小题满分 7 分)结合实际情境可知, 当车速 x =0 时,“刹车距离”y 2=0,可得 c =0 .…………………………6 分 要使得当 50≤x ≤200 时, 在相同的车速下 N 款型号汽车的“刹车距离”始终比 M 款型号汽车的“刹 车距离”小,即当 50≤x ≤200 时, y 2-y 1<0.0.00235+0.00242+0.00245+0.00245+0.00262+0.00271400. 1 3 26.5+27.2+27.5+27.5+29.2+30.11 31 31 310033 3 3 111 b 1 32000 100 =2000[-x 2+20(b -3) x ] .令 t =-x 2+20(b -3) x ,其中 50≤x ≤200 ,b ≥1. 因为-1<0,所以抛物线开口向下. 因为对称轴 x =10(b -3), 所以当 x <10(b -3)时, t 随 x 的增大而增大;当 x >10(b -3) 时, t 随x 的增大而减小.且当 t =0 时, x 1=0,x 2=20(b -3) .①若 x =10(b -3) ≤0,即 1≤b ≤3, 当x >0 时, t 随x 的增大而减小. 此时 t <0, 所以当 50≤x ≤200 时, t <0. 即y 2-y 1<0. ②若 x =10(b -3) >0,即 b >3.………………………………8 分………………………………10 分11 11111=- x 2+ x ………………………………………7 分y 2-y 1 =500x 2+100x -400x 2 -100x 1 b - 3当x>10(b-3)时,t随x的增大而减小,此时,若x2=20(b-3) <50,即b<2 ,也即3<b<2 ,当50≤x≤200时,t随x的增大而减小,且t<0.即y2-y1<0.综上所述,b的取值范围是1≤b<2 .…………………………………………………12 分。

厦门市九年级上册期末质量检测数学试卷有答案

厦门市九年级上册期末质量检测数学试卷有答案

2019-2020学年(上)厦门市九年级质量检测数学(试卷满分:150分考试时间:120分钟)一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1、下列算式中,计算结果是负数的是()A .()27-+B .1-C .()32⨯-D .()21-2、对于一元二次方程2210xx -+=,根的判别式24b ac -中的b 表示的数是()A .2-B .2C .1-D .13、如图,四边形ABCD 的对角线,AC BD 交于点O ,E 是BC 边上一点,连接,AE OE ,则下列角中是AEO ∆的外角的是()A .AEB ∠B .AOD ∠C .OEC ∠D .EOC∠4、已知圆O 的半径是3,,,A B C 三点在圆O 上,60ACB ∠= ,则弧AB 的长是()A .2πB .πC .32πD .12π5、某区25位学生参加魔方速拧比赛,比赛成绩如图所示,则这25个成绩的中位数是()A .11B .10.5C .10D .66、随着生产技术的进步,某厂生产一件产品的成本从两年前的100元,下降到现在的64元,求年平均下降率,设年平均下降率为x ,通过解方程得到一个根为1.8,则正确的解释是()A .年平均下降率为80%,符合题意B .年平均下降率为18%,符合题意C .年平均下降率为1.8%,不符合题意D .年平均下降率为180%,不符合题意7、已知某二次函数,当1x<时,y 随x 的增大而减小;当1x >时,y 随x 的增大而增大,则该二次函数的解析式可以是()A .()221y x =+B .()221y x =-C .()221y x =-+D .()221y x =--8、如图,已知,,,A B C D 是圆上的点,弧AD =弧BC ,,AC BD 交于点E ,则下列结论正确的是()A .AB AD =B .BECD=C .AC BD =D .BE AD=9、距资料,我国古代数学家祖冲之和他的儿子发展了刘徽的“割圆术”(即圆的内接正多边形边数不断增加,它的周长就越接近圆周长),他们从圆内接正六边形算起,一直算到内接正24576边形,将圆周率精确到小数点后七位,使中国对圆周率的计算在世界上领先了一千多年,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A .2.9B .3C .3.1D .3.1410、已知点(),Mn n -在第二象限,过点M 的直线y kx b =+()01k <<分别交x 轴、y 轴于点,A B ,过点M 作MN x⊥轴于点N ,则下列点在线段AN 的是()A .()()1,0k n -B .3,02kn ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭C .()2,0k n k+⎛⎫⎪⎝⎭D .()()1,0k n +二、填空题(本大题有6小题,每小题4分,共24分)11、已知1x=是方程20x a -=的根,则a =________.12、一个不透明盒子里装有4个除颜色外无其他任何差别的球,从盒子中随机摸出一个球,若()1=4P摸出红球,则盒子里有________个红球.13、如图,已知3,1,90AB AC D ==∠= ,DEC ∆与ABC ∆关于点C 成中心对称,则AE 的长是________.14、某二次函数的几组对应值如下表所示,若12345x x x x x <<<<,则该函数图象的开口方向是________.x 1x 2x 3x 4x 5x y3-54-021-15、P 是直线l 上的任意一点,点A 在圆O 上,设OP 的最小值为m ,若直线l 过点A ,则m 与OA 的大小关系是________.16、某小学举办“慈善一日捐”演出,共有600张演出票,成人票价为60元,学生票价为20元,演出票虽未售完,但售票收入达22080元,设成人票售出x 张,则x 的取值范围是________.三、解答题(本大题有9小题,共86分)17、(本小题满分8分)241xx -=18、(本小题满分8分)如图,已知ABC ∆和DEF ∆的边AC 、DF 在一条直线上,//AB DE ,AB DE =,AD CF =,证明://BCEF19、(本小题满分8分)如图,已知二次函数图象的顶点为P ,与y 轴交于点A 。

【5套打包】厦门市初三九年级数学上期末考试测试卷(解析版)

【5套打包】厦门市初三九年级数学上期末考试测试卷(解析版)

最新九年级上册数学期末考试题(含答案)一、选择题(每小题4分,共48分.)1.下列立体图形中,俯视图是正方形的是()A.B.C.D.2.(4分)一种零件的长是2毫米,在一幅设计图上的长是40厘米,这幅设计图的比例尺是()A.200:1B.2000:1C.1:2000D.1:2003.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是()A.B.C.D.4.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则()A.a<b<0B.b<a<0C.a<0<b D.b<0<a5.将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位6.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元7.如图,下列四个选项不一定成立的是()A.△COD∽△AOB B.△AOC∽△BOD C.△DCA∽△BAC D.△PCA∽△PBD8.如图,⊙O的直径AB经过CD的中点H,cos∠CDB=,BD=5,则OH的长度为()A.B.C.D.9.如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化10.在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A、B,且AC+BC=4,则△OAB的面积为()A.2+3或2﹣3B.+1或﹣1C.2﹣3D.﹣111.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx ﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5B.﹣5<t<3C.3<t≤4D.﹣5<t≤4 12.如图,△ABC和△DEF的各顶点分别在双曲线y=,y=,y=在第一象限的图象上,若∠C=∠F=90°,AC∥DF∥x轴,BC∥EF∥y轴,则S△ABC ﹣S△DEF=()A.B.C.D.二、填空题(每小题4分,共24分)13.若反比例函数y=﹣的图象经过点A(m,3),则m的值是.14.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=.15.如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,一辆小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?;(填“是”或“否”)请简述你的理由.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)16.如图,与抛物线y=x2﹣2x﹣3关于直线x=2成轴对称的函数表达式为.17.如图所示,正方形OEFG和正方形ABCD是位似图形,点F的坐标为(﹣1,1),点C 的坐标为(﹣4,2),则这两个正方形位似中心的坐标是.18.手机上常见的wifi标志如图所示,它由若干条圆心相同的圆弧组成,其圆心角为90°,最小的扇形半径为1.若每两个相邻圆弧的半径之差为1,由里往外的阴影部分的面积依次记为S1、S2、S3…,则S1+S2+S3+…+S20=.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤)19.(6分)()2﹣(2018﹣2019)0+(+1)(﹣1)+tan30°20.(6分)已知抛物线的顶点A(1,﹣4),且与直线y=x﹣3交于点B(3,0),点C(0,﹣3)(1)求抛物线的解析式;(2)当直线高于抛物线时,直接写出自变量x的取值范围是多少?21.(6分)如图,正方形ABCD的边长为6,点E是AB边上的一个动点,过点E作EF⊥DE交BC边于点F,当BE=2AE时,求BF的长.22.(8分)为推进我市生态文明建设,某校在美化校园活动中,设计小组想借助如图所示的直角墙角(两边足够长),用30m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为216m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是17m和8m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.23.(8分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.24.(10分)如图是太阳能电池板支撑架的截面图,其中AB=300cm,AB的倾斜角为30°,BE=CA=50cm,FE⊥AB于点E.点D、F到地面的垂直距离均为30cm,点A到地面的垂直距离为50cm.求CD和EF的长度各是多少cm(结果保留根号).25.(10分)(1)如图1,△ABC中,∠C=90°,∠ABC=30°,AC=m,延长CB至点D,使BD=AB.①求∠D的度数;②求tan75°的值.(2)如图2,点M的坐标为(2,0),直线MN与y轴的正半轴交于点N,∠OMN=75°.求直线MN的函数表达式.26.(12分)如图,一次函数y=k1x+b的图象与反比例函数y=(x<0)的图象相交于点A(﹣1,2)、点B(﹣4,n).(1)求此一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在x轴上存在一点P,使△P AB的周长最小,求点P的坐标.27.(12分)已知直线y=﹣x+2与x轴、y轴分别交于点A、C,抛物线y=﹣+bx+c 过点A、C,且与x轴交于另一点B,在第一象限的抛物线上任取一点D,分别连接CD、AD,作DE⊥AC于点E.(1)求抛物线的表达式;(2)求△ACD面积的最大值;(3)若△CED与△COB相似,求点D的坐标.参考答案一、选择题1.下列立体图形中,俯视图是正方形的是()A.B.C.D.【分析】俯视图是从物体上面看,所得到的图形.【解答】解:A、圆柱的俯视图是圆,故此选项错误;B、正方体的俯视图是正方形,故此选项正确;C、三棱锥的俯视图是三角形,故此选项错误;D、圆锥的俯视图是圆,故此选项错误;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.一种零件的长是2毫米,在一幅设计图上的长是40厘米,这幅设计图的比例尺是()A.200:1B.2000:1C.1:2000D.1:200【分析】图上距离和实际距离已知,依据“比例尺=”即可求得这幅设计图的比例尺.【解答】解:因为2毫米=0.2厘米,则40厘米:0.2厘米=200:1;所以这幅设计图的比例尺为200:1;故选:A.【点评】此题主要考查比例尺的计算方法,解答时要注意单位的换算.3.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是()A.B.C.D.【分析】根据锐角的余弦等于邻边比斜边求解即可.【解答】解:∵AB=5,BC=3,∴AC=4,∴cos A==.故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边4.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则()A.a<b<0B.b<a<0C.a<0<b D.b<0<a【分析】根据反比例函数的性质可以判断a、b的大小,从而可以解答本题.【解答】解:∵y=﹣,∴反比例函数y=﹣的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,∴a<b<0,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质.5.将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位【分析】根据平移规律,可得答案.【解答】解:A、平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B、平移后,得y=(x﹣3)2,图象经过A点,故B不符合题意;C、平移后,得y=x2+3,图象经过A点,故C不符合题意;D、平移后,得y=x2﹣1图象不经过A点,故D符合题意;故选:D.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.6.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【解答】解:3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080m2,故选:C.【点评】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.7.如图,下列四个选项不一定成立的是()A.△COD∽△AOB B.△AOC∽△BOD C.△DCA∽△BAC D.△PCA∽△PBD 【分析】利用圆周角定理、园内接四边形的性质一一判断即可;【解答】解:∵∠OCD=∠OAB,∠COD=∠AOB,∴△COD∽△AOB.同法可证:△AOC∽△BOD.∵∠PCA+∠ACD=180°,∠ACD+∠ABD=180°,∴∠PCA=∠PBD,∵∠P=∠P,∴△PCA∽△PBD,故选:C.【点评】本题考查相似三角形的判定、圆周角定理、圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,⊙O的直径AB经过CD的中点H,cos∠CDB=,BD=5,则OH的长度为()A.B.C.D.【分析】连接OD,由垂径定理得出AB⊥CD,由三角函数求出DH=4,由勾股定理得出BH==3,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得出方程,解方程即可.【解答】解:连接OD,如图所示:∵AB是⊙O的直径,且经过弦CD的中点H,∴AB⊥CD,∴∠OHD=∠BHD=90°,∵cos∠CDB==,BD=5,∴DH=4,∴BH==3,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得:x2+42=(x+3)2,解得:x=,∴OH=;故选:B.【点评】此题考查了垂径定理、勾股定理以及三角函数.此题难度不大,注意数形结合思想的应用.9.如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化【分析】根据题意推知EF∥AD,由该平行线的性质推知△AEH∽△ACD,结合该相似三角形的对应边成比例和锐角三角函数的定义解答.【解答】解:∵EH∥CD,∴△AEH∽△ACD,∴==.设EH=3x,AH=4x,∴HG=GF=3x,∵EF∥AD,∴∠AFE=∠F AG,∴tan∠AFE=tan∠F AG===.故选:A.【点评】考查了正方形的性质,矩形的性质以及解直角三角形,此题将求∠AFE的正切值转化为求∠F AG的正切值来解答的.10.在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A、B,且AC+BC=4,则△OAB的面积为()A.2+3或2﹣3B.+1或﹣1C.2﹣3D.﹣1【分析】根据题意表示出AC,BC的长,进而得出等式求出m的值,进而得出答案.【解答】解:如图所示:设点C的坐标为(m,0),则A(m,m),B(m,),所以AC=m,BC=.∵AC+BC=4,∴可列方程m+=4,解得:m=2±.故=2±,所以A(2+,2+),B(2+,2﹣)或A(2﹣,2﹣),B(2﹣,2+),∴AB=2.∴△OAB的面积=×2×(2±)=2±3.故选:A.【点评】此题主要考查了反比例函数与一次函数的交点,正确表示出各线段长是解题关键.11.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx ﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5B.﹣5<t<3C.3<t≤4D.﹣5<t≤4【分析】如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx与直线y=t的交点的横坐标,利用图象法即可解决问题.【解答】解:如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx与直线y=t的交点的横坐标,当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,直线y=t在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D.【点评】本题考查抛物线与x轴的交点、一元二次方程等知识,解题的关键是学会利用图象法解决问题,画出图象是解决问题的关键,属于中考选择题中的压轴题.12.如图,△ABC和△DEF的各顶点分别在双曲线y=,y=,y=在第一象限的图象上,若∠C=∠F=90°,AC∥DF∥x轴,BC∥EF∥y轴,则S△ABC ﹣S△DEF=()A.B.C.D.【分析】设点C(a,),点F(b,),由AC∥DF∥x轴、BC∥EF∥y轴利用反比例函数图象上点的坐标特征即可求出点A、B、D、E的坐标,从而得出AC、BC、DF、EF的长度,再利用三角形的面积公式即可求出S△ABC ﹣S△DEF的值.【解答】解:设点C(a,),点F(b,),则点A(,)、B(a,)、D(,)、E(b,),∴AC=,BC=,DF=,EF=,∴S△ABC ﹣S△DEF=AC•BC﹣DF•EF=﹣=.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征以及三角形的面积,根据点C、F的坐标表示出点A、B、D、E的坐标是解题的关键.二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上)13.若反比例函数y=﹣的图象经过点A(m,3),则m的值是﹣2.【分析】直接把A(m,3)代入反比例函数y=﹣,求出m的值即可.【解答】解:∵反比例函数y=﹣的图象经过点A(m,3),∴3=﹣,解得m=﹣2.故答案为:﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=50°.【分析】根据切线的性质即可求出答案.【解答】解:∵AT切⊙O于点A,AB是⊙O的直径,∴∠BAT=90°,∵∠ABT=40°,∴∠ATB=50°,故答案为:50°【点评】本题考查切线的性质,解题的关键是根据切线的性质求出∠ATB=90°,本题属于基础题型.15.如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,一辆小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?否;(填“是”或“否”)请简述你的理由点A到OB的距离小于OB与墙MN之间距离.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【分析】过点A作AC⊥OB,垂足为点C,解三角形求出AC的长度,进而作出比较即可.【解答】解:过点A作AC⊥OB,垂足为点C,在Rt△ACO中,∵∠AOC=40°,AO=1.2米,∴AC=sin∠AOC•AO≈0.64×1.2=0.768,∵汽车靠墙一侧OB与墙MN平行且距离为0.8米,∴车门不会碰到墙(点A到OB的距离小于OB与墙MN之间的距离),故答案为:否,点A到OB的距离小于OB与墙MN之间的距离;【点评】本题主要考查了解直角三角形的应用,解题的关键是正确添加辅助线,此题难度不大.16.如图,与抛物线y=x2﹣2x﹣3关于直线x=2成轴对称的函数表达式为y=(x﹣3)2﹣4.【分析】根据抛物线关于直线对称的函数的顶点关于直线对称,可得答案.【解答】解:y=x2﹣2x﹣3的顶点是(1,﹣4),(1,﹣4)关于x=2的对称点是(3,﹣4),y=x2﹣2x﹣3关于直线x=2成轴对称的函数表达式为y=(x﹣3)2﹣4,故答案为:y=(x﹣3)2﹣4.【点评】本题考查了二次函数图象与几何变换,利用抛物线关于直线对称的函数的顶点关于直线对称得出抛物线的顶点是解题关键.17.如图所示,正方形OEFG和正方形ABCD是位似图形,点F的坐标为(﹣1,1),点C 的坐标为(﹣4,2),则这两个正方形位似中心的坐标是(2,0)或(﹣,).【分析】两个位似图形的主要特征是:每对位似对应点与位似中心共线;不经过位似中心的对应线段平行.则位似中心就是两对对应点的延长线的交点,本题分两种情况讨论即可.【解答】解:①当两个位似图形在位似中心同旁时,位似中心就是CF与x轴的交点,设直线CF解析式为y=kx+b,将C(﹣4,2),F(﹣1,1)代入,得,解得即y=﹣x+,令y=0得x=2,∴O′坐标是(2,0);②当位似中心O′在两个正方形之间时,可求直线OC解析式为y=﹣x,直线DE解析式为y=x+1,联立,解得,即O′(﹣,).故答案为:(2,0)或(﹣,).【点评】本题主要考查位似图形的性质,难度一般,注意掌握每对位似对应点与位似中心共线,另外解答本题注意分情况讨论,避免漏解.18.手机上常见的wifi标志如图所示,它由若干条圆心相同的圆弧组成,其圆心角为90°,最小的扇形半径为1.若每两个相邻圆弧的半径之差为1,由里往外的阴影部分的面积依次记为S1、S2、S3…,则S1+S2+S3+…+S20=195π.【分析】先利用扇形的面积公式分别计算出S1=π;S2=π+π;S3=π+2π,则利用此规律得到S20=π+19π,然后把它们相加即可.【解答】解:S1=π•12=π;S2=π•(32﹣22)=π+π;S3=π•(52﹣42)=π+2π;…S20=π+19π;∴S1+S2+S3+…+S20=5π+(1+2+3+…+19)π=195π.故答案为195π.【点评】本题考查了扇形面积的计算:阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤)19.(6分)()2﹣(2018﹣2019)0+(+1)(﹣1)+tan30°【分析】根据零指数幂、特殊角的三角函数值和平方差公式计算.【解答】解:原式=4﹣1+2﹣1+×=4+1=5.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(6分)已知抛物线的顶点A(1,﹣4),且与直线y=x﹣3交于点B(3,0),点C(0,﹣3)(1)求抛物线的解析式;(2)当直线高于抛物线时,直接写出自变量x的取值范围是多少?【分析】(1)设顶点式为y=a(x﹣1)2﹣4,然后把B点坐标代入求出a即可;(2)利用函数图象得到在点B、C之间直线高于抛物线,从而得到对应自变量的范围.【解答】解:(1)设抛物线解析式为y=a(x﹣1)2﹣4,把B(3,0)代入得a(3﹣1)2﹣4=0,解得a=1,所以抛物线解析式为y=(x﹣1)2﹣4;(2)如图,当0<x<3时,直线高于抛物线.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.21.(6分)如图,正方形ABCD的边长为6,点E是AB边上的一个动点,过点E作EF⊥DE交BC边于点F,当BE=2AE时,求BF的长.【分析】由同角(等角)的余角相等可得出∠ADE=∠BEF,结合∠DAE=∠EBF=90°可证出△DAE∽△EBF,由正方形的边长及BE=2AE可得出AD,AE,BE的长,再利用相似三角形的性质即可求出BF的长.【解答】解:∵∠ADE+∠AED=90°,∠AED+∠BEF=180°﹣∠DEF=90°,∴∠ADE=∠BEF.又∵∠DAE=∠EBF=90°,∴△DAE∽△EBF.∵正方形ABCD的边长为6,BE=2AE,∴AD=6,AE=2,BE=4,∴=,即=,∴BF=.【点评】本题考查了相似三角形的判定与性质以及正方形的性质,利用“两角对应相等,两个三角形相似”找出△DAE∽△EBF.22.(8分)为推进我市生态文明建设,某校在美化校园活动中,设计小组想借助如图所示的直角墙角(两边足够长),用30m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为216m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是17m和8m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.【分析】(1)根据AB=xm,就可以得出BC=30﹣x,由矩形的面积公式就可以得出关于x 的方程,解之可得;(2)根据题意建立不等式组求出结论,根据取值范围由二次函数的性质就可以得出结论.【解答】解:(1)根据题意知AB=xm,则BC=30﹣x(m),则x(30﹣x)=216,整理,得:x2﹣30x+216=0,解得:x1=12,x2=18;(2)花园面积S=x(30﹣x)=﹣x2+30x=﹣(x﹣15)2+225,由题意知,解得:8≤x≤13,∵a=﹣1,∴当x<15时,S随x的增大而增大,∴当x=13时,S取得最大值,最大值为221.【点评】本题考查的是二次函数的应用,熟知矩形的面积公式及二次函数的增减性是解答此题的关键.23.(8分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.【分析】(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.【解答】(1)证明:连接OD,CD,∵BC为⊙O直径,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵D点在⊙O上,∴DE为⊙O的切线;(2)解:∵∠A=∠B=30°,BC=4,∴CD=BC=2,BD=BC•cos30°=2,∴AD=BD=2,AB=2BD=4,=AB•CD=×4×2=4,∴S△ABC∵DE⊥AC,∴DE =AD =×2=,AE =AD •cos30°=3,∴S △ODE =OD •DE =×2×=, S △ADE =AE •DE =××3=,∵S △BOD =S △BCD =×S △ABC =×4=, ∴S △OEC =S △ABC ﹣S △BOD ﹣S △ODE ﹣S △ADE =4﹣﹣﹣=.【点评】此题考查了切线的判定、三角形中位线的性质、等腰三角形的性质、圆周角定理以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24.(10分)如图是太阳能电池板支撑架的截面图,其中AB =300cm ,AB 的倾斜角为30°,BE =CA =50cm ,FE ⊥AB 于点E .点D 、F 到地面的垂直距离均为30cm ,点A 到地面的垂直距离为50cm .求CD 和EF 的长度各是多少cm (结果保留根号).【分析】过A 作AG ⊥CD 于G ,连接FD 并延长,与BA 的延长线交于H ,在Rt △CDH 和Rt △EFH 中通过解直角三角形,即可得到CD 和EF 的长度. 【解答】解:过A 作AG ⊥CD 于G ,则∠CAG =30°,在Rt△ACG中,CG=AC sin30°=50×=25,∵GD=50﹣30=20,∴CD=CG+GD=25+20=45,连接FD并延长,与BA的延长线交于H,则∠H=30°,在Rt△CDH中,CH==2CD=90,∴EH=EC+CH=AB﹣BE﹣AC+CH=300﹣50﹣50+90=290,在Rt△EFH中,EF=EH•tan30°=290×=,答:CD和EF的长度分别是45cm和cm.【点评】本题考查了解直角三角形的应用,解题的关键是将实际问题转化为数学问题,构造直角三角形并解直角三角形.25.(10分)(1)如图1,△ABC中,∠C=90°,∠ABC=30°,AC=m,延长CB至点D,使BD=AB.①求∠D的度数;②求tan75°的值.(2)如图2,点M的坐标为(2,0),直线MN与y轴的正半轴交于点N,∠OMN=75°.求直线MN的函数表达式.【分析】(1)在直角三角形中利用角和边之间的关系求角的度数及边长即可;(2)分别求得点M和N的坐标,利用待定系数法求函数的解析式即可.【解答】解:(1)①∵BD=AB,∴∠D=∠BAD,∴∠ABC=∠D+∠BAD=2∠D=30°,∴∠D=15°,②∵∠C=90°,∴∠CAD=90°﹣∠D=90°﹣15°=75°,∵∠ABC=30°,AC=m,∴BD=AB=2m,BC=m,∴CD=CB+BD=(2+)m,∴tan∠CAD=2+,∴tan75°=2+;(2)∵点M的坐标为(2,0),∠OMN=75°,∠MON=90°,∴ON=OM•tan∠OMN=OM•tan75°=2×(2+)=4+2,∴点N的坐标为(0,4+2),设直线MN的函数表达式为y=kx+b,∴,解得:,∴直线MN的函数表达式为y=(﹣2﹣)x+4+2.【点评】本题考查了解直角三角形及待定系数法求函数的解析式的知识,解题的关键是选择正确的边角关系解直角三角形.26.(12分)如图,一次函数y=k1x+b的图象与反比例函数y=(x<0)的图象相交于点A(﹣1,2)、点B(﹣4,n).(1)求此一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在x轴上存在一点P,使△P AB的周长最小,求点P的坐标.【分析】(1)先根据点A 求出k 2值,再根据反比例函数解析式求出n 值,利用待定系数法求一次函数的解析式;(2)利用三角形的面积差求解.S △AOB =S △AOC ﹣S △BOC .(3)作点A 关于x 轴的对称点A ′,连接A ′B ,交x 轴于点P ,此时△P AB 的周长最小,设直线A ′B 的表达式为y =ax +c ,根据待定系数法求得解析式,令y =0,即可求得P 的坐标.【解答】解:(1)∵反比例y =(x <0)的图象经过点A (﹣1,2),∴k 2=﹣1×2=﹣2,∴反比例函数表达式为:y =﹣,∵反比例y =﹣的图象经过点B (﹣4,n ), ∴﹣4n =﹣2,解得n =, ∴B 点坐标为(﹣4,),∵直线y =k 1x +b 经过点A (﹣1,2),点B (﹣4,),∴,解得:,∴一次函数表达式为:y =+.(2)设直线AB 与x 轴的交点为C ,如图1,当y=0时,x+=0,x=﹣5;∴C点坐标(﹣5,0),∴OC=5.S△AOC=•OC•|y A|=×5×2=5.S△BOC=•OC•|y B|=×5×=.S△AOB =S△AOC﹣S△BOC=5﹣=;(3)如图2,作点A关于x轴的对称点A′,连接A′B,交x轴于点P,此时△P AB的周长最小,∵点A′和A(﹣1,2)关于x轴对称,∴点A′的坐标为(﹣1,﹣2),设直线A′B的表达式为y=ax+c,∵经过点A′(﹣1,﹣2),点B(﹣4,)∴,解得:,∴直线A′B的表达式为:y=﹣x﹣,当y=0时,则x=﹣,∴P点坐标为(﹣,0).【点评】主要考查了反比例函数与一次函数的交点.熟练掌握用待定系数法确定函数的解析式是解题的关键.27.(12分)已知直线y=﹣x+2与x轴、y轴分别交于点A、C,抛物线y=﹣+bx+c 过点A、C,且与x轴交于另一点B,在第一象限的抛物线上任取一点D,分别连接CD、AD,作DE⊥AC于点E.(1)求抛物线的表达式;(2)求△ACD面积的最大值;(3)若△CED与△COB相似,求点D的坐标.【分析】(1)根据题意求得点A、C的坐标,将它们分别代入函数解析式,列出关于系数b、c的方程组,通过解方程组求得它们的值;(2)如图1,过点D作DG⊥x轴于点G,交AC于点F.利用三角形的面积公式得到二次函数关系式,由二次函数最值的求法解答;(3)需要分类讨论:①当∠DCE=∠BCO时,∠DCE=∠OAC;②当∠DCE=∠CBO时,∠DCE=∠OCA.根据相似三角形的对应边成比例求得相关线段的长度,从而得到点D 的坐标.【解答】解:(1)∵直线y=﹣x+2与x轴、y轴分别交于点A、C,∴A(4,0),C(0,2),OA=4,OC=2,(1分)将A(4,0),C(0,2)分别代入y=﹣+bx+c中,解得,∴y =﹣+x +2;(2)如图1,过点D 作DG ⊥x 轴于点G ,交AC 于点F , 设D (t ,﹣t 2+t +2),其中0<t <4,则F (t ,﹣t +2) ∴DF =﹣t 2+t +2﹣(﹣t +2)=﹣t 2+2t S △ACD =S △CDF +S △ADF =DF •OG +DF •AG =DF •(OG +AG ) =DF •OA=×4×(﹣t 2+2t ) =﹣(t ﹣2)2+4.∴当t =2时,S △ACD 最大=4.(3)设y =0,则﹣t 2+t +2=0, 解得x 1=4,x 2=﹣1, ∴B (﹣1,0),OB =1 ∵tan ∠OCB ==,tan ∠OAC ===∴∠OCB =∠OAC ∴∠OCA =∠OBC ;①当∠DCE =∠BCO 时,∠DCE =∠OAC , ∴CD ∥OA ,点D 的纵坐标与点C 纵坐标相等, 令y =2,则﹣t 2+t +2=2, 解得x 1=0,x 2=3,∴D1(3,2);②如图2,当∠DCE=∠CBO时,∠DCE=∠OCA,将△OCA沿AC翻折得△MCA,点O的对称点为点M,过点M作MH⊥y轴于点H,AN⊥MH于点N,则CM=CO=2,AM=AO=4,设HM=m,MN=HN﹣HM=OA﹣HM=4﹣m,由∠AMC=∠AOC=∠ANM=∠MHC=90°易证△CHM∽△MNA,且相似比=,∴AN=2MH=2m,CH=MN=2﹣m,在Rt△CMH中,由勾股定理得:m2+(2﹣m)2=22,解得m1=0,m2=∴MH=,OH=,M(,).设直线CM的表达式为y=kx+n,则,解得,∴y=x+2,由解得,∴D2(,)综上所述,点D的坐标为D1(3,2)、D2(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,二次函数最值的求法,勾股定理的应用,相似三角形的判定与性质.解答(3)题时,采用了“分类讨论”的数学思想,以防漏解.最新人教版九年级数学上册期末考试试题及答案一、选择题(本大题10小题每小题3分,共30分)在每小题列出的四个选项中只有一个是正确的1.如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x+1)2﹣2D.y=(x+1)2﹣23.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm4.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()A.40cm B.50cm C.60cm D.80cm5.用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,正确的是()A.(x+4)2=11B.(x+4)2=21C.(x﹣8)2=11D.(x﹣4)2=11 6.点A(﹣3,2)与点B(﹣3,﹣2)的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.以上各项都不对7.如图,在△ABC中,AC=BC=4,∠ACB=90°,若点D是AB的中点,分别以点A,B 为圆心,AB长为半径画弧,交AC于点E,交BC于点F,则图中阴影部分的面积是()A.16﹣2πB.16﹣πC.8﹣2πD.8﹣π8.下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落9.若关于x的一元二次方程x2+x﹣m=0有实数根,则m的取值范围是()A.m≥B.m≥﹣C.m≤D.m≤﹣10.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①a<0;②b>0;③b2﹣4ac>0;④a+b+c<0;其中结论正确的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上11.方程(x﹣1)(x+2)=0的解是.12.在半径为6cm的圆中,120°的圆心角所对的弧长为cm.13.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率为,则n=.15.已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是.16.如图,PA,PB分别与⊙O相切于A、B两点,点C为劣弧AB上任意一点,过点C的切线分别交AP,BP于D,E两点.若AP=8,则△PDE的周长为.三、解答题(一)(本大题3小题每小题6分,共18分)17.解方程:3x2﹣6x+1=2.18.(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2.(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).19.已知:抛物线y=ax2+bx+3经过点A(3,0)、B(﹣1,8),求抛物线的函数表达式,并通过配方写出抛物线的顶点坐标.四、解答题(二)(本大题3小题每小题7分,共21分)20.2015年底某市汽车拥有量为100万辆,而截止到2017年底,该市的汽车拥有量已达到144万辆.(1)求2015年底至2017年底该市汽车拥有量的年平均增长率;(2)若年增长率保持不变,预计2018年底该市汽车拥有量将达到多少万辆.21.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;。

