数学选修21知识点总结
数学选修1至2知识点总结
数学选修1至2知识点总结一、选修11. 一次函数一次函数是数学中的一种基本类型的函数,其一般形式为y=ax+b,其中a,b为常数且a≠0。
一次函数的图像是一条通过原点的直线,斜率a表示直线的倾斜程度,常数b表示直线与y轴的交点。
在数学上,一次函数是一种简单串直线函数,但它在实际应用中有着广泛的用途,如经济学、物理学等领域均可利用一次函数来描述问题。
2. 二次函数二次函数是一种常见的函数类型,其一般形式为y=ax²+bx+c,其中a,b,c为常数且a≠0。
二次函数的图像是一条开口向上或向下的抛物线,其开口方向取决于a的正负。
二次函数对应的抛物线有着许多特性,如顶点坐标、对称轴、焦点、直焦距等,这些特性能够帮助我们更好地理解二次函数的性质。
3. 多项式函数多项式函数是由常数组成的数列f(n),在数学中,n是一个变量,它的值可以是实数或者复数,但不是整数或负数,并有定义域。
封闭整数或负数的情况是另一种基于变量方面的数列。
4. 分式函数分式函数是由两个多项式相除而得到的函数,分母不能取0。
5. 指数函数、对数函数指数函数和对数函数是常见的特殊函数类型,它们在数学和实际应用中都有着重要的作用。
指数函数的一般形式是y=a^x,其中a为底数,x为指数,而对数函数的一般形式是y=loga(x),其中a为底数,x为真数。
指数函数和对数函数之间存在着互为反函数的关系,它们在代数、几何、概率等方面均有广泛的应用。
6. 三角函数三角函数是用于描述角度与变化的函数,常见的三角函数包括正弦函数、余弦函数、正切函数等,它们在三角学和实际问题中都有着重要的应用。
三角函数不仅能够描述角度的变化,还能够描述周期性的现象,如振动、波动等。
7. 数列与数学归纳法数列是由一系列按照一定规律排列的数构成的序列,数学归纳法是一种证明数学命题的常用方法。
数列与数学归纳法是数学中重要的概念和方法,它们在数学分析、组合数学、离散数学等领域都有着广泛的应用。
人教版高中 数学选修二 全册知识点 归纳总结3篇
人教版高中数学选修二全册知识点归纳总结第一篇:数学选修二必修内容详解第一章函数及其应用1.函数及其概念:定义域、值域、图象、单调性、奇偶性、周期性、对称性等2.函数的运算:加法、减法、乘法、除法、复合函数、反函数等3.函数的应用:函数模型、函数方程、函数关系、函数表示、函数求值等第二章三角函数1.三角函数的基本概念:正弦、余弦、正切、余切、正割、余割2.三角函数的相互关系:借助单位圆解释正弦、余弦函数,借助正切函数解释余割、正割函数3.三角函数的简单运算:倍角公式、半角公式、和差公式、化简公式、合并公式、差积定理等4.三角函数的应用:角度关系、角度测量、三角函数图像、三角函数方程、三角函数求解等第三章解析几何1.二维平面直角坐标系的基本概念:点、直线、圆等2.二维坐标系中的直线方程:斜截式、截距式、一般式、交点式等3.圆的相关概念:圆的标准方程、圆的一般方程、圆心、半径、切线等4.解析几何的应用:确定方程、矢量运算、空间几何、曲线分析等第四章微积分1.导数及其基本概念:导数定义、导数运算、高阶导数、柯西—罗尔定理等2.微积分基本定理:牛顿—莱布尼茨公式、区分反函数、定积分、不定积分等3.微积分应用:函数极值、函数图像分析、相关变化率、微分方程、微积分定理等以上是数学选修二的必修内容,掌握这些知识点,能够帮助学生扎实掌握高中数学基本概念和方法,为进一步发展数学能力打下基础。
第二篇:数学选修二选修内容详解第五章数列及其应用1.数列的概念:等差数列、等比数列等2.数列的性质:通项公式、求和公式、收敛性、发散性等3.数列的应用:数学归纳法、数列问题的解答、计算器计算数列等第六章概率论与数理统计1.随机事件及其概率:基本概念、事件关系、样本空间等2.概率分布及其函数:二项分布、泊松分布、正态分布、指数分布等3.抽样分布及其统计推论:抽样中心极限定理、参数估计、假设检验等4.应用:概率模型、统计图表、数据分析、随机模拟等第七章矩阵论与线性代数1.基本知识:矩阵基本运算、行列式、逆矩阵、秩等2.线性方程组:高斯消元法、矩阵表示、特解、齐次线性方程组、基础解系等3.特征值和特征向量:特征方程、特征值、特征向量、对角化、相似变换等4.应用:向量分析、投影、方程求解、几何变换、矩阵算法等以上是数学选修二的选修内容,掌握这些知识点,能够帮助学生进一步拓展数学领域,学会使用不同的数学方法解决实际问题。
高中数学选修2-1主要内容
对(2) 分析:
题设中没有具体给出动点所满足的几何条件, 但可以通过分析图形的几何性质而得出, 即圆
心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:
设弦的中点为 M(x , y) ,连结 OM ,
则 OM ⊥AM .
