八年级上册数学认识三角形教案

合集下载

人教版数学八年级上册全册教案87页

人教版数学八年级上册全册教案87页

第十一章三角形§11.1.1三角形的边教学目标1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.重点、难点重点:1.对三角形有关概念的了解,能用符号语言表示三条形.2.能从图中识别三角形.3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学过程一、看一看1.投影:图形见章前P1图.教师叙述: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形”这个课题来源于实际生活之中.学生活动:(1)交流在日常生活中所看到的三角形.(2)选派代表说明三角形的存在于我们的生活之中.2.板书:在黑板上老师画出以下几个图形.(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)(2)观察发现,以上的图,哪些是三角形?(3)描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形”.教师提问:上述对三角形的描述中你认为有几个部分要引起重视.学生回答:a.不在一直线上的三条线段.b.首尾顺次相接.二、读一读指导学生阅读课本P2,第一部分至思考,一段课文,并回答以下问题:(1)什么叫三角形?(2)三角形有几条边?有几个内角?有几个顶点?(3)三角形ABC用符号表示________.(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.三、做一做画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?同学们在画图计算的过程中,展开议论,并指定回答以上问题:(1)小虫从B出发沿三角形的边爬到C有如下几条路线.a.从B→Cb.从B→A→C(2)从B沿边BC到C的路线长为BC的长.从B沿边BA到A,从A沿边C到C的路线长为BA+AC.经过测量可以说BA+AC>BC,可以说这两条路线的长是不一样的.四、议一议1.在同一个三角形中,任意两边之和与第三边有什么关系?2.在同一个三角形中,任意两边之差与第三边有什么关系?3.三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?三角形的任意两边之和大于第三边;任意两边之差小于第三边.五、想一想三角形按边分可以,分成几类?六、练一练有三根木棒长分别为3cm、6cm和2cm,用这些木棒能否围成一个三角形?分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和9cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.错导:∵3cm+6cm>2cm∴用3cm、6cm、2cm的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+6>2,没错,可6-3不小于2,所以回答这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.七、忆一忆今天我们学了哪些内容:1.三角形的有关概念(边、角、顶点)2.会用符号表示一个三角形.3.通过实践了解三角形的三边不等关系.八、作业课本P8习题11.2第1、2、6、7题.§11.1.2三角形的高、中线与角平分线教学目标1.经历析纸,画图等实践过程,认识三角形的高、中线与角平分线.2.会用工具准确画出三角形的高、中线与角平分线, 通过画图了解三角形的三条高(及所在直线)交于一点,三角形的三条中线,三条角平分线等都交于一点.重点、难点重点:1.了解三角形的高、中线与角平分线的概念, 会用工具准确画出三角形的高、中线与角平分线.2.了解三角形的三条高、三条中线与三条角平分线分别交于一点.难点:1.三角形平分线与角平分线的区别,三角形的高与垂线的区别.2.钝角三角形高的画法.3.不同的三角形三条高的位置关系.教学过程一、看一看1.指导学生阅读课本P71-72的课文.2.仔细观察投影表中的内容,并回答下面问题.(1)什么叫三角形的高?三角形的高与垂线有何区别和联系? 三角形的高是从三角形的一个顶点向它对边所在的直线作垂线,顶点和垂足之间的线段,而从三角形一个顶点向它对边所在的直线作垂线这条垂线是直线.(2)什么叫三角形的中线?连结两点的线段与过两点的直线有何区别和联系?三角形的中线是连结一个顶点和它对边的中点的线段, 而过两点的直线有着本质的不同,一个代表的是线段,另一个却是直线.(3)什么叫三角形的角平分线?三角形的角平分线与角平分线有何区别和联系?三角形的角平分线是三角形的一个内角平分线与它的对边相交, 这个角顶点与交点之间的线段,而角平分线指的是一条射线.3.三角形的高、中线和角平分线是代表线段还是代表射线或直线?三角形的高、中线和角平分线都代表线段, 这些线段的一个端点是三角形的一个顶点,另一个端点在这个顶点的对边上.二、做一做1.让学生在练习本上画出三角形,并在这个三角形中画出它的三条高.( 如果他们所画的是锐角三角形,接着提出在直角三角形的三条高在哪里?钝角三角形的三条高在那里?)观察这三条高所在的直线的位置有何关系?三角形的三条高交于一点,锐角三角形三条高交点在直角三角形内,直角三角形三条高线交点在直角三角形顶点,而钝角三角形的三条高的交点在三角形的外部.2.让学生在练习本上画三角形,并在这个三角形中画出它的三条中线.( 如果他们所画的是锐角三角形,接着让他们画出直角三角形和钝角三角形,看看这些三角形的中线在哪里)?观察这三条中线的位置有何关系?三角形的三条中线都在三角形内部,它们交于一点,这个交点在三角形内.3.让学生在练习本上画一个三角形,并在这三角形中画出它的三条角平分线,观察这三条角平分线的位置有何关系?无论是锐角三角形还是直角三角形或钝角三角形, 它们的三条角平分线都在三角形内,并且交于一点.三、议一议通过以上观察和操作你发现了哪些规律,并加以总结且与同伴交流.四、练习1.课本P5,练习1.2.2.画钝角三角形的三条高.五、作业1.P8-P9 习题11.1第 3.4.8§11.1.3三角形的稳定性教学目标:通过观察和实地操作得到三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用重点:了解三角形稳定性在生产、生活的实际应用难点:准确使用三角形稳定性于生产生活之中课前准备:小木条8个,小钉若干教学过程:一、看一看,想一想课本P6投影出来二、做一做1、用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?2、用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?三、议一议从上面实验过程你能得出什么结论?与同伴交流。