(word完整版)厦门市2019-2020(上)初三期末考数学(试卷及答案),推荐文档

(word完整版)厦门市2019-2020(上)初三期末考数学(试卷及答案),推荐文档

2019—2020 学年(上)厦门市初三年质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10 小题,每小题4 分,共40 分)题号 1 2 3 4 5 6 7 8 9 10选项 B A C D C A D D B B二、填空题(本大题共 6 小题,每题4 分,共24 分)2π11. x=1. (只写“1”得0 分)12. 3 . 13. 1.14.∠DAC. (写“∠CAD”得4 分;写“∠A”、“∠CBD”、“∠DBC”均得0 分)4 1615.25. (写等值的数值均可得4 分,如:0.16,100)916. 9 时;4元.(未写单位不扣分)三、解答题(本大题有9 小题,共86 分)17.(本题满分8 分)解:a=1,b=-4,c=-7.因为△=b2-4ac=44>0 ........................................................ 4 分所以方程有两个不相等的实数根:x===2± 11 ................................. 6 分即x1=2+11,x2=2-11. ....................................................... 8分18.(本题满分8 分)证明:在□ABCD 中,AO=CO,AD∥CB ............................................ 3 分∴∠OAE=∠OCF,∠AEO=∠CFO ................................................ 5分∴△AOE≌△COF ................................................ 7 分∴OE=OF ............................................................ 8 分19.(本题满分8 分)解:(1)(本小题满分4 分)把(0,3),(-1,0)分别代入y=x2+bx+c,得c=3,b=4. .......................................3 分A E DOB F C所以二次函数的解析式为:y=x2+4x+3 ................................. 4分(2)(本小题满分4 分)由(1)得y=(x+2)2-1列表得:x-4 -3 -2 -1 0y 3 0 -1 0 3如图即为该函数图象:…………………8 分20.(本题满分8 分)(1)(本小题满分3 分)解:如图点D 即为所求............................. 3 分解法一(作线段BC 的垂直平分线):解法二(作线段BC 的垂线):解法三(作∠BAC 的角平分线):(2)(本小题满分 5 分)解(对应(1)中的解法三):1由(1)得∠DAC =2∠BAC =50°. ............... 4 分 在⊙A 中,AD =AE , ......................................... 5 分 ∴ ∠ADE =∠AED .1∴ ∠AED =2(180°-∠DAC )=65°. ................. 8 分 21.(本题满分 8 分)解:设这两年的年平均增长率为 x ,依题意得: ................................... 1 分16(1+x )2=25. ................................................. 4 分9 1解方程,得:x 1=-4(不合题意,舍去),x 2=4. ....................................... 6 分1所以 2019 年该沙漠梭梭树的面积为 25×(1+4)=31.25(万亩).答:2019 年该沙漠梭梭树的面积约为 31.25 万亩. ........................................... 8 分22.(本题满分 10 分) 解法一:解:当三角形模板绕点 E 旋转 60°后,E 为旋转中心,位置不变. 设 A ,B 的对应点分别为 G ,F ,分别连接 EF ,EG ,FG . 则有:EB =EF ,EA =EG ,∠BEF =∠AEG =60°,△AEB ≌△GEF . 所以∠1=∠2,AB =GF .... 3 分 因为∠BEF =60°,又因为 AE ⊥BC ,即∠BEA =90°, 所以∠BEF <∠BEA.所以要使点 B 的对应点 F 仍在□ABCD 边上,即要使点 F 在 AB 边上 ......................... 4 分 因为∠BEF =60°,EB =EF , 所以△BEF 为等边三角形,所以要使点 F 在 AB 边上,只要使∠ABC =60°. .......... 5 分 因为在□ABCD 中,AD ∥BC , 又因为∠AEB =90°, 所以∠EAD =90°,若点 G 在 AD 上,则 EG >EA ,与 EG =EA 矛盾 ............................. 6 分 又因为∠AEG =60°<∠AEC ,所以要使点 A 的对应点 G 仍在□ABCD 边上,即要使点 G 在 CD 边上. 因为当∠ABC =60°时,在 Rt △AEB 中,∠1=90°-∠B =30°, 所以∠2=30°.又因为∠GEC =∠AEC -∠AEG =90°-60°=30°,AEBDCA DF12 G B ECA D F 12 GBEC所以∠2=∠GEC . 所以 FG ∥BC .又因为在□ABCD 中,AB ∥CD ,所以要使点 G 在 CD 边上,只要使 BF ∥CG .即只要使四边形 BCGF 是平行四边形 ................................... 8 分 也即只要使 FG =BC ................................. 9 分 又因为 AB =GF ,所以要使 FG =BC ,只要使 AB =BC .所以要使该模板旋转 60°后,三个顶点仍在□ABCD 的边上,□ABCD 的角和边需要满足的条件是:∠ABC =60°,AB =BC ......................... 10 分【说明】本题重点在探究.如果考生以“三角形模板旋转后顶点仍在□ABCD 边上”为条件, 推理得到角和边的正确结论,也可以得分.具体如下:当三角形模板绕点 E 旋转 60°后,E 为旋转中心,位置不变. 设 A ,B 的对应点分别为 G ,F ,分别连接 EF ,EG ,FG . 则有:EB =EF ,EA =EG ,∠BEF =∠AEG =60°,△AEB ≌△GEF .所以∠1=∠2,AB =GF . ................................... 3 分 若三角形模板旋转后顶点仍在□ABCD 边上, ∵ ∠BEF =60°,又∵ AE ⊥BC ,即∠BEA =90°, 即∠BEF <∠BEA.∴ 点 F 在 AB 边上 ................................................................................ 4 分 ∵ ∠BEF =60°,EB =EF , ∴ △BEF 为等边三角形.∴ ∠ABC =60°. ......................................................................... 5 分 ∵ 在□ABCD 中,AD ∥BC , 又∵ ∠AEB =90°,∴ ∠EAD =90°. 若点 G 在 AD 上,则 EG >EA ,与 EG =EA 矛盾 ......................................... 6 分 又∵ ∠AEG =60°<∠AEC , ∴ 点 G 在 CD 边上.∵ 在 Rt △AEB 中,∠1=90°-∠B =30°, ∴ ∠2=30°.又∵ ∠GEC =∠AEC -∠AEG =90°-60°=30°, ∴ ∠2=∠GEC .∴ FG ∥BC .又∵ 在□ABCD 中,AB ∥CD , ∴ 四边形 BCGF 是平行四边形. ................................................. 8 分∴FG=BC.............................................................. 9分又∵AB=GF,∴AB=BC.所以要使该模板旋转60°后,三个顶点仍在□ABCD 的边上,□ABCD 的角和边需要满足的条件是:∠ABC=60°,AB=BC ......................................................... 10 分解法二:解:要使该模板旋转60°后,三个顶点仍在□ABCD 的边上,□ABCD 的角和边需要满足的条件是:∠ABC=60°,AB=BC ........................... 1 分理由如下:三角形模板绕点E 旋转60°后,E 为旋转中心,位置不变,仍在边BC 上,过点E 分别作射线EM,EN,使得∠BEM=∠AEN=60°,∵AE⊥BC,即∠AEB=∠AEC=90°,∴∠BEM<∠BEA.∴射线EM 只能与AB 边相交.记交点为F ....................... 2 分在△BEF 中,∵∠B=∠BEF=60°,∴∠BFE=180°-∠B-∠BEF=60°.∴∠B=∠BEF=∠BFE=60°.∴△BEF 为等边三角形. ............................. 3分∴EB=EF.∴当三角形模板绕点E 旋转60°后,点B 的对应点为F,此时点F 在边AB 上. ………4 分∵∠AEC=90°,∴∠AEN=60°<∠AEC.∴射线EN 只可能与边AD 或边CD 相交.若射线EN 与边AD 相交,记交点为P,∵在□ABCD 中,AD∥BC,又∵∠AEB=90°,∴∠EAD=90°.则EP>EA.所以三角形模板绕点E 旋转60°后,点A 不会与点P 重合. 即点A 的对应点不会在边AD 上.若射线EN 与边CD 相交,记交点为G.在Rt△AEB 中,∠1=90°-∠B=30°,1∴BE=2AB.∵AB=BC=BE+EC,……………5 分A DMF1 NGB E C1∴EC=2AB. .......................................... 7 分∵△BEF 为等边三角形,1∴BE=EF=BF=2AB.1∴AF=2AB.∵∠GEC=∠AEC-∠AEG=90°-60°=30°,∵在□ABCD 中,AB∥CD,∴∠C=180°-∠ABC=120°.又∵∠EGC=180°-120°-30°=30°,∴EC=GC .1即AF=EF=EC=GC=2AB,且∠1=∠GEC=30°.∴△EAF≌△GEC.∴EA=GE .................................. 9分∴ 当三角形模板绕点E 旋转60°后,点A 的对应点为G,此时点G 在边CD 上.……………10 分∴只有当∠ABC=60°,AB=BC 时,三角形模板绕点E 顺时针旋转60°后,三个顶点仍在□ABCD 的边上.所以要使该模板旋转60°后,三个顶点仍在□ABCD 的边上,□ABCD 的角和边需要满足的条件是:∠ABC=60°,AB=BC.23.(本题满分10 分)(1)(本小题满分4 分)解:分配结果如下:甲:拿到物品C 和200 元.乙:拿到450 元.丙:拿到物品A,B,付出650 元 ............................... 4分(2)(本小题满分6 分)方法一:解:因为0<m-n<15,m-n 15 15 n-m+30所以0<2 <2 ,2 < 2 <15.……………3 分n-m+30所以2m-n > 2 .即分配物品后,小莉获得的“价值”比小红高.高出的数额为:n-m+30 m-n2 - 2 =n-m+15 ........................................................ 5分n-m+15所以小莉需拿 2 元给小红.n-m+15 n-m+15 所以分配结果为:小红拿到物品D 和 2 元钱,小莉拿到物品E 并付出2……………6 分元钱.方法二:1 m-n n-m+30 15解:两人差额的平均数为:2( 2 +2因为0<m-n<15,m-n 15所以2 <2 .)=2 .................... 5 分也即分配物品后,小红获得的“价值”低于两人的平均数.15 m-n n-m+152 - 2 = 2 ,n-m+15所以小莉需拿 2 元给小红.n-m+15 n-m+15 所以分配结果为:小红拿到物品D 和2钱.元钱,小莉拿到物品E 并付出 2 元……………6 分24.(本题满分12 分)(1)(本小题满分5 分)解:直线AD 与⊙O 相切.理由如下:连接OE,过点O 作OF⊥AD 于F,在正方形ABCD 中,BC=DC,∠C=∠ADC=90°,AFODEMB C∴ 在△DCB 中,∠BDC =∠DBC = ∵ 点 M 是中心,∴ M 是正方形对角线的交点. ∵ 在⊙O 中,OM =OE , 又∵OM =DE ,180°-∠C2=45°. ..... 1 分∴ OE =DE . ....................................................... 2 分 ∴ ∠DOE =∠ODE =45°. ∴ ∠ADB =45°,∠DEO =90°. ................. 3 分即 OE ⊥DE .∵ DB 平分∠ADC ,且 OF ⊥FD ,∴ OE =OF . ............................... 4 分 即 d =r . ∴ 直线 AD 与⊙O 相切 ................................. 5 分 (2)(本小题满分 7 分)解法一:解:连接 MC .1由(1)得,MC =MD =2BD ,∠ADB =∠DCM =45°.∵ FM ⊥MG ,即∠FMG =90°,且在正方形 ABCD 中,∠DMC =90°, ∴ ∠FMD +∠DMG =∠DMG +∠CMG . ∴ ∠FMD =∠CMG . ∴ △FMD ≌△CMG .∴ DF =CG .......................................... 6 分过点 O 分别作 ON ⊥AD ,OQ ⊥CD ,分别交 AD ,CD 的延长线于点 N ,Q ,连接 OF ,OE . ∴ ∠Q =∠N =∠QDN =90°. 又∵∠ADB =∠ODN =45°, ∴ ∠DON =45°=∠ODN . ∴ DN =ON .∴ 四边形 OQDN 为正方形. ∴ DN =ON =OQ =QD . 又∵ OE =OF , ∴ Rt △ONF ≌Rt △OQE .∴ NF =QE .又∵ DF =NF -DN ,DE =QE -QD ,∴ DF =DE ................................................................... 7 分MQ O F AD NEG BCP M∵DC=DE+EG+CG=2,即2DF+EG=2,∴2DF+y=2 .................................................................... 8 分设EF 交DB 于P,DP=a,∵DF=DE,DB 平分∠ADC,∴DP⊥EF,即∠FPO=90°.在Rt△OPF 中,r2=(OD+a)2+a2. ................................................... 9分∵在Rt△DPF 中,DF=2DP=2a,且r=,∴r=5a.∴5a2=(OD+a)2+a2.∴OD+a=2a.∴OD=a.又∵OD=OM-DM,即OD=x-2,∴a=x-2............................................................................................ 10 分又∵2DF+y=2,∴ 2 2a+y=2.∴ 2 2(x-2)+y=2.∴y=-2 2x+6.................................................................................... 11 分∵ DF≤1,且2DF+EG=2,∴ EG≥0,即y≥0.∴-2 2x+6≥0.∴x≤.∴2<x≤.∴y 与x 的函数解析式为y=-2 2x+6(2<x≤) ....................... 12 分解法二:解:连接MC.1由(1)得,MC=MD=2BD,∠ADB=∠DCM=45°.∵FM⊥MG,即∠FMG=90°,且在正方形ABCD 中,∠DMC=90°.∴∠FMD+∠DMG=∠DMG+∠CMG.∴∠FMD=∠CMG.∴△FMD≌△CMG.∴DF=CG ............................................ 6 分过点E 作EP⊥BD 于P,过点F 作FH⊥BD 于H,OFA H DPEMGB C设DP=a,DH=b.由(1)得,△DHF 与△DPE 都是等腰直角三角形,∴EP=DP=a,FH=DH=b.∵x=OM>12,且由(1)得MD=2BD=2,∴点O 在正方形ABCD 外.∴OP=OD+DP,OH=OD+DH.在Rt△OPE 与Rt△OHF 中,r2=(OD+a)2+a2,① ...................................................................... 7 分r2=(OD+b)2+b2.②①-②得:(a-b)(OD+a+b)=0.∴a=b.即点P 与点H 重合.也即EF⊥BD,垂足为P(或H)∵DP=a,DH=b,∵在Rt△DPE 中,DE=2DP=2a,在Rt△DHF 中,DF=2DH=2b,∴DF=DE ............................................................................... 8分∵DC=DE+EG+CG=2,即2DF+EG=2,∴2DF+y=2 ............................................ 9 分∵在Rt△DPF 中,DF=2DP=2a,且r=,∴r=5a.∴由①得5a2=(OD+a)2+a2.∴OD+a=2a.∴OD=a.又∵OD=OM-DM,即OD=x-2,∴a=x-2............................................................................................ 10 分又∵2DF+y=2,∴ 2 2a+y=2.∴ 2 2(x-2)+y=2.∴y=-2 2x+6 .................................................................................... 11 分∵ DF≤1,且2DF+EG=2,∴ EG≥0,即y≥0.∴-2 2x+6≥0.∴x≤.∴2<x≤.∴y 与x 的函数解析式为y=-2 2x+6(2<x≤) ....................... 12 分25.(本题满分14 分)(1)(本小题满分3 分)解:当m=0 时,抛物线为:y=x2-2,....................................................... 1分则顶点坐标为(0,-2). .......................... 2 分把(0,-2)代入l2:y=x+b,可得b=-2 ..................... 3 分(2)①(本小题满分4 分)解:因为y=x2-2mx+m2+2m-2 =(x-m)2+(2m-2),所以抛物线顶点为(m,2m-2)................................................................... 4分当x=m 时,对于l1:y=2m,对于l2:y=2m+b ............................... 5 分3因为-2<b<0,所以2m-2<2m+b<2m.................... 6 分即顶点在l1,l2的下方.所以抛物线的顶点不在图象C 上..................... 7 分②(本小题满分7 分)解:设直线l1与抛物线交于A,B 两点,且y A<y B,x2-2mx+m2+2m-2=x+m.解得x1=m-1,x2=m+2.................................. 8 分因为y A<y B,且对于l1,y 随x 的增大而增大,所以x A<x B.所以x A=m-1,此时y A=2m-1. ............................. 9分设直线l2与抛物线交于C,D 两点,且y C<y D.x2-2mx+m2+2m-2=x +m+b.∆=4b+9.3因为b>-2,所以4b+9>0,即∆>0.所以x=.因为y C<y D,且对于l2,y 随x 的增大而增大,所以x C<x D.所以x D=,此时y D=+m+b ..................... 10 分因为y A-y D=,3又因为-2<b<0,,.所以y A-y D<0,即y A<y D.. .......................................... 12 分因为x A<m,即点A 在抛物线对称轴左侧,则在抛物线对称轴的右侧,必存在点A 的对称点A’(x A‘,y A’),其中y A’=y A.所以y A’<y D. ................................................ 13 分因为抛物线开口向上,所以当x<m 时,y 随x 的增大而减小.因为抛物线顶点在l2的下方,故点C 也在抛物线对称轴左侧.设(x0,y0)是抛物线上A,C 两点之间的任意一点,则有x A<x0<m.所以y0<y A.又因为在抛物线上必存在其对称点(x0’,y0‘),其中y0‘=y0.所以y0‘<y A.也即抛物线上A,C 两点之间的任意点的对称点都在点D 下方.同理,抛物线上B,D 两点之间的部分所有点的对称点都在点A 上方.所以图象C 上不存在这样的两点:M(a1,b1)和N (a2,b2),其中a1≠a2,b1=b2.……14 分“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