∵k OM · kAM =-1 ,
其轨迹是以 OA 为直径的圆在圆 O 内的一段弧 ( 不含端点 ). 2.定义法 利用所学过的圆的定义、 椭圆的定义、 双曲线的定义、 抛物线的定义直接写出所求的动点的 轨迹方程, 这种方法叫做定义法. 这种方法要求题设中有定点与定直线及两定点距离之和或
q 也是 p 的充要条件 . 概括地说 , 如果 p q, 那么 p 与 q 互为充要条件 .
一般地, 若p 若p 若p
q, 但 q q,但 q q,且 q
p,则称 p 是 q 的充分但不必要条件; p,则称 p 是 q 的必要但不充分条件; p,则称 p 是 q 的既不充分也不必要条件.
1.3 简单的逻辑连接词
(以下由学生完成 )
根据它们的对称性, 这两个点的横坐标应相等, 因此方
由弦长公式得:
即 a2b2=4b 2-a2.
2.2 椭圆
把平面内与两个定点 F1, F2 的距离之和等于常数(大于 F1 F2 )的点的轨迹叫做椭圆
(ellipse ).其中这两个定点叫做椭圆的焦点, 两定点间的距离叫做椭圆的焦距. 即当动点
且有 BP∶ PA=1 ∶2,当 B 点在抛物线上变动时,求点 P 的轨迹方程.
分析:
P 点运动的原因是 B 点在抛物线上运动,因此 B 可作为相关点,应先找出点 系.
P 与点 B 的联
解:设点 P(x , y) ,且设点 B(x 0, y 0)
人教版高中数学选修2-1知识点汇总
人教版高中数学必修2-1知识点第一章常用逻辑用语1.命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2.“若p ,则q ”:p 称为命题的条件,q 称为命题的结论.3.若原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5.若原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.6.四种命题的真假性:四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.7.p 是q 的充要条件:p q⇔p 是q 的充分不必要条件:q p ⇒,p q ≠>p 是q 的必要不充分条件:p q q p ⇒≠>,p 是q 的既不充分不必要条件:,q p ≠>pq ≠>8.逻辑联结词:(1)用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.全真则真,有假则假。
(2)用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.全假则假,有真则真。
(3)对一个命题p 全盘否定,得到一个新命题,记作p ⌝.真假性相反9.短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示.含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”.短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示.含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10.全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.第二章圆锥曲线与方程1.椭圆定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2.椭圆的几何性质:3.平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.4.双曲线的几何性质:5.实轴和虚轴等长的双曲线称为等轴双曲线.6.平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.7.过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =.8.焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02pF x P =+;若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02pF x P =-+;若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02pF y P =+;若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02pF y P =-+.9.抛物线的几何性质:解题注意点:1.“回归定义”是一种重要的解题策略。
高二数学选修2-1知识点总结
A.q1,q3 B.q2,q3
A.②③ B.②④
C.q1,q4 D.q2,q4
C.③④ D.①②③
[审题视点] 依据复合函数的单调性推断 p1,p2 的'真假.
解析 命题 p 是假命题,命题 q 是真命题,故③④正确.