人教版八年级上册数学教案:11.1与三角形有关的线段

人教版八年级上册数学教案:11.1与三角形有关的线段

11.1与三角形有关的线段第1课时三角形的边教学目标1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.会判断三条线段可否构成一个三角形的方法,并能运用它解决有关问题.教学重点:三角形的有关概念,能用符号语言表示三角形,三角形的三边关系.教学难点:三边关系的推导及应用.教学过程:一、创设情景,明确目标投影:金字塔,斜拉大桥,塔吊,自行车等,让学生感受生活中处处有三角形的身影,我们研究的“三角形”这个课题来源于实际生活之中.请说一说你已经学习了三角形的哪些知识?二、自主学习,指向目标三、合作探究,达成目标探究点一三角形的概念表示方法及分类活动一:阅读教材第1至2页内容,并思考以下问题:(1)具有什么特征的图形叫三角形?(不在同一直线上的三条线段,首尾顺次相接所组成的图形)(2)三角形有几条边?有几个内角?有几个顶点?(3,3,3)(3)三角形ABC用符号如何表示?三角形ABC的边AB、AC和BC怎样用小写字母分别表示?(a,b,c)(4)三角形按边分可以分成几类?按角分呢?展示点评:学生结合图形分别回答,师生共同点评.小组讨论:三角形的概念,如何用符号表示及分类?反思小结:三角形的图形特征,有三条边,三个内角,三个顶点,边可以用两个大写字母表示,也可以用一个小写字母表示.探究点二三角形的三边关系活动二:画出一个△ABC,假设有一只小虫要从B出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长有什么数量关系?请说明你结论的正确性.展示点评:(1)小虫从B出发沿三角形的边爬到C如下几条线段.a.从__B____C__b.从__B____A____C__(2)从B沿边BC到C的路线长为__BC__.从B沿边BA到A,从A沿C到C的路线长为__AB+AC__.经过测量可以说__AB+AC__>__BC__,可以说这两条路线的长是__不相等__的.小组讨论:在同一个三角形中,任意两边之和与第三边有什么关系?任意两边之差与第三边有什么关系?三角形的三边有怎么样的不等关系?反思小结:三角形的任意两边之和大于第三边,任意两边之差小于第三边.探究点三三角形有关知识的运用活动三:见教材P3例题小组讨论:等腰三角形中有几个不同的边长?第(2)问中的长4 cm没有明确是腰还是底时应怎么处理?展示点评:等腰三角形的底和腰的长度,不确定时,应分情况予以讨论.反思小结:当题目中的条件不明确时要分类讨论.所有的三角形必须要满足三边关系定理.四、总结梳理,内化目标1.概念:三角形,内角,边,顶点2.符号语言.3.三边关系.4.三角形的分类.五、达标检测,反思目标1.现有两根木棒,它们的长度分别为20 cm和30 cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取( B )A.10 cm的木棒B.20 cm的木棒C.50 cm的木棒D.60 cm 的木棒2.已知等腰三角形的两边长分别为3和6,则它的周长为( C )A.9 B.12 C.15 D.12或153.已知三角形的三边长为连续整数,且周长为12 cm,则它的最短边长为( B ) A.2 cm B.3 cm C.4 cm D.5 cm4.若五条线段的长分别是1 cm,2 cm,3 cm,4 cm,5 cm,则以其中三条线段为边可构成__3__个三角形.若等腰三角形的两边长分别为3和7,则它的周长为__17__;若等腰三角形的两边长分别是3和4,则它的周长为__10或11__.5.如果以5 cm为等腰三角形的一边,另一边为10 cm,则它的周长为__25_cm__.6.工人师傅用35 cm长的铁丝围成一个等腰三角形铁架.(1)若腰长是底边长的3倍,那么各边的长分别是多少?(2)能围成有一边长为7 cm的等腰三角形吗?为什么?●布置作业,巩固目标教学难点课本P1、2、6、7.8教学反思:第2课时三角形的高、中线与角平分线教学目标:会用工具准确画出三角形的高、中线与角平分线,通过画图了解三角形的三条高(及所在的直线)交于一点,三角形的三条中线,三条角平分线等都交于一点.教学重点:了解三角形的高、中线与角平分线的概念,会画出三角形的高、中线与角平分线.教学难点:三角形角平分线与角的平分线的区别,三角形的高与垂线的区别.教学设计一、创设情景,明确目标你还记得“过一点画已知直线的垂线”吗?让学生动手操作,画一画.在此基础上再提问:过三角形的一个顶点,你能画出它的对边的垂线吗?从而引入课题.二、自主学习,指向目标三、合作探究,达成目标探究点一三角形的高活动一:画出下面三角形的高AD.展示点评:三角形的高是什么线?三个图形中的高有什么区别?同一个三角形有几条高?他们在位置上有什么关系?请分别画出各个三角形的高.小组讨论:三角形的高的交点位置有何特征?反思小结:锐角三角形的高在三角形内部,直角三角形有两条高在边上,钝角三角形有两条高在三角形外部.任意三角形都有三条高,并且三条高所在的直线相交于一点.探究点二三角形的中线活动二:有一块三角形的草地,要把它平均分给四个牧民,且每个牧民所分得的草地都是三角形,请你探究出几种不同的分法.展示点评:如何将一个三角形分成两个面积相等的三角形?三角形的中线是什么线?一个三角形有几条中线?在位置上有什么关系?小组讨论:三角形的中线所分成的两个三角形的面积有什么关系?反思小结:三角形的中线可以把三角形分成面积相等的两个三角形.三角形的三条中线相交与一点,这一点在三角形的内部,这个点是三角形的重心.探究点三三角形的角平分线活动三:动手画出锐角三角形、直角三角形和钝角三角形的三角的角平分线.展示点评:学生分组合作画图,师生共同点评.小组讨论:三角形的角平分线是什么线?与角平分线有什么区别?一个三角形有几条角平分线?它们在位置上有什么关系?反思小结:任何三角形有三条角平分线,并且都在三角形的内部交于一点,我们把这个交点叫做三角形的内心.三角形的角平分线是一条线段,而角平分线是一条射线.四、总结梳理,内化目标1.本节学习的数学知识是三角形的中线、角平分线、高的概念.2.本节学习的数学方法是三角形中线、角平分线、高的画法.五、达标检测,反思目标1.下列各组图形中,哪一组图形中AD是△ABC的高( D )2.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( B )A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形3.如图,在△ABC中,∠1=∠2,G为AD中点,延长BG交AC于E,F为AB上一点,CF⊥AD于H,判断下列说法哪些是正确的,哪些是错误的.①AD是△ABE的角平分线(×)②BE是△ABD边AD上的中线(×)③BE是△ABC边AC上的中线(×)④CH是△ACD边AD上的高(√)4.如图,点D、E、F分别是BC、AD、BE的中点,且S△ABF =2,求S△ABC.(第4题图)●布置作业,巩固目标教学难点课本P83、4、8.教学反思:第3课时三角形的稳定性教学目标:1.了解三角形的稳定形,四边形不具有稳定形.2.能够用三角形稳定性解释生活中的现象.教学重点:了解三角形稳定性在生产、生活中的实际应用.教学难点:准确使用三角形稳定性于生产生活之中.教学设计:一、创设情景,明确目标多媒体展示:将四边形木架上再钉一根木条,将它的一对顶点连接起来,然后再扭动它,这时木架的形状还会改变吗?盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条.为什么要这样做呢?二、自主学习,指向目标三、合作探究,达成目标探究点一三角形的稳定性活动一:见教材P6“探究”部分.展示点评:1.用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?(不会)2.用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?(会) 3.在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?(不会)小组讨论:从以上活动中,可以分别发现三角形和四边形各具有什么特点?反思小结:三角形是具有稳定性的图形,而四边形等其它多边形不具稳定性.探究点二三角形稳定性的应用活动二:如图是四根木条钉成的四边形,为了使它不变形,小明加了一根木条AE,小明的做法正确吗?为什么?若不正确应怎样做?展示点评:小明可以有几种正确的做法?小组讨论:小明各种做法的依据是什么?反思小结:三角形具有稳定性.四边形不具有稳定性,生活中各有用途.四、总结梳理,内化目标1.本节课学习的数学知识:三角形具有稳定性,四边形具有不稳定性.2.本节课学习的数学方法是观察与操作.五、达标检测,反思目标1.下列图形中具有稳定性的是( C )A.正方形B.长方形C.直角三角形D.平行四边形2.要使下列木架稳定各至少需要多少根木棍?(1根) (2根) (3根)3.如图,工人师傅砌门时,常用木条EF固定门框ABCD,使其不变形,这种做法的根据是( D )A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性4.人站在晃动的公共汽车上,若你分开两腿站立,则需伸出一只手去抓住栏杆才能站稳,这是利用了__三角形的稳定性__.5.下列设备,没有利用三角形的稳定性的是( A )A.活动的四边形衣架B.起重机C.屋顶三角形钢架D.索道支架●布置作业,巩固目标教学难点5、9、10.课本P8教学反思:。

人教版八年级数学《认识三角形》教学设计方案

人教版八年级数学《认识三角形》教学设计方案

教学设计方案模板1. 在纸上画出一个直角三角形。

画出直角三角形的三条高,它们之间有怎样的位置关系?将你的结果与同伴进行交流.2. 在纸上画出一个钝角三角形。

你能折出钝角三角形的三条高吗?你能画出钝角三角形的三条高吗?钝角三角形的三条高交于一点吗?它们所在的直线交于一点吗?将你的结果与同伴进行交流.活动目的:由锐角三角形的高过渡到直角三角形,再到钝角三角形的高,便于学生从"动"的角度研究几何. 通过折、画活动使学生多动脑,并使学生学会对新旧知识进行对比.活动效果:学生很自然的猜到结论,并且突破了"画直角三角形、钝角三角形的高"这一难点. 在这一环节,学生的认识和理解有些吃力,尤其是画出它们, 所以,教学时,应让学生很好的掌握三角形高的定义,思考并回答所提出的问题,并引导他们得出结论,所以要给学生充分的时间和空间去画、去折.存在问题:其中画钝角三角形的三条高学生常会画出以下两种常见错误图形。

解决办法:可以将三角形比作小山,山的高度怎么看三角形的高就怎么看,这样学生很容易找到三角形的高,同时也不会再有以上类似的错误认识.第四环节:课堂练习活动内容: 基础练习1.分别指出下图中△ABC 的三条高。

jkDBAC变式训练2. 下列各组图中哪一组图形中AD 是△ABC 的高( )3. 如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角 形是( )A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形 4.三角形的三条高相交于一点,此点一定在( ) A. 三角形的内部 B.三角形的外部 C.三角形的一条边上 D. 不能确定 提高练习:5.已知在正方形网格中,每个小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,位置如图所示,点C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形面积为1,则点C 的个数为( )(A )3个 (B )4个 (C )5个 (D )6个活动目的:巩固本节知识,使学生更熟练地运用它们,进一步让学生认识到直角三角形,钝角三角形中高的位置的特殊性.活动效果:通过练习,学生都能掌握知识点,效果不错.第五环节:课堂小结活动内容:总结本节的重点内容和应注意的问题. 1. 顶点和垂足之间的线段叫做三角形的高。

八年级上册数学三角形判定说课稿9篇

八年级上册数学三角形判定说课稿9篇

八年级上册数学三角形判定说课稿9篇八年级上册数学三角形判定说课稿9篇说课稿能够促进教师的自我反思和专业成长,通过不断反思、总结和探究教学方法和教学策略,来提高自己的教学能力。

能够提高教学效果和教学质量,是课堂教学不可或缺的重要组成部分。

现在随着小编一起往下看看八年级上册数学三角形判定说课稿,希望你喜欢。

八年级上册数学三角形判定说课稿【篇1】一、教材分析(说教材):1、教材所处的地位和作用:这一节内容是初中《数学》人教版教材,八年级上册第十一章第二节的内容。

在此之前学生已学习了全等三角形的定义、性质,对全等三角形有了一定的了解,这为过渡到本节的深入学习起着铺垫作用。

本节内容是在本章内容中,占据重要的的地位,以及为其他学科和今后的几何学习打下基础。

2、教育教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)知识目标:①对全等、对顶角、对应边、对应角的定义,能够熟练掌握,并达到更深一层的理解。

②能够利用尺规画出全等的三角形,学生具有一定的作图能力。

③掌握并理解三角形全等判定定理中的SSS和SAS。

④能够运用SSS和SAS判定定理判定三角形是否全等,利用三角形全等解决一些实际问题。

⑤通过教学培养学生分析问题,读图分析,解决实际问题,培养学生运用知识的能力,培养学生加强理论联系实际的能力。

(3)情感目标:通过的师生共同摸索判断全等三角形全等的方法,激发学生学习兴趣。

3、重点、难点:①掌握并理解三角形全等的判定定理②运用定理判定三角形全等,利用全等三角形解决实际的问题和几何题二、教学策略(说教法)1、教学手段:为了让学生充分理解和掌握三角形判定定理,突破难点,我在教学过程中,采用两探究引出定理,两个运用定理的例子,来进行教学。