厦门市九年级上学期数学期末考试试卷

厦门市九年级上学期数学期末考试试卷

厦门市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)已知:二次函数y=x2-4x-a,下列说法中错误的是()A . 当x<1时,y随x的增大而减小B . 若图象与x轴有交点,则a≤4C . 当a=3时,不等式x2-4x+a<0的解集是1<x<3D . 若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=32. (2分) (2016九下·巴南开学考) 已知AB、CD是⊙O的直径,则四边形ACBD是()A . 正方形B . 矩形C . 菱形D . 等腰梯形3. (2分)(2017·邹平模拟) 已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()A . 75°B . 65°C . 60°D . 50°4. (2分) (2019七下·保山期中) 如图,小手盖住的点的坐标可能为()A . (4,3)B . (4,﹣3)C . (﹣4,3)D . (﹣4,﹣3)5. (2分)下列方程是一元二次方程的是()A . x﹣1=0B . 2x2﹣y﹣3=0C . x﹣y+2=0D . 3x2﹣2x﹣1=06. (2分)在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:成绩454647484950人数124251这此测试成绩的中位数和众数分别为()A . 47,49B . 47.5,49C . 48,49D . 48,507. (2分)若从10~99这连续90个正整数中选出一个数,其中每个数被选出的机会相等,则选出的数其十位数字与个位数字的和为9的概率是A .B .C .D .8. (2分)已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A . 24cmB . 48cmC . 96cmD . 192cm二、填空题 (共10题;共11分)9. (1分) (2016九上·南开期中) 将二次函数y=x2﹣4x+5化成y=(x﹣h)2+k的形式,则y=________.10. (1分) (2019九上·沭阳月考) 已知m是方程x2-x-1=0的一个根,则代数式5m2-5m+2015的值为________11. (1分) (2017七下·大同期末) 如图,下面的折线图反映的是我区某家庭每天购菜费用情况(统计时间为一周),则这个星期中此家庭购菜费用最大值与最小值的差为________元..12. (1分) (2019九上·秀洲期末) 已知线段a=4,线段b=9,则a,b的比例中项是________.13. (1分) (2016九上·余杭期中) 已知△ABC的边BC=2 cm,且△ABC内接于半径为2cm的⊙O,则∠A=________度.14. (1分)(2019·丹阳模拟) 已知:M,N两点关于y轴对称,点M的坐标为(a,b),且点M在双曲线y =上,点N在直线y=x+3上,则抛物线y=﹣abx2+(a+b)x的顶点坐标是________.15. (1分)如图,BD是⊙O的切线,B为切点,连接DO与⊙O交于点C,AB为⊙O的直径,连接CA,若∠D=30°,⊙O的半径为4,则图中阴影部分的面积为________.16. (1分)(2017·陆良模拟) 如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=________.17. (2分)(2019·吴兴模拟) 在平面直角坐标系中,将函数的图象绕坐标原点O顺时针旋转45°后,得到新曲线 .(1)如图①,已知点A(-1,a),B(b,10)在函数的图象上,若 , 是A,B旋转后的对应点,连结 , ,则 =________;(2)如图②,曲线与直线相交于点M、N,则为________.18. (1分)(2019·新泰模拟) 如图,在直若用一角坐标系中,已知点A(-3,0),B(0,4),对△01B连续作旋转变换,依次得到△1,△2,△3,△4…,则△2019的直角顶点的坐标为________ 。

福建省厦门市九年级上学期数学期末考试试卷

福建省厦门市九年级上学期数学期末考试试卷

福建省厦门市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每题4分,满分24分) (共6题;共24分)1. (4分)如果把三角形的三边按一定的比例扩大,则下列说法正确的是()A . 三角形的形状不变,三边的比变大B . 三角形的形状变,三边的比变大C . 三角形的形状变,三边的比不变D . 三角形的形状不变,三边的比不变2. (4分)如图,在Rt△ABC中,CD⊥AB于点D,表示sinB错误的是()A .B .C .D .3. (4分)将二次函数y=2x2的图像先向右平移1个单位,再向上平移3个单位后所得到的图像的解析式为()A . y=(x-1)2-1B . y=(x+1)2-1C . y=(x+1)2+3D . y=(x-1)2+34. (4分) (2019八下·闵行期末) 在矩形中,下列结论中正确的是()A .B .C .D .5. (4分) (2018九上·灵石期末) 如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为()A .B .C .D .6. (4分) (2019九上·象山期末) 如图,直线1l//l2//l3 ,直线AC分别交,,于点A,B,C,直线DF分别交,,于点D,E,若,则的值为()A .B .C .D .二、填空题(本大题共12题,每题4分,满分48分) (共12题;共48分)7. (4分)(2019·秀洲模拟) 线段a=4,线段b=9,线段c是线段a与线段b的比例中项,则线段c=________8. (4分)(2020·静安模拟) 如图,在△ABC中,点D在边AB上,AB=4AD,设,,那么向量用向量、表示为________.9. (4分)(2020·淮安模拟) 在Rt△ABC中,∠C=90°,若tanA= ,则tanB=________.10. (4分)公园中儿童游乐场是两个相似三角形地块,相似比为2:3,其中大三角形地块面积为27,则小三角形地块的面积是________.11. (4分) (2018九上·福州期中) 抛物线y=-(x-2)2+3的顶点坐标是________.12. (4分) (2018九上·徐闻期中) 已知A(﹣1,y1)、B(﹣2,y2)都在抛物线y=x2+1上,试比较y1与y2的大小:y1________y2 .13. (4分) (2018九上·泗洪月考) 已知△ABC是⊙O的内接三角形,AD是BC边上的高,AC=3,AB=5,AD=2,此圆的直径等于________.14. (4分) (2018九上·松江期中) 计算:=________.15. (4分) (2018九上·长宁期末) 如图,在Rt ABC中,∠BAC=90°,点G是重心,联结AG,过点G作DG//BC,DG交AB于点D,若AB=6,BC=9,则 ADG的周长等于________.16. (4分)(2019·甘肃) 在△ABC中∠C=90°,tanA=,则cosB=________.17. (4分)抛物线y=﹣x2﹣2x+3用配方法化成y=a(x﹣h)2+k的形式是________,抛物线与x轴的交点坐标是________,抛物线与y轴的交点坐标是________.18. (4分)在以O为坐标原点的直角坐标平面内有一点A(2,4),如果AO与x轴正半轴的夹角为α,那么sinα=________ .三、解答题(本大题共7题,满分78分) (共7题;共78分)19. (6分)(2019·益阳模拟) ()2﹣|1﹣ |﹣tan45°+(π﹣1978)0 .20. (12分) (2017九上·十堰期末) 科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x 表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y= ,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?21. (12分)(2020·青浦模拟) 如图,在平行四边形ABCD中,BE、DF分别是平行四边形的两个外角的平分线,∠EAF=∠BAD,边AE、AF分别交两条角平分线于点E、F.(1)求证:△ABE∽△FDA;(2)联结BD、EF,如果DF2=AD•AB,求证:BD=EF.22. (12分)为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度,一天,我国两艘海监船刚好在某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域,如图,在B处测得C在东北方向上,在A处测得C在北偏西30°的方向上.(1)从A处看B、C两处的视角∠BAC=________度;(2)求从C处看A、B两处的视角∠ACB的度数.23. (12分) (2016八上·望江期中) 在△ABC中,AB=AC,DE∥BC.(1)试问△ADE是否是等腰三角形,说明理由;(2)若M为DE上的点,且BM平分∠ABC,CM平分∠ACB,若△ADE的周长为20,BC=8.求△ABC的周长.24. (12分)(2018·温州模拟) 如图,抛物线交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分别交x轴、AC于点E、F,点P是射线DE上一动点,过点P作AC的平行线MN 交x轴于点H,交抛物线于点M,N(点M位于对称轴的左侧).设点P的纵坐标为t..(1)求抛物线的对称轴及点A的坐标.(2)当点P位于EF的中点时,求点M的坐标.(3)① 点P在线段DE上运动时,当时,求t的值.25. (12分) (2016九上·鄞州期末) 阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.参考答案一、选择题(每题4分,满分24分) (共6题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题(本大题共12题,每题4分,满分48分) (共12题;共48分) 7-1、8-1、9-1、10-1、答案:略11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(本大题共7题,满分78分) (共7题;共78分)19-1、答案:略20-1、答案:略20-2、答案:略21-1、答案:略21-2、答案:略22-1、22-2、23-1、答案:略23-2、24-1、答案:略24-2、答案:略24-3、答案:略25-1、25-2、25-3、答案:略。

2020-2021厦门九年级(上)数学期末质检试题(含答案)

2020-2021厦门九年级(上)数学期末质检试题(含答案)

2020—2021学年(上)厦门市初三期末质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共5页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.用求根公式计算方程x 2-3x +2=0的根,公式中b 的值为 A. 3 B.-3 C. 2 D. -322.方程 (x -1) 2=0的根是A. x 1=x 2=1B. x 1=1,x 2=0C. x 1=-1,x 2=0D. x 1=1,x 2=-13.如图1,四边形ABCD 的顶点A ,B ,C 在圆上,且边CD 与该圆交于点E ,AC ,BE 交于点F .下列角中,︵AE 所对的圆周角是A.∠ADEB.∠AFEC.∠ABED.∠ABC 4.下列事件中,是随机事件的是A.画一个三角形,其内角和是180°B.在只装了红色卡片的袋子里,摸出一张白色卡片C.投掷一枚正六面体骰子,朝上一面的点数小于7D.在一副扑克牌中抽出一张,抽出的牌是黑桃6 5.图2中的两个梯形成中心对称,点P 的对称点是A.点AB.点BC.点CD.点D6.抛物线C 1向右平移4个单位长度后与抛物线C 2重合.若点(-1,3)在抛物线C 1上,则下列 点中,一定在抛物线C 2上的是A.(3,3)B.(3,-1)C.(-1,7)D.(-5,3) 7.如图3,将命题“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”改写成“已知……求证……”的形式,下列正确的是A.已知:在⊙O 中,∠AOB =∠COD ,︵AB =︵CD .求证:AB =CD . B.已知:在⊙O 中,∠AOB =∠COD ,︵AD =︵BC .求证:AD =BC . C.已知:在⊙O 中,∠AOB =∠COD .求证:︵AD =︵BC ,AD =BC .D.已知:在⊙O 中,∠AOB =∠COD .求证:︵AB =︵CD ,AB =CD .PA B C DECD F BA 图1图2 图38. 一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同.若从盒子里随机摸取一个球,有三种可能性相等的结果,设摸到红球的概率为P ,则P 的值为 A. 13 B. 12 C. 13或12 D. 13或239.如图4,已知∠BAC =∠ADE =90°,AD ⊥BC ,AC =DC .关于优弧︵CAD ,下列结论正确的是A.经过点B 和点EB.经过点B ,不一定经过点EC.经过点E ,不一定经过点BD.不一定经过点B 和点E10.已知二次函数y =ax 2+bx +c ,当x =2时,该函数取最大值8. 设该函数图象与x 轴的一个交点的横坐标为x 1,若x 1>4,则a 的取值范围是A.-3<a <-1B. -2<a <0C. -1<a <1D. 2<a <4二、填空题(本大题有6小题,每小题4分,共24分) 11.抛物线y =(x -1)2+3的对称轴是 .12.半径为2的圆中,60°圆心角所对的弧长是 .13.计算:(aa -1+a )·a -1a2= . 14.如图5,△ABC 内接于圆,点D 在︵BC 上,记∠BAC -∠BCD =α,则图中等于α的角是 .15.某工厂的产品每50件装为一箱,现质检部门对100箱产品进行质量检查,每箱中的次品数见表一:次品数 0 1 2 3 4 5 箱数5014201042该工厂规定:一箱产品的次品数达到或超过6%,则判定该箱为质量不合格的产品箱. 若在这100箱中随机抽取一箱,抽到质量不合格的产品箱的概率为 .16.某日6时至10时,某交易平台上一种水果的每千克售价、每千克成本与交易时间之间的关系分别如图6、图7所示(图6、图7中的图象分别是线段和抛物线,其中点P 是抛物线的顶点).在这段时间内,出售每千克这种水果收益最大的时刻是 ,此时每千克的收益是 .EDCBA AB CD表一图4图5三、解答题(本大题有9小题,共86分) 17.(本题满分8分)解方程x 2-4x -7=0.18.(本题满分8分)如图8,在□ABCD 中,对角线AC ,BD 交于点O ,过点O 的直线分别与AD ,BC 交于点E ,F .求证:OE =OF .19.(本题满分8分)已知二次函数y =x 2+bx +c 的图象经过点A (0,3),B (-1,0). (1)求该二次函数的解析式; (2)在图9中画出该函数的图象.20.(本题满分8分)如图10,在△ABC 中,AB =AC .(1)若以点A 为圆心的圆与边BC 相切于点D ,请在图10中作出点D ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若该圆与边AC 相交于点E ,连接DE ,当∠BAC =100°时,求∠AED的度数.21.(本题满分8分)梭梭树因其顽强的生命力和防风固沙的作用,被称为“沙漠植被之王”.新疆北部某沙漠2016年有16万亩梭梭树,经过两年的人工种植和自然繁殖,2018年达到25万亩.按这两年的年平均增长率,请估计2019年该沙漠梭梭树的面积.A B CO A B C DE F 图9 图8 图10 O如图11,在□ABCD中,AE⊥BC于点E.若一个三角形模板与△ABE完全重合地叠放在一起,现将该模板绕点E顺时针旋转.要使该模板旋转60°后,三个顶点仍在□ABCD的边上,请探究□ABCD的角和边需要满足的条件.23.(本题满分10分)阅读下列材料:小辉和小乐一起在学校寄宿三年了,毕业之际,他们想合理分配共同拥有的三件“财产”:一个电子词典、一台迷你唱机、一套珍藏版小说.他们本着“在尊重各自的价值偏好基础上进行等值均分”的原则,设计了分配方案,步骤如下(相应的数额如表二所示):①每人各自定出每件物品在心中所估计的价值;②计算每人所有物品估价总值和均分值;(均分:按总人数均分各自估价总值)③每件物品归估价较高者所有;④计算差额(差额:每人所得物品的估价总值与均分值之差);⑤小乐拿225元给小辉,仍“剩下”的300元每人均分.依此方案,两人分配的结果是:小辉拿到了珍藏版小说和375元钱,小乐拿到了电子词典和迷你唱机,但要付出375元钱.(1)甲、乙、丙三人分配A,B,C三件物品,三人的估价如表三所示,依照上述方案,请直接写出分配结果;(2)小红和小莉分配D,E两件物品,两人的估价如表四所示(其中0<m-n<15),按照上述方案的前四步操作后,接下来,依据“在尊重各自的价值偏好基础上进行等值均分”的原则,怎么分配较为合理?请完成表四,并写出分配结果.(说明:本题表格中的数值的单位均为“元”)AB C DEAB CDE图11 备用图表二表三表四已知正方形ABCD 的边长为2,中心为M ,⊙O 的半径为r ,圆心O 在射线BD 上运动,⊙O 与边CD 仅有一个公共点E .(1)如图12,若圆心O 在线段MD 上,点M 在⊙O 上,OM =DE ,判断直线AD 与⊙O 的位置关系,并说明理由; (2)如图13,⊙O 与边交于点F .连接MF ,过点M 作MF 的垂线与边CD 交于点G ,若r =10DF2(DF ≤1),设点O 与点M 之间的距离为x ,EG =y ,当x >2时,求y 与x 的函数解析式.25.(本题满分14分)已知抛物线y =x 2-2mx +m 2+2m -2,直线l 1:y =x +m ,直线l 2:y =x +m +b . (1)当m =0时,若直线l 2经过此抛物线的顶点,求b 的值;(2)将此抛物线夹在l 1与l 2之间的部分(含交点)图象记为C ,若-32<b <0,① 判断此抛物线的顶点是否在图象C 上,并说明理由;② 图象C 上是否存在这样的两点:M (a 1,b 1)和N (a 2,b 2),其中a 1≠a 2,b 1=b 2?若存在,求相应的m 和b 的取值范围;若不存在,请说明理由.2020—2021学年(上)厦门市初三年质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11. x =1. (只写“1”得0分) 12. 2π3. 13. 1.图13 图1214.∠DAC . (写“∠CAD ”得4分;写“∠A ”、“∠CBD ”、“∠DBC ”均得0分) 15. 425. (写等值的数值均可得4分,如:0.16,16100)16. 9时;94元.(未写单位不扣分)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:a =1,b =-4,c =-7.因为△=b 2-4ac =44>0. ……………………………4分 所以方程有两个不相等的实数根:x =-b ±b 2-4ac 2a=4±444=2±11. ……………………………6分即x 1=2+11,x 2=2-11. ……………………………8分18.(本题满分8分)证明:在□ABCD 中,AO =CO ,AD ∥CB . ………………………3分 ∴ ∠OAE =∠OCF ,∠AEO =∠CFO . ………………………5分 ∴ △AOE ≌△COF . ………………………7分∴ OE =OF . ………………………8分19.(本题满分8分)解:(1)(本小题满分4分)把 (0,3),(-1,0)分别代入y =x 2+bx +c ,得 c =3,b =4. …………………3分所以二次函数的解析式为:y =x 2+4x +3. …………………4分 (2)(本小题满分4分)由(1)得y =(x +2)2-1 列表得:如图即为该函数图象:x -4 -3 -2 -1 0y 3 0 -1 0 3OA BCDE F…………………8分20.(本题满分8分)(1)(本小题满分3分)解:如图点D 即为所求.…………………3分 解法一(作线段BC 的垂直平分线):解法二(作线段BC 的垂线):解法三(作∠BAC 的角平分线):(2)(本小题满分5分)解(对应(1)中的解法三):由(1)得∠DAC=12∠BAC =50°.……………………4分在⊙A 中,AD =AE , ……………………5分 ∴ ∠ADE =∠AED .∴ ∠AED =12(180°-∠DAC )=65°. ……………………8分21.(本题满分8分)解:设这两年的年平均增长率为x ,依题意得: ……………………1分16(1+x )2=25. ……………………4分解方程,得:x 1=-94(不合题意,舍去),x 2=14. ……………………6分EDCBA所以2019年该沙漠梭梭树的面积为25×(1+14)=31.25(万亩).答:2019年该沙漠梭梭树的面积约为31.25万亩. …………………………8分22.(本题满分10分) 解法一:解:当三角形模板绕点E 旋转60°后,E 为旋转中心,位置不变.设A ,B 的对应点分别为G ,F ,分别连接EF ,EG ,FG .则有:EB =EF ,EA =EG ,∠BEF =∠AEG =60°,△AEB ≌△GEF .所以∠1=∠2,AB =GF . …………………3分 因为∠BEF =60°,又因为AE ⊥BC ,即∠BEA =90°,所以∠BEF <∠BEA.所以要使点B 的对应点F 仍在□ABCD 边上,即要使点F 在AB 边上. ……………4分 因为∠BEF =60°,EB =EF , 所以△BEF 为等边三角形,所以要使点F 在AB 边上,只要使∠ABC =60°. ……………5分 因为在□ABCD 中,AD ∥BC , 又因为∠AEB =90°, 所以∠EAD =90°,若点G 在AD 上,则EG >EA ,与EG =EA 矛盾. ……………6分 又因为∠AEG =60°<∠AEC ,所以要使点A 的对应点G 仍在□ABCD 边上,即要使点G 在CD 边上. 因为当∠ABC =60°时,在Rt △AEB 中,∠1=90°-∠B =30°, 所以∠2=30°.又因为∠GEC =∠AEC -∠AEG =90°-60°=30°, 所以∠2=∠GEC .所以FG ∥BC . 又因为在□ABCD 中,AB ∥CD ,所以要使点G 在CD 边上,只要使BF ∥CG .即只要使四边形BCGF 是平行四边形. ………………8分 也即只要使FG =BC . ………………9分 又因为AB =GF ,所以要使FG =BC ,只要使AB =BC .所以要使该模板旋转60°后,三个顶点仍在□ABCD 的边上,□ABCD 的角和边需要满足的条件是:∠ABC =60°,AB =BC . ……………10分【说明】本题重点在探究.如果考生以“三角形模板旋转后顶点仍在□ABCD 边上”为条件,推理得到角和边的正确结论,也可以得分.具体如下:当三角形模板绕点E 旋转60°后,E 为旋转中心,位置不变. 设A ,B 的对应点分别为G ,F ,分别连接EF ,EG ,FG .则有:EB =EF ,EA =EG ,∠BEF =∠AEG =60°,△AEB ≌△GEF . 所以∠1=∠2,AB =GF . …………………3分若三角形模板旋转后顶点仍在□ABCD 边上,EE∵∠BEF=60°,又∵AE⊥BC,即∠BEA=90°,即∠BEF<∠BEA.∴点F在AB边上. ………………………………4分∵∠BEF=60°,EB=EF,∴△BEF为等边三角形.∴∠ABC=60°.………………………………5分∵在□ABCD中,AD∥BC,又∵∠AEB=90°,∴∠EAD=90°.若点G在AD上,则EG>EA,与EG=EA矛盾. ……………………6分又∵∠AEG=60°<∠AEC,∴点G在CD边上.∵在Rt△AEB中,∠1=90°-∠B=30°,∴∠2=30°.又∵∠GEC=∠AEC-∠AEG=90°-60°=30°,∴∠2=∠GEC.∴FG∥BC.又∵在□ABCD中,AB∥CD,∴四边形BCGF是平行四边形.……………………8分∴FG=BC.……………………9分又∵AB=GF,∴AB=BC.所以要使该模板旋转60°后,三个顶点仍在□ABCD的边上,□ABCD的角和边需要满足的条件是:∠ABC=60°,AB=BC. ……………………10分解法二:解:要使该模板旋转60°后,三个顶点仍在□ABCD的边上,□ABCD的角和边需要满足的条件是:∠ABC=60°,AB=BC. …………1分理由如下:三角形模板绕点E旋转60°后,E为旋转中心,位置不变,仍在边BC上,过点E分别作射线EM,EN,使得∠BEM=∠AEN=60°,∵AE⊥BC,即∠AEB=∠AEC=90°,∴∠BEM<∠BEA.∴射线EM只能与AB边相交.记交点为F. …………2分在△BEF中,∵∠B=∠BEF=60°,∴∠BFE=180°-∠B-∠BEF=60°.∴∠B=∠BEF=∠BFE=60°.E∴ △BEF 为等边三角形. ……………3分 ∴ EB =EF .∴ 当三角形模板绕点E 旋转60°后,点B 的对应点为F ,此时点F 在边AB 上. ………4分∵ ∠AEC =90°,∴ ∠AEN =60°<∠AEC .∴ 射线EN 只可能与边AD 或边CD 相交. 若射线EN 与边AD 相交,记交点为P , ∵ 在□ABCD 中,AD ∥BC , 又∵ ∠AEB =90°, ∴ ∠EAD =90°. 则EP >EA .所以三角形模板绕点E 旋转60°后,点A 不会与点P 重合. 即点A 的对应点不会在边AD 上.……………5分 若射线EN 与边CD 相交,记交点为G . 在Rt △AEB 中,∠1=90°-∠B =30°, ∴ BE =12AB .∵ AB =BC =BE +EC ,∴ EC =12AB . ……………7分∵ △BEF 为等边三角形, ∴ BE =EF =BF =12AB .∴ AF =12AB .∵ ∠GEC =∠AEC -∠AEG =90°-60°=30°, ∵ 在□ABCD 中,AB ∥CD ,∴ ∠C =180°-∠ABC =120°.又∵ ∠EGC =180°-120°-30°=30°, ∴ EC =GC .即AF =EF =EC =GC =12AB ,且∠1=∠GEC =30°.∴ △EAF ≌△GEC . ∴ EA =GE . ……………9分∴ 当三角形模板绕点E 旋转60°后,点A 的对应点为G ,此时点G 在边CD 上.……………10分∴ 只有当∠ABC =60°,AB =BC 时,三角形模板绕点E 顺时针旋转60°后,三个顶点仍在□ABCD 的边上.所以要使该模板旋转60°后,三个顶点仍在□ABCD 的边上,□ABCD 的角和边需要满足的条件是:∠ABC =60°,AB =BC .23.(本题满分10分) (1)(本小题满分4分)解:分配结果如下:甲:拿到物品C 和200元. 乙:拿到450元.丙:拿到物品A ,B ,付出650元. ……………4分 (2)……………3分 方法一:解:因为0<m -n <15,所以0< m -n 2<152, 152<n -m +30 2<15. 所以n -m +30 2>m -n2.即分配物品后,小莉获得的“价值”比小红高.高出的数额为:n -m +30 2-m -n2=n -m +15 . ……………5分 所以小莉需拿n -m +152元给小红.所以分配结果为:小红拿到物品D 和n -m +152元钱,小莉拿到物品E 并付出n -m +152元钱.……………6分方法二:解:两人差额的平均数为:12( m -n 2+n -m +30 2)=152.……………5分因为0<m -n <15, 所以m -n 2<152.也即分配物品后,小红获得的“价值”低于两人的平均数. 152- m -n 2=n -m +152,所以小莉需拿n -m +152元给小红.所以分配结果为:小红拿到物品D 和n -m +152元钱,小莉拿到物品E 并付出n -m +152元钱.……………6分24.(本题满分12分) (1)(本小题满分5分)解:直线AD 与⊙O 相切.理由如下: 连接OE ,过点O 作OF ⊥AD 于F ,在正方形ABCD 中,BC =DC ,∠C =∠ADC =90°,∴ 在△DCB 中,∠BDC =∠DBC =180°-∠C2=45°.………1分∵ 点M 是中心,∴ M 是正方形对角线的交点. ∵ 在⊙O 中,OM =OE , 又∵ OM =DE ,∴ OE =DE . ……………………2分 ∴ ∠DOE =∠ODE =45°. ∴ ∠ADB =45°,∠DEO =90°. ……………………3分 即OE ⊥DE .∵ DB 平分∠ADC ,且OF ⊥FD , ∴ OE =OF .……………………4分 即d =r .∴ 直线AD 与⊙O 相切.……………………5分 (2)(本小题满分7分)解法一: 解:连接MC .由(1)得,MC =MD =12BD ,∠ADB =∠DCM =45°.∵ FM ⊥MG ,即∠FMG =90°, 且在正方形ABCD 中,∠DMC =90°, ∴ ∠FMD +∠DMG =∠DMG +∠CMG .∴ ∠FMD =∠CMG .∴ △FMD ≌△CMG .∴ DF =CG . ……………………6分过点O 分别作ON ⊥AD ,OQ ⊥CD ,分别交AD ,CD 的延长线于点N ,Q ,连接OF ,OE . ∴ ∠Q =∠N =∠QDN =90°.又∵ ∠ADB =∠ODN =45°, ∴ ∠DON =45°=∠ODN . ∴ DN =ON .∴ 四边形OQDN 为正方形. ∴ DN =ON =OQ =QD . 又∵ OE =OF ,∴ Rt △ONF ≌Rt △OQE . ∴ NF =QE .又∵ DF =NF -DN ,DE =QE -QD ,∴ DF =DE . ……………………7分 ∵ DC =DE +EG +CG =2,即2DF +EG =2,∴ 2DF +y =2. ……………………8分 设EF 交DB 于P ,DP =a , ∵ DF =DE ,DB 平分∠ADC , ∴ DP ⊥EF ,即∠FPO =90°.在Rt △OPF 中,r 2=(OD +a )2+a 2. ……………………9分 ∵ 在Rt △DPF 中,DF =2DP =2a ,且r =10DF2, ∴ r =5a .∴ 5a 2=(OD +a )2+a 2. ∴ OD +a =2a . ∴ OD =a .又∵ OD =OM -DM ,即OD =x -2,∴ a = x -2. ……………………10分 又∵ 2DF +y =2,∴ 22a +y =2.∴ 22(x -2)+y =2.∴ y =-22x +6. ……………………11分 ∵ DF ≤1,且2DF +EG =2, ∴ EG ≥0,即y ≥0.∴ -22x +6≥0.∴ x ≤322.∴ 2<x ≤322.∴ y 与x 的函数解析式为y =-22x +6(2<x ≤322). ……………12分解法二: 解:连接MC .由(1)得,MC =MD =12BD ,∠ADB =∠DCM =45°.∵ FM ⊥MG ,即∠FMG =90°,且在正方形ABCD 中,∠DMC =90°. ∴ ∠FMD +∠DMG =∠DMG +∠CMG . ∴ ∠FMD =∠CMG . ∴ △FMD ≌△CMG .∴ DF =CG . ……………………6分过点E 作EP ⊥BD 于P ,过点F 作FH ⊥BD 于H , 设DP =a ,DH =b .由(1)得,△DHF 与△DPE 都是等腰直角三角形, ∴ EP =DP =a ,FH =DH =b .∵ x =OM >2,且由(1)得MD =12BD =2,∴ 点O 在正方形ABCD 外. ∴ OP =OD +DP ,OH =OD +DH . 在Rt △OPE 与Rt △OHF 中,r 2=(OD +a )2+a 2,① ……………………7分 r 2=(OD +b )2+b 2.② ①-②得:(a -b )(OD +a +b )=0. ∴ a =b .即点P 与点H 重合.也即EF ⊥BD ,垂足为P (或H ) ∵ DP =a ,DH =b ,∵ 在Rt △DPE 中,DE =2DP =2a , 在Rt △DHF 中,DF =2DH =2b ,∴ DF =DE . ……………………8分 ∵ DC =DE +EG +CG =2,即2DF +EG =2, ∴ 2DF +y =2. ……………………9分∵ 在Rt △DPF 中,DF =2DP =2a ,且r =10DF2, ∴ r =5a .∴ 由①得5a 2=(OD +a )2+a 2. ∴ OD +a =2a . ∴ OD =a .又∵ OD =OM -DM ,即OD =x -2,∴ a = x -2. ……………………10分 又∵ 2DF +y =2,∴ 22a +y =2.∴ 22(x -2)+y =2.∴ y =-22x +6 . ……………………11分 ∵ DF ≤1,且2DF +EG =2, ∴ EG ≥0,即y ≥0.∴ -22x +6≥0.∴ x ≤322.∴ 2<x ≤322.∴ y 与x 的函数解析式为y =-22x +6(2<x ≤322). ……………12分25.(本题满分14分) (1)(本小题满分3分)解:当m =0时,抛物线为:y =x 2-2, ……………1分 则顶点坐标为(0,-2). ……………2分把(0,-2)代入l 2:y =x +b ,可得b =-2.……………3分 (2)①(本小题满分4分)解:因为y =x 2-2mx +m 2+2m -2 =(x -m )2+(2m -2), 所以抛物线顶点为(m ,2m -2). ……………4分 当x =m 时,对于l 1:y =2m ,对于l 2:y =2m +b . ……………5分 因为-32<b <0,所以2m -2<2m +b <2m .……………6分 即顶点在l 1,l 2的下方.所以抛物线的顶点不在图象C 上.……………7分 ②(本小题满分7分)解:设直线l 1与抛物线交于A ,B 两点,且y A <y B ,x 2-2mx +m 2+2m -2=x +m .解得x 1=m -1,x 2=m +2. ……………8分 因为y A <y B ,且对于l 1,y 随x 的增大而增大, 所以x A <x B .所以x A =m -1,此时y A =2m -1. ……………9分 设直线l 2与抛物线交于C ,D 两点,且y C <y D . x 2-2mx +m 2+2m -2=x +m +b . ∆=4b +9. 因为b >-32,所以4b +9>0,即∆>0. 所以x =2m +1±4b +92.因为y C <y D ,且对于l 2,y 随x 的增大而增大, 所以x C <x D .所以x D =2m +1+4b +92,此时y D =2m +1+4b +92+m +b .……………10分因为y A -y D =-3-2b -4b +92,又因为-32<b <0,所以-3-2b <0,又因为4b +9>0.所以y A -y D <0,即y A <y D .. ……………12分因为x A <m ,即点A 在抛物线对称轴左侧,则在抛物线对称轴的右侧,必存在点A 的对称点A’(x A‘,y A’),其中y A’=y A.所以y A’<y D.……………13分因为抛物线开口向上,所以当x<m时,y随x的增大而减小.因为抛物线顶点在l2的下方,故点C也在抛物线对称轴左侧.设(x0,y0)是抛物线上A,C两点之间的任意一点,则有x A<x0<m.所以y0<y A.又因为在抛物线上必存在其对称点(x0’,y0‘),其中y0‘=y0.所以y0‘<y A.也即抛物线上A,C两点之间的任意点的对称点都在点D下方.同理,抛物线上B,D两点之间的部分所有点的对称点都在点A上方.所以图象C上不存在这样的两点:M(a1,b1)和N (a2,b2),其中a1≠a2,b1=b2.。