解析 可推断 p1 为真,p2 为假;则 q1 为真,q2 为假,q3 为假,
答案 C
第4页共7页
本文格式为 Word 版,下载可任意编辑
出 m 的取值范围. 解 由 p 得:-m<0,Δ1=m2-4>0,则 m>2. 由 q 得:Δ2=16(m-2)2-16=16(m2-4m+3)<0, 则 1<m<3. 又∵“p 或 q”为真,“p 且 q”为假,∴p 与 q 一真一假. ①当 p 真 q 假时,m≤1 或 m≥3,m>2,解得 m≥3; ②当 p 假 q 真时,1<m<3,m≤2,解得 1<m≤2. ∴m 的取值范围为 m≥3 或 1<m≤2. 含有规律联结词的命题要先确定构成命题的(一个或两个)命题的
(2)特称命题的否认是全称命题
(1)含有全称量词的命题叫全称命题.
魏
第1页共7页
本文格式为 Word 版,下载可任意编辑
特称命题 p:x0∈M,p(x0),它的否认 p:x∈M,p(x).
2.(2021·北京)若 p 是真命题,q 是假命题,则( ).
2.复合命题的否认
A.p∧q 是真命题 B.p∨q 是假命题
“p∧q”、“q”形式命题的真假.
答案 存在 x0∈R,使|x0-2|+|x0-4|≤3
【训练 1】 已知命题 p:x0∈R,使 sin x0=25;命题 q:x∈R,
考向一 含有规律联结词命题真假的推断
都有 x2+x+1>0.给出以下结论
人教版高中数学【选修2-1】[知识点整理及重点题型梳理]_命题及其关系_基础
人教版高中数学选修2-1知识点梳理)巩固练习重点题型(常考知识点命题及其关系【学习目标】1.了解命题、真命题、假命题的概念,能够指出一个命题的条件和结论;2.了解原命题、逆命题、否命题、逆否命题,会分析四种命题的相互关系,能判断四种命题的真假;3.能熟练判断命题的真假性.【要点梳理】要点一、命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.要点诠释:1.不是任何语句都是命题,不能确定真假的语句不是命题,如“x>2”,“2不一定大于3”.2.只有能够判断真假的陈述句才是命题.祈使句,疑问句,感叹句都不是命题,例如:“起立”、“π是有理数吗?”、“今天天气真好!”等.3.语句能否确定真假是判断其是否是命题的关键.一个命题要么是真,要么是假,不能既真又假,模棱两可.命题陈述了我们所思考的对象具有某种属性,或者不具有某种属性,这类似于集合中元素的确定性.要点二、命题的结构命题可以改写成“若p,则q”的形式,或“如果p,那么q”的形式.其中p是命题的条件,q是命题的结论.要点诠释:1.一般地,命题“若p则q”中的p为命题的条件q为命题的结论.2.有些问题中需要明确指出条件p和q各是什么,因此需要将命题改写为“若p则q”的形式.要点三、四种命题原命题:“若p,则q”;逆命题:“若q,则p”;实质是将原命题的条件和结论互相交换位置;. 否命题:“若非 p ,则非 q ”,或“若 ⌝p ,则 ⌝q ”;实质是将原命题的条件和结论两者分别否定;逆否命题:“若非 q ,则非 p ”,或“若 ⌝q ,则 ⌝p ”;实质是将原命题的条件和结论两者分别否定后再换位或将原命题的条件和结论换位后再分别否定.要点诠释:对于一般的数学命题,要先将其改写为“若 p ,则 q ”的形式,然后才方便写出其他形式的命题.要点四、四种命题之间的关系四种命题之间的构成关系原 命题若p 则q互互 互 逆为 逆否逆命题 若q 则p互 否否 命 题互为逆否否逆 否命 题若⌝p 则⌝q四种命题之间的真值关系互 逆若⌝q 则⌝p原命题真真 假假逆命题真假 真假否命题真假 真假逆否命题真真 假假要点诠释:(1)互为逆否命题的两个命题同真同假;(2)互为逆命题或互为否命题的两个命题的真假无必然联系.【典型例题】类型一:命题的概念例 1.判断下列语句中哪些是命题,是命题的判断其是真命题还是假命题(1)末位是 0 的整数能被 5 整除;(2)平行四边形的对角线相等且互相平分;(3)两直线平行,则斜率相等;(△4)ABC中,若∠A=∠B,则sinA=sinB;(5)余弦函数是周期函数吗?【思路点拨】依据命题的定义判断。
高中数学选修2-1知识点高二
高中数学选修2-1知识点高二在高中数学选修2-1课程中,学生将会学习一系列关于函数和三角函数的知识。
这些知识点对于高二学生来说是非常重要的,因为它们在未来的学习和应用中起着关键的作用。
本文将详细介绍高中数学选修2-1的知识点,旨在帮助学生更好地理解并掌握这些内容。
知识点一:函数函数是数学中的基本概念之一,也是高中数学的核心内容之一。
在高中数学选修2-1中,我们将会学习函数的定义、性质和运算规则等方面的内容。
函数的定义:函数是一种对应关系,它将一个集合中的每个元素都映射到另一个集合中的唯一元素上。
一个函数可以用以下形式表示:f(x) = y,其中x是自变量,y是对应的因变量。
函数的性质:函数有一些基本性质,比如定义域、值域、单调性和奇偶性等。
理解这些性质可以帮助我们更好地分析和描述函数的特点。
函数的运算规则:在高中数学选修2-1中,我们还将学习函数的四则运算和复合运算。
这些运算规则可以帮助我们简化函数表达式,并进行函数的组合和拆分等操作。
知识点二:三角函数三角函数是数学中又一个重要的概念,它在几何学和物理学等领域具有广泛的应用。
在高中数学选修2-1中,我们将会学习正弦函数、余弦函数、正切函数以及它们的性质和应用等方面的内容。
正弦函数:正弦函数是一个周期性函数,它的图像表现为一条波浪线。
正弦函数的定义域是全体实数,值域是闭区间[-1,1]。
理解正弦函数的性质和变化规律,可以帮助我们在几何学中解决三角形相关的问题。
余弦函数:余弦函数也是一个周期性函数,它的图像与正弦函数非常相似,只是在垂直方向上有所平移。