探究中主要用尺规作全等三角形的方法中引出全等三角形的条件,进而得出定理。

这样学生就更容易理解和掌握定理。

在用两个练习巩固知识。

2、教学方法及其理论依据:为了调动学生学习的积极性,充分体现课堂教学的主体性,我采用自学、议论、引导教学法,以学生为主体,老师为主导,引导学生运用观察、分析、概括的方法学习这部分内容,在整个教学过程当中,贯穿以学生为主体的原则,充分鼓励和表扬同学。

最新人教版八年级数学上册全册教案

最新人教版八年级数学上册全册教案

第十一章三角形学科:数学任课教师:授课时间:)第十二章全等三角形单元要点分析教学内容本章的主要内容是全等三角形.主要学习全等三角形的性质以及探索判定三角形全等的方法,并学会怎样应用全等三角形进行证明,本章划分为三个小节,第一节学习三角形全等的概念、性质;第二节学习三角形全等的判定方法和直角三角形全等的特殊判定方法;第三节利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明.教材分析教材力求创设现实、有趣的问题情境,使学生经历从现实活动中抽象出几何模型和运用所学内容解决实际问题的过程.在内容呈现上,把研究三角形全等条件的重点放在第一个条件上,通过“边边边”条件探索什么是三角形的判定,如何判定,怎样进行推理论证,怎样正确地表达证明过程.学生开始学习三角形判定定理时的困难在于定理的证明,而这些推理证明并不要求学生掌握.为了突出判定方法这条主渠道,教材都作为基本事实提出来,在画图、实验中让学生知道它们的正确性就可以了.在“角的平分线的性质”一节中的两个互逆定理,只要求学生了解其条件与结论之间的关系,不必介绍互逆命题、互逆定理等内容,这将在“勾股定理”中介绍.三维目标1.知识与技能在探索全等三角形的性质与判定中,提高认知水平,积累数学活动经验.2.过程与方法经历探索三角形全等的判定的,发展空间观念和有条理的表达能力,掌握两个三角形全等的判定并应用于实际之中.3.情感、态度与价值观培养良好的观察、操作、想象、推理能力,感悟几何学的内涵.重、难点与关键1.重点:使学生理解证明的基本过程,掌握用综合法证明的格式.2.难点:领会证明的分析思路,学会运用综合法证明的格式.3.关键:突出三角形全等的判定方法这条主线,淡化对定理的证明.教学建议1.注意使学生经历探索三角形性质及三角形全等的判定的过程.•在教学中鼓励学生观察、操作、推理,运用多种方式探索三角形有关性质.2.注重创设具有现实性、趣味性和挑战性的情境,体现三角形的广泛应用.3.注意直观操作与说理的结合,逐步培养学生有条理的思考和表达.课时划分本单元共分成9课时.12.1 全等三角形 1课时12.2 三角形全等的性质 5课时12.3 角的平分线的性质 2课时复习与交流 1课时12.1 全等三角形教学内容本节课主要介绍全等三角形的概念和性质.教学目标1.知识与技能领会全等三角形对应边和对应角相等的有关概念.2.过程与方法经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.3.情感、态度与价值观培养观察、操作、分析能力,体会全等三角形的应用价值.重、难点与关键1.重点:会确定全等三角形的对应元素.2.难点:掌握找对应边、对应角的方法.3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,•两条对应边所夹的角是对应角.教具准备四张大小一样的纸片、直尺、剪刀.教学方法采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程一、动手操作,导入课题1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,•思考得到的图形有何特点?2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,•思考得到的图形有何特点?【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.概念:能够完全重合的两个三角形叫做全等三角形.【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?【学生活动】动手操作,实践感知,得出结论:两个三角形全等.【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?【交流讨论】通过同桌交流,实验得出下面结论:1.任意放置时,并不一定完全重合,•只有当把相同的角旋转到一起时才能完全重合.2.这时它们的三个顶点、三条边和三个内角分别重合了.3.完全重合说明三条边对应相等,三个内角对应相等,•对应顶点在相对应的位置.【教师活动】根据学生交流的情况,给予补充和语言上的规范.1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,•重合的边叫做对应边,重合的角叫做对应角.2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,•如果本图11.1─2△ABC 和△DBC全等,点A和点D,点B和点B,点C和点C是对应顶点,•记作△ABC≌△DBC.【问题提出】课本图11.1─1中,△ABC≌△DEF,对应边有什么关系?对应角呢?【学生活动】经过观察得到下面性质:1.全等三角形对应边相等;2.全等三角形对应角相等.二、随堂练习,巩固深化课本P4练习.【探研时空】1.如图1所示,△ACF≌△DBE,∠E=∠F,若AD=20cm,BC=8cm,你能求出线段AB的长吗?与同伴交流.(AB=6)2.如图2所示,△ABC≌△AEC,∠B=30°,∠ACB=85°,求出△AEC各内角的度数.•(∠AEC=30°,∠EAC=65°,∠ECA=85°)三、课堂总结,发展潜能1.什么叫做全等三角形?2.全等三角形具有哪些性质?四、布置作业,专题突破1.课本P4习题11.1第1,2,3,4题.2.选用课时作业设计.板书设计把黑板分成左、中、右三部分,左边板书本节课概念,中间部分板书“思考”中的问题,右边部分板书学生的练习.疑难解析由于两个三角形的位置关系不同,在找对应边、对应角时,可以针对两个三角形不同的位置关系,寻找对应边、角的规律:(1)有公共边的,•公共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角).课时作业设计一、填空题.1.如图3所示,△AOC≌△BOD,∠A和∠B,•∠C•和∠D•是对应角,•那么对应边CO=____,AO=_____,AC=______,对应角∠COA=______.2.如图4所示,把△ABC绕A点旋转一定角度,得到△ADE,•那么对应边AB=•_____,AC=______,DE=______,对应角∠BAC=_____,∠B=______.3.已知△ABC≌△DEF,AB=5,BC=4,AC=3,∠C=90°,•则△DEF•中,•最小的边长为______,最大的角为_______度.二、选择题.4.如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长().A.13 B.3 C.4 D.65.已知△ABC≌△A′B′C′,∠A=80°,∠B=40°,那么∠C′的度数为().A.80° B.40° C.60° D.120°三、解答题.6.如图所示,△ABC≌△A′B′C′,∠C=25°,BC=6cm,AC=4cm,你能得出△A•′B′C′中哪些角的大小,哪些边的长度?7.如图所示,已知△ABC≌△DEF,则AB与DE,AC与DF的位置有什么关系?•说说你的理由.四、情境思索.8.如图所示,一栅栏顶部是由全等的三角形组成的,其中AC=0.2m,BC=•2AC,求BD的长.五、聚焦中考.9.如图所示,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOC+•∠DOB的度数为多少度?课时作业设计答案:一、1.DO BO BD ∠DOB 2.AD AE BC ∠DAE ∠D 3.3 90°二、4.D 5.C三、6.∠C′=25° B′C′=6cm A′C′=4cm 7.平行(理由略)四、8.略五、9.180°12.2.1三角形全等的判定(SSS)教学内容本节课主要内容是探索三角形全等的条件(SSS),•及利用全等三角形进行证明.教学目标1.知识与技能了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.过程与方法经历探索“边边边”判定全等三角形的过程,解决简单的问题.3.情感、态度与价值观培养有条理的思考和表达能力,形成良好的合作意识.重、难点与关键1.重点:掌握“边边边”判定两个三角形全等的方法.2.难点:理解证明的基本过程,学会综合分析法.3.关键:掌握图形特征,寻找适合条件的两个三角形.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学方法采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.教学过程一、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等. 信不信?【作图验证】(用直尺和圆规)先任意画出一个△ABC ,再画一个△A ′B ′C ′,使A ′B ′=AB ,B ′C ′=BC ,C ′A ′=CA .把画出的△A ′B ′C ′剪下来,放在△ABC 上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个△A ′B ′C ′,使A ′B ′=AB ′,A ′C ′=AC ,B ′C ′=BC : 1.画线段取B ′C ′=BC ;2.分别以B ′、C ′为圆心,线段AB 、AC 为半径画弧,两弧交于点A ′; 3.连接线段A ′B ′、A ′C ′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?” 【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理. (1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS ”). (2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验. 二、范例点击,应用所学【例1】如课本图11.2─3所示,△ABC 是一个钢架,AB=AC ,AD 是连接点A 与BC 中点D 的支架,求证△ABD ≌△ACD .(教师板书)【教师活动】分析例1,分析:要证明△ABD ≌△ACD ,可看这两个三角形的三条边是否对应相等. 证明:∵D 是BC 的中点, ∴BD=CD在△ABD 和△ACD 中,,.AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.三、实践应用,合作学习【问题思考】已知AC=FE,BC=DE,点A、D、B、F在直线上,AD=FB(如图所示),要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB=FD,只要AD=FB两边都加上DB即可得到AB=FD.”【教学形式】先独立思考,再合作交流,师生互动.四、随堂练习,巩固深化课本P8练习.【探研时空】如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?•你能找到一对全等三角形吗?说明你的理由.(BC=EF,△ABC≌△DFE)五、课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)六、布置作业,专题突破1.课本P15习题11.2第1,2题.2.选用课时作业设计.板书设计把黑板平均分成三份,左边部分板书“边边边”判定法,中间部分板书例题,右边部分板书练习.疑难解析证明中的每一步推理都要有根据,不能“想当然”,这些根据,可以是已知条件,也可以是定义、公理、已学过的重要结论.第一课时作业设计一、证明题.1.已知:如图,AD=BC,AB=DC,求证:∠A=∠C.2.已知:如图,AB=EF,BC=FD,AD=EC,求证:∠B=∠F.3.如图,已知AB=AC,AD=AE,BD=CE,你能运用上面条件证明出几对三角形全等?•写出你的证明过程.二、问题探索.4.操作并回答:取一长方形纸片,用A、B、C、D表示其四个顶点.将其折叠,使点D与点B重合(如图).回答问题:(1)图中有没有全等形?如果有,请指出;(2)图中的△BEF与△BFD′虽然有公共边,但却不全等,试说明理由;(3)在图中画一条线段,使图形中出现全等三角形,并写出所出现的全等三角形(只画一条线段,并且是连接图中已用字母标出的某两个点).作业设计答案:一、1.提示:连接BD,证△ABD≌△CDB.2.提示:证明△ACB≌△EDF.3.2对(•证明略)二、4.略12.2.2 三角形全等判定(SAS)教学内容本节课主要内容是探索三角形全等的条件(SAS),及利用全等三角形证明.