厦门市-九年级上期末数学试题含答案(扫描版).doc

厦门市-九年级上期末数学试题含答案(扫描版).doc

数学参考答案一、选择题(本大题共10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10 选项CBADDCBCDB二、填空题(本大题共6小题,每题4分,共24分)11. 3. 12.语言. 13. (-5,4). 14. 20. 15. 42-2. 16. 32a . 三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:∵ a =1,b =2,c =-2, ∴ △=b 2-4ac=12. ……………………………4分∴ x =-b ±b 2-4ac2a=-2±232. ……………………………6分 ∴ x 1=-1+3,x 2=-1-3. ……………………………8分 18.(本题满分8分)证明: 在Rt △ADC 中, ∵ ∠D =90°, ∴ DC =AC 2-AD 2=12. ………………………4分∴ DC =BC . ………………………5分 又∵ AB =AD ,AC =AC ,∴ △ABC ≌△ADC . ……………………………8分 19.(本题满分8分)(1)(本小题满分4分)解:223+2172=220(棵).答:这批工人前两天平均每天种植220棵景观树木.……………………4分 (2)(本小题满分4分)解:这批工人前五天平均每天种植的树木为:223+217+198+195+2025=207(棵). ……………………6分估计到3月10日,这批工人可种植树木2070棵. ……………………7分 由于2070<2200所以我认为公司还需增派工人. ……………………8分 (也可用前五天种植量的中位数202估计十天种植量为2020,在数据基础上,对是否需要增派工人进行合理解释即可) 20.(本题满分8分)解:如图:DCB A· · A 'C '21.(本题满分8分)证明:设该圆的圆心为点O ,在⊙O 中,∵ ︵AC =︵BF ,∴ ∠AOC =∠BOF .又 ∠AOC =2∠ABC ,∠BOF =2∠BCF , ∴ ∠ABC =∠BCF . …………………2分 ∴ AB ∥CF . …………………3分 ∴ ∠DCF =∠DEB . ∵ DC ⊥AB ,∴ ∠DEB =90°.∴ ∠DCF =90°.…………………4分∴ DF 为⊙O 直径. …………………5分 且 ∠CDF +∠DFC =90°. ∵ ∠MDC =∠DFC ,∴ ∠MDC +∠DFC =90°.即 DF ⊥MN . …………………7分 又∵ MN 过点D ,∴ 直线MN 是⊙O 的切线 . …………………8分 22.(本题满分10分)(1)(本小题满分4分)解: ∵ 一次函数y =kx +4m (m >0)的图象经过点B (p ,2m ), ∴ 2m =kp +4m . …………………2分 ∴ kp =-2m .∵ m =1,k =-1,∴ p =2. …………………3分∴ B (2,2). …………………4分 (2)(本小题满分6分)答:线段AB 上存在一点N ,使得点N 到坐标原点O 与到点C 的距离之和等于线段OB 的长. …………………5分理由:由题意,将B (p ,2m ),C (n ,0)分别代入y =kx +4m , 得kp +4m =2m 且kn +4m =0.可得n =2p .∵ n +2p =4m ,∴ p =m . …………………7分 ∴ A (m ,0),B (m ,2m ),C (2m ,0).∵ x B =x A ,∴ AB ⊥x 轴, …………………9分且 OA =AC =m . ∴ 对于线段AB 上的点N ,有NO =NC .∴ 点N 到坐标原点O 与到点C 的距离之和为NO +NC =2NO . ∵ ∠BAO =90°,在Rt △BAO ,Rt △NAO 中分别有OB 2=AB 2+OA 2=5m 2,NO 2=NA 2+OA 2=NA 2+m 2. 若2NO =OB ,则4NO 2=OB 2. 即4(NA 2+m 2)=5m 2.可得NA =12m . 即NA =14AB . …………………10分所以线段AB 上存在一点N ,使得点N 到坐标原点O 与到点C 的距离之和等于线段OB 的长,且NA =14AB .23.(本题满分11分)(1)(本小题满分5分)A BC N解:∵ 四边形ABCD 是矩形, ∴ ∠ABE =90°. 又 AB =8,BE =6,∴ AE =82+62=10. ……………………1分 设△ABE 中,边AE 上的高为h , ∵ S △ABE =12AE ⋅h =12AB ⋅BE ,∴ h =245 . ……………………3分又 AP =2x ,∴ y =245x (0<x ≤5). ……………………5分(2)(本小题满分6分)解: ∵ 四边形ABCD 是矩形,∴ ∠B =∠C =90°,AB =DC , AD =BC . ∵ E 为BC 中点, ∴ BE =EC . ∴ △ABE ≌△DCE .∴ AE =DE . ……………………6分 当点P 运动至点D 时,S △ABP =S △ABD ,由题意得125x =32-4x , 解得x =5. ……………………7分当点P 运动一周回到点A 时,S △ABP =0,由题意得32-4x =0, 解得x =8. ……………………8分 ∴ AD =2×(8-5)=6. ∴ BC =6.∴ BE =3.且AE +ED =2×5=10. ∴ AE =5.在Rt △ABE 中,AB =52-32=4. ……………………9分 设△ABE 中,边AE 上的高为h , ∵ S △ABE =12AE ⋅h =12AB ⋅BE ,∴ h =125.又 AP =2x ,∴ 当点P 从A 运动至点D 时,y =125x (0<x ≤2.5).…………10分∴ y 关于x 的函数表达式为:当0<x ≤5时,y =125x ;当5<x ≤8时,y =32-4x . ………………11分24.(本题满分11分)(1)(本小题满分4分)解:连接OC ,OB .∵ ∠ACD =40°,∠CDB =70°,∴ ∠CAB =∠CDB -∠ACD =70°-40°=30°.…………1分 ∴ ∠BOC =2∠BAC =60°, ………………2分PE DCBAODCBA∴ ︵BD l =180n r π=603180π⨯⨯=π. ………………4分(2)(本小题满分7分)解:∠ABC +∠OBP =130°. ………………………5分 证明:设∠CAB =α,∠ABC =β,∠OBA =γ,连接OC .则∠COB =2α. ∵ OB =OC ,∴ ∠OCB =∠OBC =β+γ.∵ △OCB 中,∠COB +∠OCB +∠OBC =180°,∴ 2α+2(β+γ)=180°.即α+β+γ=90°. ………………………8分 ∵ PB =PD ,∴ ∠PBD =∠PDB=40°+α. ………………………9分∴ ∠OBP =∠OBA +∠PBD=γ+40°+α=(90°-β) +40°=130°-β. ………………………11分即∠ABC +∠OBP =130°.25.(本题满分14分)(1)(本小题满分3分)解:∵ a 1=-1, ∴ y 1=-(x -m )2+5.将(1,4)代入y 1=-(x -m )2+5,得4=-(1-m )2+5. …………………………2分m =0或m =2 . ∵ m >0,∴ m =2 . …………………………3分 (2)(本小题满分4分)解:∵ c 2=0,∴ 抛物线y 2=a 2 x 2+b 2 x .将(2,0)代入y 2=a 2 x 2+b 2 x ,得4a 2+2b 2=0. 即b 2=-2a 2.∴ 抛物线的对称轴是x =1. …………………………5分 设对称轴与x 轴交于点N , 则NA =NO =1.又 ∠OMA =90°,∴ MN =12OA =1. …………………………6分∴ 当a 2>0时, M (1,-1);当a 2<0时, M (1,1).∵ 25>1, ∴M (1,-1) ……………………7分(3)(本小题满分7分)解: 由题意知,当x =m 时,y 1=5;当x =m 时,y 2=25,∴ 当x =m 时,y 1+y 2=5+25=30. ∵ y 1+y 2=x 2+16 x +13, ∴ 30=m 2+16m +13.P ABCD O解得m 1=1,m 2=-17. ∵ m >0,∴ m =1. ……………………………9分 ∴ y 1=a 1 (x -1)2+5. ∴ y 2=x 2+16 x +13-y 1=x 2+16 x +13-a 1 (x -1)2-5.即y 2=(1-a 1)x 2+(16+2a 1)x +8-a 1. ………………………12分∵ 4a 2 c 2-b 22=-8a 2,∴ y 2 顶点的纵坐标为 4a 2 c 2-b 224a 2=-2.∴ 4(1-a 1) (8-a 1)-(16+2a 1)24(1-a 1)=-2.化简得56+25a 11-a 1=-2.解得a 1=-2.经检验,a 1是原方程的解.∴ 抛物线的解析式为y 2=3x 2+12x +10. ……………………14分。

【初三数学】厦门市九年级数学上期末考试检测试卷(含答案解析)

【初三数学】厦门市九年级数学上期末考试检测试卷(含答案解析)