余弦函数的性质和应用在物理学中有着广泛的应用,比如描述物体在弹簧的作用下的运动等。
正切函数:正切函数是一个奇函数,它的图像表现为一条无穷的曲线。
正切函数有一些特殊的性质,比如在某些点上它的值是无穷大,这在解决一些特殊的几何问题时非常有用。
知识点三:函数的图像与变换在高中数学选修2-1中,我们还将学习函数的图像与变换等方面的内容。
高考数学选修2,1知识点:从平面向量到空间向量
高考数学选修2,1知识点:从平面向量到空间向量1500字从平面向量到空间向量,是高中数学的一个重要知识点。
平面向量和空间向量是向量的两种不同形式,它们在数学上有着相似的性质和运算规律,但在几何上有一些区别。
首先,我们来了解一下平面向量。
平面向量是指在平面内有大小和方向的向量。
平面向量用有向线段表示,线段的方向表示向量的方向,线段的长度表示向量的大小。
设向量AB的起点为A,终点为B,记作向量AB,表示为→AB。
平面向量有两种表示方法:坐标表示和分量表示。
1. 坐标表示:假设平面向量AB的起点坐标为A(x1, y1),终点坐标为B(x2, y2),则向量AB的坐标表示为(x2 - x1, y2 - y1)。
2. 分量表示:平面向量的分量表示是通过向量的水平分量和竖直分量表示向量。
假设平面向量AB的长度为|r|,与X轴的夹角为θ,则水平分量为|r|cosθ,竖直分量为|r|sinθ。
接下来,我们来了解一下空间向量。
空间向量是指在三维空间中有大小和方向的向量。
空间向量同样用有向线段表示,线段的方向表示向量的方向,线段的长度表示向量的大小。
设向量AB的起点为A,终点为B,记作向量AB,表示为→AB。
空间向量也有两种表示方法,即坐标表示和分量表示。
1. 坐标表示:假设空间向量AB的起点坐标为A(x1, y1, z1),终点坐标为B(x2, y2, z2),则向量AB的坐标表示为(x2 - x1, y2 - y1, z2 - z1)。
2. 分量表示:空间向量的分量表示同样是通过向量在坐标轴上的投影来表示向量。
假设空间向量AB的长度为|r|,与X轴、Y轴、Z轴的夹角分别为α、β、γ,则向量的X 轴分量为|r|cosα,Y轴分量为|r|cosβ,Z轴分量为|r|cosγ。
在从平面向量到空间向量的过程中,需要注意以下几点:1. 坐标表示的差异:平面向量的坐标表示有两个分量,而空间向量的坐标表示有三个分量。
2. 分量表示的差异:平面向量的分量表示只有水平分量和竖直分量,而空间向量的分量表示有X轴、Y轴、Z轴三个分量。
高中数学必修二 选修2-1 知识点归纳
必修二 知识点归纳: 第一章 空间几何体1. 棱柱 直棱柱:侧棱垂直于底面的棱柱。
(正棱柱: 底面为正多边形的直棱柱。
)斜棱柱:侧棱不垂直于底面的棱柱。
(平行六面体:底面为平行四边形的斜棱柱。
) 棱锥 正棱锥:底面为正多边形,顶点在底面的投影为底面的中心的棱锥。
斜棱锥:以上条件之一不满足的棱锥。
棱台 正棱台:由平行于底面的平面截正棱锥得到的棱台。
斜棱台:由平行于底面的平面截斜棱锥得到的棱台。
四面体:三棱锥正四面体:六条棱均相等的三棱锥。
空间四边形ABCD :三棱锥,其中有四条边:AB 、BC 、CD 、DA ;两条对角线:AC 、BD 。
2. 三视图(会识别,会画图)3. 斜二测画法画直观图:见《名师面对面》P10:3题;P12:6、7题4. S 圆柱侧=2πrl S 圆柱表=2πrl+2πr 2S 圆锥侧=πrl S 圆锥表=πrl+πr 2S 圆台侧=π(r +r ′)l S 圆台表=π(r +r ′)l +πr 2+πr′2 其中r 为底面半径,l 为母线长 5. V 柱体=Sh V 锥体=13Sh V 台体=13(S+√SS′+S’)h 其中S ,S’为底面积,h 为高 6. S 球表=4πR 2 V 球=43πR 37. 球内接正方体棱长a 与球半径R 关系:2R=√3a 注意:将《名师面对面》P12-21重做一遍。
第二章:点、直线、平面之间的位置关系1.平面的概念,画法,与点的属于关系,与直线的包含关系。
2.三个公理:(1)如果一条直线上的两点在同一个平面内,那么这条直线在此平面内。
(2)不共线三点确定一个平面。
推论:①一条直线与直线外一点确定一个平面。
②两条平行直线确定一个平面。
③两条相交直线确定一个平面。
(3)如果两个不重合平面有一个公共点,那么它们有且仅有一条过该点的公共直线。
注意:将《名师面对面》P22-24重做一遍。
3.空间两直线的位置关系:_____、_____、_____。
高二数学选修2-1知识点总结(完整版)
高二数学选修2-1知识点总结(完整版)算术平均数算术平均数是统计学中的一个重要概念,它是指把一组数字的和除以它们的个数,反映在一千个人中有多少人在某一条件方面的平度或中点,用数学公式表示就是:平均数= ∑(x1,x2,...Xn)/n其中,n表示给定的一组数字的个数,Xi表示具体的数字(i= 1,2,3,...n )。
中位数中位数也叫中点数,是统计学中常用的一种量化指标,它表示一组数字中,从小到大排列顺序时,处于中间位置的那个数,或者从大到小排列时,处于中间位置的数字。
当数据由奇数个时,中位数就是处于中间位置的那个数字;而若是数据由偶数个时,中位数就是这组数据所有数字加总后除以2所得的值(例如:1,2,3,3,中位数为2)。
标准差标准差是统计学中的一个重要概念,它可以反映出一组数据的离散程度,是用来衡量一组数据的变异情况的,又称为离散度。
数学公式表达形式为:标准差= ∑( xi-平均数)²/(n-1)其中,n表示样本数,Xi表示具体的数值,平均数表示数据的算术平均数。
众数众数=∑xi /n模数模数是数学中的一项概念,通常可以从1到最大数字取若干个数,这些数中,剩下不能用其他数表示的最大数,就叫做模数。