教学目标1.知识与技能领会“边角边”判定两个三角形的方法.2.过程与方法经历探究三角形全等的判定方法的过程,学会解决简单的推理问题.3.情感、态度与价值观培养合情推理能力,感悟三角形全等的应用价值.重、难点及关键1.重点:会用“边角边”证明两个三角形全等.2.难点:应用结合法的格式表达问题.3.关键:在实践、观察中正确选择判定三角形全等的方法.教具准备投影仪、直尺、圆规.教学方法采用“操作──实验”的教学方法,让学生有一个直观的感受.教学过程一、回顾交流,操作分析【动手画图】【投影】作一个角等于已知角.【学生活动】动手用直尺、圆规画图.已知:∠AOB.求作:∠A1O1B1,使∠A1O1B1=∠AOB.【作法】(1)作射线O1A1;(2)以点O为圆心,以适当长为半径画弧,交OA•于点C,•交OB于点D;(3)以点O1为圆心,以OC长为半径画弧,交O1A1于点C1;(4)以点C1为圆心,以CD•长为半径画弧,交前面的弧于点D1;(5)过点D1作射线O1B1,∠A1O1B1就是所求的角.【导入课题】教师叙述:请同学们连接CD、C1D1,回忆作图过程,分析△COD和△C1O1D1•中相等的条件.【学生活动】与同伴交流,发现下面的相等量:OD=O 1D 1,OC=O 1C 1,∠COD=∠C 1O 1D 1,△COD ≌△C 1O 1D 1. 归纳出规律:两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS•”).【评析】通过让学生回忆基本作图,在作图过程中体会相等的条件,在直观的操作过程中发现问题,获得新知,使学生的知识承上启下,开拓思维,发展探究新知的能力. 【媒体使用】投影显示作法.【教学形式】操作感知,互动交流,形成共识. 二、范例点击,应用新知【例2】如课本图11.2-6所示有一池塘,要测池塘两侧A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,•使CE=CB ,连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?【教师活动】操作投影仪,显示例2,分析:如果能够证明△ABC ≌△DEC ,就可以得出AB=DE .在△ABC 和△DEC 中,CA=CD ,CB=CE ,如果能得出∠1=∠2,△ABC 和△DEC•就全等了.证明:在△ABC 和△DEC 中12CA CDCB CE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEC (SAS ) ∴AB=DE想一想:∠1=∠2的依据是什么?(对顶角相等)AB=DE 的依据是什么?(全等三角形对应边相等) 【学生活动】参与教师的讲例之中,领悟“边角边”证明三角形全等的方法,学会分析推理和规范书写.【媒体使用】投影显示例2.【教学形式】教师讲例,学生接受式学习但要积极参与.【评析】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.三、辨析理解,正确掌握【问题探究】(投影显示)我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,•使长木棍的另一端与射线BC的端点B 重合,适当调整好长木棍与射线BC所成的角后,固定住长木棍,把短木棍摆起来(课本图11.2-7),出现一个现象:△ABC与△ABD满足两边及其中一边对角相等的条件,但△ABC与△ABD不全等.这说明,•有两边和其中一边的对角对应相等的两个三角形不一定全等.【学生活动】观察教师操作教具、发现问题、辨析理解,动手用直尺和圆规实验一次,做法如下:(如图1所示)(1)画∠ABT;(2)以A为圆心,以适当长为半径,画弧,交BT于C、C′;(3)•连线AC,AC′,△ABC与△ABC′不全等.【形成共识】“边边角”不能作为判定两个三角形全等的条件.【教学形式】观察、操作、感知,互动交流.四、随堂练习,巩固深化课本P10练习第1、2题.【探研时空】一位经历过战争的老人讲述了这样一个故事:(如图2所示)在一次战役中,我军阵地与敌军碉堡隔河相望.为了炸掉这个碉堡,需要知道碉堡与我军阵地的距离.在不能过河测量又没有任何测量工具的情况下,一个战士想出来这样一个办法,他面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部.然后,他转过一个角度,保持刚才的姿态,这时视线落在了自己所在岸的某一点上.接着,他用步测的办法量出自己与那个点的距离,这个距离就是他与碉堡间的距离.(如图3所示)(1)按这个战士的方法,找出教室或操场上与你距离相等的两个点,•并通过测量加以验证.(2)你能解释其中的道理吗?【思路点拨】情境中使用的方法在实际应用中虽然是一种估测,但用到的原理都是三角形全等(SAS);教学中,让学生在教室里或操场上亲自做一做,•实际体验.五、课堂总结,发展潜能1.请你叙述“边角边”定理.2.证明两个三角形全等的思路是:首先分析条件,•观察已经具备了什么条件;然后以已具备的条件为基础根据全等三角形的判定方法,来确定还需要证明哪些边或角对应相等,再设法证明这些边和角相等.六、布置作业,专题突破1.课本P15习题11.2第3、4题.2.选用课时作业设计.板书设计把黑板分成左、中、右三部分,其中右边部分板书“边角边”判定法,中间部分板书例题,右边部分板书练习题.疑难解析现阶段中的证明都比较简单,常遇到下列几种情况:(1)•利用中点定义证明线段相等;(2)利用垂直的定义证明角相等;(3)利用平行线的性质证明角相等;(4)•利用三角形的内角和等于180°证明角相等;(5)利用图形的和、差证明边或角相等.第二课时作业设计一、填空题.1.如图4,若AO=DO,只需补充________就可以根据SAS判定△AOB≌△DOC.(4) (5) (6)2.如图5,已知AB=BD,则需要添加条件________,就可以根据SSS判定△ABC•≌△DBC.40DCBA二、选择题.3.如图6,AB=CD ,AD=BC ,则图中全等的三角形有( ). A .4对 B .3对 C .2对 D .1对4.如图7,已知△ABC 中,BA=BC ,BD ⊥AC 于D ,若∠C=40°, 则∠ABE 为( ). (7)A .40°B .50°C .80°D .140° 三、证明题.5.如图8,点A ,B ,C ,D 在同一条直线上,EC=FD ,AE=BF ,AB=CD ,你能证明AE ∥BF ,•CE ∥DF 吗?写出推理过程.6.如图9,已知AB=AC ,AD=AE ,∠1=∠2,你能证明出∠B=∠C 吗?与同伴交流.四、探索题.7.如图10,已知∠1=∠2,BA=BD ,无论动点P 在BC 上如何移动,都能得到PA=PD ,•你能说出这是为什么吗?动手试一试.五、聚焦中考.8.如图11,在正方形ABCD 中,E 是AD 中点,F 是BA 延长线上一点,AF=12AB . (1)求证:△ABE ≌△ADF . (2)阅读下面材料:如图12,把△ABC 沿直线BC 平行移动线段BC 的长度,可以变到△ECD 的位置. 如图13,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置;如图14,以点A 为中心,把△ABC 旋轴180°,可以变到△AED 的位置.(11) (12) (13) (14)像这样,其中一个三角形是由另一个三角形按平行移动,翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.(3)回答下列问题:①在图11中,可以通过平行移动,翻折、旋转中的哪一种方法,使△ABE•变到△ADF的位置?②指出图11中线段BE与DF之间的关系.作业设计答案:一、1.BO=CO 2.AC=CD二、3.A 4.C三、5.提示:证明△AEC≌△BFD 6.证明△ABE≌△ACD四、7.略五、8.(1)AB=AD AD⊥AB ∴△BAE=∠DAF=90°(2)∵AE=12AD,AF=12AB,•∴AE=AF,∴△ABE≌△ADF.(3)①△ABE 绕点A逆时针旋转90°到△ADF的位置②BE=DF12.2.3 三角形全等判定(ASA)教学内容本节课主要内容是探索三角形全等的判定(ASA,AAS),•及利用全等三角形的证明.教学目标1.知识与技能理解“角边角”、“角角边”判定三角形全等的方法.2.过程与方法经历探索“角边角”、“角角边”判定三角形全等的过程,能运用已学三角形判定法解决实际问题. 3.情感、态度与价值观培养良好的几何推理意识,发展思维,感悟全等三角形的应用价值.重、难点与关键1.重点:应用“角边角”、“角角边”判定三角形全等.2.难点:学会综合法解决几何推理问题.3.关键:把握综合分析法的思想,寻找问题的切入点.教具准备投影仪、幻灯片、直尺、圆规.教学方法采用“问题教学法”在情境问题中,激发学生的求知欲.教学过程一、回顾交流,巩固学习【知识回顾】(投影显示)情境思考:1.小菁做了一个如图1所示的风筝,其中∠EDH=∠FDH,ED=FD,•将上述条件注在图中,小明不用测量就能知道EH=FH吗?与同伴交流.(1) (2)[答案:能,因为根据“SAS”,可以得到△EDH≌△FDH,从而EH=FH]2.如图2,AB=AD,AC=AE,能添上一个条件证明出△ABC≌△ADE吗?[答案:BC=•DE(SSS)或∠BAC=∠DAE(SAS)].3.如果两边及其中一边的对角对应相等,两个三角形一定会全等吗?试举例说明.【教师活动】操作投影仪,提出问题,组织学生思考和提问.【学生活动】通过情境思考,复习前面学过的知识,学会正确选择三角形全等的判定方法,小组交流,踊跃发言.【教学形式】用问题牵引,辨析、巩固已学知识,在师生互动交流过程中,激发求知欲.二、实践操作,导入课题【动手动脑】(投影显示)问题探究:先任意画一个△ABC,再画出一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B(即使两角和它们的夹边对应相等),把画出的△A′B′C′剪下,•放到△ABC上,它们全等吗?D CBAE【学生活动】动手操作,感知问题的规律,画图如下:探究规律:两角和它们的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA ”). 【知识铺垫】课本图11.2─8中,∠A ′=∠A ,∠B ′=∠B ,那么∠C=∠A ′C ′B•′吗?为什么? 【学生回答】根据三角形内角和定理,∠C ′=180°-∠A ′-∠B ′,∠C=180°-∠A-∠B ,由于∠A=∠A ′,∠B=∠B ′,∴∠C=∠C ′.【教师提问】在△ABC 和△DEF 中,∠A=∠D ,∠B=∠E ,BC=EF (课本图11.2─9),△ABC 与△DEF 全等吗?【学生活动】运用三角形内角和定理,以及“ASA ”很快证出△ABC ≌△EFD ,并且归纳如下: • •归纳规律:•两个角和其中一个角的对边对应相等的两个三角形全等(简与成AAS ). 三、范例点击,应用所学【例3】如课本图11.2─10,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C ,求证:AD=AE .【教师活动】引导学生,分析例3.•关键是寻找到和已知条件有关的△ACD•和△ABE ,再证它们全等,从而得出AD=AE .证明:在△ACD 与△ABE 中,()A A AC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩公共角 ∴△ACD ≌△ABE (ASA ) ∴AD=AE【学生活动】参与教师分析,领会推理方法. 【媒体使用】投影显示例3. 【教学形式】师生互动.【教师提问】三角对应相等的两个三角形全等吗?【学生活动】与同伴交流,得到有三角对应相等的两个三角形不一定会全等,拿出三角板进行说明,如图3,下面这块三角形的内外边形成的△ABC和△A′B•′C′中,∠A=∠A′,∠B=∠B′,∠C=∠C′,但是它们不全等.(形状相同,大小不等).四、随堂练习,巩固深化课本P13练习第1,2题.【探研时空】1.如图4,小红不慎将一块三角形模具打碎为两块,•她是否可以只带其中一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?为什么?【思路点拨】这是一个实际问题,应带含有两个角的那一块,由“角边角”可知,利用这块能配出一个与原来全等的三角形模具.2.小颖在练习本上画一个三角形,小兰和她开个玩笑,•将墨迹污染到这块三角形的图形上(如图5),急得小颖直叫,•要小兰画出一个与原来完全一样的三角形来,小兰该怎么办呢?你能帮她吗?【思路点拨】观察图形,可知未被墨水污染的有两条边及其夹角,•根据“SAS”可以作一个与原来完全一样的三角形.五、课堂总结,发展潜能1.证明两个三角形全等有几种方法?如何正确选择和应用这些方法?2.全等三角形性质可以用来证明哪些问题?举例说明.3.你在本节课的探究过程中,有什么感想?六、布置作业,专题突破1.课本P15习题11.2第5,6,9,10题.2.选用课时作业设计.。