九年级上册数学期末考试试题【答案】一.选择题(满分30分,每小题3分)1.用因式分解法解方程,下列方法中正确的是()A.(2x﹣2)(3x﹣4)=0,∴2﹣2x=0或3x﹣4=0B.(x+3)(x﹣1)=1,∴x+3=0或x﹣1=1C.(x﹣2)(x﹣3)=2×3,∴x﹣2=2或x﹣3=3D.x(x+2)=0,∴x+2=02.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A.B.C.D.3.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0 B.x2﹣36x+36=0C.4x2+4x+1=0 D.x2﹣2x﹣1=04.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.5.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E 恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°6.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数7.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小8.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2 B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2 D.y=﹣2(x+1)2﹣29.若圆锥的底面半径长是5,母线长是13,则该圆锥的侧面面积是()A.60 B.60πC.65 D.65π10.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.6C.3D.9二.填空题(满分18分,每小题3分)11.如图,双曲线y=与抛物线y=ax2+bx+c交于点A(x1,y1),B(x2,y2),C(x3,y3),由图象可得不等式组0<+bx+c的解集为.12.如图,在△ABC中,M、N分别是AB、AC上的点,MN∥BC,若S△MBC:S△CMN=3:1,则S△AMN:S△ABC=.13.如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A 位于南偏东50°方向上,轮船航行20分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是海里.14.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有个.15.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与正比例函数y=kx、y=x(k>1)的图象分别交于点A、B.若∠AOB=45°,则△AOB的面积是.16.设△ABC外接圆的半径为R,内切圆的半径为r,内心为I,延长AI交外接圆于D,则AI•ID=.三.解答题(共9小题,满分72分)17.(6分)水果店老板以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,老板决定降价销售.(1)若这种水果每斤售价降低x元,则每天的销售量是斤(用含x的代数式表示,需要化简);(2)销售这种水果要想每天盈利300元,老板需将每斤的售价定为多少元?18.(6分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.19.(6分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.20.(6分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.21.(7分)如图,将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,BC的延长线交DE 于F,连接BD,若BC=2EF,试证明△BED是等腰三角形.22.(8分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若∠A=30°,求证:DG=DA;(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.23.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?24.(10分)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.25.(13分)已知:正方形OABC的边OC、OA分别在x、y轴的正半轴上,设点B(4,4),点P(t,0)是x轴上一动点,过点O作OH⊥AP于点H,直线OH交直线BC于点D,连AD.(1)如图1,当点P在线段OC上时,求证:OP=CD;(2)在点P运动过程中,△AOP与以A、B、D为顶点的三角形相似时,求t的值;(3)如图2,抛物线y=﹣x2+x+4上是否存在点Q,使得以P、D、Q、C为顶点的四边形为平行四边形?若存在,请求出t的值;若不存在,请说明理由.参考答案一.选择题1.用因式分解法解方程,下列方法中正确的是()A.(2x﹣2)(3x﹣4)=0,∴2﹣2x=0或3x﹣4=0B.(x+3)(x﹣1)=1,∴x+3=0或x﹣1=1C.(x﹣2)(x﹣3)=2×3,∴x﹣2=2或x﹣3=3D.x(x+2)=0,∴x+2=0【分析】用因式分解法时,方程的右边为0,才可以达到化为两个一次方程的目的.因此第二、第三个不对,第四个漏了一个一次方程,应该是x=0,x+2=0.解:用因式分解法时,方程的右边为0,才可以达到化为两个一次方程的目的.因此第二、第三个不对,第四个漏了一个一次方程,应该是x=0,x+2=0.所以第一个正确.故选:A.【点评】此题考查了学生对因式分解方法应用的条件的理解,提高了学生学以致用的能力.2.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A.B.C.D.【分析】过点B作BD⊥AC,交AC延长线于点D,利用正切函数的定义求解可得.解:如图,过点B作BD⊥AC,交AC延长线于点D,则tan∠BAC==,故选:C.【点评】本题主要考查三角函数的定义,解题的关键是掌握正切函数的定义:锐角A的对边a 与邻边b的比叫做∠A的正切.3.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0 B.x2﹣36x+36=0C.4x2+4x+1=0 D.x2﹣2x﹣1=0【分析】根据方程的系数结合根的判别式,分别求出四个选项中方程的根的判别式,利用“当△=0时,方程有两个相等的实数根”即可找出结论.解:A、∵△=(﹣4)2﹣4×1×(﹣4)=32>0,∴该方程有两个不相等的实数根,A不符合题意;B、∵△=(﹣36)2﹣4×1×36=1152>0,∴该方程有两个不相等的实数根,B不符合题意;C、∵△=42﹣4×4×1=0,∴该方程有两个相等的实数根,C符合题意;D、∵△=(﹣2)2﹣4×1×(﹣1)=8>0,∴该方程有两个不相等的实数根,D不符合题意.故选:C.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.4.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,2.据此可作出判断.解:从左面看可得到从左到右分别是3,2个正方形.故选:A.【点评】本题考查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.5.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E 恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°【分析】由旋转性质知△ABC≌△DEC,据此得∠ACB=∠DCE=30°、AC=DC,继而可得答案.解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.6.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.解:A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选:C.【点评】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.7.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小【分析】根据反比例函数的性质进行选择即可.解:A、图象必经过点(﹣3,2),故A正确;B、图象位于第二、四象限,故B正确;C、若x<﹣2,则y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D正确;故选:D.【点评】本题考查了反比例函数的选择,掌握反比例函数的性质是解题的关键.8.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2 B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2 D.y=﹣2(x+1)2﹣2【分析】先确定物线y=﹣2x2的顶点坐标为(0,0),再把点(0,0)平移所得对应点的坐标为(1,﹣2),然后根据顶点式写出平移后的抛物线解析式.解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x﹣1)2﹣2.故选:B.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.若圆锥的底面半径长是5,母线长是13,则该圆锥的侧面面积是()A.60 B.60πC.65 D.65π【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.解:该圆锥的侧面面积=•2π•5•13=65π.故选:D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.6C.3D.9【分析】连接DF,根据垂径定理得到=,得到∠DCF=∠EOD=30°,根据圆周角定理、余弦的定义计算即可.解:连接DF,∵直径CD过弦EF的中点G,∴=,∴∠DCF=∠EOD=30°,∵CD是⊙O的直径,∴∠CFD=90°,∴CF=CD•cos∠DCF=12×=6,故选:B.【点评】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.二.填空题(共6小题,满分18分,每小题3分)11.如图,双曲线y=与抛物线y=ax2+bx+c交于点A(x1,y1),B(x2,y2),C(x3,y3),由图象可得不等式组0<+bx+c的解集为x2<x<x3.【分析】根据函数图象写出x轴上方且抛物线在双曲线上方部分的x的取值范围即可.解:由图可知,x2<x<x3时,0<<ax2+bx+c,所以,不等式组0<<ax2+bx+c的解集是x2<x<x3.故答案为:x2<x<x3.【点评】本题考查了二次函数与不等式组,此类题目,准确识图,利用数形结合的思想求解更简便.12.如图,在△ABC中,M、N分别是AB、AC上的点,MN∥BC,若S△MBC:S△CMN=3:1,则S△AMN:S△ABC=1:9 .【分析】根据三角形的面积得出MN:BC,进而利用相似三角形的性质解答即可.解:∵S△MBC:S△CMN=3:1,∴MN:BC=1:3,∵MN∥BC,∴△AMN∽△ABC,∴S△AMN:S△ABC=1:9,故答案为:1:9.【点评】此题考查相似三角形的判定和性质,关键是根据三角形的面积得出MN:BC.13.如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A 位于南偏东50°方向上,轮船航行20分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是海里.【分析】作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=20海里,∠NCA=10°,则∠ABC=∠ABD﹣∠C BD=30°.由BD∥CN,得出∠BCN=∠DBC=20°,那么∠ACB=∠ACN+∠BCN=30°=∠ABC,根据等角对等边得出AB=AC,由等腰三角形三线合一的性质得到CM=BC=10海里.然后在直角△ACM中,利用余弦函数的定义得出AC=,代入数据计算即可.解:如图,作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=20海里,∠NCA=10°,则∠ABC=∠ABD﹣∠CBD=50°﹣20°=30°.∵BD∥CN,∴∠BCN=∠DBC=20°,∴∠ACB=∠ACN+∠BCN=10°+20°=30°,∴∠ACB=∠ABC=30°,∴AB=AC,∵AM⊥BC于M,∴CM=BC=10海里.在直角△ACM中,∵∠AMC=90°,∠ACM=30°,∴AC===(海里).故答案为:.【点评】本题考查了解直角三角形的应用﹣方向角问题,平行线的性质,等腰三角形的判定与性质,余弦函数的定义,难度适中.求出CM=BC=10海里是解题的关键.14.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有15 个.【分析】由摸到红球的频率稳定在0.25附近得出口袋中得到红色球的概率,进而求出白球个数即可.解:设白球个数为:x个,∵摸到红色球的频率稳定在0.25左右,∴口袋中得到红色球的概率为0.25,∴=,解得:x=15,即白球的个数为15个,故答案为:15.【点评】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.15.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与正比例函数y=kx、y=x(k>1)的图象分别交于点A、B.若∠AOB=45°,则△AOB的面积是 2 .【分析】根据AB两点分别在反比例函数和正比例函数图象上,且存在相同k值,可先证明点A 横坐标和B纵坐标相等,利用旋转知识证明△AOB面积为△A′OB的面积,再利用反比例函数k的几何意义.解:如图,过B作BD⊥x轴于点D,过A作AC⊥y轴于点C设点A横坐标为a,则A(a,)∵A在正比例函数y=kx图象上∴=ka∴k=同理,设点B横坐标为b,则B(b,)∴=∴∴∴ab=2当点A坐标为(a,)时,点B坐标为(,a)∴OC=OD将△AOC绕点O顺时针旋转90°,得到△ODA′∵BD⊥x轴∴B、D、A′共线∵∠AOB=45°,∠AOA′=90°∴∠BOA′=45°∵OA=OA′,OB=OB∴△AOB≌△A′OB∵S△BOD=S△AOC=2×=1∴S△AOB=2故答案为:2【点评】本题为代数几何综合题,考查了三角形全等、旋转和反比例函数中k的几何意义.解答的切入点,是设出相应坐标,找出相关数量构造方程.16.设△ABC外接圆的半径为R,内切圆的半径为r,内心为I,延长AI交外接圆于D,则AI•ID=2R•r.【分析】如图作IF⊥AB于F,设△ABC的外心为O,作OM⊥BD于M,连接OB、OD.由△AFI∽△OMD,推出=,可得DM•AI=R•r,再证明DI=DB=2DM即可解决问题;解:如图作IF⊥AB于F,设△ABC的外心为O,作OM⊥BD于M,连接OB、OD.∵OM⊥BD,OB=OD,∴∠BOM=∠DOM,BM=DM,∵∠BAD=∠BOD,∴∠FAI=∠MOD,∵∠AFI=∠OMD=90°,∴△AFI∽△OMD,∴=,∴DM•AI=R•r,∵∠BAI=∠CAI,∠CAI=∠DBE,∠ABI=∠CBI,又∵∠BID=∠ABI+∠BAI,∠DBI=∠DBC+∠IBC,∴∠DIB=∠DBI,∴DB=DI=2DM,∴DM=DI,∴DI•AI=R•r,∴AI•DI=2R•r.故答案为2R•r.【点评】本题考查三角形的外心与内心、相似三角形的判定和性质、垂径定理、圆周角定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.三.解答题(共9小题,满分72分)17.(6分)水果店老板以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,老板决定降价销售.(1)若这种水果每斤售价降低x元,则每天的销售量是100+200x斤(用含x的代数式表示,需要化简);(2)销售这种水果要想每天盈利300元,老板需将每斤的售价定为多少元?【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x(斤);故答案为:100+200x(2)设这种水果每斤售价降低x元,根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x=或x=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.4﹣1=3,答:老板需将每斤的售价定为3元.【点评】本题考查理解题意的能力,第一问关键求出每千克的利润,求出总销售量,从而利润.第二问,根据售价和销售量的关系,以利润做为等量关系列方程求解.18.(6分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.【分析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【点评】本题考查借助树状图或列表法求概率.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.19.(6分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.【分析】(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO=(180°﹣∠AOD)=(180°﹣70°)=55°,∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.【点评】本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.20.(6分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.【分析】(1)由函数图象可设函数解析式,再将图中坐标代入解析式,利用待定系数法即可求得y与x的关系式;(2)将y=20代入y=,即可得到a的值;(3)要想喝到不超过40℃的开水,7:30加20分钟即可接水,一直到8:10;解:(1)当0≤x≤8时,设y=k1x+b,将(0,20),(8,100)代入y=k1x+b,得k1=10,b=20,所以当0≤x≤8时,y=10x+20;当8<x≤a时,设y=,将(8,100)代入,得k2=800,所以当8<x≤a时,y=;故当0≤x≤8时,y=10x+20;当8<x≤a时,y=;(2)将y=20代入y=,解得a=40;(3)8:10﹣8分钟=8:02,∵10x+20≤40,∴0<x≤2,∵≤40,∴20≤x<40.所以李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前能喝到不超过40℃的热水,则需要在7:50~8:10时间段内接水.【点评】本题考查了一次函数与反比例函数的应用,解题的关键是利用待定系数法求出两个函数的解析式.21.(7分)如图,将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,BC的延长线交DE 于F,连接BD,若BC=2EF,试证明△BED是等腰三角形.【分析】根据直角三角形的两锐角互余,以及对顶角相等,旋转的性质,即可证得BF是DE的垂直平分线,据此即可证得.证明:∵将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,∴DE=BC,∠ADF=∠ABC,∵BC=2EF,∴DF=EF,∴DE=2EF,∵在直角△ABC中,∠ABC+∠ACB=90°,又∵∠ABC=∠ADE,∴∠ACB+∠ADE=90°.∵∠FCD=∠ACB,∴∠FCD+∠ADE=90°,∴∠CFD=90°,∴BF⊥DE,∵EF=FD,∴BF垂直平分DE,∴BD=BE,∴△BDE是等腰三角形.【点评】本题考查了旋转的性质,等腰三角形的判定,线段垂直平分线的判定和性质,熟练掌握各定理是解题的关键.22.(8分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若∠A=30°,求证:DG=DA;(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.【分析】(1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到结论;(2)根据含30°的直角三角形的性质证明即可;(3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.解:(1)连接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切线;(2)∵∠AED=90°,∠A=30°,∴ED=AD,∵∠A+∠B=90°,∴∠B=∠BEF=60°,∵∠BEF+∠DEG=90°,∴∠DEG=30°,∵∠ADE+∠A=90°,∴∠ADE=60°,∵∠ADE=∠EGD+∠DEG,∴∠DGE=30°,∴∠DEG=∠DGE,∴DG=DE,∴DG=DA;(3)∵AD是⊙O的直径,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵阴影部分的面积=×r×r﹣=2﹣π.解得:r2=4,即r=2,即⊙O的半径的长为2.【点评】本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.23.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?【分析】(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值,即可确定销售单价应控制在什么范围内.解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500,∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.【点评】本题考查二次函数的实际应用.建立数学建模题,借助二次函数解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出函数关系式和方程,再求解.24.(10分)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.【分析】(1)△ABC是等腰直角三角形,四边形ADEF是正方形,易证得△BAD≌△CAF,根据全等三角形的对应边相等,即可证得BD=CF;(2)①由△BAD≌△CAF,可得∠ABM=∠GCM,又由对顶角相等,易证得△BMA∽△CMG,根据相似三角形的对应角相等,可得BGC=∠BAC=90°,即可证得BD⊥CF;②首先过点F作FN⊥AC于点N,利用勾股定理即可求得AE,BC的长,继而求得AN,CN的长,又由等角的三角函数值相等,可求得AM=AB=,然后利用△BMA∽△CMG,求得CG的长,再由勾股定理即可求得线段BG的长.解(1)BD=CF成立.理由:∵△ABC是等腰直角三角形,四边形ADEF是正方形,∴AB=AC,AD=AF,∠BAC=∠DAF=90°,∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS).∴BD=CF.(2)①证明:设BG交AC于点M.∵△BAD≌△CAF(已证),∴∠ABM=∠GCM.∵∠BMA=∠CMG,∴△BMA∽△CMG.∴∠BGC=∠BAC=90°.∴BD⊥CF.②过点F作FN⊥AC于点N.∵在正方形ADEF中,AD=DE=,∴AE==2,∴AN=FN=AE=1.∵在等腰直角△ABC中,AB=4,∴CN=AC﹣AN=3,BC==4.∴在Rt△FCN中,tan∠FCN==.∴在Rt△ABM中,tan∠ABM==tan∠FCN=.∴AM=AB=.∴CM=AC﹣AM=4﹣=,BM===.∵△BMA∽△CMG,∴.∴.∴CG=.∴在Rt△BGC中,BG==.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的性质、矩形的性质、勾股定理以及三角函数等知识.此题综合性很强,难度较大,注意数形结合思想的应用,注意辅助线的作法.25.(13分)已知:正方形OABC的边OC、OA分别在x、y轴的正半轴上,设点B(4,4),点P(t,0)是x轴上一动点,过点O作OH⊥AP于点H,直线OH交直线BC于点D,连AD.(1)如图1,当点P在线段OC上时,求证:OP=CD;(2)在点P运动过程中,△AOP与以A、B、D为顶点的三角形相似时,求t的值;(3)如图2,抛物线y=﹣x2+x+4上是否存在点Q,使得以P、D、Q、C为顶点的四边形为平行四边形?若存在,请求出t的值;若不存在,请说明理由.【分析】(1)证OP=CD,可以证明它们所在的三角形全等,即证明:△AOP≌△OCD;已知的条件有:∠AOP=∠OCD=90°,OA=OC=4,只需再找出一组对应角相等即可,通过图示可以发现∠OAP、∠HAP是同角的余角,这两个角相等,那么证明三角形全等的全部条件都已得出,则结论可证.(2)点P在x轴上运动,那么就需分三种情况讨论:①点P在x轴负半轴上;可以延续(1)的解题思路,先证明△AOP、△OCD全等,那么得到的条件是OP=CD,然后用t表示OP、BD的长,再根据给出的相似三角形得到的比例线段,列等式求出此时t的值,要注意t的正负值的判断;②点P在线段OC上时;由于OP、CD都小于等于正方形的边长(即OA、AB),所以只有OP=BD时,给出的两个三角形才有可能相似(此时是全等),可据此求出t的值;③点P在点C的右侧时;方法同①.(3)这道题要分两种情况讨论:①线段PC为平行四边形的对角线,那么点Q、D关于PC的中点对称,即两点的纵坐标互为相反数,而QP∥CD,即Q、P的横坐标相同,那么先用t表示出Q点的坐标,代入抛物线的解析式中,即可确定t的值;②线段PC为平行四边形的边;先用t表示出PC的长,把点D向左或向右平移PC长个单位就。

福建省厦门市九年级上学期数学期末考试试卷

福建省厦门市九年级上学期数学期末考试试卷

福建省厦门市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020九上·鄞州期末) 下列事件中,是必然事件的是()A . 抛掷一枚硬币正面向上B . 从一副完整扑克牌中任抽一张,恰好抽到红桃AC . 今天太阳从西边升起D . 从4件红衣服和2件黑衣服中任抽3件有红衣服2. (2分)(2018·红桥模拟) cos30°的值为()A . 1B .C .D .3. (2分) (2016九上·北区期中) 如图,四边形ABCD内接于⊙O,若∠A=62°,则∠BCE等于()A . 28°B . 31°C . 62°D . 118°4. (2分) (2016九上·宁波期末) 抛物线y=﹣2x2+4的顶点坐标为()A . (4,0)B . (0,4)C . (4,2)D . (4,﹣2)5. (2分) (2019九上·昌图期末) 一条线段的黄金分割点有()A . 1个B . 2个C . 3个D . 无数个6. (2分)(2014·杭州) 在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A . 3sin40°B . 3sin50°C . 3tan40°D . 3tan50°7. (2分)(2020·许昌模拟) 如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC相似的是()A .B .C .D .8. (2分)(2017·盘锦模拟) 如图,⊙O的半径为5,弦AB长为8,过AB的中点E有一动弦CD(点C只在弦AB所对的劣弧上运动,且不与A、B重合),设CE=x,ED=y,下列图象中能够表示y与x之间函数关系的是()A .B .C .D .9. (2分)已知:二次函数y=x2-4x-a,下列说法中错误的是()A . 当x<1时,y随x的增大而减小B . 若图象与x轴有交点,则a≤4C . 当a=3时,不等式x2-4x+a<0的解集是1<x<3D . 若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=310. (2分)(2015•随州)如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2019九上·德清期末) 若质量抽检时任抽一件西服成品为合格品的概率为0.9,则200件西服中大约有________合格品.12. (1分)对于每个非零自然数n,抛物线与x轴交于AnBn两点,以AnBn 表示这两点间的距离,则A1B1+A2B2+…+A2016B2016的值是________.13. (1分) (2017九上·姜堰开学考) 已知如图,在⊙O中,弦AB的长为8,圆心O到AB的距离为3.若点P是AB上的一动点,则OP的取值范围是________.14. (1分)有公共顶点的两条射线分别表示南偏东20°与北偏东30°,则这两条射线组成的角为________ 度.15. (1分)如图,在菱形ABCD中,DE⊥AB ,垂足是E , DE=6,sinA= ,则菱形ABCD的周长是________16. (1分)(2013·南通) 如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4 cm,则EF+CF的长为________cm.三、解答题 (共7题;共60分)17. (5分)近年深圳进行高中招生制度改革,某初中学校获得保送(指标生)名额若干,现在九年级四位品学兼优的学生小斌(男)、小亮(男)、小红(女)、小丽(女)都获得保送资格,且机会均等.(1)若学校只有一个名额,则随机选到小斌的概率是多少.(2)若学校争取到两个名额,请用树状图或列表法求随机选到保送的学生恰好是一男一女的概率.18. (5分)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD分别与AE、AF相交于G、H.(1)在图中找出与△ABE相似的三角形,并说明理由;(2)若AG=AH,求证:四边形ABCD是菱形.19. (10分)如图,在△ABC中,AB=AC,分别以B、C为圆心,BC长为半径在BC下方画弧.设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD(1)求证:AD平分∠BAC。

厦门市2021-2022学年第一学期九年级数学期末考试卷及答案

厦门市2021-2022学年第一学期九年级数学期末考试卷及答案

2021—2022学年第一学期初中毕业班期末考试数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11.(2,3). 12.13. 13.∠B . 14.4+43. 15.(1)已知小正方形边长为x ,将其边长增加b 2,得到大正方形; (2)(x +b 2) 2=-c +b 2416.②④.三、解答题(本大题有10小题,共86分)17.(本题满分7分)解法一:a =1,b =-4,c =-1.因为△=b 2-4ac =20>0,…………………………3分所以方程有两个不相等的实数根:x =-b ±b 2-4ac 2a=4±202=2±5.…………………………5分即x 1=2+5,x 2=2-5.…………………………7分解法二:由原方程得x 2-4x =1.…………………………1分x 2-4x +4=5.…………………………3分(x -2) 2=5.…………………………4分可得x -2=±5…………………………5分x 1=2+5,x 2=2-5.…………………………7分解法一:证明:∵ E ,F 是对角线AC 的三等分点,∴ AE =CF =13AC . ……………………1分 ∵ 四边形ABCD 是平行四边形,∴ AB ∥CD ,AB =CD .………………………………3分∴ ∠BAE =∠DCF . ………………………………4分∵ AB =CD ,∠BAE =∠DCF ,AE =CF ,∴ △BAE ≌△DCF . ………………………………6分∴ BE =DF . ………………………………7分解法二:证明:分别连接DE ,BF ,BD ,BD 交AC 于点O ,∵ E ,F 是对角线AC 的三等分点,∴ AE =CF =13AC . ………………………………1分 ∵ 四边形ABCD 是平行四边形,∴ OA =OC ,OB =OD .……………………………3分又∵ AE =CF ,∴ OA -AE =OC -CF ,∴ OE =OF , ……………………………4分∴ 四边形BFDE 是平行四边形,…………………6分∴ BE =DF . ……………………………7分19.(本题满分7分)解:(a +1a -2)÷(a -1)2a +1=a (a -2)+1a -2 · a +1(a -1)2 ……………………………2分 =a 2-2a +1a -2 · a +1(a -1)2……………………………3分 =(a -1)2a -2 · a +1(a -1)2……………………………4分 =a +1a -2………………………………………5分 当a =3+2时,原式=3+2+13+2-2=3+33=1+3…………………………7分A B E D F C A B C DE F O解:设该地这两年中欧班列开行量的年平均增长率为x ,依题意得:……………………1分 500 (1+x )2=1280. ……………………4分解方程,得:x 1=-2.6(不合题意,舍去),x 2=0.6. ……………………6分答:该地这两年中欧班列开行量的年平均增长率为为0.6.…………………………7分21.(本题满分8分)证明:连接OC .∵ AB 为⊙O 的直径,AB =6,∴ OA =3. ………………………1分设∠AOC =n °.∵ ︵AC 的长为π,∴ 3πn 180=π, ∴ n =60,即∠AOC =60°. ………………………3分∵ ∠B 与∠AOC 所对的弧都是︵AC ,∴ ∠B =12∠AOC =30°. ………………………5分 ∵ BC =PC ,∴ ∠P =∠B =30°,………………………6分∴ 在△OCP 中,∠OCP =180°-∠AOC -∠P =90°,∴ OC ⊥CP .………………………7分∵ OC 是⊙O 的半径,∴ 直线PC 与⊙O 相切.………………………8分22.(本题满分8分)解:(1)(本小题满分5分)抽检的20箱平均每箱中失活菌苗数为x =0×6+1×2+2×5+3×4+5×2+6×120………………………4分 =2. ………………………5分(2)(本小题满分3分)估计事件A 的概率为320. 答:(1)抽检的20箱平均每箱中失活菌苗数为2;(2)事件A 的概率为320. ………………8分解:(1)(本小题满分4分)如图四边形ADBP 即为所求.…………………4分 解法1(作等角):解法2(作全等三角形):解法3(作轴对称点):(2)(本小题满分5分)直线PQ 与直线BD 互相平行.理由如下:方法一:∵ 把点P 绕点A 顺时针旋转得到点Q ,旋转角为2α, 又∵ ∠BAP =α,∴ AQ =AP ,∠QAB =α. …………………5分 ∵ P 是BC 边的中点,∴ BP =12BC .∵ Q 是AD 边的中点,∴ AQ =DQ =12AD .∵ AD =BC ,∴ AQ =DQ =BP . …………………6分∴ AP =BP .D∴ ∠ABP =∠BAP =α.∴ ∠ABP =∠QAB .∴ AD ∥BC ,即DQ ∥BP . …………………7分∴ 四边形BPQD 为平行四边形. …………………8分 ∴ BD ∥PQ .…………………9分方法二:设PQ 与AB 交点为M .∵ 把点P 绕点A 顺时针旋转得到点Q ,旋转角为2α, 又∵ ∠BAP =α,∴ AQ =AP ,∠QAB =α. …………………5分 ∵ P 是BC 边的中点,∴ BP =12BC .∵ Q 是AD 边的中点,∴ AQ =12AD .∵ AD =BC ,∴ AQ =BP . …………………6分∴ AP =BP ,∴ ∠ABP =∠BAP =α.∴ ∠ABP =∠QAB .∴ AD ∥BC . …………………7分 ∴ ∠QAM =∠PBM ,∠AQM =∠BPM .又∵ AQ =BP ,∴ △AQM ≌△BPM .∴ AM =BM ,即M 为线段AB 中点.∵ Q 是AD 边的中点,∴ QM 是△ABD 的中位线. …………………8分 ∴ BD ∥QM .∴ BD ∥PQ . …………………9分D24.(本题满分10分) (1)(本小题满分5分)解:点C 在四边形OP P ′O ′的边上.理由如下: 因为y =ax 2-2ax -3a =a (x -1)2-4a , 所以抛物线顶点B 的坐标为(1,-4a ). ………………………………1分 因为BC ⊥x 轴于点C , 所以点C 的坐标为(1,0). 因为点P 是BC 的中点,所以点P 的坐标为(1,-2a ). ………………………………2分 因为将线段OP 向右平移得到线段O ′P ′,且点P ′在此抛物线上, 所以当y =-2a 时,-2a =a (x -1)2-4a . 解得 x =1±2.所以x P ′=1+2. ………………………………3分 即P ′(1+2,-2a ).所以线段OP 向右平移2个单位. 所以点O ′的坐标为(2,0). ………………………………4分 因为 0<1<2,所以 点C 在线段OO ′上.即点C 在四边形OP P ′O ′的边上. ……………………………5分(2)(本小题满分6分) 解法一:将线段OP 向下平移a +1个单位,得到O ′(0,-a -1),P ′(1,-3a -1). …………………………6分 又因为 A (0,-3a ),B (1,-4a ),0<a <14,所以y O ′-y B =(-a -1)-(-4a )=3a -1<0,y A -y P =-3a -(-2a ) =-a <0. 所以y O ′<y B ,y A <y P .由O (0,0),P (1,-2a ),可得线段OP 的函数表达式为y =-2ax (0<a <14,0≤x ≤1).因为-2a <0,所以y 随x 的增大而减小, 所以当x =1时,该函数的最小值为y P .因为线段OP 向下平移a +1个单位得到线段O ′P ′,所以线段O ′P ′的函数表达式为y =-2ax -a -1 (0<a <14,0≤x ≤1).同理,当x =0时,该函数的最大值为y O ′. 对于函数y =a (x -1)2-4a ,(0<a <14,0≤x ≤1),因为a >0 ,抛物线开口向上,当0≤x ≤1时,y 随x 的增大而减小. 所以y B ≤y ≤y A .所以对于图象T 上的任意一点M ,有y B <y M <y A . …………………………9分 又因为y O ′<y B ,y A <y P ,所以y O ′<y M <y P . 因为0<x M <1,点M 在四边形OP P ′O ′的内部. …………………………10分解法二: 解:将线段OP 向下平移a +1个单位,得到O ′(0,-a -1),P ′(1,-3a -1). …………………………6分由O (0,0),P (1,-2a ),可得线段OP 的函数表达式为y =-2ax (0<a <14,0≤x ≤1).所以线段O ′P ′的函数表达式为y =-2ax -a -1 (0<a <14,0≤x ≤1).由题可设点M 的横坐标为m (0<m <1),过点M 作x 轴的垂线分别交线段OP ,O ′P ′于点N ,Q , 则y M =am 2-2am -3a ,y N =-2am ,y Q =-2am -a -1. 所以y M -y N =am 2-3a ,y M -y Q =am 2-2a +1. 令t =am 2-3a ,因为a >0 ,抛物线t = am 2-3a 开口向上, 当0<m <1时,t 随m 的增大而增大. 当m =1时,t =-2a <0. 所以t <0. 也即y M <y N .令q =am 2-2a +1,因为a >0,抛物线q =am 2-2a +1开口向上, 当0<m <1时,q 随m 的增大而增大. 当m =0时,q =-2a +1. 因为a <14,所以q >12>0.所以y M >y Q . …………………………9分 所以对于图象T 上的任意一点M ,都有y Q <y M <y N . 又因为0<m <1,所以点M 在四边形OP P ′O ′的内部. …………………………10分(1)(本小题满分5分) 证明: 方法一:∵ BA =BC ,AC ⊥BD ,∴ AO =CO . …………………………2分 ∵ BO =DO ,∴ 四边形ABCD 是平行四边形. ……………………4分 又∵ AC ⊥BD ,∴ 四边形ABCD 是菱形. …………………………5分 方法二:∵ AC ⊥BD ,BO =DO ,∴ BA =DA ,BC =DC . …………………………3分 ∵ BA =BC ,∴ BA =BC =DA =DC . …………………………4分 ∴ 四边形ABCD 是菱形. …………………………5分 (2)(本小题满分6分)解:PO 2+PF 2=4PE 2.理由如下:连接AE ,FQ ,设∠OAP =∠P AQ =α, ∵ AC ⊥BD , ∴ ∠AOP =90°. ∵ AP =AQ , ∴ ∠APQ =∠AQP =12 (180°-∠P AQ )=90°-12α.又∵ E 是线段PQ 的中点,∴ AE ⊥PQ ,∠P AE =12∠P AQ =12α. …………………………6分∴ ∠AEP =90°.∴ A ,O ,P ,E 在以AP 为直径的圆上.…………………………7分∴ ∠AOE =∠APQ =90°-12α,∠POE =∠P AE =12α. …………………………8分∵ 在△AOP 中,∠AOP =90°,∠OAP =α,∴ ∠APO =90°-α. ∴ ∠AFO =∠APO +∠POE =90°-12α.∴ ∠AOE =∠AFO .∴ AO =AF . …………………………9分 又∵ ∠OAP =∠P AQ ,AP =AQ ,∴ △AOP ≌△AFQ . …………………………10分 ∴ FQ =PO ,∠AFQ =∠AOP =90°. ∴ ∠PFQ =90°.∴ 在Rt △PFQ 中,FQ 2+PF 2=PQ 2. ∴ PO 2+PF 2=PQ 2.又∵ PQ =2PE ,∴ PO 2+PF 2=4PE 2. …………………………11分DEQAOBCFPDEQAOBCFP(1)(本小题满分5分) 解法一:解:当车速x =100时,综合考虑各种路面情况,可估计“刹车距离”为y 1=26.5+27.2+27.5+27.5+29.2+30.16 =28.………………………………2分把x =100,y 1=28代入y 1=ax 2+3100x (0≤x ≤200),得a · 1002+3100×100=28.解得a =1400. ……………………………………………………………4分所以y 1=1400x 2+3100x (0≤x ≤200). 当y 1=3.15时,可得1400x 2+3100x =3.15.解得x 1=30,x 2=-42(不合题意,舍去).所以M 款型号汽车的 “刹车距离”为3.15 m 时所对应的车速是30 km/h .……………………5分解法二:解:在路面一中,当x =100时,y 1=26.5, 代入y 1=ax 2+3100x (0≤x ≤200),得a · 1002+3100×100=26.5.解得a =0.00235.…………………………………………………………………………………2分 同理可得,在路面二至路面六中,相应的a 的值依次为0.00242,0.00245,0.00245,0.00262,0.00271. 综合考虑各种路面情况,此时a =0.00235+0.00242+0.00245+0.00245+0.00262+0.002716=0.0025=1400.……………………………………………………………………………………………4分 所以y 1=1400x 2+3100x (0≤x ≤200). 当y 1=3.15时,可得1400x 2+3100x =3.15.解得x 1=30,x 2=-42(不合题意,舍去).所以M 款型号汽车的 “刹车距离”为3.15 m 时所对应的车速是30 km/h .……………………5分(2)(本小题满分7分)结合实际情境可知,当车速x =0时,“刹车距离”y 2=0,可得c =0.…………………………6分 要使得当50≤x ≤200时,在相同的车速下N 款型号汽车的“刹车距离”始终比M 款型号汽车的“刹 车距离”小,即当50≤x ≤200时,y 2-y 1<0.y 2-y 1=1500x 2+b 100x -1400x 2-3100x=-12000x 2+b -3100x ………………………………………7分=12000[-x 2+20(b -3) x ] . 令t =-x 2+20(b -3) x ,其中50≤x ≤200,b ≥1. 因为-1<0,所以抛物线开口向下. 因为对称轴x =10(b -3),所以当x <10(b -3)时,t 随x 的增大而增大;当x >10(b -3) 时,t 随x 的增大而减小. 且当t =0时,x 1=0,x 2=20(b -3) . ………………………………8分 ①若x =10(b -3) ≤0,即1≤b ≤3, 当x >0时,t 随x 的增大而减小. 此时t <0,所以当50≤x ≤200时,t <0.即y 2-y 1<0. ………………………………10分 ②若x =10(b -3) >0,即b >3.当x >10(b -3)时,t 随x 的增大而减小,此时,若x 2=20(b -3) <50,即b <112 ,也即3<b <112 ,当50≤x ≤200时,t 随x 的增大而减小,且t <0.即y 2-y 1<0.综上所述,b 的取值范围是1≤b <112 .…………………………………………………12分。