形式上可以用数学公式表示为:模数=M= GCD (a,b,c,…)其中,GCD表示最大公约数,a,b,c…表示一组数。
伯努利实验伯努利实验是统计学中的基本概念,它是指通过实验中多次试验,对两个或两个以上的事件的发生概率的分析,以估算出某个事件诞生的可能性,数学公式表示形式如下:P(A)= nA/nnA表示事件A成功的实验次数,n表示实验的总次数。
线性相关线性相关是统计学中常用的一种分析方式,它指的是通过查看两组数据间的关系,来判断两个或两个以上的变量之间是否存在直接关系,如果存在,就称之为线性相关。
数学表达式如下:其中,X1、X2、X3…Xn表示两组数据,n表示数据的个数。
高中数学选修1-2知识点总结
知识点总结选修1-2知识点总结第一章 统计案例 1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。
3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A发生的概率称为B 发生时A 发生的条件概率. 记为P (A |B ) , 其公式为P (A |B )=P (AB )P (A )4相互独立事件(1)一般地,对于两个事件A ,B ,如果_ P (AB )=P (A )P (B ) ,则称A 、B 相互独立.(2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=_ P (A 1)P (A 2)…P (A n ). (3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -也相互独立. 5.独立性检验(分类变量关系): (1)2×2列联表设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量121:,;B B B B =通过观察得到右表所示数据:并将形如此表的表格称为2×2列联表.(2)独立性检验根据2×2列联表中的数据判断两个变量A ,B 是否独立的问题叫2×2列联表的独立性检验.(3) 统计量χ2的计算公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )第二章 推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理. 考点三 数学归纳法:它是一个递推的数学论证方法. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础; B.假设在n=k 时命题成立 C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。
人教版高中数学选修21知识点小结
选修2-1知识点选修2-1第一章 常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”:p 称为命题的条件,q 称为命题的结论.3、若原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4、若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、若原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系. 7、p 是q 的充要条件:p q ⇔p 是q 的充分不必要条件:q p ⇒,p q ≠> p 是q 的必要不充分条件:p q q p ⇒≠>,p 是q 的既不充分不必要条件:,q p ≠>p q ≠>8、逻辑联结词:(1)用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.全真则真,有假则假。
(2)用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.全假则假,有真则真。
(2)对一个命题p 全盘否定,得到一个新命题,记作p ⌝.真假性相反 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.第二章 圆锥曲线与方程1、椭圆定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程 ()222210x y a b a b+=>> ()222210y x a b a b+=>> 范围 a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.4、双曲线的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程 ()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>渐近线方程 b y x a =±a y x b=± 5、实轴和虚轴等长的双曲线称为等轴双曲线.6、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.7、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 8、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02pF x P =+; 若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02pF x P =-+;若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02pF y P =+;若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02pF y P =-+.9、抛物线的几何性质:标准方程22y px = ()0p > 22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴 x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2p x =2p y =-2p y =离心率 1e =范围0x ≥ 0x ≤0y ≥ 0y ≤解题注意点:1、“回归定义” 是一种重要的解题策略。