八年级数学上册《直角三角形的性质和判定定理》教案、教学设计

八年级数学上册《直角三角形的性质和判定定理》教案、教学设计
(2)选取两道与直角三角形性质相关的题目,要求学生运用所学知识进行分析和解答,强化知识点的掌握。
2.选做题:
(1)针对学习程度较好的学生,布置一道拓展题,如直角三角形与圆的相关问题,激发学生的探究兴趣,提高其数学素养。
(2)针对学习程度一般的学生,布置一道实际应用题,如测量距离、计算面积等,让学生将所学知识运用到生活中,培养其实践能力。
1.教师将学生分成小组,每组4-6人,布置讨论题目:直角三角形的性质和判定定理。
2.学生在小组内展开讨论,分享自己对直角三角形的认识和理解,探讨勾股定理的应用。
3.各小组汇报讨论成果,教师点评并总结,强调直角三角形的性质和判定定理的重要性。
(四)课堂练习,500字
1.教师出示几道与直角三角形相关的练习题,如判断一个三角形是否为直角三角形、计算直角三角形的面积等。
二、学情分析
八年级的学生已经在之前的数学学习中掌握了三角形的基本概念和性质,对勾股定理有了初步的了解。在此基础上,他们对直角三角形的性质和判定定理的学习具备了一定的基础。然而,学生对直角三角形的理解程度不一,部分学生对勾股定理的应用还不够熟练,需要在教学中给予关注和引导。
此外,这个年龄段的学生正处于青春期,思维活跃,好奇心强,具备一定的探究能力和合作意识。他们对于富有挑战性和实际应用性的问题表现出较高的兴趣,因此,在教学过程中,教师应结合学生的这些特点,设计具有启发性和实用性的教学活动,激发学生的学习兴趣,提高他们的主动参与度。
1.创设情境,导入新课
通过生活中的实际例子,如建筑物的直角结构、斜拉桥等,引出直角三角形的概念,激发学生学习兴趣。
2.自主探究,合作交流
学生自主探究直角三角形的性质,如内角之和、斜边与直角边的关系等。在此基础上,小组讨论勾股定理的推导过程,引导学生从几何和代数两个角度去理解和掌握勾股定理。

人教版数学八年级上册12.2三角形全等的判定(边角边判定三角形全等)教学设计

人教版数学八年级上册12.2三角形全等的判定(边角边判定三角形全等)教学设计
(二)讲授新知,500字
在讲授新知的环节,我会按照以下步骤进行:
1.定义讲解:向学生介绍全等三角形的定义,强调在大小和形状上完全相同的两个三角形叫作全等三角形。
2. SAS判定方法:讲解边角边(SAS)判定全等三角形的方法,即两个三角形中有两边和夹角分别相等,则这两个三角形全等。
3.示例演示:通过教具或动态软件,演示SAS判定全等三角形的实际操作过程,让学生更直观地理解判定方法。
1.对SAS判定条件的深入理解,特别是在不同图形和实际问题中的应用。
2.学生在证明过程中,如何运用SAS条件进行严密的逻辑推理。
3.学生在识别全等三角形时,容易忽略隐含的条件,导致判断错误。
(三)教学设想
1.创设情境,引入新课
-通过生活中的实际例子,如拼接图形、建筑设计等,引出全等三角形的概念,激发学生的学习兴趣。
4.性质归纳:引导学生通过观察和思考,总结全等三角形的性质,如全等三角形的对应边、对应角相等。
(三)学生小组讨论,500字
在学生小组讨论环节,我将组织学生进行以下活动:
1.分组讨论:将学生分成若干小组,让每个小组共同探讨SAS判定方法的原理和应用。
2.互问互答:小组成员之间相互提问,解答对方关于SAS判定方法的疑问,共同提高。
人教版数学八年级上册12.2三角形全等的判定(边角边判定三角形全等)教学设计
一、教学目标
(一)知识与技能
1.理解三角形等的定义,掌握边角边(SAS)判定三角形全等的方法。
2.能够运用SAS判定方法,解决实际问题时正确识别和运用全等三角形的性质。
3.能够运用尺规作图,通过SAS条件作出全等三角形,并能够证明所作的三角形与给定三角形全等。
2.提高题:设计一些综合性的题目,让学生在解决实际问题时,运用SAS判定方法。