2022-2023学年福建省厦门市九年级上学期期末数学试卷及参考答案

2022-2023学年福建省厦门市九年级上学期期末数学试卷及参考答案

2022-2023学年福建省厦门市初三数学第一学期期末试卷一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确) 1.O 的半径为4,点A 在O 内,则OA 的长可以是( ) A .3B .4C .5D .62.抛物线2(1)3y x =−+的对称轴是( ) A .1x =B .1x =−C .3x =D .3x =−3.如图,圆上依次有A ,B ,C ,D 四个点,AC ,BD 交于点P ,连接AB ,CD ,则图中与C ∠相等的角是( )A .A ∠B .B ∠C .D ∠D .APD ∠4.如图,正方形ABCD 的对角线AC ,BD 交于点O ,点M 在AOD ∆内,将点M 绕点O 逆时针旋转90︒,则M 的对应点M '在( )A .AOB ∆内B .BOC ∆内C .COD ∆内D .DOA ∆内5.某园林公司购进某种树苗,为了解该种树苗的移植成活率,现对购进的第一批树苗进行随机抽样并统计,结果如图所示.若该公司第二批还需移植成活1800棵该种树苗,根据统计结果,则第二批树苗购买量较为合理的是( )A .1620棵B .1800棵C .2000棵D .2093棵6.点(0,5)A ,(4,5)B 是抛物线2y ax bx c =++上的两点,则该抛物线的顶点可能是( ) A .(2,5)B .(2,4)C .(5,2)D .(4,2)7.将一个关于x 的一元二次方程配方为2()x m p +=,若23±是该方程的两个根,则p 的值是( ) A .2B .4C .3D .38.在平面直角坐标系xOy 中,ABC ∆是以BC 为底边的等腰三角形,(1,)A a ,(,3)B b ,(,3)C b t +,其中24t <<.关于点B 的位置,下列描述正确的是( ) A .在y 轴上 B .在第一象限 C .在第二象限D .随a 的变化而不同二、填空题(本大题有8小题,每小题4分,共32分)9.一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,投掷此骰子,朝上一面的点数为奇数的概率是 .10.已知1x =是方程230x mx −+=的解,则m 的值为 .11.在O 中有两个三角形:AOB ∆和COD ∆,点A ,B ,C ,D 依次在O 上,如图4所示.若这两个三角形关于过点O 的直线l 成轴对称,则点B 关于直线l 的对称点是 .12.如图,在ACB ∆中,90C ∠=︒,10AB =,8AC =,D 是AC 的中点,点B ,E 关于点D 成中心对称,则AE 的长为 .13.某小区有1300个住户,为了解小区居民的生活垃圾量(单位:)kg ,物业公司某日在该小区内随机抽取4栋楼的住户进行调查,结果如表所示.所抽取的居民楼A 栋B 栋C 栋D 栋住户数30 30 40 30 该栋所有住户当日产生的生活垃圾总量()kg 40457035根据如表,估计该小区居民当日生活垃圾总量为 .14.小桐竖直向上抛出一个小球,小球只在重力作用下的高度h (单位:)m 随时间t (单位:)s 变化的图象是抛物线的一部分,如图所示.小球出手时的高度是 .15.我国东汉初年的数学典籍《周髀算经》中总结了对几何工具“矩”(即直角形状的曲尺,如图1所示)的使用之道,其中就有“环矩以为圆”的方法.我国许多数学家对该方法作了如下更具体的描述:如图2所示,在平面内固定两个钉子A ,B ,保持“矩”的两边始终紧靠两钉子的内侧,转动“矩”,则“矩”的顶点C 的运动路线将会是一个圆.依此描述,请用你学过的一个数学概念或定理解释“环矩以为圆”这种方法的道理: .16.已知0b >,抛物线21y ax bx c =−+与x 轴交于A ,B 两点(A 在B 的左侧),抛物线22y ax bx c =++与x 轴交于C ,D 两点(C 在D 的左侧),其中A ,B ,C ,D 的横坐标分别为A x ,B x ,C x ,D x ,若当0B x x <<时,120y y <<,则当210y y <<时,x 的取值范围是 . 三、解答题(本大题有9小题,共86分)17.解方程:2250x x +−=.18.如图,四边形ABCD 是平行四边形,点E 、F 在对角线BD 上,AE ,CF 分别平分BAD ∠和DCB ∠,证明:BE DF =.19.先化简,再求值;224(1)244a a a a a −−÷+++,其中52a . 20.某市为减少汽车尾气污染,改善空气质量,鼓励市民选择新能源汽车作为出行的交通工具,并大力推进新能源汽车充电基础设施建设.据统计,该市2020年新建100座充电站,2022年新建169座.求该市这两年新建充电站的数量的年平均增长率.21.小梧是某校一名七年级新生,新学期开始,他打算每天早上和同小区里的几位新同学一起上学.小梧和同学计划每天早上7:00出发搭乘公共交通工具前往该学校,并在7:50前入校.几位同学通过查询出行软件,发现有三条路线可供选择,他们约定开学后的两周内分三组体验不同的路线并进行记录,结果如表所示. 路线 上学路上所用的时间(单位:)min 第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天 第9天 第10天 一 43 44 43 44 52 45 43 45 46 45 二 42 41 44 54 41 41 51 42 52 42 三47534446474847464745(1)根据如表,求体验路线一的同学这10天平均每天上学路上所用的时间; (2)请你为小梧和他的同学选择一条较为合理的上学路线,并说明理由.22.在ABC ∆中,90C ∠=︒,(045)CAB αα∠=<<︒,将ABC ∆绕点A 逆时针旋转,旋转角(180)βαβ<<︒,记点B ,C 的对应点分别为D ,E .(1)若ABC ∆和线段AD 如图所示,请在图中作出ADE ∆(要求:尺规作图,不写作法,保留作图痕迹); (2)M 是AB 的中点,N 是点M 旋转后的对应点,连接MN ,CD ,BD ,则是否存在β与α的某种数量关系,使得无论α取何值时,都有MN CD =?若存在,请说明理由,并直接写出此时BC 与BD 的数量关系;若不存在,也请说明理由.23.如果一个矩形有两个顶点在某抛物线上,那么称该矩形是该抛物线的“半接矩形”.矩形ABCD 在第一象限,点(,)B m n 在抛物线2y x bx c =++(记为抛物线)T 上.(1)矩形ABCD 是正方形,(1,3)A ,1m =,3b =−,4c =,直接写出点C ,D 的坐标,并证明;矩形ABCD 是抛物线T 的“半接矩形”;(2)(,1)A m n +,点C 在AB 边的右侧,3BC =,矩形ABCD 是抛物线T 的“半接矩形”,若矩形ABCD 的一条对称轴是2bx =−,将该矩形平移,使得平移后的矩形1111A B C D 仍是抛物线T 的“半接矩形”,请探究矩形ABCD 如何平移.24.ABC ∆内接于O ,AB AC =,67.5ABC ∠=︒,BC 的长为22π,点P 是射线BC 上的动点(2)BP m m =.射线OP 绕点O 逆时针旋转45︒得到射线OD ,如图所示.点Q 是射线OD 上的点,点Q 与点O 不重合,连接PQ ,PQ n =.(1)求O 的半径;(2)当2222n m m =−+时,在点P 运动的过程中,点Q 的位置会随之变化,记1Q ,2Q 是其中任意两个位置,探究直线12Q Q 与O 的位置关系.25.(14分)某景区正在修建一条到主景点的步行道及步行道两侧的游客休息区、沿途小观景点等附属设施.把步行道的入口记为A ,步行道上某点P 到入口A 的道路长度记为l (单位:)m ,把从入口A 处到P 处的步行道面积与此段步行道两侧的所有附属设施的占地面积之和记为S (单位:2)m .设P 处的步行道宽度为x (单位:)m ,根据景区对主景点的规划,步行道出口的宽度为2m .用矩形面积估计不规则图形的面积是一种比较有效的方法.因此,景区管委会近似地用一边长为l ,另一边长为()(x n n +为常量,0n >,n 的单位为)m 的矩形的面积表示S .景区管委会在目前已修建的720m 的步行道上选取了部分有代表性的地点进行测算,数据如表所示. l (单位:)m 30 60 180 360 540 720 S (单位:2)m 177.5 350 990 1800 2430 2880 Sl(单位:)m 5.925.835.554.54根据以上信息,在合理估计的基础上,解决下列问题: (1)写出当450l =时Sl的值,并说明理由; (2)当2n =时,求l 与x 的函数解析式(不需要写出x 的取值范围);(3)若景区可按此方式继续修建步行道及附属设施,请你通过计算说明常量n 至少为多少.答案与解析一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确) 1.解:O 的半径为4,点A 在O 内,4OA ∴<,即只有选项A 符合题意,选项B 、选项C 、选项D 都不符合题意; 故选:A .2.解:抛物线2(1)3y x =−+是抛物线的顶点式,根据抛物线的顶点式可知抛物线2(1)3y x =−+的对称轴是直线1x =, 故选:A .3.解:B ∠和C ∠对的弧是同一弧AD ,∴与C ∠相等的角是B ∠, 故选:B .4.解:如图,连接OM ,在OM 左侧作OM OM '⊥,且OM OM =',四边形ABCD 为正方形,AC BD ∴⊥,即90AOD AOB ∠=∠=︒,由旋转的性质得,90MOM ∠'=︒,90MOA AOM ∠+∠'=︒,90AOM DOM ∠+∠=︒, AOM DOM ∴∠'=∠,点M 在AOD ∆内, 90AOM DOM ∴∠'=∠<︒,∴则M 的对应点M '在AOB ∆内. 故选:A .5.解:由表格可知,随着树苗移植数量的增加,树苗移植成活率越来越稳定. 当移植总数为550时,成活率为0.9,于是可以估计树苗移植成活率为0.9, 则该市需要购买的树苗数量约为:18000.92000÷=(棵). 故选:C .6.解:点(0,5)A ,(4,5)B 的纵坐标相等,∴点(0,5)A ,(4,5)B 关于对称轴对称, ∴对称轴为直线0422x +==, 即直线2x =,抛物线的顶点在对称轴上,∴顶点的纵坐标不等于5. 故选:B .7.解:2()x m p +=,开方得:x m +=解得:1x m =−+2x m =−2±是该方程的两个根,3p ∴=, 故选:D .8.解:ABC ∆是以BC 为底边的等腰三角形,∴点A 在BC 的垂直平分线上, ∴12b b t++=, 整理得:12t b =−, 24t <<,∴122t <<,则1102t−<−<, 10b ∴−<<,∴点B 在第二象限. 故选:C .二、填空题(本大题有8小题,每小题4分,共32分) 9.解:骰子六个面中奇数为1,3,5, P ∴(向上一面为奇数)3162==. 故答案为:12. 10.解:把1x =代入230x mx −+=得,130m −+=,解得4m =. 故答案为:4.11.解:如图所示:AOB ∆和COD ∆关于过点O 的直线l 成轴对称,因为BC ⊥直线l ,且OB OC =, 所以点B 关于直线l 的对称点是C . 故答案为:C .12.解:在ACB ∆中,90C ∠=︒,10AB =,8AC =,则由勾股定理知:22221086BC AB AC =−=−=. D 是AC 的中点,点B ,E 关于点D 成中心对称, ADE ∴∆与CDB ∆关于点O 成中心对称,6AE BC ∴==.故答案为:6.13.解:抽取的住户每户产生的生活垃圾每日平均为:40457035193030403013+++=+++,则该小区有1300个住户当日生活垃圾总量约为:1913001900()13kg ⨯=, 故答案为:1900kg .14.解:由函数图象可得,抛物线的顶点坐标为(1,6.05), 设抛物线的解析式为2(1) 6.05y a x =−+, 抛物线经过(2.1,0),2(2.11) 6.050a ∴−+=,5a ∴=−,∴抛物线的解析式为25(1) 6.05y x =−−+, 当0x =时, 1.05y =,∴小球出手时的高度1.05m .故答案为:1.05m .15.解:连接AB ,取AB 中点O ,连接OC , 90ACB ∠=︒, 12OC AB ∴=, ∴动点C 到O 的距离是定值,∴ “矩”的顶点C 的运动路线将会是一个圆.∴应用数学概念或定理解释“环矩以为圆”这种方法的道理:圆是所有到定点的距离等于定长的点的集合. 故答案为:圆是所有到定点的距离等于定长的点的集合.16.解:由题意得:抛物线21y ax bx c =−+与抛物线22y ax bx c =++关于y 轴对称,都经过y 轴上的点(0,)c . A 在B 的左侧,C 在D 的左侧,∴点A 与点D 关于y 轴对称,点B 与点C 关于y 轴对称, 当0a >时, 0b >,∴抛物线21y ax bx c =−+的对称轴在y 轴的右侧,抛物线22y ax bx c =++的对称轴在y 轴的左侧,如图,当A B x x x <<时,10y <, 当0B x x <<时,120y y <<,∴此种情形不合题意舍去; 当0a <时, 0b >,∴抛物线21y ax bx c =−+的对称轴在y 轴的左侧,抛物线22y ax bx c =++的对称轴在y 轴的右侧,如图,当0B x x <<时,120y y <<,符合题意,∴当210y y <<时,x 的取值范围是0C x x <<.故答案为:0C x x <<.三、解答题(本大题有9小题,共86分) 17.解:2250x x +−=225x x +=, 2216x x ++=,2(1)6x +=,1x +=11x =−+21x =−−18.证明:四边形ABCD 是平行四边形,//AB CD ∴,AB CD =,BAD BCD ∠=∠.ABE CDF ∴∠=∠. AE ,CF 分别平分BAD ∠和DCB ∠, ∴12BAE BAD ∠=∠,12DCF BCD ∠=∠. BAD BCD ∠=∠,BAE DCF ∴∠=∠.在BAE ∆与DCF ∆中,BAE DCF AB CDABE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()BAE DCF ASA ∴∆≅∆.BE DF ∴=.19.解:原式22(2)4244a a a a a a +−−=÷+++ 22(2)(2)2(2)a a a a a a +−+−=÷++ 2222a a a +=⋅+− 22a =−,当2a =时,原式5==. 20.解:设新建充电站的数量的年平均增长率为x ,根据题意得:2100(1)169x +=.解得:10.3x =,2 2.3x =−(舍去).答:该市这两年新建充电站的数量的年平均增长率为0.3.21.解:(1)根据表格,体验路线一的同学这10天平均每天上学路上所用的时间为:4344434452454345464545()10min +++++++++=.(2)由(1)可知,体验路线一的同学这10天平均每天上学路上所用的时间为45min .由题可得,体验路线二、三的同学这10天平均每天上学路上所用的时间分别为: 4241445441415142524245()10min +++++++++=, 4753444647484746474547()10min +++++++++=. 由表格数据,可知这10天体验路线一、二、三的同学迟到的概率分别为110,310,110. 根据上述数据,可以估计: 由路线一、二、三上学所用的平均时间分别为45min ,45min ,47min ,而迟到的概率分别为110,310,110. 考虑到学校对入校时间的要求,小梧和他的同学选择平均用时较短且迟到概率较低的路线一较为合理.22.解:(1)如图:ADE ∆即为所求;(2)当2βα=时,MN CD =.理由:如图,2βα=,BAC AC ∴∠=∠,AB AD =,AC AC =,()ACB ACD SAS ∴∆≅∆,90ACB ACD ∴∠=∠=︒,BC CD =,B ∴,C ,D 共线,AM MB =,AN ND =,12MN BD CD ∴==,此时2BD BC =.23.解:(1)矩形ABCD 是正方形,(1,3)A , ∴点C 的坐标为(2,2),点D 的坐标为(2,3). 由3b =−,4c =知:抛物线T 的表达式为234y x x =−+, 所以当2x =时,2y =.所以点C 在抛物线T 上.又因为点B 在抛物线T 上,所以矩形ABCD 是抛物线T 的“半接矩形”.(2)因为点(,)B m n ,(,1)A m n +,所以B A x x m ==,B A y y ≠,所以AB x ⊥轴,11A B AB y y n n =−=+−=.因为在矩形ABCD 中,点C 在AB 边的右侧, 所以BC y ⊥轴,AD y ⊥轴,CD x ⊥轴.所以1CD AB ==.因为3BC =,所以(3,)C m n +,(3,1)D m n ++.因为点B ,C 关于2b x =−对称, 所以(3)22b m m ++−=,即23b m =−−①. 所以抛物线的解析式为2y x bxc =++,因为点B 在抛物线T 上,把(,)B m n 代入2y x bx c =++,可得2m bm c n ++=,把①代入,得 2(23)m m m c n −++=②.因为平移后矩形1111A B C D 仍是抛物线T 的半接矩形,所以有以下情况:第一种情况:点1A ,1D 在抛物线T 上.则11A D 与BC 重合.因此将矩形ABCD 向下平移1个单位长度,则矩形1111A B C D 仍是抛物线T 的半接矩形. 第二种情况:点1B ,1D 在抛物线T 上.由图形平移前后关系,可知:矩形ABCD ≅矩形1111A B C D . 所以113B C BC ==,111C D CD ==.设1B 的坐标为(,)p q ,则1D 的坐标为(3,1)p q ++.将点1B ,1D 坐标分别代入2y x bx c =++,可得2q p bp c =++④,21(3)(3)q p b p c +=++++⑤. 由⑤−④,得:1693p b =++⑥.将①代入⑥,得1693(23)p m =++−−,即16p m =+. 将①,②,16p m =+都代入④,可得1736q n =−. 所以将矩形ABCD 先向下平移1736个单位长度后,再向右平移16个单位长度,得到的矩形1111A B C D 仍是抛物线T 的“半接矩形”.第三种情况:点1A ,1C 在抛物线T 上.根据对称性,可知将矩形ABCD 先向下平移1736个单位长度后,再向左平移16个单位,得到的矩形1111A B C D 仍是抛物线T 的“半接矩形”.显然,不存在其他情况.综上,要使得平移后的矩形1111A B C D 仍是抛物线T 的“半接矩形”,矩形ABCD 有三种平移方式.分别是:向下平移1个单位长度;先向下平移1736个单位长度后,再向右平移16个单位长度;先向下平移1736个单位长度后,再向左平移16个单位长度. 24.解:(1)连接OB ,OC ,设O 的半径为r ,AB AC =,67.5ABC ∠=︒,67.5ABC ACB ∴∠=∠=︒.18045A ABC ACB ∴∠=︒−∠−∠=︒.A ∠与BOC ∠同对BC ,290BOC A ∴∠=∠=︒.BC 的长=,∴901802r π=.∴r =(2)结论直线12Q Q 与O 相切.理由:连接CQ ,过点O 作OE BC ⊥于E ,过点Q 作QF BC ⊥于F .由(1)得,OB OC ==90BOC ∠=︒,∴2OB ==.OE BC ⊥于E , ∴112BE EC BC ===,112OE BC BE EC ====. BP m =, 1EP BP BE m ∴=−=−.在Rt OEP ∆中,222OP OE EP =+,22221(1)22OP m m m ∴=+−=−+.PQ n =,2222n m m =−+,22PQ OP ∴=,即PQ OP =.45POQ PQO ∴∠=∠=︒.90OPQ ∴∠=︒.90QPF OPE ∴∠+∠=︒.又Rt POE ∆,90POE OPE ∠+∠=︒,QPF POE ∴∠=∠.在Rt POE ∆与Rt QPF ∆中,90OEP PFQ ∠=∠=︒,QPF POE ∠=∠,OP PQ =, Rt POE Rt QPF(AAS)∴∆≅∆,2BP m =,1QF PE m ∴==−,1PF OE ==.()211CF CP PF BP BC PF m m ∴=+=−+=−+=−. CF QF ∴=.∴在Rt QCF ∆中,45FCQ FQC ∠=∠=︒.即点Q 在过点C ,且与射线BP 夹角为45︒的射线上. 1Q ,2Q 是点Q 的任意两个位置,∴直线12Q Q 即为直线CQ .在Rt OEC ∆中,OE EC =,45EOC ECO ∴∠=∠=︒.90OCQ ∴∠=︒,即OC CQ ⊥.点C 在O 上,∴直线CQ 与O 相切.∴直线12Q Q 与O 相切.25.解:(1)当450l =时,4.75S l =. 理由如下:由表三可知,表中的数值大致符合“l 每增加180,S l 减少0.5”的规律, 当360l =时,5S l=, ∴当450l =时,4.75S l =; (2)解:因为景区管委会近似地用一边长为l ,另一边长为()x n +的矩形的面积表示S , ()S l x n ∴=+. 由表三数值可以估计,S l 是l 的一次函数. 设S kl m l=+,由表三可知,函数图象经过点(360,5),(720,4). 代入可得得36057204k m k m +=⎧⎨+=⎩,解得13606k m ⎧=−⎪⎨⎪=⎩, 即16360S l l =−+. 经验证,表三数值所对应的l 与S l 的值都满足或近似满足函数解析式. 又因为()S l x n =+, 所以S x n l =+. 即16360l x n −+=+. 当2n =时,可得3601440l x =−+, ∴当2n =时,求l 与x 的函数解析式为3601440l x =−+;(3)解:由(2)得16360S l l =−+,即216360S l l =−+. 因为10360−<, 抛物线开口向下,对称轴1080l =, 所以当1080l =时,S 最大. 由实际情境可知,占地面积S 最大时,道路长度l 最大. 所以满足此关系式的l 的最大值是1080,即1080l . 由(2)得16360l x n −+=+. 当2x =即在出口处时,14360n l =−+,此时l 表示该景区可修建的步行道全长. 又因为1080l ,所以1n .。