数学选修2-1总结
数学选修2-1总结数学选修2-1总结数学选修2-1是高中数学课程中的一门重要课程,主要涵盖了数列与函数、概率与统计两个部分。
通过学习这门课程,我们能够进一步巩固和拓展数学的基础知识,并培养我们的数学思维能力和解决问题的能力。
以下是对数学选修2-1内容的总结。
第一部分:数列与函数数列与函数是高中数学中非常重要的主题,本部分主要包括数列及其运算、数列的通项公式与递推关系、数列的极限、一次函数与二次函数、指数函数与对数函数以及三角函数等内容。
数列部分主要学习了数列的概念、常数列、等差数列和等比数列等特殊数列的性质和运算。
学习过程中,我们明确了数列的定义和性质,掌握了数列的各种运算规律和方法,并用数学语言对数列进行了描述和解释。
函数部分的核心内容是一次函数与二次函数,这两种函数是我们数学学习中最为常见的函数形式。
通过学习,我们了解了一次函数和二次函数的定义、性质和图像特征,并学会了用函数的方法进行问题的分析和求解。
除了一次函数和二次函数,我们还学习了指数函数与对数函数以及三角函数。
指数函数与对数函数是数学中非常重要的函数形式,有着广泛的应用。
在学习中,我们了解了指数函数与对数函数的定义、性质和运算规律,并学会了运用它们解决实际问题。
三角函数部分,我们主要学习了正弦函数、余弦函数和正切函数的定义、性质和图像特征,并学会了用三角函数解决实际问题。
第二部分:概率与统计概率与统计是数学中的一个重要分支,它研究了事物发生的可能性和对数据的收集与分析。
本部分主要包括事件与概率、随机变量与概率分布、统计与抽样等内容。
在学习概率与统计的过程中,我们学习了事件的概念,了解了事件之间的关系、事件的相互补和事件的运算。
我们也学习了概率的定义和性质,掌握了计算概率的方法,如加法原理、乘法原理和条件概率等。
随机变量与概率分布是概率与统计中的核心概念。
我们学习了随机变量的概念和分类,了解了离散型随机变量和连续型随机变量的定义、性质和常见的概率分布,如二项分布、正态分布等。
人教版高中数学【选修2-1】[知识点整理及重点题型梳理]_抛物线的方程与性质_基础
人教版高中数学选修2-1知识点梳理重点题型(常考知识点)巩固练习抛物线的方程与性质【学习目标】1.掌握抛物线的定义 、几何图形和标准方程.2.理解抛物线的简单性质(范围、对称性、顶点、离心率). 3.能用抛物线的方程与性质解决与抛物线有关的简单问题. 4. 进一步体会数形结合的思想方法. 【要点梳理】要点一、抛物线的定义定义:平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.要点二、抛物线的标准方程 标准方程的推导如图,以过F 且垂直于 l 的直线为x 轴,垂足为K.以F,K 的中点O 为坐标原点建立直角坐标系xoy. 设|KF|=p(p >0),那么焦点F 的坐标为(,0)2p ,准线l 的方程为2p x =-. 设点M (x,y )是抛物线上任意一点,点M 到l 的距离为d.由抛物线的定义,抛物线就是集合}|||{d MF M P ==..|2|)2(|,2|,)2(||2222p x y p x px d y p x MF +=+-∴+=+-=将上式两边平方并化简,得22(0)y px p =>. ①方程①叫抛物线的标准方程,它表示的抛物线的焦点在x 轴的正半轴上,坐标是(,0)2p它的准线方程是2p x =-. 抛物线标准方程的四种形式:根据抛物线焦点所在半轴的不同可得抛物线方程的的四种形式22y px =,22y px =-,22x py =,22x py =-(0)p >。
要点诠释:①只有当抛物线的顶点是原点,对称轴是坐标轴时,才能得到抛物线的标准方程;②抛物线的焦点在标准方程中一次项对应的坐标轴上,且开口方向与一次项的系数的正负一致,比如抛物线220x y =-的一次项为20y -,故其焦点在y 轴上,且开口向负方向(向下)③抛物线标准方程中一次项的系数是焦点的对应坐标的4倍,比如抛物线220x y =-的一次项20y -的系数为20-,故其焦点坐标是(0,5)-。
人教版数学选修1-2知识点总结
人教版数学选修1-2知识点总结(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数学 选修1-2知识点总结第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系;②制作散点图,判断线性相关关系 ③线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni iini i iy yx xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。