人教版数学八年级上册第11章三角形小结教学设计

人教版数学八年级上册第11章三角形小结教学设计
(一)导入新课
1.教师以生活中常见的三角形物体为例,如三角尺、自行车三角架等,引导学生思考:为什么这些物体要设计成三角形呢?三角形具有哪些独特的性质呢?
2.学生回答问题,教师总结:三角形是一种非常稳定的几何图形,具有很多特殊的性质和判定方法。
3.教师通过PPT展示一组三角形图片,引导学生观察并总结三角形的分类、性质等基础知识。
4.引导学生运用数学软件、网络资源等辅助工具,拓展学习渠道,提高他们的信息素养。
(三)情感态度与价值观
1.激发学生对三角形学习的兴趣,培养他们积极、主动学习的态度。
2.使学生感受到数学与现实生活的紧密联系,认识到数学在生活中的重要性。
3.通过对三角形知识的探索,培养学生勇于探索、敢于创新的精神。
4.培养学生的空间观念和几何直观,提高他们的审美素养。
(三)学生小组讨论
1.教师将学生分成若干小组,每组分配一个讨论题目,如:等腰三角形的性质、三角形内角和定理的应用等。
2.学生在小组内进行讨论,分享自己的观点和思考,共同解决问题。
3.教师巡回指导,关注学生的讨论过程,及时解答学生的疑问,引导学生深入探讨三角形的相关知识。
(四)课堂练习
1.教师设计具有针对性的练习题,涵盖本节课的重点知识点,让学生独立完成。
2.自主探究,合作交流:在教学过程中,教师应引导学生自主探究三角形的基本性质,鼓励他们通过小组合作、讨论交流的方式,共同解决问题。
3.分层次教学,关注个体差异:针对学生的不同层次,设计不同难度的例题和练习,使每个学生都能在原有基础上得到提高。
4.突破重难点,注重方法指导:
(1)通过动态演示、实物操作等方式,帮助学生理解三角形性质的形成过程,突破性质判定难点。
2.学生在规定时间内完成练习,教师对学生的解答进行点评,指出错误和不足之处,引导学生进行改正。

人教版八年级上册第十二章12.1全等三角形(教案)

人教版八年级上册第十二章12.1全等三角形(教案)
人教版八年级上册第十二章12.1全等三角形(教案)
一、教学内容
人教版八年级上册第十二章12.1全等三角形:
1.全等三角形的定义与性质;
2.全等三角形的判定方法:SSS、SAS、ASA、ห้องสมุดไป่ตู้AS、HL;
3.全等三角形的实际应用;
4.举例说明全等三角形在几何证明中的应用。
二、核心素养目标
1.培养学生的几何直观与空间想象能力,通过全等三角形的学习,使学生能够理解和运用全等变换,把握图形的运动和位置关系;
首先,我意识到需要更多地强调全等三角形判定方法的实际应用。学生们在理解了基本概念后,可能仍然不知道如何将这些知识运用到具体问题中。在未来的教学中,我打算引入更多与生活相关的实例,让学生们明白全等三角形不仅仅是一个几何学的概念,而是与我们的生活息息相关。
其次,我发现在小组讨论环节,有些学生参与度不高,可能是因为他们对全等三角形的应用还不够自信。为了提高学生的参与度,我考虑在下次课上进行一些小组竞赛,鼓励学生们积极思考,增强他们解决问题的信心。
举例:在证明全等三角形的过程中,学生需要明确指出哪些角是对应角,哪些边是对应边,而不是简单地比较三角形的角和边是否相等。
-难点三:将全等三角形的理论知识应用到解决实际问题中。学生在面对实际问题时,可能不知道如何将问题转化为全等三角形的问题来解决。
举例:在解决平面图形的面积问题时,学生需要能够识别图形中的全等三角形,并利用全等性质来简化计算过程。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解全等三角形的基本概念。全等三角形是指能够完全重合的两个三角形,它们的对应角相等,对应边相等。它是几何学中的一个重要概念,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了全等三角形在实际中的应用,以及它如何帮助我们解决问题。

人教版初中八年级数学上册《第十一章 三角形》大单元整体教学设计

人教版初中八年级数学上册《第十一章 三角形》大单元整体教学设计

人教版八年级数学上册《第十一章三角形》大单元整体教学设计一、内容分析与整合(一)教学内容分析人教版初中数学八年级上册的《第十一章三角形》是几何学习中的一个重要章节,它不仅承载着对三角形基础概念和性质的全面介绍,还扮演着连接学生先前所学与后续几何知识深入探索的桥梁角色。

本章内容丰富多彩,深入浅出地引导学生走进三角形的奇妙世界,为他们构建一个系统而坚实的几何知识体系。

在这一章节中,学生们将首先接触到三角形的各种线段,包括边、高、中线以及角平分线等。

这些看似简单的概念,实则是解锁三角形众多性质的关键。

通过学习,学生们将理解每条线段在三角形中的独特位置和作用,以及它们如何相互关联,共同塑造三角形的形态与特性。

例如,中线不仅将对应的底边平分,还将三角形分为面积相等的两部分,这一性质的学习对于学生后续理解更复杂的几何问题大有裨益。

除了线段,章节还深入探讨了三角形的角,包括内角和外角。

学生将学习如何计算三角形的内角和,这一基础知识是证明许多三角形性质的基础。

外角的概念及其与相邻内角的关系,也将被详尽阐述,帮助学生从多角度审视三角形的角特征,培养他们的空间想象力和逻辑推理能力。

本章还拓展到了多边形及其内角和的内容,进一步丰富了学生的几何视野。

多边形作为三角形的延伸,其内角和的计算方法不仅加深了学生对几何图形内在规律的认识,也为后续学习更复杂几何图形打下了坚实的基础。

更为重要的是,本单元的教学不仅仅局限于理论知识的传授,更注重培养学生的实践操作能力和逻辑推理能力。

通过实际测量、作图、证明等一系列活动,学生被鼓励亲自动手,体验知识的生成过程,从而在实践中深化对三角形性质的理解。

这种“做中学”的方式,极大地提升了学生的学习兴趣和参与度,使他们在探索中发现几何之美,培养解决问题的能力和创新思维。

《第十一章三角形》不仅是初中数学课程中的一个核心章节,更是学生几何思维形成的关键时期。

通过本章的学习,学生不仅能够掌握三角形的基础概念和性质,更能在实践中锻炼几何直觉,学会用数学的眼光观察世界,为后续更深层次的几何学习乃至整个数学学习旅程奠定坚实的基础。

八年级上册第十一章数学教案

八年级上册第十一章数学教案

八年级上册第十一章数学教案第一节:三角形的边[教学目标]〔知识与技能〕1了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形 ;2理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题. 〔过程与方法〕在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯; 〔情感、态度与价值观〕体会数学与现实生活的联系,增强克服困难的勇气和信心[重点难点] 三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。

[教学过程]一、情景导入三角形是一种最常见的几何图形, [投影1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。

二、三角形及有关概念 AC不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。

(1)注意:三条线段必须①不在一条直线上,②首尾顺次相接。

组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形ABC用符号表示为△ABC。

三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b表示,顶点A所对的边BC可用a表示.三、三角形三边的不等关系探究:[投影7]任意画一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?有两条路线:(1)从B→C,(2)从B→A→C;不一样,AB+AC>BC ①;因为两点之间线段最短。

同样地有AC+BC>AB ②AB+BC>AC ③由式子①②③我们可以知道什么?三角形的任意两边之和大于第三边.四、三角形的分类我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。

按角分类:三角形直角三角形斜三角形锐角三角形钝角三角形那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。

八年级数学人教版上册教案含三维目标

八年级数学人教版上册教案含三维目标

八年级数学人教版上册教案含三维目标
一、教学目标
1. 知识与技能:学生通过学习,掌握三角形的基本性质和相关概念,能够解决一些实际问题。

2. 过程与方法:通过观察、操作、推理、交流等活动,培养学生的数学思维能力和解决问题的能力。

3. 情感态度与价值观:培养学生对数学的兴趣和爱好,增强学生的数学应用意识,提高学生的数学素养。

二、教学内容
1. 三角形的性质和概念
2. 三角形的边、角、高的概念和性质
3. 三角形的分类和识别
4. 三角形的应用举例
三、教学难点与重点
难点:三角形的分类和识别,特别是等腰三角形和等边三角形的性质和识别。

重点:三角形的性质和概念,边、角、高的概念和性质。

四、教具和多媒体资源
1. 黑板和粉笔
2. 投影仪和PPT课件
3. 教学软件和几何画板
4. 教学模型和三角形纸片
五、教学方法
1. 激活学生的前知:通过提问和回顾,激活学生对三角形已有的认识。