九年级上册厦门数学期末试卷(提升篇)(Word版 含解析)

九年级上册厦门数学期末试卷(提升篇)(Word版 含解析)

九年级上册厦门数学期末试卷(提升篇)(Word 版 含解析) 一、选择题 1.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80° 2.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤ 3.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( )A .2sin 3B =; B .2cos 3B =;C .2tan 3B =;D .以上都不对;4.sin30°的值是( )A .12B .22C .32D .1 5.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A .433 B .23 C .334 D .3226.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( )A .-2B .2C .-1D .1 7.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D .28.如图,∠1=∠2,要使△ABC ∽△ADE ,只需要添加一个条件即可,这个条件不可能是( )A .∠B =∠D B .∠C =∠E C .AD AB AE AC = D .AC BC AE DE =9.二次函数y=x2﹣2x+1与x轴的交点个数是()A.0 B.1 C.2 D.3 10.cos60︒的值等于()A.12B.22C.32D.3311.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若B(﹣5,y1)、C(﹣1,y2)为函数图象上的两点,则y1<y2.其中正确结论是()A.②④B.①③④C.①④D.②③12.如图,AB为O的直径,C为O上一点,弦AD平分BAC∠,交BC于点E,6AB=,5AD=,则AE的长为()A.2.5 B.2.8 C.3 D.3.2二、填空题13.若m是方程2x2﹣3x=1的一个根,则6m2﹣9m的值为_____.14.若△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为_____.15.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.16.设x1、x2是关于x的方程x2+3x-5=0的两个根,则x1+x2-x1•x2=________.17.二次函数y=x2−4x+5的图象的顶点坐标为.18.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=12t﹣6t2,则小球运动到的最大高度为________米;19.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).20.如图,在边长为4的菱形ABCD 中,∠A=60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C ,则线段A′C 长度的最小值是______.21.一组数据:2,5,3,1,6,则这组数据的中位数是________.22.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.23.如图,已知△ABC 是面积为3的等边三角形,△ABC ∽△ADE ,AB =2AD ,∠BAD =45°,AC 与DE 相交于点F ,则△AEF 的面积等于_____(结果保留根号).24.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .三、解答题25.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环):小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10.(1)填写下表:平均数(环)中位数(环)方差(环2)小华8小亮83(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么?(3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差.(填“变大”、“变小”、“不变”)26.在平面直角坐标系中,点O(0,0),点A(﹣3,0).已知抛物线y=﹣x2+2mx+3(m为常数),顶点为P.(1)当抛物线经过点A时,顶点P的坐标为;(2)在(1)的条件下,此抛物线与x轴的另一个交点为点B,与y轴交于点C.点Q为直线AC上方抛物线上一动点.①如图1,连接QA、QC,求△QAC的面积最大值;②如图2,若∠CBQ=45°,请求出此时点Q坐标.27.如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在点A处用高1.5米∠为45︒,此时教学楼顶端点G恰好在视线DH 的测角仪测得古树顶端点H的仰角HDE∠为60︒,点A、上,再向前走7米到达点B处,又测得教学楼顶端点G的仰角GEFB、C点在同一水平线上.(1)计算古树BH的高度;≈).(2)计算教学楼CG的高度.(结果精确到0.12 1.4≈3 1.7 28.如图,AB为O的直径,PD切O于点C,交AB的延长线于点D,且∠=∠.D A2(1)求D ∠的度数.(2)若O 的半径为2,求BD 的长.29.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根. 30.(1)如图①,在△ABC 中,AB =m ,AC =n (n >m ),点P 在边AC 上.当AP = 时,△APB ∽△ABC ;(2)如图②,已知△DEF (DE >DF ),请用直尺和圆规在直线DF 上求作一点Q ,使DE 是线段DF 和DQ 的比例项.(保留作图痕迹,不写作法)31.(如图 1,若抛物线 l 1 的顶点 A 在抛物线 l 2 上,抛物线 l 2 的顶点 B 也在抛物线 l 1 上(点 A 与点 B 不重合).我们称抛物线 l 1,l 2 互为“友好”抛物线,一条抛物线的“友 好”抛物线可以有多条.(1)如图2,抛物线 l 3:21(2)12y x =-- 与y 轴交于点C ,点D 与点C 关于抛物线的对称轴对称,则点 D 的坐标为 ;(2)求以点 D 为顶点的 l 3 的“友好”抛物线 l 4 的表达式,并指出 l 3 与 l 4 中y 同时随x 增大而增大的自变量的取值范围;(3)若抛物线 y =a 1(x -m)2+n 的任意一条“友好”抛物线的表达式为 y =a 2(x -h)2+k , 写出 a 1 与a 2的关系式,并说明理由.32.某小型工厂9月份生产的A、B两种产品数量分别为200件和100件,A、B两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A、B两种产品的生产数量和出厂单价,10月份A产品生产数量的增长率和A产品出厂单价的增长率相等,B产品生产数量的增长率是A产品生产数量的增长率的一半,B产品出厂单价的增长率是A产品出厂单x>),若10月份该工厂的总收价的增长率的2倍,设B产品生产数量的增长率为x(0入增加了4.4x,求x的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据三角形的内接圆得到∠ABC=2∠IBC,∠ACB=2∠ICB,根据三角形的内角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度数即可;【详解】解:∵点I是△ABC的内心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故选D.【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.2.B解析:B【解析】【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.【详解】解:∵直线l与半径为5的O相离,d>.∴圆心O与直线l的距离d满足:5故选:B.【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.3.C解析:C【解析】【分析】根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.【详解】如图:由勾股定理得:22222133AC BC ++==,所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC === ,所以只有选项C 正确; 故选:C .【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键. 4.A解析:A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】 解:sin30°=12. 故选:A .【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键. 5.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角332,从而可得出面积. 【详解】解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO ,∴1DO 2=,32AD =, ∴223BD OB OD =-=, ∴BC 3= ∴13333224ABC S =⨯=. 故选:C .【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.6.D解析:D【解析】【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b 的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x 2+bx-6=0得4+2b-6=0,解得b=1.故选:D .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.7.B解析:B【解析】【分析】连接OA 、OB ,如图1,由2OA OB AB ===可判断OAB 为等边三角形,则60AOB ∠=︒,根据圆周角定理得1302APB AOB ∠=∠=︒,由于60PAC ∠=︒,所以90C ∠=︒,因为2AB =,则要使ABC 的最大面积,点C 到AB 的距离要最大;由90ACB ∠=︒,可根据圆周角定理判断点C 在D 上,如图2,于是当点C 在半圆的中点时,点C 到AB 的距离最大,此时ABC 为等腰直角三角形,从而得到ABC 的最大面积. 【详解】解:连接OA 、OB ,如图1,2OA OB ==,2AB =, OAB ∴为等边三角形,60AOB ∴∠=︒,1302APB AOB ∴∠=∠=︒, 60PAC ∠=︒90ACP ∴∠=︒2AB =,要使ABC 的最大面积,则点C 到AB 的距离最大,作ABC 的外接圆D ,如图2,连接CD ,90ACB ∠=︒,点C 在D 上,AB 是D 的直径,当点C 半圆的中点时,点C 到AB 的距离最大,此时ABC 等腰直角三角形, CD AB ∴⊥,1CD =,12ABC S ∴=⋅AB ⋅CD 12112=⨯⨯=, ABC ∴的最大面积为1.故选B .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.8.D解析:D【解析】【分析】先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加AD ABAE AC=可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加AC BCAE DE=不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.9.B解析:B【解析】由△=b2-4ac=(-2)2-4×1×1=0,可得二次函数y=x2-2x+1的图象与x轴有一个交点.故选B.10.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=1 2 .故选A.【点睛】本题考查了特殊角的三角函数值. 11.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1, ∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△=b 2-4ac 决定:△>0时,抛物线与x 轴有2个交点;△= 0时,抛物线与x 轴有1个交点;△<0时,抛物线与x 轴没有交点.12.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD 的长,再利用ABD BED ,得出DE DB DB AD =,从而求出DE 的长,最后利用AE AD DE =-即可得出答案.【详解】连接BD,CD∵AB为O的直径90ADB∴∠=︒22226511 BD AB AD∴=-=-∵弦AD平分BAC∠11CD BD∴==CBD DAB∴∠=∠ADB BDE∠=∠ABD BED∴DE DBDB AD∴=11511=解得115DE=115 2.85AE AD DE∴=-=-=故选:B.【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题13.3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,解析:3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,∴2m2﹣3m=1,∴6m2﹣9m=3(2m2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.20°【解析】【分析】先根据三角形内角和计算出∠B的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°解析:20°【解析】【分析】先根据三角形内角和计算出∠B的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°,∵△ABC∽△A′B′C′,∴∠B′=∠B=20°.故答案为20°.【点睛】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边成比例,它们对应面积的比等于相似比的平方.15.7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m解析:7【解析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m 16.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x -5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x 1,x 2是关于 x 的方程x 2+3x -5=0的两个根,根据根与系数的关系,得,x 1+x 2=-3,x 1x 2=-5,则 x 1+x 2-x 1x 2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x 1+x 2=-3,x 1x 2=-5是解题的关键.17.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质. 18.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】 221266(1)6h t t t =--=+﹣,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.19.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab <0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确; ∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.20.【解析】【分析】【详解】解:如图所示:∵MA′是定值,A′C 长度取最小值时,即A′在MC 上时, 过点M 作MF⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60°,M 为AD 中点,∴2解析:2【解析】【分析】【详解】解:如图所示:∵MA′是定值,A′C 长度取最小值时,即A′在MC 上时,过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60°,M 为AD 中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=12MD=1, ∴FM=DM×cos30°∴MC ==,∴A′C=MC ﹣MA′=2.故答案为2.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.21.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.22.【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,解析:4 9【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是49, 故答案为:49. 【点睛】 此题考查几何概率,解题关键在于掌握运算法则.23.【解析】【分析】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出A E 的长,根据角的和差【解析】【分析】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差关系可得∠EAF=∠BAD=45°,设AH =HF =x ,利用∠EFH 的正确可用x 表示出EH 的长,根据AE=EH+AH 列方程可求出x 的值,根据三角形面积公式即可得答案.【详解】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,∵△ABC CM ⊥AB ,∴12×AB×CM ,∠BCM =30°,BM=12AB ,BC=AB ,∴AB ,∴12AB 解得:AB =2,(负值舍去)∵△ABC ∽△ADE ,△ABC 是等边三角形,∴△ADE 是等边三角形,∠CAB=∠EAD=60°,∠E=60°,∴∠EAF+∠FAD=∠FAD+BAD=60°,∵∠BAD=45°,∴∠EAF =∠BAD =45°,∵FH ⊥AE ,∴∠AFH =45°,∠EFH =30°,∴AH =HF ,设AH =HF =x ,则EH =xtan30°x .∵AB=2AD ,AD=AE , ∴AE =12AB =1, ∴x+3x =1, 解得x =3333-=+. ∴S △AEF =12×1×33-=334-. 故答案为:334-.【点睛】本题考查了相似三角形的性质,等边三角形的性质,锐角三角函数,根据相似三角形的性质得出△ADE 是等边三角形、熟练掌握等边三角形的性质并熟记特殊角的三角函数值是解题关键.24.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长;(2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.三、解答题25.(1)8,8,23;(2)选择小华参赛.(3)变小 【解析】【分析】(1)根据方差、平均数和中位数的定义求解;(2)根据方差的意义求解;(3)根据方差公式求解.【详解】(1)解:小华射击命中的平均数:7+8+7+8+9+96=8, 小华射击命中的方差:2222122(78)2(88)2(98)63S ⎡⎤=-+-+-=⎣⎦, 小亮射击命中的中位数:8+8=82; (2)解:∵x 小华=x 小亮,S 2小华<S 2小亮∴选小华参赛更好,因为两人的平均成绩相同,但小华的方差较小,说明小华的成绩更稳定,所以选择小华参赛.(3)解:小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差变小.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数和众数.26.(1)(﹣1,4);(2)①278;②Q(﹣52,74). 【解析】【分析】(1)将点A 坐标代入抛物线表达式并解得:m=-1,即可求解;(2)①过点Q 作y 轴的平行线交AC 于点N ,先求出直线AC 的解析式,点Q(x ,﹣x 2﹣2x+3),则点N(x ,x+3),则△QAC 的面积S=12×QN×OA=﹣32x 2﹣92x ,然后根据二次函数的性质即可求解;②tan ∠OCB=OB CO =13,设HM=BM=x ,则CM=3x ,BC=BM+CM=4x=10,解得:x=10,CH=10x=52,则点H(0,12),同理可得:直线BH(Q)的表达式为:y=-12x+12,即可求解. 【详解】解:(1)将点A(﹣3,0)代入抛物线表达式并解得,0=﹣9-6m+3 ∴m =﹣1, 故抛物线的表达式为:y =﹣x 2﹣2x+3=-(x+1)2+4…①,∴点P(﹣1,4),故答案为:(﹣1,4);(2)①过点Q 作y 轴的平行线交AC 于点N ,如图1,设直线AC 的解析式为y=kx+b ,将点A(﹣3,0)、C(0,3)的坐标代入一次函数表达式并解得,303k b b -+=⎧⎨=⎩, 解得13k b =⎧⎨=⎩, ∴直线AC 的表达式为:y =x+3,设点Q(x ,﹣x 2﹣2x+3),则点N (x ,x+3),△QAC 的面积S =12⨯QN×OA =12⨯(﹣x 2﹣2x+3﹣x ﹣3)×3=﹣32x 2﹣92x , ∵﹣32<0,故S 有最大值为:278; ②如图2,设直线BQ 交y 轴于点H ,过点H 作HM ⊥BC 于点M ,tan∠OCB=OBCO=13,设HM=BM=x,则CM=3x,BC=BM+CM=4x10x=104,CH10x=52,则点H(0,12),同直线AC的表达式的求法可得直线BH(Q)的表达式为:y=﹣12x+12…②,联立①②并解得:﹣x2﹣2x+3=﹣12x+12,解得x=1(舍去)或﹣52,故点Q(﹣52,74).【点睛】本题考查了待定系数法求二次函数和一次函数解析式,二次函数的图像与性质,锐角三角函数的定义,以及数形结合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.27.(1)8.5米;(2)18.0米【解析】【分析】(1)先根据题意得出DE=AB=7米,AD=BE=1.5米,在Rt△DEH中,可求出HE的长度,进而可计算古树BH的高度;(2)作HJ⊥CG于G,设HJ=GJ=BC=x,在Rt△EFG中,利用特殊角的三角函数值求出x的值,进而求出GF,最后利用 CG=CF+FG即可得出答案.【详解】解:(1)由题意:四边形ABED是矩形,可得DE=AB=7米,AD=BE=1.5米,在Rt△DEH中,∵∠EDH=45°,∴HE=DE=7米.∴BH=EH+BE=8.5米.答:古树BH 的高度为8.5米.(2)作HJ ⊥CG 于G .则△HJG 是等腰直角三角形,四边形BCJH 是矩形,设HJ=GJ=BC=x .在Rt △EFG 中,tan60°=73GF x EF x +== ∴7(31)2x =, ∴3x ≈16.45∴CG=CF+FG=1.5+16.45≈17.95≈18.0米.答:教学楼CG 的高度为18.0米.【点睛】本题主要考查解直角三角形,能够数形结合,构造出直角三角形是解题的关键.28.(1)45D ∠=︒;(2)222BD =.【解析】【分析】(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A ,求出∠D=∠COD ,根据切线性质求出∠OCD=90°,即可求出答案;(2)由题意O 的半径为2,求出OC=CD=2,根据勾股定理求出BD 即可. 【详解】解:(1)∵OA=OC ,∴∠A=∠ACO ,∴∠COD=∠A+∠ACO=2∠A ,∵∠D=2∠A ,∴∠D=∠COD ,∵PD 切⊙O 于C ,∴∠OCD=90°,∴∠D=∠COD=45°;(2)∵∠D=∠COD ,O 的半径为2, ∴OC=OB=CD=2,在Rt △OCD 中,由勾股定理得:22+22=(2+BD )2,解得:222BD =.【点睛】本题考查切线的性质,勾股定理,等腰三角形性质,三角形的外角性质的应用,主要考查学生的推理能力,熟练掌握切线的性质,勾股定理,等腰三角形性质,三角形的外角性质是解题关键. 29.1m =,此时方程的根为121x x ==【解析】【分析】直接利用根的判别式≥0得出m 的取值范围进而解方程得出答案.【详解】解:∵关于x 的方程x 2-2x+2m-1=0有实数根,∴b 2-4ac=4-4(2m-1)≥0,解得:m≤1,∵m 为正整数,∴m=1,∴此时二次方程为:x 2-2x+1=0,则(x-1)2=0,解得:x 1=x 2=1.【点睛】此题主要考查了根的判别式,正确得出m 的值是解题关键. 30.(1)2m n;(2)见解析. 【解析】【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB ∽△ABC 成立,∠A 是公共角,则AB AC AC AP =,即m n n AP =,∴AP=2m n. (2)解:作∠DEQ =∠F,如图点Q 就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.31.(1)()4,1;(2)4l 的函数表达式为()21412y x =--+,24x ≤≤;(3)120a a +=,理由详见解析【解析】【分析】(1)设x=0,求出y 的值,即可得到C 的坐标,根据抛物线L 3:21(2)12y x =--得到抛物线的对称轴,由此可求出点C 关于该抛物线对称轴对称的对称点D 的坐标; (2)由(1)可知点D 的坐标为(4,1),再由条件以点D 为顶点的L 3的“友好”抛物线L 4的解析式,可求出L 4的解析式,进而可求出L 3与L 4中y 同时随x 增大而增大的自变量的取值范围;(3)根据:抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上,可以列出两个方程,相加可得(a 1+a 2)(h-m )2=0.可得120a a +=.【详解】解:(1)∵抛物线l 3:21(2)12y x =--, ∴顶点为(2,-1),对称轴为x=2,设x=0,则y=1,∴C (0,1), ∴点C 关于该抛物线对称轴对称的对称点D 的坐标为:(4,1);(2)解:设4l 的函数表达式为()241y a x =-+由“友好”抛物线的定义,过点()2,1- ()21241a ∴-=-+12a ∴=- 4l 的函数表达式为()21412y x =--+ 3l ∴与4l 中y 同时随x 增大而增大的自变量的取值范围是24x ≤≤(3)120a a +=理由如下:∵ 抛物线()21y a x m n =-+与抛物线()22y a x h k =+-互为“友好”抛物线,()()2122k a h m n n a m h k ⎧=-+⎪∴⎨=-+⎪⎩①② ①+②得:()()2210+-=a a m h m h ≠120a a ∴+=【点睛】本题属于二次函数的综合题,涉及了抛物线的对称变换、抛物线与坐标轴的交点坐标以及新定义的问题,解答本题的关键是数形结合,特别是(3)问根据已知条件得出方程组求解,有一定难度.32.5%【解析】【分析】根据题意,列出方程即可求出x 的值.【详解】根据题意,得2(12)200(12)(14)100(1)(22001100)(1 4.4)x x x x x +⨯+++⨯+=⨯+⨯+整理,得2200x x -=解这个方程,得15%x =,20x =(不合题意,舍去)所以x 的值是5%.【点睛】此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.。

九年级上册厦门数学期末试卷(提升篇)(Word版 含解析)

九年级上册厦门数学期末试卷(提升篇)(Word版 含解析)