3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率. 记为P (A |B ) , 其公式为P (A |B )=P (AB )P (A )4相互独立事件(1)一般地,对于两个事件A ,B ,如果_ P (AB )=P (A )P (B ) ,则称A 、B 相互独立.(2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).(3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -也相互独立.5.独立性检验(分类变量关系):(1)2×2列联表设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量121:,;B B B B =通过观察得到右表所示数据: 并将形如此表的表格称为2×2列联表.(2)独立性检验根据2×2列联表中的数据判断两个变量A,B是否独立的问题叫2×2列联表的独立性检验.(3) 统计量χ2的计算公式χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)第二章框图1.流程图流程图是由一些图形符号和文字说明构成的图示.流程图是表述工作方式、工艺流程的一种常用手段,它的特点是直观、清晰.2.结构图一些事物之间不是先后顺序关系,而是存在某种逻辑关系,像这样的关系可以用结构图来描述.常用的结构图一般包括层次结构图,分类结构图及知识结构图等.第三章推理与证明1.推理⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学选修2-1知识点总结第一章:命题与逻辑结构知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题。
若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。
其中一个命题称为原命题,另一个称为原命题的逆否命题。
若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”。
6()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示.含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示.含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝。
全称命题的否定是特称命题。
特称命题p :x ∃∈M ,()p x ,它的否定p ⌝:x ∀∈M ,()p x ⌝。
特称命题的否定是全称命题。
第二章:圆锥曲线知识点:1、求曲线的方程(点的轨迹方程)的步骤:建、设、限、代、化①建立适当的直角坐标系;(),y 及其他的点;③找出满足限制条件的等式; ④将点的坐标代入等式;⑤化简方程,并验证(查漏除杂)。
2、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F)的点的轨迹称为椭圆。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。
()12222MF MF a a c +=> 3、椭圆的几何性质:4、设M 是椭圆上任一点,点M 到F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==。
5、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线。
这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距。
()12222MF MF a a c -=< 6、双曲线的几何性质:7、实轴和虚轴等长的双曲线称为等轴双曲线。
8、设M 是双曲线上任一点,点M 到F 对应准线的距离为1d ,点M 到F 对应准线的距离为2d ,则1212F F e d d M M ==。
9、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F称为抛物线的焦点,定直线l 称为抛物线的准线.10、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 11、焦半径公式: 若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02p F x P =+;、若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02pF x P =-+;若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02p F y P =+;若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02p F y P =-+.12、抛物线的几何性质:关于抛物线焦点弦的几个结论: 设AB 为过抛物线22(0)ypx p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则 ⑴ 221212,;4p x x y y p ==- ⑵ 22;sin pAB θ= ⑶ 以AB 为直径的圆与准线相切; ⑷ 焦点F 对A B 、在准线上射影的张角为2π;⑸112.||||FA FB P+= 第三章:空间向量知识点:1、空间向量的概念:(1)在空间,具有大小和方向的量称为空间向量.(2)向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向. (3)向量AB 的大小称为向量的模(或长度),记作AB .(4)模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. (5)与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. (6)方向相同且模相等的向量称为相等向量. 