2. 教学策略:采用讲解、示范、小组讨论、案例分析等多种教学方法,帮助学生理解三角形的基本性质和概念。

3. 学生活动:组织学生进行小组讨论、观察、操作等活动,加深对三角形性质的理解和应用。

六、教学过程
1. 导入:通过展示一些三角形图片或实物,引导学生观察并引出本节课的主题。

2. 讲授新课:通过讲解、示范和案例分析等方式,引导学生学习三角形的性质和概念,边、角、高的概念和性质,三角形的分类和识别等内容。

3. 巩固练习:通过小组讨论、观察、操作等活动,引导学生巩固所学知识,加深对三角形性质的理解和应用。

人教版八年级数学上册教案(RJ) 第十一章 三角形

人教版八年级数学上册教案(RJ) 第十一章 三角形

11.1 与三角形有关的线段11.1.1 三角形的边1.结合具体的实例,进一步认识三角形的概念及其基本要素.2.会用符号、字母表示三角形,并了解按边的相等关系对三角形进行分类.3.理解三角形任何两边之和大于第三边与任意两边之差小于第三边的性质,并会初步运用这些性质来解决问题.重点三角形的三边关系. 难点三角形的三边关系.一、创设情境,引入新课老师出示一个用硬纸板剪好的三角形,并提出问题;小学中我们已经认识了三角形,那么你能不能给三角形下一个完整的定义? 老师出示教具,提出问题.让学生观察教具,然后给出三角形的定义. 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 二、探究问题,形成概念(一)探究三角形的有关概念1.三角形的顶点及符号表示方法. 2.三角形的内角. 3.三角形的边.教师继续利用教具向学生直接指明相关的概念. 学生注意记忆相关的概念. 教师再出示另外剪好的三角形,各顶点字母与原来不同,然后通过新三角形让学生巩固刚才的有关概念.(二)探究三角形的分类问题1:小学中已经学过,如何将三角形进行分类?问题2:如何将三角形按边分类? 教师提出问题,学生举手回答. 教师提示,分类的标准是什么?学生回答:有两边相等和有三边相等,以及三条边均不相等.教师进一步提出新的问题,并进一步讲解等边三角形、等腰三角形的有关概念,然后给出三角形按边分类的方法:三角形⎩⎪⎨⎪⎧三边都不相等的三角形等腰三角形⎩⎪⎨⎪⎧底边和腰不相等的等腰三角形等边三角形之后师生共同归纳三角形的分类方法.按不同的标准分类,可以有不同的分法.(三)探究三角形的三边关系探究:画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C点,它有几种路线可以选择?各条路线的长一样吗?教师提出问题,学生先画图然后进行讨论,并思考问题,然后教师指定学生回答问题.(1)小虫从点B出发沿三角形的边爬到点C有如下几条路线:a.从B→Cb.从B→A→C(2)从B→C路线最短.然后老师进一步提出问题:这条路线为什么是最短的?学生举手回答:“两点之间,线段最短.”然后师生共同归纳得出:AC+BC>AB①AB+AC>BC②AB+BC>AC③即三角形两边的和大于第三边.教师提问:(1)由不等式①②③移项,你能得到怎样的不等式?(2)通过刚才得到的不等式,你有什么发现?学生回答,师生共同归纳:三角形两边的差小于第三边.教师出示教材第3页例题.分析:(1)“用一条长18 cm的细绳围成一个等腰三角形”,这句话有什么含义?(2)有一边长为4 cm是什么意思,哪一边的长度是4 cm?三、练习巩固练习:教材第4页练习第1,2题.老师布置练习,学生举手回答即可.第2题注意让学生说明理由.解决完以后,教师利用投影出示补充练习,学生独立完成.补充练习:一个三角形有两条边相等,周长为20 cm,一条边长是6 cm,求其他两条边长.四、小结与作业小结:谈谈本节课的收获.老师引导学生主要从对三角形的分类和三边关系的认识方面进行小结.布置作业:习题11.1第1,2,7题.三角形的三边关系是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学生首次接触,让学生自己动手操作,初步感知三条边之间的关系,接着重点研究“能围成三角形的三条边之间到底有什么关系?”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论。

认识三角形(共27张PPT)数学八年级上册

认识三角形(共27张PPT)数学八年级上册
三角形的中线
等底同高的两个三角形面积相等
【议一议】
(1)在纸上画出一个锐角三角形,并画出它的三条中线,它们有怎样的位置关系?与同伴进行交流.
锐角三角形的三条中线交于一点.
钝角三角形和直角三角形的三条中线也交于一点.
(2)钝角三角形和直角三角形的三条中线也有同样的位置关系吗?折一折,画一画,并与同伴进行交流.
1
2
三角形的角平分线
P7做一做第1题
结论:任意三角形的三条角平分线交于同一点.
ቤተ መጻሕፍቲ ባይዱ
三角形的角平分线
【议一议】
在纸上画出一个三角形,并画出它的三条角平分线,它们有怎样的位置关系?与同伴进行交流.
议一议:三角形的角平分线与角的平分线有什么区别和联系?
A
B
F
E
O
C
A
B
E
三角形的角平分线是线段,而角的平分线是一条射线;它们的联系是都是平分角。
课本P9作业讲评
1. 如图,AD,CE分别是△ABC的中线和角平分线,则:
DC BC ∠ECB ∠ACB.
2.如图,在△ABC中,∠ACB=90°,CD是斜边上的高线,CE是△ABC的角平分线,且∠CEB=105°.求∠ECB,∠ECD的大小.
3.如图,AD是△ABC的中线,DE⊥AC,DF⊥AB,E,F 分别是垂足.已知AB=2AC,求DE与DF的长度之比.
1.1 认识三角形
第2课时 三角形的三线
智慧课堂精品课件
知识与技能: 1.了解三角形的角平分线、中线、高线的概念. 2.会利用量角器、刻度尺画三角形的角平分线、中线和高线. 3.会利用三角形的角平分线、中线和高线的概念,解决有关角度、 面积计算等问题.过程与方法:经历三个概念的生成过程,体验锐角、直角、钝角三角 形的高线的位置差异.情感态度与价值观:感受分类讨论的数学思想

八年级数学上册《三角形的性质》教案、教学设计

八年级数学上册《三角形的性质》教案、教学设计
2.教学方法:
-学生独立完成练习题,教师巡回指导。
-针对学生的错误,进行及时纠正和讲解,帮助学生巩固知识。
(五)总结归纳,500字
1.教学内容:
-对三角形的定义、分类和性质进行梳理和总结。
-强调三角形性质在解决实际问题中的应用。
2.教学方法:
-采用师生互动的方式,让学生回顾本节课所学内容。
-教师进行点评,指出学生在学习过程中的优点和不足,提出改进措施。
3.培养学生合作交流的意识,使他们学会倾听他人意见,尊重他人观点。
4.培养学生克服困难的勇气,使他们面对数学问题时,保持积极的心态。
5.引导学生认识到数学知识在生活中的广泛应用,提高他们的数学素养,培养其实用主义价值观。
二、学情分析
八年级学生已经具备了一定的数学基础和逻辑思维能力,他们对几何图形有一定的认识和了解。在此基础上,学生对三角形的性质这一章节的学习,需要在以下几个方面进行关注和引导:
4.创设生活情境,将三角形的性质应用于实际问题,提高学生的实际应用能力。
5.利用信息技术手段,如几何画板等,辅助教学,增强学生对三角形性质的理解。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,激发他们探索三角形性质的好奇心。
2.培养学生勇于尝试、善于思考的学习态度,使他们体会数学学习的乐趣。
4.创意设计题:
-鼓励学生利用三角形的性质设计一幅图案或构造一个模型,体现数学在艺术和工程领域的应用。
-学生需要提交设计草图和作品说明,锻炼学生的创意设计和表达能力。
5.反思总结题:
-让学生撰写学习反思,总结自己在学习三角形性质时的收获和困惑,以及对未来学习的计划。
-教师通过学生的反思,了解学生的学习情况,为下一步教学提供参考。

人教版八年级数学上册第十一章三角形《三角形章起始课》优秀教学案例

人教版八年级数学上册第十一章三角形《三角形章起始课》优秀教学案例
二、教学目标
(一)知识与技能
1.理解三角形的概念,掌握三角形的性质和分类,了解三角形的基本判定方法。
2.能够运用三角形的性质和判定方法解决实际问题,提高学生的应用能力。
3.培养学生的空间想象能力,能够画出符合特定条件的三角形。
4.学会使用三角板和量角器等工具,提高学生的动手操作能力。
(二)过程与方法
人教版八年级数学上册第十一章三角形《三角形章起始课》优秀教学案例
一、案例背景
本案例背景以人教版八年级数学上册第十一章三角形《三角形章起始课》为例,旨在探索和实践如何开展三角形章节的教学。本节课的主要内容包括三角形的概念、性质和分类,以及三角形的判定方法。对于八年级的学生来说,质。
5.作业小结:教师布置了具有实际意义和挑战性的作业,并要求学生进行自我评价和小组评价。这种作业小结的方式使得学生能够在实践中运用所学知识,巩固学习成果,提高学生的应用能力。
1.利用多媒体展示三角形在实际生活中的应用场景,如建筑设计、物理学中的力学问题等,让学生感受到三角形知识的重要性。
2.设计有趣的数学问题,如三角形的秘密、三角形王国的冒险等,激发学生的学习兴趣,引导学生主动探究。
3.通过设置疑问,让学生思考三角形与生活、其他学科的联系,激发学生的求知欲。
(二)讲授新知
1.通过观察、操作、交流和思考,让学生经历三角形的发现、探索和归纳的过程,培养学生的自主学习能力。
2.运用多媒体教学资源,展示三角形的实际应用场景,增强学生的直观感受,提高学生的理解能力。
3.引导学生进行小组合作交流,培养学生的团队协作能力和沟通能力。
4.鼓励学生提出问题,培养学生的质疑精神和探究能力。
在教学过程中,我将以提高学生的数学素养和思维能力为目标,注重知识的系统性和方法的多样性。通过启发式教学、讨论式教学和探究式教学等方法,激发学生的学习兴趣,引导学生主动参与,培养学生的创新精神和实践能力。同时,关注学生的情感体验,充分调动学生的积极性、主动性和创造性,使学生在轻松愉快的氛围中掌握三角形的知识。