九年级上册厦门数学期末试卷(提升篇)(Word 版 含解析)一、选择题1.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin aAO β=C .tan BC a β=D .cos aBD β=2.如图,点A ,B ,C 在⊙O 上,∠A=36°,∠C=28°,则∠B=( )A .100°B .72°C .64°D .36° 3.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( )A .(0,﹣1)B .(﹣2,﹣1)C .(2,﹣1)D .(0,1)4.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( ) A .2sin 3B =; B .2cos 3B =; C .2tan 3B =; D .以上都不对;5.如图,点P 为⊙O 外一点,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,∠P=30°,OB=3,则线段BP 的长为( )A .3B .3C .6D .96.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A .8B .9C .10D .117.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .73B .234+C .1433D .22338.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-9.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④512BC AC -=.A .1个B .2个C .3个D .4个10.下列方程中,关于x 的一元二次方程是( ) A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x+= 11.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度 B .先向左平移2个单位长度,然后向下平移1个单位长度 C .先向右平移2个单位长度,然后向上平移1个单位长度 D .先向右平移2个单位长度,然后向下平移1个单位长度 12.一组数据10,9,10,12,9的平均数是( ) A .11B .12C .9D .10二、填空题13.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________.14.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.15.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.16.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=45,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;17.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)18.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.19.如图,直线y=12x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C的纵坐标为﹣1,点D在反比例函数y=kx的图象上,CD平行于y轴,S△OCD=52,则k的值为________.20.如图,在由边长为1的小正方形组成的网格中.点 A,B,C,D 都在这些小正方形的格点上,AB、CD 相交于点E,则sin∠AEC的值为_____.21.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.22.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m n个数据的平均数等于______.23.如图,四边形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB 上一点,若以P、A、D为顶点的三角形与△PBC相似,则PA=_____cm.24.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____.三、解答题25.某校举行秋季运动会,甲、乙两人报名参加100 m比赛,预赛分A、B、C三组进行,运动员通过抽签决定分组.(1)甲分到A组的概率为;(2)求甲、乙恰好分到同一组的概率.26.如图,已知菱形ABCD,对角线AC、BD相交于点O,AC=6,BD=8.点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上.设 AE=m.(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)(2)写出矩形EFGH的个数及对应的m的取值范围.27.解下列一元二次方程.(1)x2+x-6=0;(2)2(x-1)2-8=0.28.(1)如图,已知AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点.连接OM,以O为圆心,OM为半径作小圆⊙O.判断CD与小圆⊙O的位置关系,并说明理由;(2)已知⊙O,线段MN,P是⊙O外一点.求作射线PQ,使PQ被⊙O截得的弦长等于MN.(不写作法,但保留作图痕迹)29.为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1 cm.参考数据: sin75°="0.966," cos75°=0.259,tan75°=3.732)30.从甲、乙两台包装机包装的质量为300g的袋装食品中各抽取10袋,测得其实际质量如下(单位:g)甲:301,300,305,302,303,302,300,300,298,299乙:305,302,300,300,300,300,298,299,301,305(1)分别计算甲、乙这两个样本的平均数和方差;(2)比较这两台包装机包装质量的稳定性.31.如图,抛物线y=ax2+bx+4(a≠0)与x轴交于点B (-3 ,0) 和C (4 ,0)与y轴交于点A.(1) a = ,b = ;(2) 点M从点A出发以每秒1个单位长度的速度沿AB向B运动,同时,点N从点B出发以每秒1个单位长度的速度沿BC向C运动,当点M到达B点时,两点停止运动.t为何值时,以B、M、N为顶点的三角形是等腰三角形?(3) 点P是第一象限抛物线上的一点,若BP恰好平分∠ABC,请直接写出此时点P的坐标.32.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、BDC DCAβ∠=∠=∠,故A选项正确;B、在Rt△ADC中,cos∠ACD=DCAC, ∴cosβ=2aAO,∴AO=2cosa,故B选项错误;C、在Rt△BCD中,tan∠BDC=BCDC, ∴ tanβ=BCa∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=DCDB, ∴ cosβ=aBD∴cosaBDβ=,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键. 2.C解析:C【解析】【分析】【详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:∠O=2∠A=72°,根据∠C=28°可得:∠ODC=80°,则∠ADB=80°,则∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本题选C.3.C解析:C【解析】【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C.【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.4.C解析:C【解析】【分析】根据勾股定理求出AB,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.【详解】如图:由勾股定理得:2222==,++2133AC BC所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC =,= ,所以只有选项C 正确; 故选:C . 【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.5.A解析:A 【解析】 【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP 的长. 【详解】 连接OA ,∵PA 为⊙O 的切线, ∴∠OAP=90°, ∵∠P=30°,OB=3, ∴AO=3,则OP=6, 故BP=6-3=3. 故选A . 【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.6.D解析:D 【解析】 【分析】计算最大数19与最小数8的差即可. 【详解】 19-8=11, 故选:D. 【点睛】此题考查极差,即一组数据中最大值与最小值的差.7.C解析:C 【解析】 【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题. 【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点, ∴易证AE ⊥BC , ∵A 、C 关于BD 对称, ∴PA =PC , ∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长. 观察图象可知,当点P 与B 重合时,PE +PC =6, ∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a = ∵BC ∥AD , ∴AD PDBE PB= =2,∵BD =∴PD =23⨯=∴点H 的横坐标b ,∴a +b ==; 故选C . 【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.D解析:D 【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可. 【详解】过A 作AD ⊥BC 于D ,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,33∴△ABC的面积为12BC•AD=1232⨯3S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣3﹣3,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.9.C解析:C【解析】【分析】①③,根据已知把∠ABD,∠CBD,∠A角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得BC=512AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 10.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+1x=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.11.D解析:D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选D.点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.12.D解析:D【解析】【分析】利用平均数的求法求解即可.这组数据10,9,10,12,9的平均数是1(10910129)105++++=故选:D .【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键. 二、填空题13.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 14.【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【解析:2 3【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是360120360=23,故答案为2 3 .【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.15.【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x1x-解得x=13,∴阴影部分面积为:S△ABC=12×13×1=16,故答案为:16.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.16.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠C解析:3或9 或23或343【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90︒,∵sin∠CAB=45,∴45BCAB=,∵AB=10,∴BC=8,∴22221086AC AB BC=-=-=,∵点D为BC的中点,∴CD=4.∵∠ACB=∠DCE=90︒,①当∠CDE1=∠ABC时,△ACB∽△E1CD,如图∴1AC BCCE CD=,即1684CE=,∴CE1=3,∵点E1在射线AC上,∴AE1=6+3=9,同理:AE2=6-3=3.②当∠CE3D=∠ABC时,△ABC∽△DE3C,如图∴3AC BCCD CE=,即3684CE=,∴CE3=163,∴AE3=6+163=343,同理:AE4=6-163=23.故答案为:3或9 或23或343.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.17.∠B=∠1或【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可. 【详解】此题答案不唯解析:∠B=∠1或AE AD AC AB=【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B=∠1或AD AE AB AC=.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵AD AEAB AC=,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或AD AE AB AC=【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题. 18.【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:解析:13x【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:-1<x<3.【点睛】此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键.19.【解析】【分析】【详解】试题分析:把x=2代入y=x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y 轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D解析:【解析】【分析】【详解】试题分析:把x=2代入y=12x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.解:∵点C在直线AB上,即在直线y=12x﹣2上,C的横坐标是2,∴代入得:y=12×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=52,∴12CD×OM=52,∴CD=52,∴MD=52﹣1=32,即D 的坐标是(2,32), ∵D 在双曲线y=k x 上, ∴代入得:k=2×32=3. 故答案为3. 考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.20.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD 是等腰直角三角形,进而可得Rt△ACF 是等腰直角三角形,求出CF ,再根据△ACE∽△BDE 的相似比为1:3,根据勾股定理求【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt △ABD 是等腰直角三角形,进而可得Rt △ACF 是等腰直角三角形,求出CF ,再根据△ACE ∽△BDE 的相似比为1:3,根据勾股定理求出CD 的长,从而求出CE ,最后根据锐角三角函数的意义求出结果即可.【详解】过点C 作CF ⊥AE ,垂足为F ,在Rt △ACD 中,CD =由网格可知,Rt △ABD 是等腰直角三角形,因此Rt △ACF 是等腰直角三角形,∴CF =AC •sin45°=2, 由AC ∥BD 可得△ACE ∽△BDE , ∴13CE AC DE BD ==,∴CE =14CD在Rt △ECF 中,sin ∠AEC =2CF CE ==.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.21.【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要解析:1 3【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是31 93 ,故答案为13.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式.22..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案. 【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的 解析:mx ny m n++. 【解析】【分析】 根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】 平均数等于总和除以个数,所以平均数mx ny m n+=+. 【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法. 23.2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则解析:2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3.②当AD :BC =PA +PB 时,3=25x x-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.24.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴解析:3:2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r13同理:扇形DEF的弧长为:120241803aaππ⋅⋅=则r2=2 3 ar1:r23:3:点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题25.(1)13;(2)13【解析】【分析】(1)直接利用概率公式求出甲分到A组的概率;(2)将所有情况列出,找出满足条件:甲、乙恰好分到同一组的情况有几种,计算出概率.【详解】解:(1)1 3(2)甲乙两人抽签分组所有可能出现的结果有:(A,A)、(A,B)、(A,C)、(B,A)、(B,B)、(B,C)、(C,A)、(C,B)、(C,C)共有9种,它们出现的可能性相同.所有的结果中,满足“甲乙分到同一组”(记为事件A)的结果有3种,所以P(A)=13.【点睛】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.26.(1)见解析;(2)①当m=0时,存在1个矩形EFGH;②当0<m<95时,存在2个矩形EFGH;③当m=95时,存在1个矩形EFGH;④当95<m≤185时,存在2个矩形EFGH;⑤当185<m<5时,存在1个矩形EFGH;⑥当m=5时,不存在矩形EFGH.【解析】【分析】(1)以O点为圆心,OE长为半径画圆,与菱形产生交点,顺次连接圆O与菱形每条边的同侧交点即可;(2)分别考虑以O为圆心,OE为半径的圆与每条边的线段有几个交点时的情形,共分五种情况.【详解】(1)如图①,如图②(也可以用图①的方法,取⊙O与边BC、CD、AD的另一个交点即可)(2)∵O到菱形边的距离为125,当⊙O与AB相切时AE=95,当过点A,C时,⊙O与AB交于A,E两点,此时AE=95×2=185,根据图像可得如下六种情形:①当m=0时,如图,存在1个矩形EFGH;②当0<m<95时,如图,存在2个矩形EFGH;③当m=95时,如图,存在1个矩形EFGH;④当95<m≤185时,如图,存在2个矩形EFGH;⑤当185<m <5时,如图,存在1个矩形EFGH ;⑥当m =5时,不存在矩形EFGH .【点睛】本题考查了尺规作图,菱形的性质,以及圆与直线的关系,将能作出的矩形个数转化为圆O 与菱形的边的交点个数,综合性较强.27.(1)123;2x x =-=;(2)123;1x x ==-【解析】【分析】(1)利用因式分解法解一元二次方方程;(2)用直接开平方法解一元二次方程.【详解】解:(1)x 2+x -6=0;(3)(2)0x x +-=∴123;2x x =-=(2)2(x -1)2-8=0.22(1)8x -=2(1)4x -=12x -=±∴123;1x x ==-【点睛】本题考查直接开平方法和因式分解法解一元二次方程,掌握解题技巧正确计算是本题的解题关键.28.(1)相切,证明见解析;(2)答案见解析【解析】【分析】(1)过点O作ON⊥CD,连接OA,OC,根据垂径定理及其推论可得∠AMO=∠ONC=90°,AM=CN,从而求证△AOM≌△CON,从而判定CD与小圆O的位置关系;(2)在圆O上任取一点A,以A为圆心,MN为半径画弧,交圆O于点B,过点O做AB的垂线,交AB于点C,然后以点O为圆心,OC为半径画圆,连接PO,取PO的中点D,以点D为圆心,OD为半径画圆,交以OC为半径的圆于点E,连接PE,交以OA为半径的圆于F,H两点,FH即为所求.【详解】解:(1)过点O作ON⊥CD,连接OA,OC∵AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点,ON⊥CD∴∠AMO=∠ONC=90°,AM=12AB,CN12CD,∴AM=CN又∵OA=OC∴△AOM≌△CON∴ON=OM∴CD与小圆O相切(2)如图FH即为所求【点睛】本题考查垂径定理及其推论,全等三角形的判定和性质,以及利用垂径定理作图,掌握相关知识灵活应用是本题的解题关键.29.(1)75cm(2)63cm【解析】解:(1)在Rt△ACD中,AC=45,CD=60,∴AD=22456075+=,∴车架档AD的长为75cm.(2)过点E作EF⊥AB,垂足为点F,距离EF=AEsin75°=(45+20)sin75°≈62.7835≈63.∴车座点E到车架档AB的距离是63cm.(1)在Rt△ACD中利用勾股定理求AD即可.(2)过点E作EF⊥AB,在Rt△EFA中,利用三角函数求EF=AEsin75°,即可得到答案.30.(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析【解析】【分析】(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;(2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.【详解】解:(1)x甲=110(1+0+5+2+3+2+0+0﹣2﹣1)+300=301,x乙=110(5+2+0+0+0+0﹣2﹣1+1+5)+300=301,2 s甲=110[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2;2 s乙=110[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2;(2)∵2s甲<2s乙,∴甲包装机包装质量的稳定性好.【点睛】本题考查了平均数和方差,正确掌握平均数及方差的求解公式是解题的关键.31.(1)13-,13;(2)52530,,21111t=;(3)511(,)24【解析】【分析】(1)直接利用待定系数法求二次函数解析式得出即可;(2)分三种情况:①当BM=BN时,即5-t=t,②当BM=NM=5-t时,过点M作ME⊥OB,因为AO⊥BO,所以ME∥AO,可得:BM BEBA BO=即可解答;③当BE=MN=t时,过点E作EF⊥BM于点F,所以BF=12BM=12(5-t),易证△BFE∽△BOA,所以BE BFBA BO=即可解答;(3)设BP交y轴于点G,过点G作GH⊥AB于点H,因为BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=32,设出点P坐标,易证△BGO∽△BPD,所以BO GOBD PD=,即可解答.【详解】解:解:(1)∵抛物线过点B (-3 ,0) 和C (4 ,0),∴9340 16440a ba b-+⎧⎨++⎩==,解得:1313ab⎧=-⎪⎪⎨⎪=⎪⎩;(2)∵B (-3 ,0),y=ax2+bx+4,∴A(0,4),0A=4,OB=3,在Rt△ABO中,由勾股定理得:AB=5,t秒时,AM=t,BN=t,BM=AB-AM=5-t,①如图:当BM=BN时,即5-t=t,解得:t=5 2 ;,②如图,当BM=NM=5-t时,过点M作ME⊥OB,因为BN=t,由三线合一得:BE=12BN=12t,又因为AO⊥BO,所以ME∥AO,所以BM BEBA BO=,即15-253tt=,解得:t=3011;③如图:当BE=MN=t时,过点E作EF⊥BM于点F,所以BF=12BM=12(5-t),易证△BFE∽△BOA,所以BE BFBA BO=,即5t253t-=,解得:t=2511.(3)设BP交y轴于点G,过点G作GH⊥AB于点H,因为BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=32,设P (m,-13m2+13m+4),因为GO∥PD,∴△BGO∽△BPD,∴BO GOBD PD=,即2332113+433m m m=-++,解得:m1=52,m2=-3(点P在第一象限,所以不符合题意,舍去),m1=52时,-13m2+13m+4=114故点P的坐标为511(,)24【点睛】本题考查用待定系数法求二次函数解析式,还考查了等腰三角形的判定与性质、相似三角形的性质和判定.32.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b+⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xx 学校xx 学年xx 学期xx 试卷姓名:_____________ 年级:____________ 学号:______________一、xx 题(每空xx 分,共xx 分)试题1:下列各式中计算结果为9的是A.(-2)+(-7)B.-32C.(-3)2D . 3×3-1试题2:如图1,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角 是同位角的是A.∠BAC 和∠ACBB.∠B 和∠DCEC.∠B 和∠BAD D .∠B 和∠ACD 试题3:一元二次方程x 2-2x -5=0根的判别式的值是A. 24B. 16C. -16D . -24 试题4:.已知△ABC 和△DEF 关于点O 对称,相应的对称点如图2所示, 则下列结论正确的是A. AO =BOB. BO =EOC.点A 关于点O 的对称点是点D D . 点D 在BO 的延长线上试题5:.已知菱形ABCD的对角线AC与BD交于点O,则下列结论正确的是A.点O到顶点A的距离大于到顶点B的距离B.点O到顶点A的距离等于到顶点B 的距离C.点O到边AB的距离大于到边BC的距离D.点O到边AB的距离等于到边BC的距离试题6:已知(4+)·a=b,若b是整数,则a的值可能是A. B. 4+ C.8-2 D . 2-试题7:已知抛物线y=ax2+bx+c和y=max2+mbx+mc,其中a,b,c,m均为正数,且m≠1.则关于这两条抛物线,下列判断正确的是A.顶点的纵坐标相同B.对称轴相同C.与y轴的交点相同 D .其中一条经过平移可以与另一条重合试题8:一位批发商从某服装制造公司购进60包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M 的衬衫,每包混入的M号衬衫数及相应的包数如下表所示.一位零售商从60包中任意选取一包,则包中混入M号衬衫数不超过3的概率是A. B. C. D .M号衬衫数 1 3 4 5 7包数20 7 10 11 12试题9:已知甲、乙两个函数图象上的部分点的横坐标x与纵坐标y如下表所示.若在实数范围内,甲、乙的函数值都随自变量的增大而减小,且两个图象只有一个交点,则关于这个交点的横坐标a,下列判断正确的是A. a<-2B. -2<a<0C. 0<a<2 D .2<a<4x-2 0 2 4y甲 5 4 3 2y乙 6 5 3.5 0试题10:一组割草人要把两块草地上的草割掉,大草地的面积为S,小草地的面积为S.上午,全体组员都在大草地上割草.下午,一半人继续留在大草地上割草,到下午5时将剩下的草割完;另一半人到小草地上割草,到下午5时还剩下一部分没割完.若上、下午的劳动时间相同,每个割草人的工作效率也相等,则没割完的这部分草地的面积是A. SB. SC. S D .S试题11:-3的相反数是.试题12:甲、乙两人参加某商场的招聘测试,测试由语言和商品知识两个项目组成,他们各自的成绩(百分制)如下表所示.该商场根据成绩在两人之间录用了乙,则本次招聘测试中权重较大的是项目.应聘者语言商品知识甲70 80乙80 70试题13:在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°得到点B,则点B的坐标是 . 试题14:飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t-1.5t2,则飞机着陆后从开始滑行到完全停止所用的时间是秒.试题15:.如图3,AB为半圆O的直径,直线CE与半圆O相切于点C,点D是的中点,CB=4,四边形ABCD的面积为2AC,则圆心O到直线CE的距离是 .试题16:如图4,在菱形ABCD中,∠B=60°,AB=a,点E,F分别是边AB,AD上的动点,且AE+AF=a,则线段EF的最小值为 .试题17:解方程x2+2x-2=0.试题18:如图5,在四边形ABCD中,AB=AD=5,BC=12,AC=13,∠ADC=90°.求证:△ABC≌△ADC.试题19:2016年3月1日,某园林公司派出一批工人去完成种植2200棵景观树木的任务,这批工人3月1日到5日种植的数量(单位:棵)如图6所示.(1)这批工人前两天平均每天种植多少棵景观树木?(2)因业务需要,到3月10日必须完成种植任务,你认为该园林公司是否需要增派工人?请运用统计知识说明理由.试题20:如图7,在平面直角坐标系中,已知某个二次函数的图象经过点A(1,m),B(2,n),C(4,t),且点B是该二次函数图象的顶点.请在图7中描出该函数图象上另外的两个点,并画出图象.试题21:如图8,圆中的弦AB与弦CD垂直于点E,点F在上,=,直线MN过点D,且∠MDC=∠DFC,求证:直线MN是该圆的切线.试题22:在平面直角坐标系中,一次函数y=kx+4m(m>0)的图象经过点B(p,2m),其中m>0.(1)若m=1,且k=-1,求点B的坐标;(2)已知点A(m,0),若直线y=kx+4m与x轴交于点C(n,0),n+2p=4m,试判断线段AB上是否存在一点N,使得点N到坐标原点O与到点C的距离之和等于线段OB的长,并说明理由.试题23:如图9,在矩形ABCD中,点E在BC边上,动点P以2厘米/秒的速度从点A出发,沿△AED的边按照A→E→D→A的顺序运动一周.设点P从A出发经x(x>0)秒后,△ABP的面积是y.(1)若AB=6厘米,BE=8厘米,当点P在线段AE上时,求y关于x的函数表达式;(2)已知点E是BC的中点,当点P在线段ED上时,y=x;当点P在线段AD上时,y=32-4x.求y关于x的函数表达式.试题24:在⊙O中,点C在劣弧上,D是弦AB上的点,∠ACD=40°. (1)如图10,若⊙O的半径为3,∠CDB=70°,求的长;(2)如图11,若DC的延长线上存在点P,使得PD=PB,试探究∠ABC与∠OBP的数量关系,并加以证明.试题25:已知y1=a1(x-m)2+5,点(m,25)在抛物线y2=a2 x2+b2 x+c2上,其中m>0.(1)若a1=-1,点(1,4)在抛物线y1=a1(x-m)2+5上,求m的值;(2)记O为坐标原点,抛物线y2=a2x2+b2x+c2的顶点为M.若c2=0,点A(2,0)在此抛物线上,∠OMA=90°求点M的坐标;(3)若y1+y2=x2+16 x+13,且4a2c2-b22=-8a2,求抛物线y2=a2 x2+b2 x+c2的解析式.试题1答案:C试题2答案:B试题3答案:A试题4答案:D试题5答案:D试题6答案:C试题7答案:B试题8答案:C试题9答案:D试题10答案:N试题11答案:3.试题12答案:语言.试题13答案:(-5,4).试题14答案:20.试题15答案:4-4.试题16答案:a.试题17答案:解:∵a=1,b=2,c=-2,∴△=b2-4ac=12.∴x==.∴x1=-1+,x2=-1-.试题18答案:证明: 在Rt△ADC中,∵∠D=90°,∴DC==12.∴DC=BC.又∵AB=AD,AC=AC,∴△ABC≌△ADC.试题19答案:(1)(本小题满分4分)解:=220(棵).答:这批工人前两天平均每天种植220棵景观树木.(2)解:这批工人前五天平均每天种植的树木为:=207(棵).估计到3月10日,这批工人可种植树木2070棵. 由于2070<2200所以我认为公司还需增派工人. ……………………8分(也可应用前五天种植量的中位数202估计十天种植量为2020,在数据基础上,对是否需要增派工人进行合理解释即可)试题20答案:解:如图:试题21答案:证明:设该圆的圆心为点O,在⊙O中,∵=,∴∠AOC=∠BOF.又∠AOC=2∠ABC,∠BOF=2∠BCF,∴∠ABC=∠BCF.∴AB∥CF.∴∠DCF=∠DEB.∵DC⊥AB,∴∠DEB=90°.∴∠DCF=90°.∴DF为⊙O直径. 且∠CDF+∠DFC=90°.∵∠MDC=∠DFC,∴∠MDC+∠DFC=90°.即DF⊥MN.又∵MN过点D,∴直线MN是⊙O的切线 .试题22答案:(1)(本小题满分4分)解: ∵一次函数y=kx+4m(m>0)的图象经过点B(p,2m),∴ 2m =kp+4m.∴kp=-2m.∵m=1,k=-1,∴p=2. ∴B(2,2). 答:线段AB上存在一点N,使得点N到坐标原点O与到点C的距离之和等于线段OB的长. 理由如下:由题意,将B(p,2m),C(n,0)分别代入y=kx+4m,得kp+4m=2m且kn+4m=0.可得n=2p.∵n+2p=4m,∴p=m .∴A(m,0),B(m,2m),C(2m,0).∵x B=x A,∴AB⊥x轴,且OA=AC=m.∴对于线段AB上的点N,有NO=NC.∴点N到坐标原点O与到点C的距离之和为NO+NC=2NO.∵∠BAO=90°,在Rt△BAO,Rt△NAO中分别有OB2=AB2+OA2=5m2,NO2=NA2+OA2=NA 2+m2.若2NO=OB,则4NO2=OB2.即4(NA 2+m2)=5m2.可得NA=m.即NA=AB. 所以线段AB上存在一点N,使得点N到坐标原点O与到点C的距离之和等于线段OB的长,且NA=AB.试题23答案:解:∵四边形ABCD是矩形,∴∠ABE=90°.又AB=8,BE=6,∴AE==10.设△ABE中,边AE上的高为h,∵S△ABE=AEh=ABBE,∴h= .又AP=2x,∴y=x(0<x≤5).(2)(本小题满分6分)解: ∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=DC, AD=BC.∵E为BC中点,∴BE=EC.∴△ABE≌△DCE.∴AE=DE. 当点P运动至点D时,S△ABP=S△ABD,由题意得x=32-4x,解得x=5. 当点P运动一周回到点A时,S△ABP=0,由题意得32-4x=0,解得x=8.∴AD=2×(8-5)=6.∴BC=6.∴BE=3.且AE+ED=2×5=10.∴AE=5.在Rt△ABE中,AB==4. 设△ABE中,边AE上的高为h,∵S△ABE=AEh=ABBE,∴h=.又AP=2x,∴当点P从A运动至点D时,y=x(0<x≤2.5)∴y关于x的函数表达式为:当0<x≤5时,y=x;当5<x≤8时,y=32-4x.试题24答案:(1)(本小题满分4分)解:连接OC,OB.∵∠ACD=40°,∠CDB=70°,∴∠CAB=∠CDB-∠ACD=70°-40°=30°.∴∠BOC=2∠BAC=60°,∴===.(2)(本小题满分7分)解:∠ABC+∠OBP=130°.证明:设∠CAB=α,∠ABC=β,∠OBA=γ,连接OC.则∠COB=2α.∵OB=OC,∴∠OCB=∠OBC=β+γ.∵△OCB中,∠COB+∠OCB+∠OBC=180°,∴ 2α+2(β+γ)=180°.即α+β+γ=90°. ∵PB=PD,∴∠PBD=∠PDB=40°+β.∴∠OBP=∠OBA+∠PBD=γ+40°+β=(90°-α) +40°=130°-α.即∠ABC+∠OBP=130°.试题25答案:解:∵a1=-1,∴y1=-(x-m)2+5.将(1,4)代入y1=-(x-m)2+5,得4=-(1-m)2+5.m=0或m=2 .∵m>0,∴m=2 .解:∵c2=0,∴抛物线y2=a2 x2+b2 x.将(2,0)代入y2=a2 x2+b2 x,得4a2+2b2=0.即b2=-2a2.∴抛物线的对称轴是x=1. 设对称轴与x轴交于点N,则NA=NO=1.又∠OMA=90°,∴MN= OA=1. ∴当a2>0时, M(1,-1);当a2<0时, M(1,1).∵ 25>1,∴M(1,-1)解:方法一:由题意知,当x=m时,y1=5;当x=m时,y2=25,∴当x=m时,y1+y2=5+25=30.∵y1+y2=x2+16 x+13,∴ 30=m2+16m+13.解得m1=1,m2=-17.∵m>0,∴m=1. ∴y1=a1 (x-1)2+5. ∴y2=x2+16 x+13-y1=x2+16 x+13-a1 (x-1)2-5.即y2=(1-a1)x2+(16+2a1)x+8-a1.∵ 4a2 c2-b22=-8a2,∴y2 顶点的纵坐标为=-2.∴=-2.化简得=-2.解得a1=-2.经检验,a1是原方程的解.∴抛物线的解析式为y2=3x2+12x+10.方法二:由题意知,当x=m时,y1=5;当x=m时,y2=25;∴当x=m时,y1+y2=5+25=30.∵y1+y2=x2+16 x+13,∴ 30=m2+16m+13.解得m1=1,m2=-17.∵m>0,∴m=1. ∵ 4a2 c2-b22=-8 a2,∴y2 顶点的纵坐标为=-2 .设抛物线y2的解析式为y2=a2 (x-h)2-2. ∴y1+y2=a1 (x-1)2+5+a2 (x-h)2-2.∵y1+y2=x2+16 x+13,∴解得h=-2,a2=3.∴抛物线的解析式为y2=3(x+2)2-2.(求出h=-2与a2=3各得2分)方法三:∵点(m,25)在抛物线y2=a2 x2+b2x+c2上,∴a2 m 2+b2 m+c2=25. (*)①∵y1+y2=x2+16 x+13,③②∴由②,③分别得b2 m=16m+2 m 2 a1,c2=8-m 2 a1.将它们代入方程(*)得a2 m 2+16m+2 m 2 a1+8-m 2 a1=25.整理得,m 2+16m-17=0.解得m1=1,m2=-17.∵m>0,∴m=1. ∴解得b2=18-2 a2,c2=7+a2. ∵ 4a2 c2-b22=-8a2,∴ 4a2(7+a2)-(18-2 a2)2=-8a2.∴a2=3.∴b2=18-2×3=12,c2=7+3=10.∴抛物线的解析式为y2=3x2+12x+10.。

相关文档
最新文档