2、空间向量的加法和减法:(1)求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.(2)求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.3、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.4、设λ,μ为实数,a ,b 是空间任意两个向量,则数乘运算满足分配律及结合律. 分配律:()a b a b λλλ+=+;结合律:()()a a λμλμ=.5、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.6、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.7、平行于同一个平面的向量称为共面向量.8、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB +A ;或对空间任一定点O ,有x y C OP =OA +AB +A ;或若四点P,A,B,C共面,则()1x y z C x y z OP =OA+OB+O ++=.9、已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈.10、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作ab ⊥.11、已知两个非零向量a和b,则cos ,a b a b 〈〉称为a,b的数量积,记作a b⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.12、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积.13若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a=⋅;()4cos ,a b a b a b⋅〈〉=;()5a b a b ⋅≤.14量数乘积的运算律:()1a b b a ⋅=⋅; ()2()()()a b a b a b λλλ⋅=⋅=⋅; ()3()a b c a c b c +⋅=⋅+⋅.15、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.16、三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.17、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .18、设()111,,a x y z =,()222,,b x y z =,则(1)()121212,,a b x x y y z z +=+++. (2)()121212,,a b x x y y z z -=---. (3)()111,,a x y z λλλλ=.(4)121212a bx x y y z z ⋅=++.(5)若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=.(6)若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===.(7)21a a a x =⋅=+(8)21cos ,a b a b a bx ⋅〈〉==+(9)()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =19、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.向量OP 称为点P 的位置向量.20、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP =,这样点A 和向量a 不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点.21、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+,这样点O与向量a ,b 就确定了平面α的位置.22、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量. 23、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.24、若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=.25、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.26、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a b θϕ⋅==.27、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==. 28、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.29、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算. 30、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.31、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.。