人教版八年级数学上册第11章三角形单元课时教学设计

人教版八年级数学上册第11章三角形单元课时教学设计
4.勾股定理:教师通过实际操作,引导学生发现直角三角形中,两条直角边的平方和等于斜边的平方,进而得出勾股定理。
5.三角形的面积:教师引导学生运用割补法、海伦公式等方法计算三角形的面积,并总结出三角形面积的计算公式。
(三)学生小组讨论
1.教师将学生分成若干小组,每组发放一张含有三角形的图形,要求学生观察并讨论以下问题:
人教版八年级数学上册第11章三角形单元课时教学设计
一、教学目标
(一)知识与技能
1.理解三角形的定义及基本性质,掌握三角形内角和为180°。
2.学会运用三角板、直尺等工具准确画出三角形,并能够识别和判定等腰三角形、等边三角形及其性质。
3.熟练掌握三角形中位线定理,并能运用该定理解决实际问题。
4.学会运用勾股定理计算直角三角形的边长,并能解决实际生活中的问题。
5.能够运用三角形的面积公式计算三角形的面积,并解决与三角形面积相关的实际问题。
(二)过程与方法
1.通过观察、操作、探索等实践活动,培养学生的观察能力、动手能力和逻辑思维能力。
2.通过小组讨论、合作交流等形式,培养学生的团队协作能力和语言表达能力。
3.引导学生运用已知的几何知识解决三角形相关问题,提高学生的知识迁移能力。
3.培养学生勇于探索、积极思考、克服困难的精神,增强学生的自信心。
4.注重培养学生的审美观念,让学生在欣赏几何图形中感受数学之美。
5.通过对三角形的学习,引导学生认识到事物之间的相互联系,学生在经过前两年的数学学习后,已经具备了一定的几何图形认知基础和逻辑思维能力。他们对三角形的概念、性质等已有初步了解,但在深入理解和应用方面仍存在困难。此外,学生在空间想象能力、问题解决策略等方面发展不均衡,个别学生可能对几何图形的学习兴趣不高。因此,在本章节的教学中,教师需要关注以下几点:

最新湘教版八年级数学上册《三角形的认识》教学设计(精品教案).docx

最新湘教版八年级数学上册《三角形的认识》教学设计(精品教案).docx

课题:2.1.1三角形的认识学习目标1.认识三角形,能用符号语言表示三角形,并把三角形分类.2.知道三角形三边不等的关系.3.懂得判断三条线段能否构成一个三角形的方法,•并能用于解决有关的问题重点:三角形三边关系。

难点:等腰三角形和等边三角形的关系,分类讨论。

教学过程:一、合作学习:(出示ppt 课件)知识点一:三角形概念及分类1、观察图形,找一找图中的三角形,并把它们勾画出来。

请举出三角形的例子。

(1)三角形概念:由不在同一直线上的三条线段顺次首尾连接所组成的图形叫做三角形。

如图,线段____、______、______是三角形的边;点A 、B 、C 是三角形的______; _____、 ______、_______是相邻两边组成的角,叫做三角形的内角,简称三角形的角。

图中三角形记作__________。

A B C(2)三角形按边分类可分为 _____________(3)如图,等腰三角形ABC 中,AB=AC,腰是_________,底是_________,顶角指_______,底角指_____.等边三角形DEF 是特殊的_______三角形,DE=____=_____.(4)等边三角形是特殊的等腰三角形。

——腰和底边相等的等腰三角形.知识点二:知道三角形三边的不等关系,(1)在一个三角形中, 任意两边之和与第三边的长度之间有怎样的大小关系? 为什么?请同学们画一个△ABC,分别量出AB ,BC ,AC 的长, 并比较下列各式的大小: AB+BC_____AC AB + AC _____ BC AC +BC _____ AB说理:如右图, 在△ABC 中,BC 是连接B , C 两点的一条线段,由基本事实“两点之间线段最短”。

可得:AB + AC > BC. 同理可得:AB + BC > AC ,AC + BC > AB.结论:一般地,我们可以得出:三角形的任意两边之和大于第三边.三角形任意两边之差小于第三边 A B C ab c做一做:有三根木棒,其长度分别为2cm ,3cm ,6cm ,它们能否首尾相接构成一个三角形?∵2+3=5<6, ∴已知长度的三根木棒不能构成三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标:
1、了解三角形的角平分线、中线、高线的概念。

2、会利用量角器、刻度尺画三角形的角平分线、中线和高线。

3、会利用三角形的角平分线、中线和高线的概念,解决有关角度、面积计算等
问题。

课程内容:
教学过程:
一、回顾旧知
1、角平分线的概念:从一个角的顶点引出的一条射线,把这个角分成两个相等的
角。

这条射线叫做这个角的平分线。

2、线段中点的定义:把一条线段分成两条相等的线段的点。

3、垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两
条直线互相垂直,其中一条直线叫做另一条直线的垂线。

二、探究新知
1、三角形的角平分线:
在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

如图,∠BAC的平分线交BC于点D,线段AD就是△ABC的一条角平分线。

几何语言表述:∵ AD是△ ABC的角平分线 A
∴∠ BAD = ∠CAD = 1\2∠BAC B C
或∠BAC=2∠BAD = 2∠CAD D
任意剪一个三角形,用折叠的方法,画出这个三角形的三条角平分线。

你发
思考:三角形的角平分线与角的平分线有什么区别与联系?
填一填:
1、在△ABC 中,∠B=80°∠C=40°,BO 、CO 平分∠ABC 、∠ACB ,∠BOC 的度数
为____;
2、在△ABC 中, ∠A=48, BO 、CO 平分∠ABC 、∠ACB ,∠BOC 的度数为_____;
3、在△ABC 中, ∠O=126 , BO 、CO 平分∠ABC 、∠ACB ,∠A 的度数为____ ;
思考:∠BOC 与∠A 存在着怎样的数量关系?
2、三角形的中线的概念及应用
在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线.
如图,D 为BC 的中点,线段AD 就是△ ABC 的BC 边上的中线。

A
B D C
几何语言表述:∵AD 是△ ABC 的 中线
∴BD =CD = 1\2 BC 或 BC = 2BD = 2DC
做一做:
1、 课内练习2
2、 课本探究活动
任意剪一个三角形,用折叠的方法,找出三条边的中点,画出三条中线。

你发现了什么? O
C B A
三角形中线总结:
①任何三角形有三条中线,并且都在三角形的内部,交与一点。

②三角形的中线是一条线段。

③三角形的任意一条中线把这个三角形分成了两个面积相等的三角形。

3、三角形的高线的概念及应用
从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。

A
几何语言表述: B C
∵ AD ⊥ BC D
∴ AD就是△ ABC的BC边上的高线。

动手画:
(1)、用三角尺分别作出锐角三角形ABC,直角三角形DEF和钝角三角形PQR的各边上的高
(2)、观察你所作的图形,比较这三个三角形中三条高线的位置与三角形的类型有什么关系?
归纳:锐角三角形的三条高线都在三角形的内部,且相交于一点。

直角三角形斜边上的高线在三角形的内部,一条直角边上的高线是另一条直角边,三条高线相交于直角顶点。

钝角三角形钝角对边上的高在三角形的内部,另两条边上的高均在三角形的外部,三条高线的延长线也相交于一点。

4、三角形的角平分线、中线、高线的综合应用
画一画:课内练习1
填一填:课本作业题A组第一题
例2:如图,在△ABC中,AD是△ABC的高线,AE是△ABC的角平分线。

已知∠BAC=80°,∠C=40 °,求∠DAE的大小。

分析:∠DAE 可以看成哪两个角的差,∠DAC 与∠ADC,∠C 有什么关系?∠ADC 为
多少度?根据什么?∠EAC 与∠BAC 有什么关系?根据什么?
教师板书解题过程
变式训练:在△ABC 中,∠ACB=90 ,AD 是△ABC 的高线,AE 是△ABC 的角平
分线,且∠CEB=105 求∠ECB ,∠ECD 的大小。

三、拓展练习
1、在ΔABC 中,CD 是中线,已知BC-AC =5cm, ΔDBC 的周长为25cm,求ΔADC 的
周长.
D
变式训练:如上图,在△ABC 中,CD 是AB 边上的中线,已知BC=9厘米,AC=6厘
米,求△BCD 和△ACD 的周长的差。

2、如图,AD 是△ABC 的中线,DF ⊥AB,DE ⊥AB,E,F 分别是垂足。

已知AB=2AC,
求DE 与DF 的长度之比。

变式训练:若线段DF,DE 分别平分∠ADB 和∠ADC ,求∠BAC 的度数。

B C D E F A B
C A
3、如图,CE 是△ABC 的角平分线,EF ∥BC ,交AC 于点F ,已知∠AFE=64°,求
∠FEC 的度数。

四、课堂小结 1、三角形的角平分线、中线、高线的概念
2、利用量角器、刻度尺画三角形的角平分线、中线、高线
3、利用三角形的角平分线、中线、高线的概念解决有关角度、面积计算等问
题。

五、板书设计
认识三角形
一、 回顾旧知
4、角平分线的概念:从一个角的顶点引出的一条射线,把这个角分成两个相等的
角。

这条射线叫做这个角的平分线。

5、线段中点的定义:把一条线段分成两条相等的线段的点。

6、垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两
条直线互相垂直,其中一条直线叫做另一条直线的垂线。

课时练习 《初中新学案优化与提高》
C B
E
F
A。

相关文档
最新文档